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On the Periodicity of Random Walks
in Dynamic Networks

Bernard Chazelle

Abstract—We investigate random walks in graphs whose edges
change over time as a function of the current probability
distribution of the walk. We show that such systems can be
chaotic and can exhibit “hyper-torpid” mixing. Our main result
is that, if each graph is strongly connected, then the dynamics is
asymptotically periodic almost surely.

Index Terms—Random walks, temporal networks, Markov
influence systems, hyper-torpid mixing, chaos.

I. INTRODUCTION

HERE is a growing body of literature on dynamic net-

works [1], [3], [7], [10], [17]-{19], [22], [24], [25], [29],
[30] and random walks in such structures (also called time-
varying or dynamic graphs/networks) [2], [12]-[15], [19], [20],
[24], [26]-[28], [31], [33]. Starting from a random node in a
graph g;, the walk moves to arandom neighbor in gy, then aran-
dom neighbor in some graph go, and iterates in this fashion
through g3, g4, etc. All the graphs are directed and share the
same set of vertices. The walk is called temporal or time-
respecting because it must traverse an edge of graph g; at
time t. In this work, the sequence of graphs is not given in
advance but, rather, is specified endogenously by a dynamical
system: thus, g; is chosen from a finite set of graphs as a func-
tion of the current probability distribution on the vertices at
time ¢ — 1. For applications, one can think of a transportation
network where roads are opened or closed depending on the
current traffic at the intersections.

We formalize the model within the framework of Markov
influence systems [11]. Under mild conditions, classical random
walks always mix to their stationary distribution in time at most
exponential in the size of the network. Markov influence sys-
tems display a far richer range of dynamics: they can be peri-
odic, chaotic, or exhibit hyper-torpid mixing. Our main result
is that, if every graph g, is strongly connected, then a lazy ran-
dom walk is almost surely (asymptotically) periodic. Infor-
mally, this means that, under a small random perturbation, with
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probability one, there is a finite number of stable periodic orbits
to which all orbits are attracted.

Markov influence systems are piecewise-linear dynamical
systems with nonpositive Lyapunov exponents. Such systems
are notoriously tricky to analyze and sometimes violate basic
intuitions [4]-[6], [8], [9]: for example, piecewise isometries
have zero topological entropy [6] whereas, remarkably, piece-
wise contractions can be chaotic [23]. Alhough deterministic,
Markov influence systems are akin to certain spin systems from
condensed matter physics in that their dynamics is driven by a
tension between order (caused by the paracontractivity of the
maps) and disorder (caused by their discontinuities). This work
shows that, at least in strongly connected case, order almost
always prevails; specifically, the disordered regime can be
“covered” by a Cantor set of nonfull Hausdorff dimension in
perturbation space.

II. MARKOV INFLUENCE SYSTEMS

Let S*! (or S when the dimension is understood) be the
standard simplex {x€ R"|x>0, x|, =1} and let S
denote set of all n-by-n rational stochastic matrices with posi-
tive diagonals. A Markov influence system (MIS ) is a discrete-
time dynamical system with phase space S, which is defined
by the map f:x"+ f(x):=x"S(x), where x €S and S is a
function S—& that is constant over the pieces of a finite poly-
hedral partition P={ P} of S (fig. 1); we define f as the iden-
tity over the discontinuities of the partition. Algebraic
discontinuities can be allowed as well; in fact, the map S can
be defined by any sentence in the first-order theory of the
reals [11]. For simplicity, we restrict our discussion to the
case of linear discontinuities.

For fixed x, the matrix S(x) defines a lazy random walk. Thus,
an MIS can be interpreted as a lazy temporal random walk with
transition probabilities defined endogenously. The MIS is called
irreducible if the graph defined by each S(x) is strongly con-
nected; this means that S(x) is the stochastic matrix of an aperi-
odic, irreducible (hence ergodic) random walk. The orbit of
x € S is the infinite sequence (f*(x)),, and its itinerary is the
corresponding sequence of P;’s visited in the process. The orbit
is periodic if f'(x) = f*(x) for any s = ¢ modulo a fixed inte-
ger. It is asymptotically periodic if it gets arbitrarily close to a
periodic orbit over time. The discontinuities in P are formed by
hyperplanes in R of the form a] x = 1 + §, where a; € Q" and
§ € O := [~w,w|. Assuming general position, we can pick a
small positive @ < 1/2 so that P remains (topologically)
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Fig. 1. A Markov influence system: Each polytope P} is associated with a
stochastic matrix. The first five steps of an orbit are shown to visit
Py, Py, Py, Py, Ps in this order.

invariant over {); in this way, the MIS remains well-defined for
all§ € )." We are now in a position to state our main new result:

Theorem 2.1. Typically, every orbit of an irreducible Mar-
kov influence system is asymptotically periodic.

Put more formally, we prove the existence of a set A of one-
dimensional Lebesgue measure zero such that, for any § €
Q\ A, there is a finite set of stable periodic orbits such thatevery
orbit is asymptotically attracted to one of them. The set A can be
covered by a Cantor set of Hausdorff dimension less than one.

This article also describes Markov influence systems that are
chaotic and others that robustly mix in time equal to a tower-of-
twos in the dimension n. One lesson to draw from this work is
that Markov influence systems can behave very differently
from standard random walks. For example, here is an instance
of two random walks that, individually, mix very quickly, but,
once assembled as an irreducible MIS, exhibit an arbitrarily
long mixing time:

S(x):i(? ;)if2m>1+a andS(x):%(i g)else.

Starting from x = (1,0), ie, z = 1, the temporal random walk
uses the first matrix until z(¢) < (1 + a)/2, at which point it
switches to the other matrix, which reaches its stationary dis-
tribution instantly. Prior to that point, we have z(t) = 1/2+
2-t~1 50 the mixing time is about log (1/a), which can be arbi-
trarily large.

A. Proving Theorem 2.1

We build a more general framework from which Theorem 2.1
emerges as a special case. Recall that the coefficient of ergo-
dicity (M) of a matrix M is defined as half the maximum
{,-distance between any two of its rows or, equivalently, as
1 — min; ; ), min{ Mj;, M} [32]. It is submultiplicative for
stochastic matrices, which is a direct consequence of the identity
(M) =max{|x"M|,:x"1=0 and |x|; =1}. Given

'Let Hj be the set consisting of the hyperplane 3, z; = 1 together with
those used to define P. We assume that Hj is in general position; hence so is
Hj for any § € (), where 0 < @ < 1/2 is smaller than a value that depends
only on the set of vectors {a; }. Note that this problem arises only because of
the constraint } . x; = 1, since otherwise the hyperplane arrangement is cen-
tral around (0,...,0,—1).
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A C Q, let LY, denote the set of ¢-long prefixes of any itinerary
for any starting position x € S and any § € A. We define the
ergodic scale 1) as the smallest integer such that, for any ¢ > n
and any matrix sequence Sy, .. .,.S associated with an element
of Lh, the product S - - - § is primitive (ie, some high enough
power is a positive matrix) and its coefficient of ergodicity is
less than 1/2.

Let D be the union of the hyperplanes from P in R" (where
8 is understood). We define Z; = |J g<jc; f (D) and Z =
U >0 Z:- Since the domain of f is S, we have Z C S by com-
pactness. Remarkably, for almost all § € (), Z, becomes
strictly equal to Z in a finite number of steps. (Note that both
Z and Z; depend on § € (1.)

Lemma 2.2. Assume that the ergodic scale 7 is finite. There
isaconstant ¢ > 0 such that, forany s > 0, there exist an inte-
ger v < 27 log (1/¢) and a finite union K of intervals of total
length less than & such that Z, = Z, 1, forany$ € Q \ K.

Note that the lemma does not assume irreducibility but only
the finiteness of 7. All the constants used in this work may
depend on the system’s parameters such as n, P (but not on §).
Note that the lemma does not assume irreducibility but only the
finiteness of n. Dependency on other parameters is indicated
by a subscript. Note that Z, = Z,_; implies that Z = Z,,.
Indeed, suppose that Zy.1 O Z; for t > v; then, f'*l(y) € D
but f'(y) & D for some y € S; in other words, f*(x) € D but
f"71(x) € D for x = f'="*(y), which contradicts the equality
Zy=Zy_;.

Corollary 2.3. For § almost everywhere in (), every orbit is
asymptotically periodic.

Proof. The polytopes, called cells, defined by the con-
nected components of the complement of Z = Z, form the
continuity pieces of f*+!: by continuity, each one of them
maps, via f, not simply to within a single cell of D but actu-
ally to within a single cell of Z2 This in turn implies the
eventual periodicity of the symbolic dynamics. The period
cannot exceed the number of cells. Once an itinerary becomes
periodic at time t,, with period o, the map f* can be expressed
locally by matrix powers. Indeed, divide ¢ — ¢, by o and let g
be the quotient and r the remainder; then, locally, ft =
gl o flot7, where g is specified by a stochastic matrix with a
positive diagonal, which implies convergence to a periodic
point at an exponential rate. In the case of an irreducible MIS,
the matrix specifying g comresponds to a random walk that
mixes to a unique stationary distribution: it follows that the
attracting periodic orbits are stable and there are only a finite
number of them.

Finally, apply Lemma 2.2 repeatedly, with ¢ = 27! for [ =
1,2,... and denote by K; be the corresponding union of
“forbidden” intervals. Define K'= |J;> K; and K* =
Mo K then Leb(K') < 2'~! and hence Leb(K>) = 0. The
corollary follows from the fact that any § € () outside of K™
lies outside of K" for some I > 0. u

2Indeed, suppose that is not the case; then some x in a cell of Z, thus outside
of Z, would be such that f(x) € Z = Z,_. It would follow that f*(x) € D,
for k < v; hence x € Z, = Z, which a contradiction.
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We restate the corollary and add a few facts. For any & in ()
outside a critical set of one-dimensional Lebesgue measure
zero, every orbit is attracted to one from a finite set of stable
periodic orbits. Within each cell defined by Z, any point pro-
duces an orbit that is attracted to the same periodic orbit. We
prove that the critical set can be covered by a Cantor set of
Hausdorff dimension strictly less than 1.

Corollary 2.3 implies Theorem 2.1. To see why, we observe
that the product of any set of n stochastic matrices for lazy
irreducible random walks is a positive matrix. Since the set
of matrices S(x) is finite, each entry of the product is at least
¢, for some ¢ > (, so the coefficient of ergodicity is at most
1 —nc". By submultiplicativity, n = 29", which proves
Theorem 2.1.

B. Proving Lemma 2.2

We prove the lemma in three stages. First, we investigate the
prefix products of a sequence of well-behaved stochastic matri-
ces and we define a notion of “general position” for them:
roughly, our aim is to show that not too many prefix products
can map a given point to the same (typical) hyperplane. Second,
we establish that, typically, the nested sequence Z; C Z; C - - -
cannot grow too rapidly. This, in turn, allows us to bound the
topological entropy of the symbolic dynamics of a Markov
influence system. Finally, we prove that, for large £, the iterated
function f' maps any of its continuity pieces to a cell so small
that it is unlikely to fall in the neighborhood of a discontinuity.
We can then use a union bound to ensure that the nesting of the
Z;’sisno longer strict.

1) General Position for Matrix Products: Let My,. .., My
be n-by-n matrices from a finite set M of primitive stochastic
rational matrices with positive diagonals, and assume that their
coefficients of ergodicity satisfy t(M) < 1/2forany M € M,
hence t(M; --- M) < 2-* Because each product Mj - - - M
is a primitive matrix, it can be expressed as 1 7] + Qj (by Per-
ron-Frobenius), where ;. is its (unique) stationary distribution;
note that positive diagonals matter here because primitiveness
is not closed under multiplication.3 If 7 is a stationary distribu-
tion for a stochastic matrix S, then its j-th row s; satisfies
sj—m' =s;—m'S=) m(s; — s;); hence, by the triangu-
lar inequality, [ls; — 7", < 3, mills; — i, < 2¢(S). This
implies that

My My = 1] + Qg (1)
1Qkllo <2t(My--- M) < 21k,

We mention a useful geometric interpretation of the previous
inequality:

diEi.I:l’l,g':‘o (SMI e Mk) < 2||Qk||oo (2)

This follows from (1) and, using QE) to denote the j-th col-
umn vector of Q,

*For example, ( i é) and (? i ) are both primitive but their product is
not.
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diEi.I:l’l,g':‘o (SM] s Mk) = d.iEi.I:l’l,g':‘o (SQ;;)
_ m?X{ ng(xTQg) _ %YTQE) }

- m?_x{ mf.X(Qk)fj - H?D(Qk)*j}'

Definition 2.4. Fix a vectora € Q", and denote by M ©) the
n-by-m matrix with the m column vectors M - - - M;, a, where
0 = (ki,...,ky) is an increasing sequence of integers in [T7].
Property U is said to hold if there exists a rational vector
u = u(f) such that 1"u = 1 and x" M @u does not depend on
the variable x € S.

Observe that, because x is a probability distribution, property
U does not imply that M ©u =0; for example, we have
x"(117) u= 1 foru = 11. Property U is a quantifier elimina-
tion device useful for expressing a notion of “general position™
for an MIS. To see why, consider a simple statement such as
“the three points (z,z°), (z+ 1,(z +1)?), and (z + 2, (z+
2)?) cannot be collinear for any value of z.” This can be
expressed by saying that a certain determinant polynomial in
is constant. Likewise, the vector u manufactures a quantity,
x'M (‘9)11, that “eliminates™ the variable x. Some condition on
u is needed since otherwise we could pick u = 0. Note that
property U would be obvious if all the matrices @, in (1) were
null: indeed, we would have x"M© =xT1(by,...,b,) =
(b1, ... ,bn), where b; = ] a. This suggests that property U
rests on the decaying properties of ;.

General position played an important role in proving the
periodicity of planar piecewise contractions [5] and the same
is true here. Whereas in [5], the claim of general position fol-
lows from a simple dimensionality argument, it is here the
heart of the proof and requires ideas from linear algebra and
Ramsey-type extremal set theory. To see the relevance of gen-
eral position to the dynamics of an MIS, consider the iterates
of a small ball through the map f. To avoid chaos, it is intui-
tively obvious that these iterated images should not fall across
discontinuities too often. Fix such a discontinuity: if we think
of the ball as being so small it looks like a point, then the case
we are trying to avoid consists of many points (the ball’s iter-
ates) lying on (or near) a given hyperplane. This is similar to
the definition of general position, which requires that a large
enough set of points should not lie on the same hyperplane.

Lemma 2.5. There exists a constant b > 0 (linear in n) such
that, given any integer ' > (0 and any increasing sequence 6 in
[T] of length at least 7'~ /a, property U holds, where a:= p~°
and g is the maximum number of bits needed to encode any
entry of M, forany k € [T.

Proof. By choosing b large enough, we can ensure that 7 is
as big as we want. The proof is a mixture of algebraic and
combinatorial arguments. n

Fact2.6. Thereisaconstantd > 0 such that, if the sequence
@ contains jo,...,j, with j; > duj;_1 for each i € [n], then
property U holds.

Proof. By (1), ||Qsall,, < co2* forconstant g > 0. Note
that Q. has rational entries over O(u k) bits: the bound follows
from the fact that the stationary distribution sr; has rational
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coordinates over O(uk) bits; as noted earlier, the constant fac-
tors may depend on n. We write M © =1aTII® + Q©),
where IT® and Q ©) are the n-by-m matrices formed by the m
column vectors 7y, and @, a, respectively, for ¢ € [m]; recall
that @ = (ky,...,ky). The key fact is that the dependency on
x € Sisconfined to the term Q ?): indeed,

XTM(B)II = aTH (9)11 + XTQ(B)U. (3)

This shows that, in order to satisfy property U, it is enough to
ensure that Q ”u = 0 has a solution such that 17u = 1. Let
o = (jo,--+,jn-1). If Q' is nonsingular then, because each
one of its entries is a rational over O(ujn_1) bits, we have
|det Q@] >4/, for constant ¢; > 0. Let R be the
(n 4 1)-by-(n + 1) matrix derived from Q(®) by adding the
column @ a to its right and then adding a row of ones at the
bottom. If R is nonsingular, then Ru = (0,...,0, 1)T has a
(unique) solution in u and property U holds (after padding u
with zeroes). Otherwise, we expand the determinant of R
along the last column. Suppose that detQ@) # 0. By
Hadamard’s inequality, all the cofactors are at most a constant
¢z > 01in absolute value; hence, for d large enough,

0=|det R| > |det Q)| — ncyl|Qnally, > ™ — neres2 > 0.

This contradiction implies that Q(") is singular, so (at least) one
of its rows can be expressed as a linear combination of the
others. We form the n-by-n matrix R’ by removing that row
from R, together with the last column, and setting u;, = 0 to
rewrite Q®u =0 as R’ =(0,...,0,1)", where u’ is the
restriction of u’ to the columns indexed by R’'. Having reduced
the dimension of the system by one variable, we can proceed
inductively in the same way; either we terminate with the dis-
covery of a solution or the induction runs its course untiln = 1
and the corresponding 1-by-1 matrix is null, so that the solution 1
works. Note that u has rational coordinates over O(p7") bits. W

We are now in a position to prove Lemma 2.5. Let N (T) be
the largest sequence 6 in [T7] such that property U does not hold.
Divide [T] into bins [(dp)*, (dp)*™ —1] for k> 0. By
Fact 2.6, the sequence € can intersect at most 2n of them; thus,
if T > t;, forsome large enoughty = (du)”™, there s at least
one empty interval in T of length T'/(dw)* ™. This gives us
the recurrence N(T) < T for T <t; and N(T) < N(T})+
N(T3), where Tj + T, < BT, for a positive constant g =
1 — (dp) "> The recursion to the right of the empty interval,
say, N(T3), warrants a brief discussion. The issue is that the
proof of Fact 2.6 relies crucially on the property that @} has
rational entries over O(uk) bits—this is needed to lower-bound
|det Q(©)| when it is not 0. But this is not true any more,
because, after the recursion, the columns of the matrix M ©) are
of the form M; --- Mia, for Ty + L < k< T, where L is the
length of the empty interval and T =T} + L + T5. Left as
such, the matrices use too many bits for the recursion to go
through. To overcome this obstacle, we observe that the rec-
ursively transformed M © can be factored as AB, where
A= M --- Mr, .1 and B consists of the column vectors
My, 4141 -+ - M a. The key observation now is that, if x'Bu
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does not depend on x, then neither does xT M © , since it can
be written as y' Bu where y = ATx € S. In this way, we can
enforce property U while having restored the proper encoding
length for the entries of M ©).

Plugging in the ansatz N(T') < T, for some unknown
positive ¥ < 1, we find by Jensen’s inequality that, for all
T > 0, N(T) < to(T? + TJ) < tx2'"VB'T". For the ansatz
to hold true, we need to ensure that 21_”,8” < 1. Setting
y=1/(1—-1logpB) < 1 completes the proof of Lemma 2.5.

2) Symbolic Dynamics: The growth exponent of a lan-
guage is defined as lim,, .o 1 max;<, log N(k), where N (k)
is the number of words of length k; for example, the growth
exponent of {0,1}" is 1 (all logarithms taken to the base 2).
The language consisting of all the itineraries of a Markov
influence system forms a shift space and its growth exponent
is the topological entropy of its symbolic dynamics [21], [34].
We show that, typically, it is zero.

Define ¢*(x) = x" M;--- My, for x € R" and k < T; and
let hs: a'x = 1 + & be some hyperplane in R™. We consider a
set of canonical intervals of length p (or less): D, =
{[kp,(k+1)p) N Q| k € Z }, where p > 0 (specified below),
Q=ol I:=[-1,1, and 0 < w < 1/2. Roughly, the
“general position” lemma below says that, for most §, the
¢"-images of any p-wide cube centered in the simplex S cannot
come very near the hyperplane h; for most valuesof k£ < 7.

This may be counterintuitive. After all, if the stochastic matri-
ces M; are the identity, the images stay put, so if the initial cube
collides then all of the images will! The point is that M; is primi-
tive so it cannot be the identity. The low coefficients of ergodic-
ity will also play a key role. The crux of the lemma is that the
exclusion set U does not depend on the choice of x € S.

Lemma 2.7. For any real p > 0 and any integer T > 0,
there exists U C D, of size cr = 2°0(+T) where cr is indepen-
dent of p, such that, for any A € Dp\U and x € S, there are at
most 7"~ /a integers k < T such that ¢*(X) N ha # 0, where
X =x+pl"and ha:= |J sephs-

Proof. A point of notation: « refers to its use in Lemma 2.5;
also, by, by, . . . refer to suitably large positive constants (which,
we shall recall, may depend on n,a, etc). We assume the
existence of more than 7' %/« integers k < T such that
#"(X) N ha # 0 for some A € D, and draw the consequences:
in particular, we infer certain linear constraints on §; by negating
them, we define the forbidden set U and ensure the conclusion
of the lemma. Let k; < --- < K, be the integers in question,
where m > T'~¢/a. For each i € [m)], there exists x(i) € X
and 8; € A such that |x(i)" M, - -+ Mypa—1-6;| < p. Note
that |8; — 8| < p for some § € A common to all 7 € [m]. By
the stochasticity of the matrices, it follows that |(x(i)—
x)TMl---Mkia| < by p; hence |xTM1---Mg.ia— 1-4§|<
(b + 2)p. By Lemma 2.5, there is a rational vector u such that
1"u =1 and x' M @u = (M a) does not depend on the
variable x € S; on the other hand, | x" M @u — (1 +8) | < byp.
Two remarks: (i) the term 1 + § is derived from (1 +8)1"u =
1+ 6; (i) by < (bo + 2)|[u||;, where u is arational over O(uT')
bits. We invalidate the condition on k,...,k,, by keeping §

Authonzed licensed use limited to: Princeton University. Downloaded on September 03,2020 at 18:53:28 UTC from IEEE Xplore. Restrictions apply.



CHAZELLE: ON THE PERIODICITY OF RANDOM WALKS IN DYNAMIC NETWORKS

outside the interval yr( M @, a) — 1 + b; pl, which rules out at
most 2(b; + 1) = 29®T) intervals from D,,. Repeating this for
all sequences (k, . .., k;,) raises the number of forbidden inter-
vals by a factor of at most 27" L]

We identify the family M with the set of all matrices of the
form S-S, for n <k < 375, where the matrix sequence
Si, ..., S; matches some element of Lfl. By definition of the
ergodic scale, any M € M is primitive and t(M) < 1/2; fur-
thermore, both p and log| M | are in O(n). Our next result
implies that the topological entropy of the shift space of itiner-
aries vanishes.

Lemma 2.8. For any real p > 0 and any integer T" > 0,
there exist ¢, = O(n|log p|) and an exclusion set V' C D, of
size dr =29T) such that, for any A € D,\V, any integer
t>tp, and any oL}, log|{d'|o-0’eLiiT}|<

7T, for constantb > 0.

In the lemma, , (resp. dr) is independent of T" (resp. p).
The main point is that the exponent of T is strictly bounded
above by 1.

Proof. We define V' as the union of the sets U formed by
applying Lemma 2.7 to each one of the hyperplanes hs
involved in P and every possible sequence of 7" matrices in
M. This increases cr to 2°0T). Fix A € D,\V and consider
the (lifted) phase space S x A for the dynamical system
induced by the map f;: (x7,8)—(x"5x),8). The system is
piecewise-linear with respect to the polyhedral partition P; of
R"*! formed by treating & as a variable in h;. Let T, be a con-
tinuity piece for ﬁ, ie, a maximal polyhedron within § x A
over which the t-th iterate of f; is linear. Reprising the argu-
ment leading to (1), any matrix sequence S, ... ,.S matching
an element of L} issuchthat S --- § = 1x" + Q, where

@l <

Thus, by (2), there exists t, =
t>tp, fi(T:) C(x+ pl") x A, for some x = x(t,1;) €S
Consider a nested sequence Y1 2 T3 O ---. Note that T; is a
cell of Py, f%‘(TkH) c fT"(Tk), and S is the stochastic matrix
used to map f{~'(7y) to f{(;) (ignoring the §-axis). We say
there is a split at kif Ty C T}, and we show that, given any
t >t,, there are only O(nT"~*/a) splits between t and
t+ nT where o = 1~ ?, for constant b We may confine our
attention to splits caused by the same hyperplane h; since P
features only a constant number of them. Arguing by contra-
diction, we assume the presence of at least 677" %/« splits,
which implies that at least N:= 2T~ /o of those splits occur
for values of k at least 27 apart. This is best seen by binning
[t + 1, + nT] into T intervals of length n and observing that
at least 3NV intervals must feature splits. In fact, this proves
the existence of IV splits at positions separated by a least two
consecutive bins. Next, we use the same birming to produce
the matrices My, ..., My, where M; = S 1 1)y Stjn-
Suppose that all of the IV splits occur for values k of the
form ¢+ jn. In this case, a straightforward application of

2%t (4)

O(n| log p|) such that, for any

“We may have to scale b up by a constant factor since p = O() and, by
Lemma 2.5, o = p 7.
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Lemma 2.7 is possible: we set X x A = f}(T;) and note that
the functions ¢* are all products of matrices from the family
M, which happen to be n-long products. The number of splits,
2T /a, exceeds the number allowed by the lemma and we
have a contradiction. If the splits do not fall neatly at end-
points of the bins, we use the fact that A includes matrix
products of any length between n and 3n. This allows us to
reconfigure the bins so as to form a sequence M;,..., Mr
with the splits occurring at the endpoints: for each split, merge
its own bin with the one to its left and the one to its right
(neither of which contains a split) and use the split’s position
to subdivide the resulting interval into two new bins; we
leave all the other bins alone.” This leads to the same con-
tradiction, which implies the existence of fewer than
O(nT"~“/a) splits at k € [t,t + nT); hence the same bound
on the number of strict inclusions in the nested sequence
Ty D --- D Typyr. The set of all such sequences forms a tree
of depth nT, where each node has at most a constant number
of children and any path from the root has O(nT"~* /&) nodes
with more than one child. Rescaling 7" to 7" and raising b
completes the proof. n

3) Putting Everything Together: We show that the
excluded intervals in () can be covered by a Cantor set of
Hausdorff dimension less than one. All the parameters below
refer to Lemma 2.8. We fixe > 0 and A € D,\V and assume
that € A. Set T =21", p=¢/(2dr), and v=1t,+ kT,
where k = cnlog (1/p) for a large enough constant ¢ > 0.
Since t, = O(n|log p|) and dr = 2°7), we have

V= Q“O(I)Ic)g (1/e). (5)
Let M be the matrix S;---S,, where S,...,S, the matrix
sequence matching an element of L;. By (2, 4),

diam,_ (SM) < 2°~V/". There exists a point xj; such that,
given any point y € S whose v-th iterate f*(y) = z” is speci-
fied by the matrix M, that is, zT = y” M, we have |x)—
z||,, < 237¥/7. Consider a discontinuity hs : a;/ x = 1+ § of
the system. Testing which side of it the point z lies is equiva-
lent to checking the point x;; instead with respect to hy for
some &' that differs from & by O(27"/"). Tt follows that adding
an interval of length O(2“’f’ ) to the exclusion set V ensures
that all the v-th iterates f"(y) (specified by M) lie strictly on
the same side of hs for all § € A. Repeating this for every
string L} and every A € D,\V increases the length covered
by V from its original drp=¢/2 to at most drp+

O(|L|27"/"/p) < €. This last bound follows from the conse-
quence of Lemma 2.8 that log|L}| < kn®T'~" "ot p)-
Thus, for any § € () outside a set of intervals covering a length
less than &, no f”(x) lies on a discontinuity. It follows that, for
any such §, we have Z, = Z,_; and, by (5), the proof of
Lemma 2.2 is complete.

*We note the possibility of an inconsequential decrease in T caused by the
merges. Also, we can now see clearly why Lemma 2.7 is stated in terms of the
slab h, and not the hyperplane h;. This allows us to express splitting caused
by the hyperplane a’ x = 1 + 4 in lifted space R™*".
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III. HIGHER TIMESCALES AND CHAOS

Among the MIS that converge to a single stationary distri-
bution, some of them feature super-exponential mixing time.
Very slow clocks can be designed in the same manner: the
MIS is periodic with a period of length equal to a tower-of-
twos of height linear in the dimension. The creation of new
timescales is what most distinguishes MIS from standard Mar-
kov chains. As we mentioned earlier, the systems can be cha-
otic as well.

A. Hyper-Torpid Mixing

How can reaching a fixed point distribution take so long?
Before we answer this question formally, we provide a bit of
intuition. Imagine having three unit-volume water reservoirs
A, B, C alongside a clock that rings at 12 every day (that is,
twice a day, at noon and at midnight). Initially, the clock is at
1 and A is full while B and C are empty. Reservoir A transfers
half of its content to B and repeats this each hour until the
clock rings 12. At this point, reservoir A empties into C' the lit-
tle water that it has left and B empties its content into A. At 1,
we repeat the previous action: A transfers half of its water
content to B, etc. This goes on until some day, the clock rings
and the reservoir C' finds its more than half full: this is sure to
happen since the water level of C rises by about 10~ at each
cycle. At this point, both B and C' transfer all their water back
to A, so that when the clock is at 1, we are back to square one.
The original 12-step clock has been extended into a new clock
of period roughly 1,000. The proof below shows how to simu-
late this iterative process with an MIS.

Theorem 3.1. There exist Markov influence systems that
mix to a stationary distribution in time equal to a tower-of-
twos of height linear in the number of states.

Proof. We construct an MIS with a periodic orbit of length
equal to a power-of-twos of height proportional to n; this is
the function f(n) = 2/("~Y_ with f(1) = 1. It is easy to turn it
into one with an orbit that is attracted to a stationary distribu-
tion (a fixed point) with an equivalent mixing rate, and we
omit this part of the discussion. Assume, by induction, that we
have a Markov influence system M cycling through states
1,...,p, for p > 4. We build another one with period at least
2P by adding a “gadget” to it consisting of a graph over the
vertices 1, 2, 3 with probability distribution (z,y, z) € S. We
initialize the system by placing M in state 1 (ie, lpm in our
clock example) and setting = 1. The dynamic graph is spec-
ified by these rules:

1) Supposethat M isinstatel,...,p — 1. The graph has
the edge (1, 2), which is assigned probability 1/2, as is
the self-loop at 1. There are self-loops at 2 and 3.

2) Suppose that M isinstate p. If z < 1/2, then the graph
has the edge (2, 1) and (1, 3), both of them assigned
probability 1, with one self-loopat 3. If z > 1/2, then
the graph has the edge (2, 1) and (3, 1), both of them
assigned probability 1, with one self-loop at 3.

Suppose that M is in state 1 and that y =0 and z < 1/2.
When M reaches state p—1, then z = (1 — 2)2'"? and
y = (1 —2)(1 —2'"P). Since z < 1/2, the system cycles back
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to state 1 with the updates z + x + 2z and = +— y. Note that
z increases by a number between 277 and 2'7P. Since z beg-
ins at 0, such increases will occur consecutively at least
p2P /4 > 2P times, before x is reset to 1. The construction on
top of M adds three new vertices so we can push this recursion
roughly n/3 times to produce a Markov influence system that
is periodic with a period of length equal to a tower-of-twos of
height roughly n /3.

We need to tie up a few loose ends. The construction needs
to recognize state p — 1 by a polyhedral cell; in fact, any state
will do. The easiest choice is state 1, which corresponds to
x > 1 (to express it as an inequality). The base case of our
inductive construction consists of a two-vertex system of
period p = 4 with initial distribution (1, 0). If z > 21-7 the
graph has an edge from 1 to 2 and a self-loop at 1, both of
them assigned probability 1/2; else an edge from 2 to 1 given
probability 1 to reset the system. Finally, the construction
assumes probabilities summing up to 1 within each of the
[(n —2)/3] + 1 gadgets, which is clearly wrong: we fix this
by dividing the probability weights equally among the gadget
and adjusting the linear discontinuities appropriately. n

B. A Chaotic Markov Influence System

We give a simple 5-state construction with chaotic symbolic
dynamics. The idea is to build an MIS to simulate the classic
baker’s map. Given x € §%, S(x) = A if z1 +x2 > x4, and
S(x) = Botherwise, with

Wl =
oo o o
o0 O ==
oSO W o
oo oo
W= o oo

and

sy

|

|
cCoo R~
coowo
cowow
Mo oo
wRoOoO

0

We focus our attention on 2 = {(I],IQ,I4) [0 < 2y <
T4/2 <y < 14 }, and easily check that itis an invariant mani-
fold. At time 0, we fix 74 = 1/4 and z5 = 0; at all times, of
course, T3 = 1 — x; — 73 — 4 — 5. The variable y:= (2z5—
x4)/(2x1 — x4) is always nonpositive over . It evolves as
follows:

Ty+1) ify < —1
Y oy )
e if —1<y<0.

Writing z= (y+1)/(y — 1), we note that —1 < z < 1and it
evolves according to z+— 2z+ 1 if 2<0, and z+— 22— 1
otherwise, a map that conjugates with the baker’s map and is
known to be chaotic [16].
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IV. CONCLUDING REMARKS

We have established the typical asymptotic periodicity of
irreducible Markov influence systems. Informally, this means
that a random walk over a graph changing endogenously as a
function of the current probability distribution will almost
surely converge to a periodic orbit. Our proof assumes that all
the graphs are strongly connected. We conjecture that this
assumption can be relaxed. To do so, however, would seem to
require an understanding of graph renormalization [11] that is
beyond our reach at the moment. We leave this as an exciting
open problem.

ACKNOWLEDGEMENT

The author would like to thank the referees for their helpful com-
ments and suggestions. The views and conclusions contained in this
document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the
Army Research Office, the Defense Advanced Research Projects
Agency, or the U.S. Government. The U.S. Government is autho-
rized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

REFERENCES

[1] A. Anagnostopoulos, R. Kumar, M. Mahdian, E. Upfal, and F. Vandin,
“Algorithms on evolving graphs,” in Proc. 3rd Innov. Theor. Comput.
Sei., 2012, pp. 149-160.

[2] C. Avin, M. Koucky, and Z. Lotker, “How to explore a fast-changing
world (cover time of a simple random walk on evolving graphs),” in
Proc. 35th Int. Collog. Automata Lang. Program., 2008, pp. 121-132.

[3] A. Barrat, M. Barthélemy, and A. Vespignani, Dynamical Processes on
Complex Networks. Cambridge, U.K.: Cambridge Univ. Press, 2008.

[4] 1. Brémont, “Dynamics of injective quasi-contractions,” Ergodic Theory
Dyn. Syst., vol. 26, pp. 19-44, 2006.

[5] H. Bruin and J. H. B. Deane, “Piecewise contractions are asymptotically
periodic,” Proc. Amer. Math. Soc., vol. 137, no. 4, pp. 1389-1395, 2009.

[6] I. Buzzi, “Piecewise isometries have zero topological entropy,” Ergodic
Theory Dyn. Syst., vol. 21, pp. 13711377, 2001.

[7]1 C. Castellano, S. Fortunato, and V. Loreto, “Statistical physics of social
dynamics,” Rev. Mod. Phys., vol. 81, pp. 591-646, 2009.

[8] E. Catsigeras and R. Budelli, “Topological dynamics of generic piece-
wise continuous contractive maps in n dimensions,” Int. J. Pure Appl.
Math., vol. 68, pp. 61-83, 2011.

[9] E. Catsigeras, P. Guiraud, A. Meyroneinc, and E. Ugalde, “On the

asymptotic properties of piecewise contracting maps,” Dyn. Sys.,

vol. 31, no. 2, pp. 107-135, 2016.

B. Chazelle, “Diffusive influence systems,” SIAM J. Comput., vol. 44,

pp. 1403-1442, 2015.

B. Chazelle, “Toward a theory of Markov influence systems and their

renormalization,” in Proc. 9th Innov. Theor. Comput. Sci., 2018,

pp. 58:1-58:18.

A. Condon and D. Hernek, “Random walks on colored graphs,” Random

Struct. Algorithms, vol. 5, pp. 285-303, 1994.

A. Condon and R. J. Lipton, “On the complexity of space bounded inter-

active proofs,” in Proc. 30th IEEE Symp. Found. Comput. Sci., 1989,

pp. 462-267.

0. Denysyuk and L. Rodrigues, “Random walks on directed dynamic

graphs,” in Proc. 2nd Int. Workshop Dyn. Netw., Algorithms Secur.

{DYNASI10), Bordeaux, France, Jul. 2010.

0. Denysyuk and L. Rodrigues, “Random walks on evolving graphs

with recurring topologies,” in Proc. 28th Int. Symp. Distrib. Comput.

(DISC), Austin, Texas, USA, Oct. 2014, pp. 333-345.

[10]

[11]

[12]

[13]

[14]

[15]

1343

[16] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed.
Boulder, CO, USA: Westview, 2003.

F. Fagnani and P. Frasca, Introduction to Averaging Dynamics Over
Networks (Lecture Notes in Control and Information Sciences),
vol. 472. New York, NY, USA: Springer, 2018.

P. Holme, “Modern temporal networks theory: A colloquium,” Eur.
Physical J. B, vol. 88, no. 9, p. 1, 2015.

P. Holme and J. Saramiki, “Temporal networks,” Phys. Rep., vol. 519,
pp. 97-125, 2012.

G. lacobelli and D. R. Figueiredo, “Edge-attractor random walks on
dynamic networks,” J. Complex Netw., vol. 5, pp. 84-110, 2017.

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of
Dynamical Systems. Cambridge, UXK.: Cambridge Univ. Press, Dec. 28,
1996.

D. Kempe, J. Kleinberg, and A. Kumar, “Connectivity and inference
problems for temporal networks,” J. Comput. Syst. Sci., vol. 64,
pp. 820842, 2002.

B. Kruglikov and M. Rypdal, “A piecewise affine contracting map with
positive entropy,” Discrete Continuous Dyn. Syst., vol. 16, no. 2,
pp- 393-394, 2006.

0. Michail, “An introduction to temporal graphs: An algorithmic
perspective,” Internet Math., vol. 12, pp. 239-280, 2016.

O. Michail and P. G. Spirakis, “Elements of the theory of dynamic
networks,” Commun. ACM, vol. 61, no. 2, pp. 72-81, Feb. 2018.

G. H. Nguyen, J. B. Lee, R. A. Rossi, N. Ahmed, E. Koh, and S. Kim,
“Dynamic network embeddings: From random walks to temporal ran-
dom walks,” in Proc. IEEE Int. Conf. Big Data, 2018, pp. 1085-1092.
N. Perra, A. Baronchelli, D. Mocanu, B. Gongalves, R. Pastor-Satorras,
and A. Vespignani, “Random walks and search in time-varying
networks,” Phys. Rev. Lett., vol. 109, 2012, Art. no. 238701.

J. Petit, M. Gueuning, T. Carletti, B. Lauwens, and R. Lambiotte,
“Random walk on temporal networks with lasting edges,” Phys. Rev. E,
vol. 98, 2018, Art. no. 052307.

A. V. Proskurnikov and R. Tempo, “A tutorial on modeling and analysis
of dynamic social networks. Part L Annu. Rev. Control, vol. 43,
pp. 65-79, 2017.

A. V. Proskurnikov and R. Tempo, “A tutorial on modeling and analysis
of dynamic social networks. Part II,” Annu. Rev. Control, vol. 45,
pp- 166-190, 2018.

V. Ramiro, E. Lochin, P. Sénac, and T. Rakotoarivelo, “Temporal ran-
dom walk as a lightweight communication infrastructure for opportunis-
tic networks,” in Proc. IEEE Int. Symp. (WoWMoM), 2014, pp. 1-6.

E. Seneta, Non-Negative Matrices and Markov Chains, 2nd ed. New
York, NY, USA: Springer, 2006.

M. Starnini, A. Baronchelli, A. Barrat, and R. Pastor-Satorras, “Random
walks on temporal networks,” Phys. Rev. E, vol. 85, no. 5, 2012,
Art. no. 056115.

S. Sternberg, Dynamical Systems. New York, NY, USA: Dover, 2010.

[17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Bernard Chazelle received the Ph.D. degree in com-
puter science from Yale University, New Haven, CT,
USA, in 1980. He is currently an Eugene Higgins Pro-
fessor in computer science with Princeton University,
Princeton, NJ, USA, where he has been in the faculty
: \ since 1986. He was a Professor with the Collége de
1 France, Paris, France, in recent years as well as amem-
,,' ber of the Institute for Advanced Study, Princeton, NJ,
: USA. He has authored several books, including The
;"1L\ Discrepancy Method (Cambridge University Press,
2001). His current research focuses on natural
algorithms and computation. He is a fellow of the American Academy of Arts
and Sciences and a member of the European Academy of Sciences, as well asan
ACM fellow and a former Guggenheim fellow.

Authonzed licensed use limited to: Princeton University. Downloaded on September 03,2020 at 18:53:28 UTC from IEEE Xplore. Restrictions apply.



