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Abstract

LetG be one of the two multigraphs obtained fromK4−e by replacing
two edges with a double-edge while maintaining a minimum degree
of 2. We find necessary and sufficient conditions on n and λ for the
existence of a G-decomposition of λKn.

1 Introduction

Throughout this paper, we may refer to a multigraph as a graph; however,
our graphs contain no loops. If we wish to emphasize that a given graph
does not contain parallel edges, then we refer to it as a simple graph. For
a graph G, we use V (G) and E(G) to denote the vertex set and the edge
set (or multiset) of G, respectively. For a simple graph G and a positive
integer λ, we use λG to denote the graph obtained from G by replacing each
edge in E(G) with λ parallel edges. Alternatively, we let λG denote the
graph consisting of λ vertex-disjoint copies of G. For edge-disjoint graphs
G and H, we use G ∪H to represent the graph with edge set (or multiset)
E(G) ∪ E(H) and vertex set V (G) ∪ V (H). We define the join of two
vertex-disjoint graphs G and H, denoted G ∨H, as the graph with vertex
set V (G)∪V (H) and edge set E(G)∪E(H)∪

{
{a, b} : a ∈ V (G), b ∈ V (H)

}
.

We use Ks×t to denote the complete multipartite simple graph with s parts

∗Research supported by National Science Foundation Grant No. A1659815

1



a b

cd

G1[a, b, c, d]

a b

cd

G2[a, b, c, d]

Figure 1: The two multigraphs consisting of K4 − e with two double edges
and minimum degree 2.

of size t, and we use Kr, s×t to denote the complete multipartite simple
graph with one part of size r and s parts of size t. If G is a subgraph of
H, we use H \G to denote the graph obtained from H by removing E(G)
from E(H).

1.1 The Spectrum Problem

Let K and G be graphs with G a subgraph of K. A G-decomposition of
K is a set (or multiset) ∆ = {G1, G2, . . . , Gt} of subgraphs of K such each
Gi ∈ ∆ is isomorphic to G and such that each edge of K appears in exactly
one such Gi. Similarly, if G and H are each subgraphs or K, then a {G,H}-
decomposition of K is defined to be a set {H1, H2, . . . ,Ht} of subgraphs
of K such that each Hi ∈ ∆ is isomorphic to either G or H and such that
each edge of K appears in exactly one such Hi. A G-decomposition of K is
also known as a (K,G)-design or, if K is the complete graph on n vertices,
a G-design of order n.

A classic problem in the study of graph designs is to find necessary and
sufficient conditions for the existence of a G-decomposition of λKn. This
is known as the spectrum problem for G because the set of all such n is
called the spectrum for G-designs of index λ. The spectrum for G-designs
of index 1 has been determined for several classes of graphs including cycles,
paths, stars, and simple graphs with at most 5 vertices (see [2]).

In recent years, there have been some investigations of G-designs of
index λ where G is a multigraph with edge multiplicity at least 2. For
example, in [4] Carter determined the spectra for G-designs of index λ for
all connected cubic multigraphs G of order at most 6. The spectra for
G-designs of index λ have been investigated for various multigraphs G of
small order (see for example [8], [3], and [9]). In this paper we consider two
multigraphs with 7 edges and minimum degree 2 obtained by replacing two
edges of K4 − e with a double edge (see Figure 1). We settle the spectrum
problem for these multigraphs.
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1.2 Some Basic Results

The necessary conditions for the existence of a G-decomposition of λKn

include the following:

•
∣∣V (G)

∣∣ ≤ n,

•
∣∣E(G)

∣∣ divides
∣∣E(λKn

)∣∣ = λn(n− 1), and

• gcd{deg(v) : v ∈ V (G)} divides λ(n− 1).

Applying these necessary conditions to the two multigraphs under consid-
eration, we obtain the following necessary conditions on their spectra.

Lemma 1.1. Let λ ≥ 2 and n ≥ 4 be integers. There exists a G1-
decomposition of λKn only if the following hold:

• if gcd(λ, 7) = 1, then n ≡ 0 or 1 (mod 7);

• if gcd(λ, 7) = 7, then n ≥ 4.

Proof. Let λ ≥ 2 and n ≥ 4 and suppose there exists a G1-decomposition
of λKn. Since

∣∣E(G1)
∣∣ must divide

∣∣E(λKn

)∣∣ for such a G1-decomposition
to exist, we must have that 7 | λn(n− 1)/2, and thus 14 | λn(n− 1). First,
if gcd(λ, 7) = 1, then 14 | n(n− 1), and thus n ≡ 0 or 1 (mod 7). Finally,
if gcd(λ, 7) = 7, then 2 | n(n− 1), which is true for any n ≥ 4. �

Lemma 1.2. Let λ ≥ 2 and n ≥ 4 be integers. There exists a G2-
decomposition of λKn only if the following hold:

• if gcd(λ, 14) = 1, then n ≡ 1 or 7 (mod 14);

• if gcd(λ, 14) = 2, then n ≡ 0 or 1 (mod 7);

• if gcd(λ, 14) = 7, then n ≡ 1 (mod 2);

• if gcd(λ, 14) = 14, then n ≥ 4.

Proof. Let λ ≥ 2 and n ≥ 4 and suppose there exists a G2-decomposition
of λKn. Since

∣∣E(G2)
∣∣ must divide

∣∣E(λKn)
∣∣ for such a G2-decomposition

to exist, we must have that 7 | λn(n − 1)/2, and thus 14 | λn(n − 1).
Also, since all the vertices of G2 have even degree, each vertex of λKn must
similarly have even degree; thus, 2 | λ(n− 1). First, if gcd(λ, 14) = 1, then
14 | n(n − 1) and 2 | (n − 1), and thus n ≡ 1 or 7 (mod 14). Second,
if gcd(λ, 14) = 2, then λ is even and 7 | n(n − 1), and thus n ≡ 0 or 1
(mod 7). Third, if gcd(λ, 14) = 7, then 2 | n(n − 1) but also 2 | (n − 1),
and thus n ≡ 1 (mod 2). Finally, if gcd(λ, 14) = 14, then 14 | λ, and thus
there are no further restrictions on n. �

The following theorems on decompositions of complete graphs and com-
plete multipartite graphs are used extensively in proving our main results.
All of these results can be found in the Handbook of Combinatorial Designs
[5] (see [1], [6], and [7]).
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Theorem 1.3. If n is an odd positive integer, then there exists a {K3,K5}-
decomposition of Kn.

Theorem 1.4. The necessary and sufficient conditions for the existence of
a K3-decomposition of Kt×m are (i) t ≥ 3, (ii) (t− 1)m ≡ 0 (mod 2), and
(iii) t(t− 1)m2 ≡ 0 (mod 6).

Theorem 1.5. If t ≥ 3 and t ≡ 0 (mod 3), then there exists a K3-
decomposition of K4, t×2.

Combining the previous two results, we have the following corollary that
is more directly applicable in our general constructions.

Corollary 1.6. Let t ≥ 3. There exists a K3-decomposition of Kt×2 if
t ≡ 0 or 1 (mod 3) and of K4, (t−2)×2 if t ≡ 2 (mod 3).

The following is a well-known result that is a special case of Wilson’s
Fundamental Construction (see [7]).

Theorem 1.7. Let m, n, r, s, and t be positive integers. If there exists a
(Kt×m,Kn)-design, then there exists a (Kt×ms,Kn×s)-design. Similarly, if
there exists a (Kr, t×m,Kn)-design, then there exists a (Krs, t×ms,Kn×s)-
design.

2 Some Small Examples

In this section we present G1- and G2-decompositions of various graphs
that are needed for the constructions used in Section 3. Let G ∈ {G1, G2}.
ThenG[a, b, c, d] denotes the graph with vertex set {a, b, c, d} and edge set as
represented in Figure 1. For example, G2[0, 1, 2, 3] denotes the graph with
vertex set {0, 1, 2, 3} and edge multiset {{0, 1}, {0, 1}, {0, 2}, {0, 3}, {1, 2},
{1, 2}, {2, 3}}. Given the graphs represented by the notation G[a, b, c, d]
and some i ∈ Zn, we define G[a, b, c, d] + i = G[a+ i, b+ i, c+ i, d+ i] where
all addition is performed in Zn. By convention, define ∞+ 1 =∞.

2.1 Small Designs of Index 2

Example 2.1. Let V
(
2K7

)
= Z6 ∪ {∞} and let ∆1 = {G1[1, 0, 3,∞] + i :

i ∈ Z6} and ∆2 = {G2[0, 1, 3,∞] + i : i ∈ Z6}. Then ∆1 and ∆2 are
respectively G1- and G2-decompositions of 2K7.

Example 2.2. Let V
(
2K8

)
= Z8 and let ∆1 = {G1[0, 2, 3, 7] + i : i ∈ Z8}

and ∆2 = {G2[1, 0, 3, 5] + i : i ∈ Z8}. Then ∆1 and ∆2 are respectively G1-
and G2-decompositions of 2K8.
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Example 2.3. Let V
(
2K14

)
= Z13∪{∞} and let ∆1 = {G1[5, 3, 0,∞] + i :

i ∈ Z13} ∪ {G1[0, 4, 1, 7] + i : i ∈ Z13} and ∆2 = {G2[0, 3, 1,∞] + i : i ∈
Z13} ∪ {G2[0, 5, 1, 7] + i : i ∈ Z13}. Then ∆1 and ∆2 are respectively G1-
and G2-decompositions of 2K14.

Example 2.4. Let V
(
2K15

)
= Z15 and let ∆1 = {G1[5, 0, 1, 3] + i : i ∈

Z15} ∪ {G1[7, 0, 1, 4] + i : i ∈ Z15} and ∆2 = {G2[0, 3, 1, 7] + i : i ∈ Z15} ∪
{G2[0, 5, 1, 7] + i : i ∈ Z15}. Then ∆1 and ∆2 are respectively G1- and
G2-decompositions of 2K15.

Example 2.5. Let V
(
2K28

)
= Z27 ∪ {∞} and let

∆1 = {G1[17, 0, 11,∞] + i : i ∈ Z27} ∪ {G1[1, 0, 15, 23] + i : i ∈ Z27}
∪ {G1[9, 0, 12, 17] + i : i ∈ Z27} ∪ {G1[4, 11, 0, 2] + i : i ∈ Z27},

∆2 = {G2[0, 3, 1,∞] + i : i ∈ Z27} ∪ {G2[0, 8, 1, 14] + i : i ∈ Z27}
∪ {G2[0, 11, 5, 9] + i : i ∈ Z27} ∪ {G2[10, 0, 15, 6] + i : i ∈ Z27}.

Then ∆1 and ∆2 are respectively G1- and G2-decompositions of 2K28.

Example 2.6. Let V
(
2K29

)
= Z29 and let

∆1 = {G1[0, 2, 8, 5] + i : i ∈ Z29} ∪ {G1[0, 14, 11, 4] + i : i ∈ Z29}
∪ {G1[0, 12, 13, 6] + i : i ∈ Z29} ∪ {G1[0, 10, 9, 5] + i : i ∈ Z29},

∆2 = {G2[14, 2, 0, 3] + i : i ∈ Z29} ∪ {G2[13, 4, 0, 5] + i : i ∈ Z29}
∪ {G2[5, 6, 0, 13] + i : i ∈ Z29} ∪ {G2[3, 10, 0, 14] + i : i ∈ Z29}.

Then ∆1 and ∆2 are respectively G1- and G2-decompositions of 2K29.

Example 2.7. Let V
(
2K3×7

)
= Z21 with partition

{
{i ∈ Z21 : i ≡ j

(mod 3)} : j ∈ Z3

}
and let

∆1 = {G1[1, 5, 0, 8] + i : i ∈ Z21} ∪ {G1[0, 10, 2, 7] + i : i ∈ Z21},
∆2 = {G2[0, 8, 7, 2] + i : i ∈ Z21} ∪ {G2[0, 11, 7, 2] + i : i ∈ Z21}.

Then ∆1 and ∆2 are respectively G1- and G2-decompositions of 2K3×7.

Example 2.8. Let V
(
2K5×7

)
= Z35 with partition

{
{i ∈ Z35 : i ≡ j

(mod 5)} : j ∈ Z5

}
and let

∆1 = {G1[9, 12, 0, 1] + i : i ∈ Z35} ∪ {G1[0, 21, 13, 1] + i : i ∈ Z35}
∪ {G1[6, 13, 2, 0] + i : i ∈ Z35} ∪ {G1[0, 19, 17, 11] + i : i ∈ Z35},

∆2 = {G2[0, 11, 4, 16] + i : i ∈ Z35} ∪ {G2[0, 6, 4, 13] + i : i ∈ Z35}
∪ {G2[0, 17, 9, 12] + i : i ∈ Z35} ∪ {G2[0, 14, 13, 16] + i : i ∈ Z35}.

Then ∆1 and ∆2 are respectively G1- and G2-decompositions of 2K5×7.
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2.2 Small Designs of Index 3

Example 2.9. Let V
(
3K7

)
= Z2 × Z3 ∪ {∞} and let

∆1 = {G1[(0, 0 + i), (1, 0 + i), (1, 2 + i), (0, 1 + i)] : i ∈ Z3}
∪ {G1[(1, 2 + i),∞, (1, 1 + i), (0, 1 + i)] : i ∈ Z3}
∪ {G1[(0, 2 + i),∞, (0, 1 + i), (1, 0 + i)] : i ∈ Z3},

∆2 = {G2[∞, (0, 1 + i), (0, 0 + i), (1, 1 + i)] : i ∈ Z3}
∪ {G2[(1, 1 + i), (0, 1 + i), (1, 0 + i),∞] : i ∈ Z3}
∪ {G2[(0, 0 + i), (1, 1 + i), (1, 2 + i), (0, 2 + i)] : i ∈ Z3}.

Then ∆1 and ∆2 are respectively G1- and G2-decompositions of 3K7.

Example 2.10. Let V
(
3K8

)
= Z8 and let

∆1 = {G1[4, 1, 3, 6], G1[2, 6, 0, 3], G1[2, 3, 7, 0], G1[0, 1, 3, 4],

G1[0, 4, 5, 1], G1[0, 6, 7, 5], G1[1, 6, 5, 2], G1[2, 4, 1, 7],

G1[3, 5, 7, 1], G1[4, 7, 5, 2], G1[6, 3, 5, 2], G1[6, 4, 7, 1]}.

Then ∆1 is a G1-decomposition of 3K8.

Example 2.11. Let V
(
3K14

)
= Z13∪{∞} and let ∆1 = {G1[0,∞, 10, 4]+

i : i ∈ Z13}∪{G1[0, 2, 5, 1] + i : i ∈ Z13}∪{G1[0, 1, 6, 2] + i : i ∈ Z13}. Then
∆1 is a G1-decomposition of 3K14.

Example 2.12. Let V
(
3K15

)
= Z15 and let

∆1 = {G1[0, 2, 5, 6] + i : i ∈ Z15} ∪ {G1[0, 4, 7, 5] + i : i ∈ Z15}
∪ {G1[1, 7, 0, 4] + i : i ∈ Z15},

∆2 = {G2[0, 1, 7, 2] + i : i ∈ Z15} ∪ {G2[0, 2, 7, 3] + i : i ∈ Z15}
∪ {G2[0, 3, 7, 1] + i : i ∈ Z15}.

Then ∆1 and ∆2 are respectively G1- and G2-decompositions of 3K15.

Example 2.13. Let V
(
3K28

)
= Z27 ∪ {∞} and let

∆1 = {G1[0,∞, 13, 26] + i : i ∈ Z27} ∪ {G1[0, 12, 16, 5] + i : i ∈ Z27}
∪ {G1[0, 10, 6, 12] + i : i ∈ Z27}
∪ {G1[0, 9, 5, 8] + i : i ∈ Z27} ∪ {G1[0, 7, 8, 10] + i : i ∈ Z27}
∪ {G1[0, 3, 2, 9] + i : i ∈ Z27}.

Then ∆1 is a G1-decomposition of 3K28.
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Example 2.14. Let V
(
3K29

)
= Z29 and let

∆1 = {G1[0, 15, 13, 10] + i : i ∈ Z29} ∪ {G1[0, 12, 10, 14] + i : i ∈ Z29}
∪ {G1[0, 11, 9, 18] + i : i ∈ Z29} ∪ {G1[0, 8, 7, 13] + i : i ∈ Z29}
∪ {G1[0, 6, 5, 12] + i : i ∈ Z29} ∪ {G1[0, 4, 3, 8] + i : i ∈ Z29},

∆2 = {G2[0, 13, 27, 14] + i : i ∈ Z29} ∪ {G2[0, 12, 2, 19] + i : i ∈ Z29}
∪ {G2[0, 11, 2, 20] + i : i ∈ Z29} ∪ {G2[0, 8, 1, 22] + i : i ∈ Z29}
∪ {G2[0, 6, 1, 24] + i : i ∈ Z29} ∪ {G2[0, 4, 1, 26] + i : i ∈ Z29}.

Then ∆1 and ∆2 are respectively G1- and G2-decompositions of 3K29.

Example 2.15. Let V
(
3K3×7

)
= Z21 with partition

{
{i ∈ Z21 : i ≡ j

(mod 3)} : j ∈ Z3

}
and let

∆1 = {G1[0, 5, 10, 14] + i : i ∈ Z21} ∪ {G1[0, 1, 14, 13] + i : i ∈ Z21}
∪ {G1[0, 4, 2, 10] + i : i ∈ Z21},

∆2 = {G2[0, 8, 7, 11] + i : i ∈ Z21} ∪ {G2[0, 2, 7, 8] + i : i ∈ Z21}
∪ {G2[0, 11, 7, 2] + i : i ∈ Z21}.

Then ∆1 and ∆2 are respectively G1- and G2-decompositions of 3K3×7.

Example 2.16. Let V
(
3K5×7

)
= Z35 with partition

{
{i ∈ Z35 : i ≡ j

(mod 5)} : j ∈ Z5

}
and let

∆1 = {G1[0, 17, 16, 14] + i : i ∈ Z35} ∪ {G1[0, 13, 14, 1] + i : i ∈ Z35}
∪ {G1[0, 12, 9, 16] + i : i ∈ Z35} ∪ {G1[0, 8, 11, 17] + i : i ∈ Z35}
∪ {G1[0, 7, 4, 12] + i : i ∈ Z35} ∪ {G1[0, 6, 2, 11] + i : i ∈ Z35},

∆2 = {G2[0, 4, 1, 7] + i : i ∈ Z35} ∪ {G2[0, 9, 1, 4] + i : i ∈ Z35}
∪ {G2[0, 7, 1, 9] + i : i ∈ Z35} ∪ {G2[0, 13, 2, 14] + i : i ∈ Z35}
∪ {G2[0, 18, 2, 13] + i : i ∈ Z35} ∪ {G2[0, 14, 2, 18] + i : i ∈ Z35}.

Then ∆1 and ∆2 are respectively G1- and G2-decompositions of 3K5×7.

2.3 Small Designs of Index 7

Example 2.17. Let V
(
7K4

)
= Z3 ∪{∞} and let ∆1 = {G1[∞, 0, 1, 2] + i :

i ∈ Z3} ∪ {G1[0, 1, 2,∞] + i : i ∈ Z3}. Then ∆1 is a G1-decomposition
of 7K4.

Example 2.18. Let V
(
7K5

)
= Z5 and let ∆1 = {G1[0, 4, 3, 1] + i : i ∈

Z5} ∪ {G1[0, 3, 1, 2] + i : i ∈ Z5} and ∆2 = {G2[0, 3, 2, 1] + i : i ∈ Z5} ∪
{G2[0, 2, 3, 1] + i : i ∈ Z5}. Then ∆1 and ∆2 are respectively G1- and
G2-decompositions of 7K5.
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Example 2.19. Let V
(
7K6

)
= Z5 ∪{∞} and let ∆1 = {G1[0, 1, 2,∞] + i :

i ∈ Z5}∪ {G1[∞, 0, 1, 3] + i : i ∈ Z5}∪ {G1[0, 2, 3, 4] + i : i ∈ Z5}. Then ∆1

is a G1-decomposition of 7K6.

Example 2.20. Let V
(
7K9

)
= Z9 and let

∆1 = {G1[0, 1, 3, 4] + i : i ∈ Z9} ∪ {G1[0, 2, 4, 3] + i : i ∈ Z9}
∪ {G1[0, 5, 6, 8] + i : i ∈ Z9} ∪ {G1[0, 6, 5, 7] + i : i ∈ Z9},

∆2 = {G2[2, 0, 6, 5] + i : i ∈ Z9} ∪ {G2[1, 0, 4, 8] + i : i ∈ Z9}
∪ {G2[1, 0, 2, 3] + i : i ∈ Z9} ∪ {G2[3, 0, 5, 8] + i : i ∈ Z9}.

Then ∆1 and ∆2 are respectively G1- and G2-decompositions of 7K9.

Example 2.21. Let V
(
7K10

)
= Z9 ∪ {∞} and let

∆1 = {G1[0,∞, 3, 4] + i : i ∈ Z9} ∪ {G1[2, 0,∞, 1] + i : i ∈ Z9}
∪ {G1[0, 1, 4, 3] + i : i ∈ Z9} ∪ {G1[0, 4, 3, 1] + i : i ∈ Z9}
∪ {G1[4, 6, 0, 2] + i : i ∈ Z9}.

Then ∆1 is a G1-decomposition of 7K10.

Example 2.22. Let V
(
7K11

)
= Z11 and let

∆1 = {G1[0, 1, 8, 9] + i : i ∈ Z11} ∪ {G1[0, 4, 3, 9] + i : i ∈ Z11}
∪ {G1[0, 3, 5, 1] + i : i ∈ Z11} ∪ {G1[0, 5, 4, 2] + i : i ∈ Z11}
∪ {G1[0, 2, 5, 4] + i : i ∈ Z11},

∆2 = {G2[1, 0, 2, 6] + i : i ∈ Z11} ∪ {G2[3, 0, 4, 9] + i : i ∈ Z11}
∪ {G2[4, 0, 5, 7] + i : i ∈ Z11} ∪ 2{G2[2, 0, 3, 7] + i : i ∈ Z11}.

Then ∆1 and ∆2 are respectively G1- and G2-decompositions of 7K11.

Example 2.23. Let V
(
7K3×2

)
= Z6 with partition

{
{0, 3}, {1, 4}, {2, 5}}

and let

∆1 = {G1[0, 5, 1, 2] + i : i ∈ Z6} ∪ {G1[0, 4, 2, 1] + i : i ∈ Z6},

∆2 = {G2[0, 1, 2, 4], G2[0, 1, 5, 4], G2[0, 2, 1, 5], G2[0, 5, 4, 2],

G2[3, 4, 2, 1], G2[3, 4, 5, 1], G2[3, 2, 4, 5], G2[3, 5, 1, 2],

G2[1, 3, 2, 0], G2[1, 3, 5, 0], G2[4, 0, 2, 3], G2[4, 0, 5, 3]}.

Then ∆1 and ∆2 are respectively G1- and G2-decompositions of 7K3×2.
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Example 2.24. Let V
(
7K6 \ 7K2

)
= Z6 with V

(
7K2

)
= {0, 1} and let

∆1 = {G1[5, 3, 2, 4], G1[3, 2, 4, 5], G1[2, 1, 3, 5], G1[0, 2, 3, 4], G1[0, 2, 3, 4],

G1[0, 2, 4, 3], G1[0, 3, 5, 4], G1[1, 3, 5, 2], G1[1, 3, 5, 2], G1[4, 1, 5, 0],

G1[4, 2, 1, 3], G1[4, 2, 1, 3], G1[5, 0, 2, 1], G1[5, 0, 4, 1]}.

Then ∆1 is a G1-decomposition of 7K6 \ 7K2.

Example 2.25. Let V
(
7K7 \ 7K3

)
= Z7 with V

(
7K3

)
= {0, 1, 2} and let

∆1 = {G1[0, 6, 4, 3], G1[6, 3, 2, 5], G1[0, 6, 3, 4], G1[0, 3, 4, 5], G1[0, 3, 4, 5],

G1[1, 3, 4, 5], G1[1, 3, 4, 5], G1[1, 3, 5, 4], G1[2, 3, 5, 4], G1[2, 4, 6, 3],

G1[2, 4, 6, 3], G1[5, 0, 6, 1], G1[5, 0, 6, 3], G1[5, 2, 3, 1], G1[5, 3, 2, 4],

G1[6, 1, 4, 2], G1[6, 1, 4, 3], G1[6, 1, 5, 0]},

∆2 = {G2[2, 5, 4, 6], G2[2, 3, 6, 4], G2[2, 5, 3, 4], G2[0, 3, 4, 5], G2[0, 3, 4, 5],

G2[0, 3, 4, 5], G2[0, 4, 5, 6], G2[0, 6, 5, 3], G2[2, 3, 6, 4], G2[3, 1, 5, 2],

G2[3, 1, 5, 2], G2[3, 1, 5, 6], G2[3, 6, 5, 1], G2[4, 0, 6, 1], G2[4, 1, 6, 2],

G2[4, 1, 6, 2], G2[4, 1, 6, 2], G2[5, 0, 6, 2]}.

Then ∆1 and ∆2 are respectively G1- and G2-decompositions of 7K7 \ 7K3.

2.4 Small Designs of Index 14

Example 2.26. Let V
(
14K4

)
= Z4 and let ∆2 = {G2[0, 1, 2, 3] + i : i ∈

Z4} ∪ 2{G2[0, 2, 1, 3] + i : i ∈ Z4}. Then ∆2 is a G2-decomposition of 14K4.

Example 2.27. Let V
(
14K6

)
= Z5∪{∞} and let ∆2 = 3{G2[∞, 0, 2, 4]+i :

i ∈ Z5} ∪ {G2[0, 1, 2,∞] + i : i ∈ Z5} ∪ 2{G2[0, 1, 2, 3] + i : i ∈ Z6}. Then
∆2 is a G2-decomposition of 14K6.

Example 2.28. Let V
(
14K10

)
= Z9 ∪ {∞} and let

∆2 = 2{G2[0, 4,∞, 2] + i : i ∈ Z9} ∪ {G2[0, 2,∞, 4] + i : i ∈ Z9}
∪ {G2[0, 2, 4,∞] + i : i ∈ Z9} ∪ {G2[0, 4, 2, 7] + i : i ∈ Z9}
∪ {G2[0, 1, 4, 2] + i : i ∈ Z9} ∪ 4{G2[0, 1, 4, 3] + i : i ∈ Z9}.

Then ∆2 is a G2-decomposition of 14K10.

Example 2.29. Let V
(
14K6 \ 14K2

)
= Z4 ∪ {∞1,∞2} with V

(
14K2

)
=

{∞1,∞2} and let

∆2 = 3{G2[0 + i,∞1, 2 + i,∞2] : i ∈ Z4}
∪ {G2[0 + i,∞2, 2 + i,∞1] : i ∈ Z4}
∪ {G2[0 + i,∞2, 2 + i, 1 + i] : i ∈ Z4}
∪ 2{G2[0 + i, 1 + i, 2 + i, 3 + i] : i ∈ Z4}.
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Then ∆2 is a G2-decomposition of 14K6 \ 14K2.

3 Main Results

Through judicious use of the examples from the previous section, we show
that the necessary conditions onG1- andG2-designs are sufficient for any in-
dex λ ≥ 2. In the following constructions, we make extensive use of the join
of complete graphs. Of special note is our use of the null graph K0, which
has an empty vertex set. For example, K7 ∨ K0 is simply K7. Similarly,
K7 \K0 is also K7. On the other hand, K7 ∨K1 = K8, but K7 \K1 = K7.

First, we now settle the spectra forG1- andG2-designs of certain indices.

Lemma 3.1. Let G ∈ {G1, G2}. There exists a G-decomposition of 2Kn

if n ≡ 0 or 1 (mod 7).

Proof. Let G ∈ {G1, G2} and let n = 7r+ t for some positive integer r and
t ∈ {0, 1}. If (r, t) is (1, 0), (1, 1), (2, 0), (2, 1), (4, 0), or (4, 1), then the
result follows from Examples 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6, respectively.
The remainder of the proof breaks into two cases.

Case 1: r is odd with r ≥ 3.
By Theorem 1.3 there exists a {K3,K5}-decomposition of Kr. Thus by
Theorem 1.7 there exists a {K3×7,K5×7}-decomposition of Kr×7. Since
there exist G-decompositions of both 2K3×7 and 2K5×7 (by Examples 2.7
and 2.8, respectively), a G-decomposition of 2Kr×7 also exists by transitiv-
ity. Finally, we note that K7r+t = (rK7 ∨Kt)∪Kr×7 = Kr×7 ∪

⋃r
i=1K7+t.

Thus 2K7r+t = 2Kr×7 ∪
⋃r
i=1

2K7+t, and the result follows from the exis-
tence of G-decompositions of 2Kr×7, 2K7, and 2K8.

Case 2: r is even with r ≥ 6.
Let r = 2s for some integer s ≥ 3; hence, n = 14s+t. By Corollary 1.6 there
exists a K3-decomposition either of Ks×2 if s 6≡ 2 (mod 3) or of K4, (s−2)×2

otherwise. Thus by Theorem 1.7 there exists a K3×7-decomposition of ei-
ther Ks×14 or K28, (s−2)×14. Since there exists a G-decomposition of 2K3×7

(by Example 2.7), a G-decomposition of either 2Ks×14 or 2K28, (s−2)×14

also exists by transitivity. Finally, we note that K14s+t can be described
as either (sK14 ∨ Kt) ∪ Ks×14 = Ks×14 ∪

⋃s
i=1K14+t or

(
(K28 ∪ (s −

2)K14) ∨Kt

)
∪K28, (s−2)×14 = K28, (s−2)×14 ∪K28+t ∪

⋃s−2
i=1 K14+t. Thus,

we describe 2K14s+t as 2Ks×14 ∪
⋃s
i=1

2K14+t when s 6≡ 2 (mod 3) and as
2K28, (s−2)×14 ∪ 2K28+t ∪

⋃s−2
i=1

2K14+t when s ≡ 2 (mod 3), and the result
follows from the existence of G-decompositions of 2Ks×14 or 2K28, (s−2)×14,
2K14, 2K15, 2K28, and 2K29. �

Lemma 3.2. There exists a G1-decomposition of 3Kn if n ≡ 0 or 1
(mod 7).

10



Proof. Let n = 7r + t for some positive integer r and t ∈ {0, 1}. If (r, t)
is (1, 0), (1, 1), (2, 0), (2, 1), (4, 0), or (4, 1), then the result follows from
Examples 2.9, 2.10, 2.11, 2.12, 2.13, and 2.14, respectively. The proof then
follows as in the proof of Lemma 3.1, where the requisite G1-decompositions
of the multipartite graphs 3K3×7 and 3K5×7 can be found in Examples 2.15
and 2.16, respectively. �

Lemma 3.3. There exists a G2-decomposition of 3Kn if n ≡ 1 or 7
(mod 14).

Proof. If n is 7, 15, or 29, then the result follows from Examples 2.9, 2.12,
and 2.14, respectively. The remainder of the proof breaks into two cases.

Case 1: n ≡ 1 (mod 14) with n ≥ 43.
Let n = 14r + 1 for some integer r ≥ 3; hence, n = 7(2r) + 1. By Corol-
lary 1.6 there exists a K3-decomposition either of Kr×2 if r 6≡ 2 (mod 3)
or of K4, (r−2)×2 otherwise. Thus by Theorem 1.7 there exists a K3×7-
decomposition of either Kr×14 or K28, (r−2)×14. Since there exists a G2-
decomposition of 3K3×7 (by Example 2.15), a G2-decomposition of either
3Kr×14 or 3K28, (r−2)×14 also exists by transitivity. Finally, we note that
K14r+1 can be described as either (rK14∨K1)∪Kr×14 = Kr×14∪

⋃r
i=1K15

or
(
(K28∪(r−2)K14)∨K1

)
∪K28, (r−2)×14 = K28, (r−2)×14∪K29∪

⋃r−2
i=1 K15.

Thus, we describe 3K14r+1 as 3Kr×14 ∪
⋃r
i=1

3K15 when r 6≡ 2 (mod 3) and

as 3K28, (r−2)×14 ∪ 3K29 ∪
⋃r−2
i=1

3K15 when r ≡ 2 (mod 3), and the result
follows from the existence of G2-decompositions of 3Kr×14 or 3K28, (r−2)×14,
3K15, and 3K29.

Case 2: n ≡ 7 (mod 14) with n ≥ 21.
Let n = 14r+ 7 for some positive integer r; hence, n = 7(2r+ 1). By The-
orem 1.3 there exists a {K3,K5}-decomposition of K2r+1. Thus by The-
orem 1.7 there exists a {K3×7,K5×7}-decomposition of K(2r+1)×7. Since
there exist G2-decompositions of both 3K3×7 and 3K5×7 (by Examples 2.15
and 2.16, respectively), a G2-decomposition of 3K(2r+1)×7 also exists by
transitivity. Finally, we note that K14r+7 = K(2r+1)×7 ∪ (2r + 1)K7 =

K(2r+1)×7 ∪
⋃2r+1
i=1 K7. Thus 3K14r+7 = 3K(2r+1)×7 ∪

⋃2r+1
i=1

3K7, and
the result follows from the existence of G2-decompositions of 3K(2r+1)×7

and 3K7. �

Lemma 3.4. There exists a G1-decomposition of 7Kn if n ≥ 4.

Proof. Let n = 4r + t for some positive integer r and t ∈ {0, 1, 2, 3}.
If (r, t) is (1, 0), (1, 1), (1, 2), (2, 1), (2, 2), or (2, 3), then the result fol-
lows from Examples 2.17, 2.18, 2.19, 2.20, 2.21, and 2.22, respectively.
If (r, t) is (1, 3) or (2, 0), then n ≡ 0 or 1 (mod 7), and the result fol-
lows from 2 copies of a G1-decomposition of 2Kn (see Lemma 3.1) and
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1 copy of a G1-decomposition of 3Kn (see Lemma 3.2). For the remain-
der of the proof, we assume r ≥ 3. By Corollary 1.6 there exists a K3-
decomposition either of Kr×2 if r 6≡ 2 (mod 3) or of K4, r×2 otherwise.
Thus by Theorem 1.7 there exists a K3×2-decomposition of either Kr×4

or K8, r×4. Since there exists a G1-decomposition of 7K3×2 (by Exam-
ple 2.23), a G1-decomposition of either 7Kr×4 or 7K8, (r−2)×4 also exists
by transitivity. Finally, we note that K4r+t can be described as either
(rK4∨Kt)∪Kr×4 = Kr×4∪K4+t∪

⋃r−1
i=1 (K4+t \Kt) or

(
(K8∪ (r−2)K4)∨

Kt

)
∪K8, (r−2)×4 = K8, (r−2)×4∪K8+t∪

⋃r−2
i=1 (K4+t\Kt). Thus, we describe

7K4r+t as 7Kr×4 ∪ 7K4+t ∪
⋃r−1
i=1 (7K4+t \ 7Kt) when r 6≡ 2 (mod 3) and as

7K8, (r−2)×4∪7K8+t∪
⋃r−2
i=1 (7K4+t \Kt) when r ≡ 2 (mod 3), and the result

follows from the existence of G1-decompositions of 7Kr×4 or 7K8, (r−2)×4,
7K4, 7K5, 7K6, 7K7, 7K8, 7K9, 7K10, 7K11, 7K6 \ 7K2, and 7K7 \ 7K3, where
the latter two decompositions are shown to exist in Examples 2.24 and 2.25,
respectively. �

Lemma 3.5. There exists a G2-decomposition of 7Kn if n ≥ 5 and n is
odd.

Proof. Let n = 4r + t for some positive integer r and t ∈ {1, 3}. If (r, t)
is (1, 1), (2, 1), or (2, 3), then the result follows from Examples 2.18, 2.20,
and 2.22, respectively. If (r, t) is (1, 3), then n = 7, and the result follows
from 2 copies of a G2-decomposition of 2K7 (see Lemma 3.1) and 1 copy
of a G2-decomposition of 3K7 (see Lemma 3.3). For the remainder of the
proof, we assume r ≥ 3, and the proof then follows as in the proof of
Lemma 3.4. �

Lemma 3.6. There exists a G2-decomposition of 14Kn if n ≥ 4.

Proof. If n is odd, then the result follows from 2 copies of a G2-decompo-
sition of 7Kn (see Lemma 3.5). For the remainder of the proof, we assume
n is even. Let n = 4r + t for some positive integer r and t ∈ {0, 2}. If
(r, t) is (1, 0), (1, 2), or (2, 2), then the result follows from Examples 2.26,
2.27, and 2.28, respectively. If (r, t) is (2, 0), then n = 8, and the result
follows from 7 copies of a G2-decomposition of 2Kn (see Lemma 3.1). For
the remainder of the proof, we assume r ≥ 3. By Corollary 1.6 there
exists a K3-decomposition either of Kr×2 if r 6≡ 2 (mod 3) or of K4, r×2

otherwise. Thus by Theorem 1.7 there exists a K3×2-decomposition of
either Kr×4 or K8, r×4. Since there exists a G2-decomposition of 7K3×2

(by Example 2.23), a G2-decomposition of either 14Kr×4 or 14K8, (r−2)×4

also exists by transitivity. Finally, we note that K4r+t can be described as
either (rK4 ∨Kt)∪Kr×4 = Kr×4 ∪K4+t ∪

⋃r−1
i=1 (K4+t \Kt) or

(
(K8 ∪ (r−

2)K4) ∨Kt

)
∪K8, (r−2)×4 = K8, (r−2)×4 ∪K8+t ∪

⋃r−2
i=1 (K4+t \Kt). Thus,
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we describe 14K4r+t as 14Kr×4 ∪ 14K4+t ∪
⋃r−1
i=1 (14K4+t \ 14Kt) when r 6≡ 2

(mod 3) and as 14K8, (r−2)×4 ∪ 14K8+t ∪
⋃r−2
i=1 (14K4+t \ Kt) when r ≡ 2

(mod 3), and the result follows from the existence of G2-decompositions of
14Kr×4 or 14K8, (r−2)×4, 14K4, 14K6, 14K8, 14K10, and 14K6 \ 14K2, where
the latter decompositions is shown to exist in Example 2.29. �

Finally, we settle the spectra for G1- and G2-designs of any index λ (at
least 2).

Theorem 3.7. Let λ ≥ 2 and n ≥ 4 be integers. There exists a G1-
decomposition of λKn if and only if the following hold:

• if gcd(λ, 7) = 1, then n ≡ 0 or 1 (mod 7);

• if gcd(λ, 7) = 7, then n ≥ 4.

Proof. The necessity of the given conditions is established in Lemma 1.1.
We now show sufficiency. Let n ≥ 4 and let λ = 7r + t for some integers
r ≥ 0 and t ∈ {2, 3, . . . , 8}. In the case where t = 7, the result follows
from r + 1 copies of a G1-decomposition of 7Kn (see Lemma 3.4). For
the remainder of the proof, we assume n ≡ 0 or 1 (mod 7). In the case
where t is even, the result follows from r copies of a G1-decomposition of
7Kn (see Lemma 3.4) and t/2 copies of a G1-decomposition of 2Kn (see
Lemma 3.1). In the case where t is odd, the result follows from r copies of
a G1-decomposition of 7Kn (see Lemma 3.4), 1 copy of a G1-decomposition
of 3Kn (see Lemma 3.2), and (t−3)/2 copies of a G1-decomposition of 2Kn

(see Lemma 3.1). �

Theorem 3.8. Let λ ≥ 2 and n ≥ 4 be integers. There exists a G2-
decomposition of λKn if and only if the following hold:

• if gcd(λ, 14) = 1, then n ≡ 1 or 7 (mod 14);

• if gcd(λ, 14) = 2, then n ≡ 0 or 1 (mod 7);

• if gcd(λ, 14) = 7, then n ≡ 1 (mod 2);

• if gcd(λ, 14) = 14, then n ≥ 4.

Proof. The necessity of the given conditions is established in Lemma 1.2.
We now show sufficiency. Let n ≥ 4 and let λ = 14r + t for some integers
r ≥ 0 and t ∈ {2, 3, . . . , 15}. In the case where t = 14, the result follows
from r + 1 copies of a G2-decomposition of 14Kn (see Lemma 3.6). In the
case where t = 7, we assume that n is odd, and the result follows from
2r + 1 copies of a G2-decomposition of 7Kn (see Lemma 3.5). For the
remainder of the proof, we assume n ≡ 0 or 1 (mod 7). In the case where t
is even, the result follows from r copies of a G2-decomposition of 14Kn (see
Lemma 3.6) and t/2 copies of a G2-decomposition of 2Kn (see Lemma 3.1).
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In the case where t is odd, we assume that n is odd, and the result follows
from r copies of a G2-decomposition of 14Kn (see Lemma 3.6), 1 copy of
a G2-decomposition of 3Kn (see Lemma 3.3), and (t − 3)/2 copies of a
G2-decomposition of 2Kn (see Lemma 3.1). �

Acknowledgements

The authors wish to thank Peter Adams for help with finding several of
the examples. This research is supported by grant number A1659815 from
the Division of Mathematical Sciences at the National Science Foundation.
This work was done while the first, third, fifth, and sixth authors were
participants in REU Site: Mathematics Research Experience for Pre-service
and for In-service Teachers at Illinois State University.

References

[1] R. J. R. Abel, F. E. Bennett, and M. Greig, “PBD-Closure,” in [5],
pp. 246–254.

[2] D. E. Bryant and T. A. McCourt, Existence results for G-designs,
http://wiki.smp.uq.edu.au/G-designs/.

[3] R. C. Bunge, L. Febles Miranda, J. P. Guadarrama, D. P. Roberts,
E. Song, and A. Zale, On the λ-fold spectra of tripartite multigraphs
of order 4 and size 5, Ars Combin., to appear.

[4] J. E. Carter, Designs on cubic multigraphs, Ph.D. Thesis, Department
of Mathematics and Statistics, McMaster University, Canada, 1989.

[5] C. J. Colbourn and J. H. Dinitz (Editors), Handbook of Combinatorial
Designs, 2nd ed., Chapman & Hall/CRC Press, Boca Raton, FL, 2007.

[6] G. Ge, “Group divisible designs,” in [5], pp. 255–260.

[7] M. Greig and R. Mullin, “PBDs: Recursive Constructions,” in [5],
pp. 236–246.

[8] S. Faruqi, S. A. Katre, and D. G. Sarvate, Decomposition of λKv into
Multigraphs with Four Vertices and Five Edges, Ars Combin. 136
(2018), 287–316.

[9] S. Malick and D. G. Sarvate, Decomposition of λKv into Multigraphs
with Four Vertices and Five Edges, J. Combin. Math. Combin. Com-
puting 86 (2013), 221–237.

14



[10] N. A. Avila Cervantes, R. C. Bunge, H. R. Bush, D. P. Roberts, A. E.
Rocha, and K. M. Stilson, Spectrum for multigraph designs on four ver-
tices and six edges, Journal of Combinatorial Mathematics and Com-
binatorial Computing 106 (2018), 69–81.

[11] R. C. Bunge, J. Jeffries, J. Kirkpatrick, D. P. Roberts, and A. Sick-
man, Spectrum for multigraph designs on four vertices and six edges,
Congressus Numerantium 228 (2017), 29–49.

[12] R. C. Bunge, M. K. Chwee, A. M. Cooper, S. I. El-Zanati, K. L.
Kennedy, D. P. Roberts, and C. C. Wilson, The spectrum problem for
a multigraph on 4 vertices and 7 edges, Congressus Numerantium, to
appear.

[13] R. C. Bunge, S. I. El-Zanati, D. J. Gibson, D. P. Roberts, A. L. Sick-
man, L. A. States, and J. T. Ward, The lambda-fold spectrum problem
for a multigraph on four vertices and eight edges, Congressus Numer-
antium, to appear.

15


