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E N V I R O N M E N T A L  S T U D I E S

When floods hit the road: Resilience to flood-related traffic 
disruption in the San Francisco Bay Area and beyond
Indraneel G. Kasmalkar1*, Katherine A. Serafin2,3*, Yufei Miao4†, I. Avery Bick4, 
Leonard Ortolano4, Derek Ouyang2, Jenny Suckale1,2,4‡

As sea level rises, urban traffic networks in low-lying coastal areas face increasing risks of flood disruptions. Closure 
of flooded roads causes employee absences and delays, creating cascading impacts to communities. We integrate 
a traffic model with flood maps that represent potential combinations of storm surges, tides, seasonal cycles, inter-
annual anomalies driven by large-scale climate variability such as the El Niño Southern Oscillation, and sea level 
rise. When identifying inundated roads, we propose corrections for potential biases arising from model in-
tegration. Our results for the San Francisco Bay Area show that employee absences are limited to the homes and 
workplaces within the areas of inundation, while delays propagate far inland. Communities with limited availability 
of alternate roads experience long delays irrespective of their proximity to the areas of inundation. We show 
that metric reach, a measure of road network density, is a better proxy for delays than flood exposure.

INTRODUCTION
Global climate change is increasing the likelihood of extreme events 
(1) such as flooding, particularly in low-lying coastal areas (2). Rapid 
urbanization is further increasing flood risk, given the growing con-
centration of people and assets in cities and the clustering of cities 
along coastlines (3). Presently, about 50% of the world’s population 
lives in cities, and the percentage is projected to rise to 68% by 
mid-century (4). This unprecedented urbanization is accompanied by 
rapid increases in the complexity and interconnectedness of physical 
human systems. Disruption of the highly interdependent socio-
economic networks through flooding and other hazards severely 
affects urban life, potentially leading to lasting displacement and 
business interruption (5). The indirect impacts associated with these 
disruptions could outweigh the direct impacts of flooding, which are 
defined as the physical damage to buildings and infrastructure.

The Intergovernmental Panel on Climate Change has emphasized 
the growing importance of indirect impacts but has also highlighted 
the challenges of quantifying indirect impacts (5). Challenges include 
the multitude of potential indirect impacts spanning the social, en-
vironmental, and economic spheres; the dependence on the cultural 
context; and the uncertainty surrounding the behavioral responses 
of individuals and communities. There also remains an open ques-
tion of whether indirect impacts are governed primarily by the ex-
posure to a climatic hazard or by the characteristics of the system 
experiencing disruption. These challenges raise questions about 
whether there are common themes to indirect climatic impacts that 
extend beyond the context of a specific hazard or location.

In this study, we move beyond a qualitative characterization of 
indirect impacts: We quantify the far-reaching traffic disruptions 
associated with coastal flooding in the San Francisco Bay Area over 
the next two decades, 2020–2040. For the purposes of this study, 
coastal flooding events are defined as extreme water levels resulting 

from various potential combinations of storm surges, tides, seasonal 
cycles, interannual anomalies driven by large-scale climate variability 
such as the El Niño Southern Oscillation, and sea level rise. We do 
not consider fluvial or pluvial flooding in our analysis but plan to 
integrate these processes in future work. To represent coastal flood-
ing, we use 1-m resolution flood maps from the San Francisco Bay 
Conservation and Development Commission’s Adapting to Rising 
Tides (ART) program (6).

The San Francisco Bay Area, similar to many other coastal regions, 
has dense urban development concentrated along its coastline. Thus, 
the region provides a valuable example for studying the indirect 
impacts of sea level rise and intensifying coastal floods on urban 
systems. This study is the result of a year-long service-learning course 
aimed at identifying actionable insights that advance the region’s 
climate adaptation and planning efforts. We choose the traffic system 
as a starting point for understanding indirect impacts of climatic 
hazards since traffic systems connect the social, environmental, and 
economic dimensions of urban life. As in the San Francisco Bay Area, 
many urban traffic networks are already heavily congested. With a 
rising sea level, even relatively minor instances of coastal flood-
ing could inundate major roads and lead to far-reaching, cascading 
consequences.

Traffic is highly nonlinear even under normal conditions, with 
congestion propagating rapidly from traffic bottlenecks to adjacent 
areas (7). However, not all traffic systems are equally prone to external 
disruptions, from flooding or otherwise (8, 9). The varying responses 
of different traffic systems to disruptions has led to the concept of 
traffic resilience, which is defined as the ability of the traffic system 
to either withstand or recover from unexpected changes in traffic 
flows or road conditions (8). In this study, we define traffic resilience 
more specifically as the ability of the traffic system to mitigate travel 
time delays resulting from road closures. Recent studies on traffic 
resilience explore the role played by the structural and topological 
characteristics of the road network in reducing travel time delays 
(9, 10). They suggest a variety of network flow–based metrics (11, 12) 
and graph theoretic metrics (13, 14) to estimate traffic resilience, but 
there is no consensus on a single metric (15).

While the characteristics of the road network are important, they 
alone do not dictate traffic resilience. Exposure to climatic hazards 

1Institute for Computational and Mathematical Engineering, Stanford University, 
Stanford, CA, USA. 2Department of Geophysics, Stanford University, Stanford, CA, 
USA. 3Department of Geography, University of Florida, Gainesville, FL, USA. 4Depart-
ment of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA.
*These authors contributed equally to this work.
†Present address: China International Capital Corporation, Shanghai, China.
‡Corresponding author. Email: jsuckale@stanford.edu

Copyright © 2020 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).

 on A
pril 1, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Kasmalkar et al., Sci. Adv. 2020; 6 : eaba2423     5 August 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 8

(16) and regional commute patterns (17) are important as well. To 
identify the interplay of factors that govern traffic resilience to coastal 
flooding, we simulate morning traffic flows in the San Francisco Bay 
Area under a range of water levels represented by the ART flood 
maps. We infer the origins and destinations of morning commutes 
from the Longitudinal Employer-Household Dynamics Origin-
Destination Employment Statistics (LODES) dataset, prepared by 
the U.S. Census Bureau (18), assuming that present-day commute 
patterns remain approximately indicative of commutes in the near 
future, defined as 2020–2040. Integrating a traffic model with flood 
maps, while not without its challenges (13, 19), enables us to quantify 
how flood exposure, regional commute patterns, and characteristics 
of the road network affect traffic resilience.

METHODS
We integrate a fixed-demand incremental traffic assignment model 
with the ART flood maps to simulate regional traffic patterns in the 
San Francisco Bay Area in the presence of coastal flooding. The in-
cremental traffic assignment model represents commuters as agents 
whose goal is to minimize their origin-destination travel time (20, 21). 
Individual commuters are partitioned uniformly and proportionally 
into four sequential batches of sizes 40, 30, 20, and 10%, and com-
muters within each successive batch are assigned incrementally to 
their shortest-time origin-destination routes (20). This incremental 
approach incorporates the effects of the route choices of earlier 
commuters on the route choices of later commuters within a given 
time period (20, 21). The collective route choice of commuters creates 
congestion and leads to increases in travel time on road segments, 
which are modeled with the widely used Bureau of Public Roads 
function (20).

The traffic assignment model requires two inputs: a road network 
model, and origin-destination commuter data. For the San Francisco 
Bay Area (Fig. 1A), we use the regional road network model devel-
oped by the Metropolitan Transportation Commission (MTC) (22) 
as the first input. The MTC road network, shown in Fig. 1B, is the 
basis of traffic simulations for regional planning in the San Francisco 
Bay Area (23). The MTC road network is a simplified version of the 
true road network. While it contains all the primary and secondary 
roads, it aggregates tertiary and local roads into simplified road seg-
ment representations to make traffic simulations computationally 
tractable. The MTC road network does not represent toll stations, 
carpool or express lanes, or traffic signals.

The LODES dataset (18) provides the second input to the traffic 
assignment model. It is an annually updated synthetic dataset that 
relies on census data, American Community Survey data, and data 
collected by state governments. The LODES dataset provides the 
number of employees who reside in a given census block and work 
in a given census block. We assume that the dataset represents pairs 
of origins and destinations for weekday morning commutes. We also 
assume that the present-day travel patterns described in the dataset 
resemble the travel patterns throughout the 2020–2040 time period. 
The LODES dataset does not present commute data by mode or time 
of commute. To match the scope of our study, we process the dataset 
using estimates from the American Community Survey (24) for the 
number of morning peak-hour commuters by cars and carpools for 
each origin-destination pair.

The use of the LODES dataset limits the spatial resolution of our 
model to the scale of census blocks that range from 100 m to 10 km 

in length (25). Most traffic analyses, on the other hand, are conducted 
on traffic analysis zones that range from 1 to 50 km in length (19, 23). 
The smaller sizes of census blocks provide higher spatial resolution 
than the traffic analysis zones. We assume that any errors in the model 
at scales smaller than census block lengths, such as the errors result-
ing from local road aggregation within the simplified road network, 
are negligible at the spatial scale of census blocks.

To identify inundated roads, we overlay the MTC road network 
with the ART flood maps (6), as shown in Fig. 1 (C and D). The 
ART flood maps are 1-m resolution maps that represent water levels 
resulting from potential combinations of storm surges, tides, seasonal 
cycles, interannual anomalies driven by large-scale climate variability 
such as the El Niño Southern Oscillation, and sea level rise. The 
flood maps are designed with a “one map, many futures” approach, 
where the water level in each map represents multiple underlying 
sea level rise scenarios combined with extreme water level events. 
For example, the 36-inch water level represents both a 50-year extreme 
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Fig. 1. The San Francisco Bay Area study site. (A) The nine counties of the 
San Francisco Bay Area. The cities of Santa Rosa, Napa, San Francisco (labeled SF), 
Oakland, and San Jose are shown for reference. The North Bay includes Napa, Marin, 
Sonoma, and Solano counties, depicted in orange and red; the East Bay includes 
Alameda and Contra Costa counties, depicted in green, and the South Bay and 
Peninsula include Santa Clara, San Mateo, and San Francisco counties, depicted in 
blue and purple. (B) The regional road network used in our model. Numbered roads 
(primary and secondary roads) are shown in magenta. (C) The flood map for the 
12-inch water level overlying the road network. (D) The flood map for the 36-inch 
water level overlying the road network. In both (C) and (D), the areas of inundation 
are shown in blue, while the roads closed because of flooding are shown in red.
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water level event at the present-day sea level and an approximately 
20-year extreme water level event with 6 inches of sea level rise (6). 
By considering water levels rather than specific scenarios of flood 
intensities and sea level rise, the one map, many futures approach 
allows us to study a wide range of plausible coastal flooding events 
despite the uncertainty in projections of near-future sea level rise.

We consider four water levels in our analysis: the baseline “no 
flood,” which represents no flooding at present-day sea level, and the 
12-, 24-, and 36-inch water levels. Our choice of water levels is lim-
ited to coastal flood events with return periods of up to 50 years and 
sea level rise of up to 6 inches (see table S1 for more details), which 
are plausible ranges for the region for the 2020–2040 period (6, 26, 27). 
We do not consider water levels above 36 inches since the potential 
commutes under extreme water levels may not represent home-to-
workplace commutes as assumed in the model. For example, a sub-
stantial number of commuters may change their objectives from work 
commute to evacuation for sufficiently extreme water levels. The 
ART flood maps do not consider the presence of buildings, under-
ground spaces, or storm drainage systems and do not include fluvial 
or pluvial flooding. Additional details about the ART flood mapping 
methodology are provided in the Supplementary Materials.

We assume that road segments are closed to traffic flow if they ex-
ceed a certain threshold of inundation depth. The National Weather 
Service highlights 6 inches of inundation as posing a threat to indi-
viduals and 12 inches as sufficient to sweep most cars off the road 
(28). The decisions for road closures are made by local and regional 
authorities on the basis of local road conditions, creating a wide range 
of potential thresholds for road closures. However, our sensitivity 
tests over the range 1 to 12 inches for the road closure threshold 
show no noticeable change in our model results for the San Francisco 
Bay Area (fig. S1). For the purposes of this study, we choose the 
road closure threshold to be 3 inches. For road segments with less 
than 3 inches of flooding, the model increases the travel time on 
those segments according to an empirical relationship between in-
undation depth and maximum safe driving speed (29). The model 
then assigns commuters to routes on the altered road network.

As a result of road closures, certain home-workplace pairs may 
not have viable routes. If either the home or the workplace of the com-
muter is flooded, then the commute is not possible. Even if neither 
the home nor the workplace is flooded, strategic roads between the 
home and the workplace may have been closed, making the commute 
impossible. In the event that there is no accessible home-to-workplace 
route for a given commuter, that particular commute is classified as 
impassable. We assume that a commuter with an impassable com-
mute stays at home and is not assigned to any route, leading to 
employee absences.

Correcting model biases when identifying inundated roads
Traffic models simplify road networks (23) in ways that intro-
duce potential biases when estimating flood impacts. In Fig. 2, 
we summarize the impact of three biases, labeled as “geometry,” 
“elevation,” and “creeks,” on flood-related traffic disruption. The 
combination of the corrections for geometry, elevation, and creeks 
reduces travel times by 20 to 30% over the no-correction “naive” 
approach for all commuters for the 36-inch water level, as seen in 
Fig. 2D. The percentage of impassable commutes is similarly reduced 
from 16 to 5%.

The first bias arises from the representation of road segments 
as straight edges (23), which may incorrectly intersect the areas of 

inundation (Fig. 2A). To correct for this bias, we align the primary 
and secondary roads in the MTC road network with those of the 
true road network, where the latter network is obtained from a 
federal roadway dataset (25). Tertiary and local roads are not re-
aligned in the same way since most of these road segments within 
the MTC road network are simplified and aggregated versions of the 
true roads.

The lack of elevation data in road networks introduces a second 
bias arising from the incorrect flooding of bridges and overpasses. 
We compute the above-ground elevation for primary and secondary 
roads using a Caltrans Global Positioning System–based elevation 
dataset (30) and a topography dataset (31) and reassess the inundation 
of these road segments. The elevation correction notably reduces pro-
jected travel time delays, as seen in Fig. 2D.

The incorrect flooding of road segments crossing over small creeks 
leads to a third bias. The topography of creek-road intersections is 
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Fig. 2. The effects of model corrections on estimations of regional travel time 
delays. Model corrections were introduced during dataset integration to reduce 
biases in the process of identifying inundated roads. (A) Geometry correction, which 
represents the correction of the location and curvature of the primary and secondary 
roads. (A) shows a portion of U.S. 101 curving around the flooded region, in yellow, 
and the original, simplified straight-line road geometry intersecting the flood map, 
in red. (B) Elevation correction, which represents the incorporation of the primary 
and secondary road elevations above the ground. (B) shows the Carquinez Bridge 
elevated above the inundated region for the 36-inch water level. (C) Creek cor-
rection. A road segment is considered flooded if more than 17% of its length is 
flooded. (C) shows how the creek correction applies to the case of incorrect flood-
ing for the U.S. 101 as it crosses the San Rafael Creek. (D) Cumulative distribution of 
travel time for commuters across the San Francisco Bay Area for the 36-inch water 
level computed with the various corrections. The naive approach, shown with a 
dotted line for easier distinction, represents overlaying the flood map on the road 
network with no corrections. The data inside the parentheses in the legend indi-
cate the percentage of impassable commutes for a given water level.

 on A
pril 1, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Kasmalkar et al., Sci. Adv. 2020; 6 : eaba2423     5 August 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 8

often simplified in the digital elevation models of flood maps to allow 
for continuity in the flood mapping upstream of the intersections 
(6). Since creeks are substantially narrower than road segments, we 
correct for this bias by assuming that road segments are inundated 
only if the fraction of the segment length covered by water exceeds 
a certain threshold, which we call the water-cover threshold. We 
derive the threshold value as 17% by identifying anomalous peaks 
in the distribution over all road segments of the fraction of segment 
length covered by water (fig. S2).

RESULTS
Impassable or delayed commutes? Two types of  
flood-related disruption
Our model highlights two ways in which flooding can disrupt traffic 
flow. The closure of inundated roads makes certain routes im-
passable. We assume that commuters with impassable commutes 
stay home and are thus absent from their workplace. Road closures 
also force some commuters onto alternate roads, thus aggravating 
congestion on those roads and creating travel time delays. In the 
interest of simplicity, we assume that commuters with passable com-
mutes continue toward their destination regardless of how long they 
are delayed.

We summarize how commuters throughout the San Francisco 
Bay Area experience flood-related traffic disruptions for the different 
water levels in Fig. 3. We consider a travel time delay of more than 
30 min a substantial delay because 30 min is the average travel time 
for the San Francisco Bay Area in our model when there is no flood. 
As seen in Fig. 3A, the percentage of total commuters delayed by 
more than 30 min is much larger than the percentage of total com-
muters having an impassable commute for all water levels. Our 
model thus projects that travel time delays affect a substantially larger 
number of commuters than impassibility.

The magnitude of travel time delays also increases with water level, 
as seen in Fig. 3B, which shows the cumulative percentage of com-
muters by projected travel time. For example, while travel times are 
almost identical for the 12- and 24-inch water levels, there is a sharp 
increase in travel times for the 36-inch water level. These travel time 
delays are not equally distributed. Commuters with short commutes 
of 15 min or less experience negligible delays (Fig. 3B). In contrast, 
commuters who live far from their workplaces may be delayed subs
tantially during coastal flood events.

Delays are experienced broadly over the entire region but with 
varying spatial extents. In Fig. 4, we show the percentage of com-
muters delayed over 30 min for the 12-inch water level (Fig. 4, A and C) 
and the 36-inch water level (Fig. 4, B and D). The top two panels 
(Fig. 4, A and B) aggregate the delayed commuters by their home 
census tracts, while the bottom two panels (Fig. 4, C and D) aggre-
gate the delayed commuters by their workplace census tracts. We 
project the largest delays in Marin County, which has high flood 
exposure (32). However, delays also extend far beyond the areas of 
inundation, especially as the water level increases (Fig. 4, B and D).

In contrast, most impassible commutes are a result of either the 
home (Fig. 5, A and B) or the workplace (Fig. 5, C and D) being 
located within the areas of inundation. We present the spatial distri-
bution of impassable commutes for the 12- and 36-inch water levels 
in Fig. 5. Census tracts where more than 50% of commutes are im-
passable, shown in dark blue, are mostly concentrated along the 
shoreline of the Bay.

Floods aggravate the congestion resulting from regional 
jobs-housing imbalances
Urban areas around the world have experienced sprawl through a 
confluence of factors such as population growth, land use decisions, 
and the development of transportation infrastructure (33). In par-
ticular, the rise in housing prices around urban centers and the 
availability of highways have resulted in housing and employ-
ment patterns that lead to heavy congestion and long travel times 
on major traffic routes (34). The potential flooding of these routes 
may amplify the already long travel times.

The San Francisco Bay Area consists of three broad regions: The 
South Bay and Peninsula, the North Bay, and the East Bay (Fig. 1A). 
The South Bay and Peninsula region is home to the economically 
thriving Silicon Valley, which has a robust job market with a surplus 
of high-paying jobs (35) but is known for its housing shortage (36). 
The North Bay and East Bay regions, in contrast, have greater avail-
ability of affordable housing (36). Consequently, a substantial per-
centage of residents of both the North Bay (17%; table S2) and the 
East Bay (33%; table S2) work in the South Bay and Peninsula.

The San Francisco Bay Area has strategic traffic corridors that 
connect the different regions. There are two potential causes of 
flood-related travel time delays arising along the main traffic corri-
dors. First, the flooding and closure of traffic corridors located close 
to the Bay diverts commuters onto nearby local roads and highways, 
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thus increasing congestion and associated travel time delays on 
alternate routes. An example is the U.S. 101, which connects the 
North Bay with the South Bay and Peninsula and runs along the 
west shoreline of the Bay. Second, the San Francisco Bay Area has 
a number of bridges, such as the Dumbarton Bridge and the San 
Mateo Bridge, which run across the Bay and have low-lying entry 
roads. Flood-related closures of the entry roads force commuters to 
either choose a different bridge or drive around the Bay, adding to 
travel time delays.

The residents of the South Bay and Peninsula, the surplus job 
region, face minimal delays. A high percentage (87%; table S2) of 
South Bay and Peninsula residents work within the same region. 
The residents have multiple choices of traffic corridors to commute 
from home to work, not all of which are exposed to flooding. As 
seen in Fig. 4 (A and B), this region has a very low percentage (<5%) of 
residents who face delays of 30 min or more for the 12- and 36-inch 
water levels.

The distribution of projected flood-related travel time delays in 
Fig. 4 reflects the asymmetry of the jobs-housing imbalance. A large 
percentage of East Bay residents (33%; table S2) work in the South 
Bay and Peninsula. East Bay residents face large delays, while the 
South Bay and Peninsula residents face minimal delays (Fig. 4B). In 

contrast, East Bay workplaces experience minimal delays, unlike the 
South Bay and Peninsula workplaces (Fig. 4D). These results suggest 
that regional jobs-housing imbalances are preexisting vulnerabilities 
in the traffic system that may trigger additional flood-related travel 
time delays.

Characteristics of the road network govern traffic resilience 
to flood-related delays
Previous studies of traffic resilience (8–10, 13) highlight that redun-
dancy, defined as the availability of alternate roads in a road network, 
can offset travel time delays resulting from road closures. Current 
metrics of redundancy are relatively computationally intensive since 
they use traffic flow simulations to quantify the impact of closing 
individual road segments (11, 12). Other proposed proxies for traffic 
resilience include graph theoretic metrics such as betweenness 
centrality (13, 37, 38), which measures how “central” road segments 
are for traffic flow. These metrics, however, are not ideal proxies for 
traffic resilience because they do not capture the possibility of sub-
stitution. For example, betweenness centrality does not distinguish 
between widely used traffic corridors such as U.S. 101 that traverse 
through dense urban areas and fairly isolated highways with limited 
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alternatives such as State Route 1. Local roads are available in the 
former case to partially offset a closure of the major traffic corridor 
but not in the latter.

We present an alternate, simple graph theoretic metric, metric 
reach (39), and demonstrate its negative correlation with travel time 
delays. The metric reach of a road segment is defined as the number 
of unique road miles that can be covered starting from that segment 
within a service radius (39). The average metric reach of a region 
correlates strongly with road network density, namely, the total street 
length per square mile, as well as the total number of intersections 
per square mile (39). These correlations suggest that metric reach 
has the potential to approximate the availability of alternate roads 
within a given region. For all metric reach calculations in this study, 
we set the service radius parameter to 5 miles. Sensitivity tests of 
metric reach show no noticeable relative change for service radii of 
5, 10, 15, and 20 miles.

Figure 6 explores the explanatory potential of metric reach for 
understanding traffic resilience to coastal flooding in the San Francisco 
Bay Area. Figure 6A is a map of the average metric reach for each 
county in the San Francisco Bay Area. In particular, Fig. 6A shows 
that counties in the North Bay have lower metric reach than the 
other counties. In Fig. 6B, we compare the average travel time delay 
per mile, shown by marker size, with the average metric reach and the 
percentage of road capacity flooded for each county, for the 36-inch 
water level. Marin County, in the North Bay, stands out for having 
both the largest delays and the highest flooded road capacity (14.5%; 
table S3). The other counties in the North Bay, Napa, Sonoma, and 
Solano also experience some of the largest delays even with relatively 
low flooded road capacities.

To identify the comparative influence of metric reach and per-
centage of flooded road capacity on the average delays per mile for 
the nine counties, we perform a log-transformed linear regression of 
these metrics for the 36-inch water level (table S4). Our analysis shows 
strong correlation (R2 = 0.86; table S4) with average delay per mile. 

Assuming a significance threshold of  = 0.05, the regression indicates 
that the averaged metric reach is statistically significant (P value = 
0.003; table S4), while the percentage of flooded road capacity is not 
significant (P value = 0.259; table S4). Thus, the analysis indicates 
that the metric reach of a region predicts delays better than flood 
exposure. Regression analyses of metric reach and travel time delays 
also yield strong correlations for the 12-inch (R2 = 0.80; table S5) and 
24-inch (R2 = 0.86; table S5) water levels.

The ART flood maps project that San Mateo County will experi-
ence extensive flooding in the near future (6), but this flooding may 
not translate into travel time delays to the degree that one might 
expect on the basis of exposure. The county, shown in dark blue in 
Fig. 6B, has the second largest percentage of road capacity flooded 
in the 36-inch water level (7%; table S3). However, our model projects 
low average delay per mile (0.02 min/mile; table S3). Our analysis 
suggests that high metric reach reduces the projected delays in San 
Mateo County. However, the county experiences a relatively large 
percentage of impassable commutes (13%; table S3) as a result of its 
high flood exposure.

Discussion of implications beyond the San Francisco Bay Area
Our study of flood-related traffic disruption highlights the far-
reaching, indirect impacts of climatic hazards on urban systems. 
We identify two types of disruption to traffic networks as a result of 
coastal flooding: (i) the emergence of impassable commutes when 
origin, destination, or critical road connections fall into the areas of 
inundation and (ii) travel time delays that spread throughout the 
entire regional network irrespective of proximity to the areas of 
inundation. These two disruptions, namely, the absence and delay 
of employees, have consequences for both the individual employees 
and businesses and for the broader regional economy.

Different factors govern the dynamics of these two types of dis-
ruption. Flood exposure of homes and workplaces largely determines 
impassability. In contrast, flood exposure is a poor predictor of travel 
time delays. Our model projects the largest delays in regions with 
low metric reach since these regions have limited availability of 
alternate roads to offset disrupted traffic. The regions with low metric 
reach may experience delays irrespective of their proximity to the 
areas of inundation. Travel time delays hence propagate region-wide, 
and they affect a much larger percentage of commuters than im-
passability does (Fig. 3B). Therefore, the common assumption that 
floods only affect a seemingly small number of communities within 
the areas of inundation is questionable and could undermine plan-
ning efforts dedicated to advancing community well-being and 
regional competitiveness.

The dynamics of flood-related traffic disruption highlighted in 
this study can provide valuable insights for coastal regions beyond 
the San Francisco Bay Area. Many regions around the world share 
common characteristics with the San Francisco Bay Area such as 
dense urban development along the coastline and highly congested 
traffic networks. However, the San Francisco Bay Area has a unique 
geography. The traffic patterns that arise from the geography may 
introduce special vulnerabilities associated with flooding. Many major 
traffic corridors line the shoreline and two bridges with low-lying 
entry roads connect the South Bay and Peninsula to the East Bay 
(Fig. 1B). These particular traffic corridors and bridges act as nexus 
points for traffic congestion, even in the absence of hazards (23) as 
also demonstrated in a recent comparison of delays due to road clo-
sures in different U.S. cities (9).
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Fig. 6. Metric reach versus travel time delays. (A) The metric reach averaged over 
the road subnetwork of each county. Metric reach represents the road network 
density for a given region. It is computed with a service radius of 5 miles. (B) The 
average delay for the 36-inch water level for every county against its percentage of 
flooded road capacity and its average metric reach. Colors indicate the different 
counties, while the sizes of the circles represent the average travel time delay in 
min/mile. Marin County, shown as the largest red circle, has the highest average 
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in the San Francisco Bay Area. The underlying data for (B) are provided in table S3.
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Apart from differences in geography and traffic patterns, some 
of the assumptions within our traffic model may not apply in other 
coastal regions. For example, we assume that commuters have com-
plete knowledge of flood conditions, which enables them to identify 
their shortest-time viable routes before commencing their journeys. 
The assumption is reasonable for the San Francisco Bay Area given 
the prevalence of mobile traffic applications but may not generalize 
to regions in other parts of the world. Similarly, we do not currently 
consider public transport or biking in our model, which could be a 
limitation in urban areas where those modes of transport are common.

Even for regions where the assumptions of our model are appli-
cable, performing traffic simulations may prove difficult because of 
the lack of appropriate datasets. Not all regions have commuter 
origin-destination datasets, representations of the regional road net-
work suitable for traffic modeling, or the additional datasets of road 
geometry and elevation needed to correct biases in model integra-
tion. To facilitate the analysis of traffic disruption resulting from 
climatic hazards in other regions, we propose using metric reach as 
a simple proxy for assessing traffic resilience within sufficiently large 
regions such as counties (tables S4, S5, and S6). Since metric reach 
is independent of the hazard that causes the closure of roads, our 
results suggest that the impact of different climatic hazards on travel 
time delays might not be as different as the hazards themselves. Ac-
cordingly, we suggest that other hazards, such as wildfires or hurri-
canes, would also primarily cause delays in regions with low metric 
reach. However, we emphasize that our model does not consider 
behavioral changes such as evacuations, which may substantially alter 
traffic patterns under conditions of high hazard severity.

While we do not consider behavioral changes specifically, our 
study implicitly demonstrates the potential value of changes in com-
mute behavior. An ambitious reduction of commutes between homes 
and workplaces would not only reduce greenhouse gas emissions 
but also synergistically reduce the adverse impacts of coastal flooding, 
highlighting the potential cobenefits of climate change mitigation 
and adaptation. New technologies such as autonomous vehicles or 
telecommuting in conjunction with policies encouraging urban 
densification and public transit could help change commute patterns 
and achieve both adaptation and mitigation goals. Quantitative models 
that assess the impacts of climatic hazards on urban systems, such as 
the one in this study, enable an evaluation of the potential benefits 
of such technological and social transformations.

CONCLUSIONS
Our analysis quantifies one of the cascading, indirect consequences 
of present-day and near-future sea level rise: the disruption of urban 
traffic flows. We find a spectrum of indirect impacts of coastal flood-
ing on traffic systems, from impassable commutes for communities in 
the areas of inundation to travel time delays that propagate region-
wide. Our model suggests that communities with low metric reach are 
prone to experiencing long travel time delays since they do not have 
sufficiently many alternate roads to fully offset road closures. Thus, 
communities with low flood exposure may have similar or higher vul-
nerability to delays compared to those with high exposure depend-
ing on the nature of the local road network. Our finding demonstrates 
that the characteristics of an urban system can play a bigger role in 
the indirect impacts of hazards on the urban system than the expo-
sure to the hazard. Since metric reach, a general characteristic of the 
traffic network, is independent of the hazard type, we suggest that 

metric reach may help identify regions prone to delays caused by 
other hazards.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/32/eaba2423/DC1
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