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OPTIMAL ERGODIC CONTROL OF LINEAR STOCHASTIC
DIFFERENTIAL EQUATIONS WITH QUADRATIC COST

FUNCTIONALS HAVING INDEFINITE WEIGHTS\ast 

HONGWEI MEI\dagger , QINGMENG WEI\ddagger , AND JIONGMIN YONG\S 

Abstract. An optimal ergodic control (EC) problem is investigated for a linear stochastic dif-
ferential equation with quadratic cost functional. Constant nonhomogeneous terms, not all zero,
appear in the state equation, which lead to the asymptotic limit of the state nonzero. Under the
stabilizability condition, for any (admissible) closed-loop strategy, an invariant measure is proved
to exist, which makes the ergodic cost functional well-defined and the EC problem well-formulated.
Sufficient conditions, including those allowing the weighting matrices of cost functional to be indefi-
nite, are introduced for finiteness and solvability for the EC problem. Some comparisons are made
between the solvability of EC problem and the closed-loop solvability of stochastic linear-quadratic
optimal control problem in the infinite horizon. The regularized EC problem is introduced to be
used to obtain the optimal value of the EC problem.

Key words. linear-quadratic problem, ergodic control, indefinite quadratic cost, invariant
measure, algebraic Riccati equation
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1. Introduction. Let (\Omega ,\scrF ,F,P) be a complete filtered probability space on
which a standard one-dimensional Brownian motion \{ W (t), t \geq 0\} is defined such
that F = \{ \scrF t\} t\geq 0 is the natural filtration of W (\cdot ) augmented by all the P-null sets in
\scrF . We begin with the following n-dimensional controlled linear stochastic differential
equation:

(1.1)

\Biggl\{ 
dX(t) = [AX(t) +Bu(t) + b] dt+ [CX(t) +Du(t) + \sigma ] dW (t), t \geq 0,

X(0) = x.

In the above, A,C \in Rn\times n, B,D \in Rn\times m, are called the coefficients of the system,
b, \sigma \in Rn are called the nonhomogeneous terms, X(\cdot ) is the state process valued in
Rn, and u(\cdot ) is the control process valued in Rm. We call (1.1) the state equation. Let

U [0, T ] \equiv 
\biggl\{ 
u : [0,\infty )\times \Omega \rightarrow Rm| u(\cdot ) is F-progressively measurable,

E
\int T

0

| u(t) | 2dt <\infty 
\biggr\} 
,

Uloc[0,\infty ) =
\bigcap 
T>0

U [0, T ],
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OPTIMAL ERGODIC CONTROL OF LQ PROBLEM 585

U [0,\infty ) \equiv L2
F(0,\infty ;Rm) =

\biggl\{ 
u(\cdot ) \in Uloc[0,\infty ) | E

\int 
0

\infty 
| u(t) | 2dt <\infty 

\biggr\} 
.

Clearly, for any u(\cdot ) \in Uloc[0,\infty ) and any initial state x \in Rn, state equation (1.1)
admits a unique solution X(\cdot ) \equiv X(\cdot ;x, u(\cdot )) which is F-adapted and continuous, thus
integrable on any finite interval [0, T ]. To measure the performance of the control u(\cdot )
on the interval [0, T ], we introduce the following cost functional:

(1.2) JT (x;u(\cdot )) = E
\int T

0

g(X(t), u(t))dt,

where

(1.3) g(x, u) = \langle Qx, x \rangle +2 \langle Sx, u \rangle + \langle Ru, u \rangle +2 \langle q, x \rangle +2 \langle \rho , u \rangle ,
with some suitable matrices Q,S,R and vectors q, \rho . Then an optimal control problem
on [0, T ] can be formulated.

Problem (LQ[0,T ]). For any given x \in Rn, find a \=u(\cdot ) \in U [0, T ] such that

(1.4) JT (x; \=u(\cdot )) = inf
u(\cdot )\in U [0,T ]

JT (x;u(\cdot )).

When a \=u(\cdot ) \in U [0, T ] exists satisfying (1.4), we say that Problem (LQ[0,T ]) is
open-loop solvable and \=u(\cdot ) is called an open-loop optimal control, the corresponding
state process \=X(\cdot ) \equiv X(\cdot ;x, \=u(\cdot )) is called the corresponding open-loop optimal state
process, and ( \=X(\cdot ), \=u(\cdot )) is called an open-loop optimal pair. Problem (LQ[0,T ]) is
referred to as an LQ problem on [0, T ].

It is well-known by now that under proper conditions, Problem (LQ[0,T ]) (even
allowing b(\cdot ), \sigma (\cdot ), q(\cdot ), \rho (\cdot ) to be random) admits a unique open-loop optimal control
\=u(\cdot ) \in U [0, T ] which has a closed-loop representation via the solution to a Riccati
differential equation; further, this coincides with the outcome of a so-called closed-
loop optimal strategy (see, for example, [18] for details). It is natural to ask what it
will be if we consider the problem on [0,\infty ). Namely, consider the same state equation
(1.1) with the following cost functional:

(1.5) J\infty (x;u(\cdot )) = E
\int \infty 

0

g(X(t), u(t))dt.

Such LQ problems have been studied in [20] (see the references cited therein as well
for some details) with b, \sigma , q, \rho replaced by globally square integrable F-progressively
measurable processes b(\cdot ), \sigma (\cdot ), q(\cdot ), \rho (\cdot ) on [0,\infty ) and the homogeneous system, de-
noted by [A,C;B,D] is stabilizable, by which we mean that there exists a matrix
\Theta \in Rm\times n, called a stabilizer of [A,C;B,D], such that the homogeneous closed-loop
system

(1.6)

\Biggl\{ 
dX0(t) = (A+B\Theta )X0(t)dt+ (C +D\Theta )X0(t)dW (t), t \geq 0,

X0(0) = x,

admits a unique solution X0(\cdot ) \in L2
F(0,\infty ;Rn). Now, in the case that b, \sigma are constant

vectors, and not all are zero, the (global) integrability condition is not satisfied. Con-
sequently, even if [A,C ;B,D] is stabilizable, the state X(t;x, u(\cdot )) will not approach
to zero as t \rightarrow \infty . Thus, the corresponding cost functional will not be well-defined
in general. Hence, the corresponding LQ problem is not well-formulated in the tradi-
tional way.

In this paper, we are going to formulate an LQ problem with the state equation
(1.1) and a quadratic cost functional which is closely related to the original (1.5). We
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586 HONGWEI MEI, QINGMENG WEI, AND JIONGMIN YONG

will develop a theory for that kind of LQ problem. So that our procedure can be
carried out, throughout the paper, we will assume the following.

(H1) The matrices A,C \in Rn\times n, B,D \in Rn\times m satisfy the following:

(1.7) \Theta [A,C;B,D] =
\bigl\{ 
\Theta \in Rm\times n \bigm| \bigm| \Theta stabilizes [A,C;B,D]

\bigr\} 
\not = \emptyset .

When (H1) holds, we call any pair (\Theta , v) \in \Theta [A,C;B,D] \times Rm an admissible
closed-loop strategy (see [20] for a similar notion) and define

(1.8) U =
\bigl\{ 
u : Rn \rightarrow Rm

\bigm| \bigm| u(x) = \Theta x+ v, (\Theta , v) \in \Theta [A,C;B,D]\times Rm
\bigr\} 
,

which is the set of all outcomes of the admissible closed-loop strategies. Any u(\cdot ) \in U
is also called a linear feedback control, or a closed-loop control. In what follows, we
will identify u(x) \equiv \Theta x+ v with (\Theta , v), via which one has

(1.9) U = \Theta [A,C;B,D]\times Rm.

It is clear that for any (\Theta , v) \in U, the closed-loop system

(1.10)\Biggl\{ 
dX(t) = [(A+B\Theta )X(t) +Bv + b]dt+ [(C +D\Theta )X(t) +Dv + \sigma ]dW (t), t \geq 0,

X(0) = x,

has a unique solution X(\cdot ) \equiv X(\cdot ;x,\Theta , v) on [0,\infty ). Although it is not necessarily in
L2
F(0,\infty ;Rn), we will show (in the next section) that the following holds:

(1.11) sup
t\geq 0

E| X(t;x,\Theta , v)| 2 <\infty .

Hence, for any \lambda > 0, the so-called Abel mean type functional can be defined:

(1.12) J\lambda \infty (x; \Theta , v) = E
\int \infty 

0

e - \lambda tg
\bigl( 
X(t;x,\Theta , v),\Theta X(t;x,\Theta , v) + v

\bigr) 
dt, (\Theta , v) \in U.

Consequently, one could try to find a ( \=\Theta \lambda , \=v\lambda ) \in U such that

(1.13) J\lambda \infty (x; \=\Theta \lambda , \=v\lambda ) = inf
(\Theta ,v)\in U

J\lambda \infty (x; \Theta , v).

It is natural to further ask what happens if we send \lambda \rightarrow 0+ (trying to recover the
solution to the original problem in some sense). Since under (H1), only (1.11) is
guaranteed, we could not expect the limit lim\lambda \rightarrow 0+ J

\lambda 
\infty (x; \Theta , v) to exist and to be

finite. It turns out that the following exists:

(1.14) \widetilde J\infty (x; \Theta , v) = lim
\lambda \rightarrow 0+

\lambda J\lambda \infty (x; \Theta , v)
\Delta 
= \scrE (\Theta , v) \forall (\Theta , v) \in U

with some function \scrE : U \rightarrow R, independent of x \in Rn, called an ergodic cost function.
Hence, we could formulate the following optimal control problem.

Problem (EC). Find a pair ( \=\Theta , \=v) \in U such that

(1.15) \scrE ( \=\Theta , \=v) = inf
(\Theta ,v)\in U

\scrE (\Theta , v).
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OPTIMAL ERGODIC CONTROL OF LQ PROBLEM 587

We call the above an ergodic optimal control problem. Any pair ( \=\Theta , \=v) \in U
satisfying the above is called an optimal strategy of Problem (EC). Note that when
this happens, we have

(1.16) J\lambda \infty (x; \=\Theta , \=v) =
1

\lambda 
\scrE ( \=\Theta , \=v) + o

\biggl( 
1

\lambda 

\biggr) 
, \lambda \rightarrow 0+.

Note that, in general, \scrE (\cdot , \cdot ) could be complicated. Therefore, a direct approach to
such a problem is difficult. Hence, we would like to find an equivalent form which could
be easier to handle. To this end, we take a different viewpoint. For any (\Theta , v) \in U
and x \in Rn, the solution X(\cdot ) \equiv X(\cdot ;x,\Theta , v) of (1.10) is a homogeneous Markov
process. By (1.11), \{ X(t)| t \geq 0\} is tight. Moreover, X(\cdot ;x,\Theta , v) is a Feller process,
by which we mean that x \mapsto \rightarrow E[h(X(t;x,\Theta , v)] is continuous for any bounded contin-
uous function h(\cdot ) and t \geq 0. Hence, by [14] and taking into account the linearity
of the state equation, we see that X(\cdot ;x,\Theta , v) admits a unique invariant measure
\pi \Theta ,v, indicating the dependence on (\Theta , v) \in U. That is to say if the initial state X(0)
follows the distribution \pi \Theta ,v, then for each t > 0, X(t) follows the same distribution
\pi \Theta ,v. In the next section, we will show that

(1.17)\widetilde J\infty (x; \Theta , v) \equiv lim
\lambda \rightarrow 0+

\lambda J\lambda \infty (x; \Theta , v) \equiv \scrE (\Theta , v) =
\int 
Rn

g(x,\Theta x+ v)\pi \Theta ,v(dx) \forall x \in Rn.

In this paper, we are going to investigate Problem (EC). The main novelty of this
paper can be briefly summarized as follows:

(i) Under the condition that the homogeneous system [A,C;B,D] is stabilizable,
we rigorously formulate the ergodic optimal control problem by means of
invariant measure.

(ii) The finiteness and solvability of Problem (EC) will be discussed and sufficient
conditions for these notions will be obtained, in terms of algebraic Riccati
equation/inequality.

(iii) Comparison will be made between the results of Problem (EC) and the clas-
sical LQ problem in the infinite horizon [0,\infty ). It turns out that the al-
gebraic Riccati equation for the solvability of Problem (EC) is the same as
that for the closed-loop solvability of the classical LQ problem. Hence, to
ensure the solvability of Problem (EC), one could just look at the closed-loop
solvability of Problem (LQ), which is further equivalent to the open-loop
solvability of LQ problem. However, we point out that the solvability of
the classical LQ problem in an infinite horizon is not necessary for that of
Problem (EC).

(iv) We find a general sufficient condition (not just present some particular ex-
amples) for the uniform convexity of the cost functional for the stabilized LQ
problem. The condition allows either Q or R to be negative to some ex-
tent. Combining this with (iii), we obtain a set of sufficient conditions for the
solvability of Problem (EC).

(v) When Problem (EC) is merely finite, by introducing the regularized EC prob-
lem, we find a general scheme to find the optimal value of Problem (EC).

Study of deterministic LQ problems can be traced back to the works of Bellman,
Glicksberg, and Gross [4], Kalman [13], and Letov [16] in the late 1950s and early
1960s. Investigation of stochastic LQ problems was initiated by Wonham [23] in 1968.
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588 HONGWEI MEI, QINGMENG WEI, AND JIONGMIN YONG

See [5, 2] and references cited therein for some other follow-up works. In all these
classical works, the classical positive-definiteness condition

(1.18) R > 0, Q - S\top R - 1S \geq 0

has been taken for granted for a long time. In 1977, Molinari found that for the
deterministic LQ problem, Q could be a little negative (see also [25] for a more general
case in Hilbert spaces). In 1998, Chen, Li, and Zhou [6] further found that for the
stochastic LQ problem, even R could be a little negative; see [24, 7, 1, 11, 17, 12, 18,
20], for many further developments.

On the other hand, the ergodic control problem for general stochastic diffusion
rather than linear-quadratic ones has been investigated in the book [3] (see also the
references cited therein). The main approach is to analyze the so-called stationary
Hamilton--Jacobi equation (see section 3.6.2 there). To guarantee the well-posedness
of the stationary HJB equations, most of the results in [3] require that the diffusion
of the system is nondegenerate and the cost functional is inf-compact (or called near-
monotone in [3]). When Q > 0, S = 0, R = I, q = 0, \rho = 0 (so that the classical
positive semidefiniteness condition (1.18) holds), Guatteri and Masiero [9, 10] studied
the LQ ergodic control problem with random and stationary coefficients. The char-
acterization of the ergodic optimal cost and control were given through a backward
stochastic Riccati equation. In our study, (1.18) is significantly weakened. It is worth
pointing out that sometimes both Q and R can be negative. A detailed discussion
will be carried out in section 4.

The rest of the paper is arranged as follows. In section 2, we present some pre-
liminary results, including the derivation of the ergodic cost function by means of
invariant measure. Section 3 is devoted to the study of Problem (EC). Sufficient
conditions will be obtained for the finiteness and the solvability of the problem, re-
spectively. In section 4, we will make a formal comparison between the solvability
of Problem (EC) and the closed-loop solvability of the corresponding classical LQ
problem in the infinite horizon. Also, a sufficient condition is introduced so that the
cost functional of the stabilized LQ problem is uniformly convex with respect to the
control. This will lead to the solvability of Problem (EC). Section 5 is concerned with
the finiteness of Problem (EC). The optimal value of the cost function is obtained via
the regularized ergodic problem. The general one-dimensional situation is considered
in section 6. Final concluding remarks are collected in section 7.

2. Preliminaries. In this section, we will present some preliminary results. We
introduce some spaces.

Lp\scrF (\Omega ;R
n) =

\bigl\{ 
\xi : \Omega \rightarrow Rn

\bigm| \bigm| \xi is \scrF -measurable, E| \xi | p <\infty 
\bigr\} 
, p \geq 1.

Cb(Rn) =
\bigl\{ 
h : Rn \rightarrow R

\bigm| \bigm| h(\cdot ) is continuous and uniformly bounded
\bigr\} 
.

2.1. Estimates of the state process. In this subsection, we will briefly discuss
the stabilization of the homogeneous system [A,C;B,D] and its consequences. For
any \Theta \in \Theta [A,C;B,D], the homogeneous closed-loop system (1.6) admits a unique
solution X0(\cdot ) \in L2

F(0,\infty ;Rn). Denote

F (\Theta ) = (A+B\Theta ) + (A+B\Theta )\top + (C +D\Theta )\top (C +D\Theta ) \in Sn,

where Sn is the set of all (n \times n) symmetric (real) matrices. Then by It\^o's formula,
we obtain

d

dt

\Bigl( 
E| X0(t)| 2

\Bigr) 
= E \langle F (\Theta )X0(t), X0(t) \rangle , t \geq 0.
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There exists an orthogonal matrix \Phi \equiv \Phi (\Theta ) such that

\Phi \top F (\Theta )\Phi = \Lambda \equiv diag (\lambda 1, . . . , \lambda n), \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \geq \lambda n,

with \lambda 1, . . . , \lambda n being all the eigenvalues of F (\Theta ). Consequently, by letting \widetilde X0 =
\Phi \top X0, we have

d

dt
E| \widetilde X0(t)| 2 = E \langle \Lambda \widetilde X0(t), \widetilde X0(t) \rangle .

Hence, by X0(\cdot ) \in L2
F(0,\infty ;Rn), we have \widetilde X0(\cdot ) \in L2

F(0,\infty ;Rn), and it is necessary
that \lambda k < 0, k = 1, 2, . . . , n. If we denote

 - \lambda (\Theta ) = max\{ \lambda 1, . . . , \lambda n\} \equiv max\sigma (F (\Theta )),

then

E| X0(t)| 2 \leq K\Theta e
 - \lambda (\Theta )t| x| 2 \forall t \geq 0.

Here, the constant K\Theta > 0 depends on \Theta through \Phi (\Theta ), and \lambda (\Theta ) > 0 depends on
\Theta and intrinsically depends on [A,C ;B,D]. We also note from the above that

\langle F (\Theta )x, x \rangle = \langle \Phi \Lambda \Phi \top x, x \rangle \leq  - \lambda (\Theta )| \Phi \top x| 2 =  - \lambda (\Theta )| x| 2.
The following lemma is concerned with the estimate (1.11) and beyond.

Lemma 2.1. For any strategy (\Theta , v) \in U and x \in Rn, the closed-loop system
(1.10) admits a unique solution X(\cdot ) = X(\cdot ;x,\Theta , v) such that

(2.1) sup
t\geq 0

E| X(t)| 2 \leq K(1 + | x| 2).

Hereafter, K > 0 stands for a generic constant which can be different from line to
line. Moreover, let (\widehat \Theta , \widehat v) \in U, \widehat x \in Rn, and let \widehat X(\cdot ) be the corresponding solution of
(1.10); then

(2.2) E| X(t) - \widehat X(t)| 2 \leq e - 
[\lambda (\Theta )\vee \lambda ( \widehat \Theta )]

2 t| x - \widehat x| 2 +K
\Bigl( 
| v  - \widehat v| 2 + | \Theta  - \widehat \Theta | 2

\Bigr) 
\forall t \geq 0

for some K = K\Theta ,v,\widehat \Theta ,\widehat v > 0, which is continuous in (\Theta , v, \widehat \Theta , \widehat v).
Proof. Let (\Theta , v) \in U and x \in Rn. It is standard that the closed-loop system

(1.10) admits a unique solution X(\cdot ) \equiv X(\cdot ;x,\Theta , v). Since \Theta stabilizes the system,
by It\^o's formula, there exist \lambda > 0 and L0 depending on \Theta such that

d

dt

\bigl( 
E| X(t)| 2

\bigr) 
\leq  - \lambda E| X(t)| 2 + L0.

Grownwall's inequality implies (2.1) directly. Next, let X(\cdot ) = X(\cdot )  - \widehat X(\cdot ). Similar
to the above, we see that

d

dt

\bigl( 
E| X(t)| 2

\bigr) 
\leq  - \lambda (\Theta ,

\^\Theta )

2
E| X(t)| 2 + L0(t; \Theta , \widehat \Theta ),

where L0 can be calculated explicitly by

L0(t; \Theta , \widehat \Theta )

=
2

\lambda (\Theta )
| B(v  - \widehat v) +B(\Theta  - \widehat \Theta ) \widehat X(t) + (C +D\Theta )\top [D(v  - \widehat v) +D(\Theta  - \widehat \Theta ) \widehat X(t)]| 2

+ | D(v  - \widehat v) +D(\Theta  - \widehat \Theta ) \widehat X(t)| 2 \leq K

\lambda (\Theta )
(1 + | \Theta | 2)

\Bigl( 
| v  - \widehat v| 2 + | \widehat X(t)| 2| \Theta  - \widehat \Theta | 2

\Bigr) 
\leq K

\lambda (\Theta )
(1 + | \Theta | 2)

\Biggl[ 
| v  - \widehat v| 2 +\Biggl( | \widehat x| 2 \vee 2L0(\widehat \Theta )

\lambda (\widehat \Theta )

\Biggr) 
| \Theta  - \widehat \Theta | 2

\Biggr] 
\equiv L0(\Theta , \widehat \Theta ).

Again Gronwall's inequality implies (2.2).
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2.2. Invariant measures. In this subsection, we will review some results on
invariant measures. For any Euclidean space R\ell , let L (R\ell ) be its Lebesgue \sigma -field,
and

P2(R\ell ) =
\biggl\{ 
\nu : L (R\ell ) \rightarrow [0, 1]

\bigm| \bigm| \nu is a probability on L (R\ell ),
\int 
R\ell 

| x| 2\nu (dx) <\infty 
\biggr\} 
.

For \mu 1, \mu 2 \in P2(Rn), we define

(2.3)

w2(\mu 1, \mu 2) = inf

\Biggl\{ \biggl( \int 
R2n

| x1  - x2| 2\nu (dx1, dx2)
\biggr) 1

2

\bigm| \bigm| \bigm| \bigm| \bigm| \nu \in P2(R2n),

\nu (dx1,Rn) = \mu 1(dx1), \nu (Rn, dx2) = \mu 2(dx2)

\Biggr\} 
.

The above is called the Wasserstein-2 metric (or simply w2-metric), under which
P2(Rn) is a complete metric space (see Theorem 6.16 in [22]). For a random variable
\xi , we denote law(\xi ) to be the distribution of \xi . By the definition of w2, we have

(2.4) w2
2(law(\xi ), law(\eta )) \leq E| \xi  - \eta | 2 \forall \xi , \eta \in L2

\scrF (\Omega ;Rn).

The following proposition gives an equivalent condition of convergence under the
Wasserstein-2 metric (see [22]).

Proposition 2.2. Let \mu k, \mu \in P2(Rn). Then

lim
k\rightarrow \infty 

w2(\mu k, \mu ) = 0

if and only if \mu k weakly converges to \mu and

lim
k\rightarrow \infty 

\int 
Rn

| x| 2\mu k(dx) =
\int 
Rn

| x| 2\mu (dx).

We know that for any closed-loop strategy (\Theta , v) \in U, the unique solution map
x \mapsto \rightarrow X(\cdot ;x) of (1.10) is a stochastic flow [15] which can be uniquely characterized by
its transition probability p(t, x; dy), where

p(t, x; dy) = P(X(t;x) \in dy), (t, x) \in [0,\infty )\times Rn.

We have the following lemma.

Lemma 2.3. For any closed-loop strategy (\Theta , v) \in U, let p(t, x; \cdot ) be the transi-
tion probability of the stochastic flow X(t;x) of (1.10). Then there exists a unique
invariant measure \pi such that

(2.5) lim
t\rightarrow \infty 

w2(p(t, x; \cdot ), \pi ) = 0 \forall x \in Rn.

Moreover, if (\Theta k, vk) \in \Theta [A,C;B,D]\times Rn converges to some (\Theta , v) \in \Theta [A,C;B,D]\times 
Rn, then \pi \Theta k,vk converges to \pi \Theta ,v in the w2-metric.

Proof. We want to show that given any x, \{ p(t, x; \cdot ) : t \geq 0\} is Cauchy, as t\rightarrow \infty 
in (P2(Rn),w2) with a same limit for any x. To prove this, we let \Psi be the set
of couples (\varphi ,\psi ) such that \varphi and \psi are bounded continuous with \varphi (y1) + \psi (y2) \leq 
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OPTIMAL ERGODIC CONTROL OF LQ PROBLEM 591

| y1  - y2| 2. Using the Kantorovich's duality (see Theorem 5.9 in [22]), for t2 > t1 \geq 0,
and x1, x2 \in Rn, we have

w2
2(p(t1, x1; \cdot ), p(t2, x2; \cdot ))

= sup
(\varphi ,\psi )\in \Psi 

\biggl( \int 
Rn

\varphi (y1)p(t1, x1; dy1) +

\int 
Rn

\psi (y2)p(t2, x2; dy2)

\biggr) 
= sup

(\varphi ,\psi )\in \Psi 

\biggl( \int 
Rn

\varphi (y1)p(t1, x1; dy1) +

\int 
Rn

\psi (y2)

\int 
Rn

p(t1, z; dy2)p(t2  - t1, x2; dz)

\biggr) 
\leq 
\int 
Rn

p(t2  - t1, x2; dz)

\Biggl[ 
sup

(\varphi ,\psi )\in \Psi 

\biggl( \int 
Rn

\varphi (y1)p(t1, x1; dy1) +

\int 
Rn

\psi (y2)p(t1, z; dy2)

\biggr) \Biggr] 
\leq 
\int 
Rn

p(t2  - t1, x2; dz)w
2
2(p(t1, x1; \cdot ), p(t1, z; \cdot ))

\leq 
\int 
Rn

E| X(t1;x1) - X(t1; z)| 2p(t2  - t1, x2; dz)

\leq e - 
\lambda (\Theta )

2 t1

\int 
Rn

| x1  - z| 2p(t2  - t1, x2; dz).

In the last two steps, we have used (2.4) and (2.2). By letting t2 > t1 \rightarrow \infty , we see
that \{ p(t, x; \cdot ) : t \geq 0\} is Cauchy (as t\rightarrow \infty ) in (P2(Rn),w2) with some limit \pi . Note
that \pi is an invariant measure which is independent of the choice of x. Moreover, if
\pi \prime is another invariant measure, then for any h \in Cb(Rn), one has\int 

Rn

h(y)\pi \prime (dy) =

\int 
Rn

h(y)

\int 
Rn

p(t, z; dy)\pi \prime (dz)

\rightarrow 
\int 
Rn

h(y)

\int 
Rn

\pi (dy)\pi \prime (dz) =

\int 
Rn

h(y)\pi (dy).

In the second equality, we take t \rightarrow \infty . This proves that \pi = \pi \prime . Thus the invariant
measure \pi is unique.

Finally, if (\Theta k, vk) \in \Theta [A,C;B,D] \times Rn converges to some (\Theta , v) \in \Theta [A,C;
B,D] \times Rn, by (2.2), we can see that w2(\pi 

\Theta k,vk , \pi \Theta ,v) \rightarrow 0. The proof is
complete.

2.3. The ergodic cost functional. In this subsection, we will prove the claim
(1.17). A similar proof for the average in time can be found on page 19 in [3]. Here we
present the whole proof for the reader's convenience. Let us restate it as the following
proposition.

Proposition 2.4. For any x \in Rn, (\Theta , v) \in \Theta [A,C;B,D]\times Rn

(2.6) lim
\lambda \rightarrow 0+

\lambda J\lambda \infty (x; \Theta , v) =

\int 
Rn

g(x,\Theta x+ v)\pi \Theta ,v(dx).

Proof. Let (\Theta , v) \in U be fixed, and let X(\cdot ) \equiv X(\cdot ; \xi ,\Theta , v) be the solution of the
closed-loop system (1.10) with the initial state \xi \in Rn. We introduce

(2.7) \nu \xi \lambda (G) \equiv \lambda E
\int \infty 

0

e - \lambda sI(X(s; \xi ) \in G)ds, G \in \scrF ,

which is called the occupation measure of X(\cdot ; \xi ). Then, with u(x) = \Theta x+v, we have

\lambda J\lambda \infty (\xi ;u(\cdot )) = \lambda 

\int \infty 

0

e - \lambda tEg(X(t; \xi ), u(X(t; \xi )))dt =

\int 
Rn

g(x, u(x))\nu \xi \lambda (dx).
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592 HONGWEI MEI, QINGMENG WEI, AND JIONGMIN YONG

We want to prove that \nu \xi \lambda (dx) converges to \pi 
u weakly as \lambda \rightarrow 0.

Note that under closed-loop strategy (\Theta , v), X(\cdot ; \xi ) is a homogeneous Markov
process. Thus, we may let q\xi (t, x; dy) be its transition probability, i.e.,

q\xi (t, x; dy) = P(X(s+ t; \xi ) \in dy,X(s; \xi ) = x).

Now, for any continuous bounded function f : Rn \rightarrow R, one has\int 
Rn

f(y)

\int 
Rn

q\xi (t, x; dy)\nu \xi 
\lambda (dx) =

\int 
Rn

f(y)

\int 
Rn

q\xi (t, x; dy)\lambda E
\int \infty 

0

e - \lambda sI(X(s; \xi ) \in dx)ds

= \lambda 

\int 
Rn

f(y)E
\int \infty 

0

e - \lambda s

\int 
Rn

q\xi (t, x; dy)I(X(s; \xi ) \in dx)ds

= \lambda 

\int 
Rn

f(y)E
\int \infty 

0

e - \lambda sI(X(t+ s; \xi ) \in dy)ds

= \lambda 

\int 
Rn

f(y)e\lambda tE
\int \infty 

0

e - \lambda sI(X(s; \xi ) \in dy)ds - \lambda e\lambda t
\int 
Rn

f(y)E
\int t

0

e - \lambda sI(X(s; \xi ) \in dy)ds

= e\lambda t
\int 
Rn

f(y)\nu \xi 
\lambda (dy) - \lambda e\lambda t

\int 
Rn

f(y)E
\int t

0

e - \lambda sI(X(s; \xi ) \in dy)ds.

For any fixed t > 0, letting \lambda \rightarrow 0+, we see that the second term on the right-
hand side will go to zero. Since \nu \xi \lambda is tight (because X(t; \xi ) is tight), any sub-
sequence has a weakly convergent subsequence with a same limit \pi . Note that
x \mapsto \rightarrow 

\int 
Rn f(y)q

\xi (t, x; dy) is continuous, by the Feller property, and then for any t > 0,\int 
Rn

f(y)

\int 
Rn

q\xi (t, x; dy)\pi (dx) =

\int 
Rn

f(y)\pi (dy).

This verifies that \pi is an invariant measure. By the uniqueness of the invariant
measure \pi u which has been proved in Lemma 2.3, \pi = \pi u. This shows that \nu \xi \lambda 
converges to \pi u weakly. Note that by Proposition 2.2 and Lemma 2.3, it follows that\int 

Rn

| x| 2\nu \xi \lambda (dx) = \lambda 

\int \infty 

0

e - \lambda sE| X(t; \xi )| 2ds\rightarrow 
\int 
Rn

| x| 2\pi u(dx) as \lambda \rightarrow 0+.

As a result,

\widetilde J\infty (x;u(\cdot )) = lim
\lambda \rightarrow 0+

\lambda J\lambda \infty (\xi ;u(\cdot )) = lim
\lambda \rightarrow 0+

\int 
Rn

g(x, u(x))\nu \xi \lambda (dx) =

\int 
Rn

g(x, u(x))\pi u(dx).

This verifies our claim (1.17).

Under (H1), for any u(\cdot ) \in U, we may also introduce the following so-called Ces\`aro
mean type cost functional:

(2.8) \widetilde JT (x;u(\cdot )) = 1

T
JT (x;u(\cdot )) \equiv 

1

T

\int T

0

g(X(t), u(t))dt.

If we introduce the corresponding occupation measure

\widetilde \nu uT (dx) = 1

T
E
\int T

0

I(X(t) \in dx)dt,

then, with a similar argument (details can be found in Theorem 3.1.1 of [8]), one has

(2.9) lim
T\rightarrow \infty 

1

T
JT (x;u(\cdot )) = lim

T\rightarrow \infty 

\int 
Rn

g(x, u(x))\nu uT (dx) =

\int 
Rn

g(x, u(x))\pi u(dx).
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3. Ergodic optimal control problem---finiteness and solvability. In this
section, we investigate the ergodic optimal control problem. For convenience, let us
recall the problem as follows.

Problem (EC). Let (H1) hold. Find a \=u(\cdot ) \in U such that

(3.1) \scrE (\=u(\cdot )) = inf
u(\cdot )\in U

\scrE (u(\cdot )) \equiv E .

Note that under (H1), U \not = \emptyset . Hence, there will be a strategy u(\cdot ) \in U such that
\scrE (u(\cdot )) is finite, which implies E < \infty . Adopting the usual terminology of optimal
LQ problems, we introduce the following.

Definition 3.1. Problem (EC) is said to be finite if E >  - \infty . If there (uniquely)
exists a \=u(\cdot ) \in U satisfying (3.1), Problem (EC) is said to be (uniquely) solvable. In
this case, \=u(\cdot ) is called an (the) optimal strategy of Problem (EC).

For simplicity, if u(x) = \Theta x+ v, we also write \scrE (\Theta , v) \equiv \scrE (u(\cdot )). Recall that

(3.2) \scrE (\Theta , v) =
\int 
Rn

g(x,\Theta x+ v)\pi \Theta ,v(dx) \forall (\Theta , v) \in \Theta [A,C;B,D]\times Rn.

Therefore, in the case that

(3.3) g(x, u) \equiv 
\biggl\langle \biggl( 

Q S\top 

S R

\biggr) \biggl( 
x
u

\biggr) 
,

\biggl( 
x
u

\biggr) \biggr\rangle 
+2

\biggl\langle \biggl( 
q
\rho 

\biggr) \biggl( 
x
u

\biggr) \biggr\rangle 
\geq  - K \forall (x, u) \in Rn\times Rm,

for some K \geq 0, one will have

(3.4) \scrE (\Theta , v) \geq  - K \forall (\Theta , v) \in \Theta [A,C;B,D]\times Rn,

leading to the finiteness of Problem (EC). Note that (3.3) is equivalent to the following:

(3.5)

\biggl( 
Q S\top 

S R

\biggr) 
\geq 0,

\biggl( 
q
\rho 

\biggr) 
\in R

\biggl( \biggl( 
Q S\top 

S R

\biggr) \biggr) 
.

We refer to the above as the classical positive semidefiniteness condition. Apparently,
condition (3.5) is too restrictive. As a matter of fact, by assuming (3.5), one does
not make use of the compatibility of g(x,\Theta x + v) and the related invariant measure
\pi \Theta ,v(\cdot ). On the other hand, we recall that in standard stochastic LQ theory [6, 18, 19],
Q or R is even allowed to be a little negative (therefore (3.5) fails) within a certain
extent, still keeping the corresponding problem to have optimal controls. This inspires
us to explore the possible relaxation on (3.5) below.

Note that for any (\Theta , v) \in \Theta [A,C;B,D]\times Rn, one has
(3.6)

g(x,\Theta x+ v)

=

\biggl\langle \biggl( 
Q S\top 

S R

\biggr) \biggl( 
x

\Theta x+ v

\biggr) 
,

\biggl( 
x

\Theta x+ v

\biggr) \biggr\rangle 
+ 2

\biggl\langle \biggl( 
q
\rho 

\biggr) \biggl( 
x

\Theta x+ v

\biggr) \biggr\rangle 
= \langle Qx, x \rangle +2 \langle Sx,\Theta x+ v \rangle + \langle R(\Theta x+ v),\Theta x+ v \rangle +2 \langle q, x \rangle +2 \langle \rho ,\Theta x+ v \rangle 
= \langle (Q+ S\top \Theta +\Theta \top S +\Theta \top R\Theta )x, x \rangle +2 \langle (S +R\Theta )x, v \rangle + \langle Rv, v \rangle 

+2 \langle q +\Theta \top \rho , x \rangle +2 \langle \rho , v \rangle 

=

\biggl\langle \biggl( 
S\top \Theta +\Theta \top S +Q (S +R\Theta )\top 

S +R\Theta R

\biggr) \biggl( 
x
v

\biggr) 
,

\biggl( 
x
v

\biggr) \biggr\rangle 
+ 2

\biggl\langle \biggl( 
q +\Theta \top \rho 

\rho 

\biggr) \biggl( 
x
v

\biggr) \biggr\rangle 
.
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Thus, we obtain the following representation of function \scrE (\cdot ):

(3.7)
\scrE (\Theta , v) =

\int 
Rn

[\langle (Q+ S\top \Theta +\Theta \top S +\Theta \top R\Theta )x, x \rangle +2 \langle (S +R\Theta )x, v \rangle 

+ \langle Rv, v \rangle +2 \langle q +\Theta \top \rho , x \rangle +2 \langle \rho , v \rangle ]\pi \Theta ,v(dx).

The above representation is not good enough since it does not show how the com-
patibility among the coefficients of the control system, the weighting matrices of the
cost functional, and the invariant measure can help us to relax the classical condition
(3.5). The following lemma gives us a nicer representation of \scrE (\Theta , v).

Lemma 3.2. Let (H1) hold. For any (\Theta , v) \in \Theta [A,C;B,D] \times Rn, let \pi \Theta ,v be
the corresponding invariant measure. Then for any \Pi \in Sn, the ergodic cost function
\scrE (\cdot , \cdot ) admits the representation

(3.8)
\scrE (\Theta , v) =

\int 
Rn

\biggl\langle 
M\Theta ,\Pi 

\biggl( 
x
v

\biggr) 
,

\biggl( 
x
v

\biggr) \biggr\rangle 
\pi \Theta ,v(dx) + 2 \langle B\top \eta \Theta ,\Pi +D\top \Pi \sigma + \rho , v \rangle 

+ \langle \Pi \sigma , \sigma \rangle +2 \langle \eta \Theta ,\Pi , b \rangle ,

where \eta 
\Theta ,\Pi 

\in Rn is the solution to the linear equation

(3.9) (A+B\Theta )\top \eta \Theta ,\Pi +\Pi b+ (C +D\Theta )\top \Pi \sigma + q +\Theta \top \rho = 0,

and M\Theta ,\Pi is given by

M\Theta ,\Pi =

\biggl( 
Q\Theta ,\Pi (B\top \Pi +D\top \Pi C + S)\top +\Theta \top (R+D\top \Pi D)

B\top \Pi +D\top \Pi C + S + (R+D\top \Pi D)\Theta R+D\top \Pi D

\biggr) 
,

with

(3.10) Q\Theta ,\Pi = \Pi (A+B\Theta ) + (A+B\Theta )\top \Pi + (C +D\Theta )\top \Pi (C +D\Theta )

+S\top \Theta +\Theta \top S +\Theta \top R\Theta +Q.

If, in addition,

(3.11) R+D\top \Pi D \geq 0, R(B\top \Pi +D\top \Pi C + S) \subseteq R(R+D\top \Pi D),

holds and the algebraic Riccati inequality

(3.12)
\widehat Q\Pi \equiv \Pi A+A\top \Pi + C\top \Pi C +Q

 - (B\top \Pi +D\top \Pi C + S)\top (R+D\top \Pi D)\dagger (B\top \Pi +D\top \Pi C + S) \geq 0

holds, then M\Theta ,\Pi \geq 0, and

(3.13) M\Theta 0,\Pi \leq M\Theta ,\Pi \forall \Theta \in \Theta [A,C;B,D],

provided

(3.14)
\Theta 0 =  - (R+D\top \Pi D)\dagger (B\top \Pi +D\top \Pi C + S)

+ [I  - (R+D\top \Pi D)\dagger (R+D\top \Pi D)]\Lambda \in \Theta [A,C;B,D]

for some \Lambda \in Rm\times n.

Representation (3.8) has an advantage that except the first term, the other terms
on the right-hand side are independent of \pi \Theta ,v(dx).
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Proof. For \Theta \in \Theta [A,C;B,D], let \pi \Theta ,v be the invariant measure. If we let X(\cdot ; \xi )
be the solution of (1.10) with the initial state \xi having the distribution \pi \Theta ,v(\cdot ), then for
any t > 0, X(t) will have the same distribution \pi \Theta ,v(\cdot ). Thus, for any (\Pi , \eta ) \in Sn\times Rn,
t \mapsto \rightarrow E[\langle \Pi X(t), X(t \rangle +2 \langle \eta ,X(t) \rangle ] stays as a constant. Hence, by It\^o's formula, we
obtain (t will be suppressed)

0 =
d

dt
(E \langle \Pi X(t), X(t) \rangle +2E \langle \eta ,X(t) \rangle )

= E \langle \Pi [(A+B\Theta )X +Bv + b], X \rangle +E \langle \Pi X, (A+B\Theta )X +Bv + b \rangle 
+E \langle \Pi [(C +D\Theta )X +Dv + \sigma ], (C +D\Theta )X +Dv + \sigma \rangle 
+2E \langle \eta , (A+B\Theta )X +Bv + b \rangle 

= E \langle [\Pi (A+B\Theta ) + (A+B\Theta )\top \Pi + (C +D\Theta )\top \Pi (C +D\Theta )]X,X \rangle 
+2E \langle [B\top \Pi +D\top \Pi (C +D\Theta )]X, v \rangle 
+2E \langle \Pi b+ (C +D\Theta )\top \Pi \sigma + (A+B\Theta )\top \eta ,X \rangle + \langle D\top \Pi Dv, v \rangle 
+2E \langle B\top \eta +D\top \Pi \sigma , v \rangle + \langle \Pi \sigma , \sigma \rangle +2 \langle \eta , b \rangle 

= E \langle [\Pi A+A\top \Pi + C\top \Pi C + (\Pi B + C\top \Pi D)\Theta 

+\Theta \top (B\top \Pi +D\top \Pi C) + \Theta \top D\top \Pi D\Theta ]X,X \rangle 
+2E \langle [B\top \Pi +D\top \Pi (C +D\Theta )]X, v \rangle 
+2E \langle \Pi b+ (C +D\Theta )\top \Pi \sigma + (A+B\Theta )\top \eta ,X \rangle 
+ \langle D\top \Pi Dv, v \rangle +2E \langle B\top \eta +D\top \Pi \sigma , v \rangle + \langle \Pi \sigma , \sigma \rangle +2 \langle \eta , b \rangle 

= E \langle Q\Theta ,\Pi  - (S\top \Theta +\Theta \top S +\Theta \top R\Theta +Q)X,X \rangle  - \langle Rv, v \rangle 
+2E \langle [B\top \Pi +D\top \Pi (C +D\Theta )]X, v \rangle 
+ \langle (R+D\top \Pi D)v, v \rangle +2E \langle \Pi b+ (C +D\Theta )\top \Pi \sigma + (A+B\Theta )\top \eta ,X \rangle 
+2 \langle D\top \Pi \sigma +B\top \eta , v \rangle + \langle \Pi \sigma , \sigma \rangle +2 \langle \eta , b \rangle 

= E \langle Q\Theta ,\Pi X,X \rangle  - \scrE (\Theta , v) + 2E \langle [L\Pi + (R+D\top \Pi D)\Theta ]X, v \rangle 
+2E \langle \Pi b+ (C +D\Theta )\top \Pi \sigma + (A+B\Theta )\top \eta + q + \Theta \top \rho ,X \rangle 
+ \langle (R+D\top \Pi D)v, v \rangle +2 \langle D\top \Pi \sigma +B\top \eta + \rho , v \rangle + \langle \Pi \sigma , \sigma \rangle +2 \langle \eta , b \rangle ,

where L\Pi = B\top \Pi +D\top \Pi C + S. This implies that

(3.15)

\scrE (\Theta , v) = E \langle Q\Theta ,\Pi X,X \rangle +2E \langle [L\Pi + (R+D\top \Pi D)\Theta ]X, v \rangle 
+2E \langle \Pi b+ (C +D\Theta )\top \Pi \sigma + (A+B\Theta )\top \eta + q +\Theta \top \rho ,X \rangle 
+ \langle (R+D\top \Pi D)v, v \rangle +2 \langle D\top \Pi \sigma +B\top \eta + \rho , v \rangle 
+ \langle \Pi \sigma , \sigma \rangle +2 \langle \eta , b \rangle .

Taking \eta = \eta \Theta ,\Pi , the solution of (3.9), we have

\scrE (\Theta , v)
= E \langle Q\Theta ,\Pi X,X \rangle +2E \langle [L\Pi + (R+D\top \Pi D)\Theta ]X, v \rangle + \langle (R+D\top \Pi D)v, v \rangle 
+2 \langle B\top \eta 

\Theta ,\Pi 
+D\top \Pi \sigma + \rho , v \rangle + \langle \Pi \sigma , \sigma \rangle +2 \langle \eta 

\Theta ,\Pi 
, b \rangle 

=

\int 
Rn

\Bigl[ 
\langle Q\Theta ,\Pi x, x \rangle +2 \langle [L\Pi + (R+D\top \Pi D)\Theta ]x, v \rangle + \langle (R+D\top \Pi D)v, v \rangle 

\Bigr] 
\pi \Theta ,v(dx)

+ 2 \langle B\top \eta 
\Theta ,\Pi 

+D\top \Pi \sigma + \rho , v \rangle + \langle \Pi \sigma , \sigma \rangle +2 \langle \eta 
\Theta ,\Pi 

, b \rangle .
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596 HONGWEI MEI, QINGMENG WEI, AND JIONGMIN YONG

This is (3.8). Now, let \Pi \in Sn satisfy (3.11). Then there exists a \Lambda \Pi \in Rm\times n such
that L\Pi = (R+D\top \Pi D)\Lambda \Pi , which leads to the following:

L\top 
\Pi \Theta + \Theta \top L\Pi + \Theta \top (R+D\top \Pi D)\Theta 

= \Lambda \top 
\Pi (R+D\top \Pi D)\Theta + \Theta \top (R+D\top \Pi D)\Lambda \Pi + \Theta \top (R+D\top \Pi D)\Theta 

= (\Lambda \Pi + \Theta )\top (R+D\top \Pi D)(\Lambda \Pi + \Theta ) - \Lambda \top 
\Pi (R+D\top \Pi D)(R+D\top \Pi D)\dagger (R+D\top \Pi D)\Lambda \Pi 

= [\Theta + (R+D\top \Pi D)\dagger L\Pi ]
\top (R+D\top \Pi D)[\Theta + (R+D\top \Pi D)\dagger L\Pi ] - L\top 

\Pi (R+D\top \Pi D)\dagger L\Pi .

Hence,

Q\Theta ,\Pi = \Pi A+A\top \Pi + C\top \Pi C +Q

 - L\top 
\Pi (R+D\top \Pi D)\dagger L\Pi + (\Lambda \Pi + \Theta )\top (R+D\top \Pi D)(\Lambda \Pi + \Theta )

\equiv \widehat Q\Pi + [\Theta + (R+D\top \Pi D)\dagger L\Pi ]
\top (R+D\top \Pi D)[\Theta + (R +D\top \Pi D)\dagger L\Pi ]

with \widehat Q\Pi defined by (3.12).

(3.16)

\widehat Q\Pi = \Pi A+A\top \Pi + C\top \Pi C +Q - L\top 
\Pi (R+D\top \Pi D)\dagger L\Pi 

\equiv \Pi A+A\top \Pi + C\top \Pi C +Q

 - (B\top \Pi +D\top \Pi C + S)\top (R+D\top \Pi D)\dagger (B\top \Pi +D\top \Pi C + S).

Also,

(3.17)

M\Theta ,\Pi 

=

\biggl( 
I (\Lambda \Pi +\Theta )\top 

0 I

\biggr) \biggl( 
Q\Theta ,\Pi  - (\Lambda \Pi +\Theta )\top (R+D\top \Pi D)(\Lambda \Pi +\Theta ) 0

0 R+D\top \Pi D

\biggr) \biggl( 
I 0

\Lambda \Pi + \Theta I

\biggr) 
=

\biggl( 
I (\Lambda \Pi +\Theta )\top 

0 I

\biggr) \biggl( \widehat Q\Pi 0

0 R+D\top \Pi D

\biggr) \biggl( 
I 0

\Lambda \Pi +\Theta I

\biggr) 
.

Consequently, in the case that (3.11)--(3.12) hold one has M\Theta ,\Pi \geq 0. Further, if we
let \Theta 0 be defined by (3.14), then, noting L\Pi = (R+D\top \Pi D)\Lambda \Pi , we have

(3.18) (R +D\top \Pi D)\Theta 0 =  - (R+D\top \Pi D)(R+D\top \Pi D)\dagger (R+D\top \Pi D)\Lambda \Pi =  - L\Pi .

Hence,

(3.19)

Q\Theta ,\Pi  - Q\Theta 0,\Pi 

= L\top 
\Pi (\Theta  - \Theta 0) + (\Theta  - \Theta 0)

\top L\Pi + \Theta \top (R+D\top \Pi D)\Theta  - \Theta \top 
0 (R+D\top \Pi D)\Theta 0

= L\top 
\Pi (\Theta  - \Theta 0) + (\Theta  - \Theta 0)

\top L\Pi + (\Theta  - \Theta 0)
\top (R+D\top \Pi D)\Theta 0

+\Theta \top 
0 (R+D\top \Pi D)(\Theta  - \Theta 0) + (\Theta  - \Theta 0)

\top (R+D\top \Pi D)(\Theta  - \Theta 0)

= (\Theta  - \Theta 0)
\top (R+D\top \Pi D)(\Theta  - \Theta 0) \geq 0 \forall \Theta \in Rm\times n.

This proves (3.13).

Now, for given \Pi \in Sn, the set of all \Theta 0 of form (3.14) is denoted by \Upsilon [\Pi ], i.e.,

(3.20)
\Upsilon [\Pi ] = \{  - (R+D\top \Pi D)\dagger (B\top \Pi +D\top \Pi C + S)

+ [I  - (R+D\top \Pi D)\dagger (R+D\top \Pi D)]\Lambda 
\bigm| \bigm| \Lambda \in Rm\times n\} .
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OPTIMAL ERGODIC CONTROL OF LQ PROBLEM 597

In the case that R + D\top \Pi D > 0, \Upsilon [\Pi ] is a singleton. Also, we see that for any
\Theta 0 \in \Upsilon [\Pi ], noting (3.18),

Q\Theta 0,\Pi = \Pi A+A\top \Pi + C\top \Pi C +Q+ L\top 
\Pi \Theta 0 + \Theta \top 

0 L\Pi + \Theta \top 
0 (R+D\top \Pi D)\Theta 0

= \Pi A+A\top \Pi + C\top \Pi C +Q - L\top 
\Pi (R+D\top \Pi D)\dagger L\Pi = \widehat Q\Pi .

Next, we note that for any \Theta \in \Theta [A,C;B,D], we know that system [A+B\Theta , C+D\Theta ]
is asymptotically stable. Therefore,

A+B\Theta + (A+B\Theta )\top + (C +D\Theta )\top (C +D\Theta ) < 0,

which leads to the invertibility of A+B\Theta . We are now ready to present the following
result.

Next, we present a finiteness and solvability theorem for Problem (EC), recalling
(3.20) for the definition of \Upsilon [\Pi 0].

Theorem 3.3. Let (H1) hold.
(i) Let \Pi 0 \in Sn solve the following algebraic Riccati inequality:

(3.21)\left\{     
\Pi 0A+A\top \Pi 0 + C\top \Pi 0C +Q

 - (B\top \Pi 0 +D\top \Pi 0C + S)\top (R+D\top \Pi 0D)\dagger (B\top \Pi 0 +D\top \Pi 0C + S) \geq 0,

R+D\top \Pi 0D \geq 0, R(B\top \Pi 0 +D\top \Pi 0C + S) \subseteq R(R+D\top \Pi 0D).

Let (\Theta 0, \eta 0) \in \Upsilon [\Pi 0]\times Rn such that

(3.22)

\Biggl\{ 
B\top \eta 0 +D\top \Pi 0\sigma + \rho \in R(R+D\top \Pi 0D),

(A+B\Theta 0)
\top \eta 0 +\Pi 0b+ (C +D\Theta 0)

\top \Pi 0\sigma + q + \Theta \top 
0 \rho \in R(Q\Theta 0,\Pi 0

).

Then \scrE (\cdot ) is bounded from below uniformly on U and Problem (EC) is finite.
(ii) Let \Pi 0 \in Sn solve the following algebraic Riccati equation:

(3.23)\left\{     
\Pi 0A+A\top \Pi 0 + C\top \Pi 0C +Q

 - (B\top \Pi 0 +D\top \Pi 0C + S)\top (R+D\top \Pi 0D)\dagger (B\top \Pi 0 +D\top \Pi 0C + S) = 0,

R+D\top \Pi 0D \geq 0, R(B\top \Pi 0 +D\top \Pi 0C + S) \subseteq R(R+D\top \Pi 0D).

Let ( \=\Theta 0, \=\eta 0) \in \{ \Upsilon [\Pi 0] \cap \Theta [A,C;B,D]\} \times Rn such that

(3.24)

\Biggl\{ 
B\top \=\eta 0 +D\top \Pi 0\sigma + \rho \in R(R+D\top \Pi 0D),

(A+B \=\Theta 0)
\top \=\eta 0 +\Pi 0b+ (C +D \=\Theta 0)

\top \Pi 0\sigma + q + \=\Theta \top 
0 \rho = 0.

Then Problem (EC) is solvable with ( \=\Theta 0, \=v0) being an optimal strategy, where

(3.25)
\=v0 =  - (R+D\top \Pi 0D)\dagger (D\top \Pi 0\sigma +B\top \=\eta 0 + \rho ) + [I  - (R+D\top \Pi 0D)\dagger (R+D\top \Pi 0D)\dagger ]\nu ,

for any \nu \in Rm.
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598 HONGWEI MEI, QINGMENG WEI, AND JIONGMIN YONG

Proof. (i) Taking \Pi = \Pi 0, \eta = \eta 0 in (3.15), making use of (3.19), and noting
\Theta 0 \in \Upsilon [\Pi 0] (having property (3.18)),

(3.26)
\scrE (\Theta , v) = E \langle Q\Theta ,\Pi 0

X,X \rangle +2E \langle 
\bigl[ 
B\top \Pi 0 +D\top \Pi 0C + S + (R+D\top \Pi 0D)\Theta 

\bigr] 
X, v \rangle 

+2E \langle \Pi 0b+ (C +D\Theta )\top \Pi 0\sigma + (A+B\Theta )\top \eta 0 + q + \Theta \top \rho ,X \rangle 
+ \langle (R+D\top \Pi 0D)v, v \rangle +2 \langle D\top \Pi 0\sigma +B\top \eta 0 + \rho , v \rangle + \langle \Pi 0\sigma , \sigma \rangle +2 \langle \eta 0, b \rangle 

= E \langle Q\Theta 0,\Pi 0X,X \rangle +2E \langle (A+B\Theta 0)
\top \eta 0 +\Pi 0b+ (C +D\Theta 0)

\top \Pi 0\sigma + q + \Theta \top 
0 \rho ,X \rangle 

+E \langle (R+D\top \Pi 0D)[(\Theta  - \Theta 0)X + v], (\Theta  - \Theta 0)X + v \rangle 
+2E \langle D\top \Pi 0\sigma +B\top \eta 0 + \rho , (\Theta  - \Theta 0)X + v \rangle + \langle \Pi 0\sigma , \sigma \rangle +2 \langle \eta 0, b \rangle .

Now, by our assumption, Q\Theta 0,\Pi 0
\geq 0, together with (3.22), we see that

(3.27)
\scrE (\Theta , v)

= E
\bigm| \bigm| \bigm| Q 1

2

\Theta 0,\Pi 0
X + [Q\dagger 

\Theta 0,\Pi 0
]
1
2

\bigl\{ 
(A+B\Theta 0)

\top \eta 0 +\Pi 0b+ (C +D\Theta 0)
\top \Pi 0\sigma + q + \Theta \top 

0 \rho 
\bigr\} \bigm| \bigm| \bigm| 2

+E
\bigm| \bigm| \bigm| (R+D\top \Pi 0D)

1
2 [(\Theta  - \Theta 0)X + v] + [(R +D\top \Pi 0D)\dagger ]

1
2

\bigl\{ 
D\top \Pi 0\sigma +B\top \eta 0 + \rho 

\bigr\} \bigm| \bigm| \bigm| 2
 - 
\bigm| \bigm| \bigm| \bigm| \Bigl[ Q\dagger 

\Theta 0,\Pi 0

\Bigr] 1
2 \bigl\{ 

(A+B\Theta 0)
\top \eta 0 +\Pi 0b+ (C +D\Theta 0)

\top \Pi 0\sigma + q + \Theta \top 
0 \rho 
\bigr\} \bigm| \bigm| \bigm| \bigm| 2

 - 
\bigm| \bigm| \bigm| \bigl[ (R+D\top \Pi 0D)\dagger 

\bigr] 1
2
\bigl\{ 
D\top \Pi 0\sigma +B\top \eta 0 + \rho 

\bigr\} \bigm| \bigm| \bigm| 2 + \langle \Pi 0\sigma , \sigma \rangle +2 \langle \eta 0, b \rangle .

By dropping the first two terms on the right-hand side, we obtain (i).
(ii) We point out that in the above, the choice of (\Pi 0, \eta 0) does not change the

value of \scrE (\Theta , v). Now, for the current case, we take (\Theta 0, \eta 0) = (\=\Theta 0, \=\eta 0) in (3.27) with
\=\eta 0 being the solution to the second equation in (3.24) and note Q\=\Theta 0,\Pi 0

= 0. Then
(3.27) becomes

(3.28)
\scrE (\Theta , v)

= E
\bigm| \bigm| \bigm| (R+D\top \Pi 0D)

1
2

\bigl[ 
(\Theta  - \=\Theta 0)X + v + (R+D\top \Pi 0D)\dagger (D\top \Pi 0\sigma +B\top \=\eta 0 + \rho )

\bigr] \bigm| \bigm| \bigm| 2
 - 
\bigm| \bigm| \bigm| \bigl[ (R+D\top \Pi 0D)\dagger 

\bigr] 1
2
\bigl\{ 
D\top \Pi 0\sigma +B\top \=\eta 0 + \rho 

\bigr\} \bigm| \bigm| \bigm| 2 + \langle \Pi 0\sigma , \sigma \rangle +2 \langle \=\eta 0, b \rangle 

\geq  - 
\bigm| \bigm| \bigm| \bigl[ (R+D\top \Pi 0D)\dagger 

\bigr] 1
2
\bigl\{ 
D\top \Pi 0\sigma +B\top \=\eta 0 + \rho 

\bigr\} \bigm| \bigm| \bigm| 2 + \langle \Pi 0\sigma , \sigma \rangle +2 \langle \=\eta 0, b \rangle = \scrE ( \=\Theta 0, \=v0),

proving (ii).

For later convenience, we introduce the following.
(H2) Let (H1) and (3.21)--(3.22) hold for some \Pi 0 \in Sn and some (\Theta 0, \eta 0) \in 

\Upsilon [\Pi 0]\times Rn.
(H3) Let (H1) and (3.23)--(3.24) hold for some \Pi 0 \in Sn and some (\=\Theta 0, \=\eta 0) \in 

\{ \Upsilon [\Pi 0] \cap \Theta [A,C;B,D]\} \times Rn.
Then, according to Theorem 3.3, we have that Problem (EC) is finite if (H2) holds

and solvable if (H3) holds. The following corollary is concerned with the classical
positive-definite case.

Corollary 3.4. Let (H1) hold and

(3.29)

\biggl( 
Q S\top 

S R

\biggr) 
> 0.
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Then Problem (EC) admits an optimal strategy (\widehat \Theta , \widehat v) given by the following:\left\{     
\widehat \Theta =  - (R+D\top \widehat \Pi D) - 1(B\top \widehat \Pi +D\top \widehat \Pi C + S) \in \Theta [A,C;B,D],\widehat \eta =  - [(A+B\widehat \Theta )\top ] - 1[\widehat \Pi b+ (C +D\widehat \Theta )\top \widehat \Pi \sigma + q + \widehat \Theta \top \rho ],\widehat v =  - (R+D\top \widehat \Pi D) - 1(B\top \widehat \eta +D\top \widehat \Pi \sigma + \rho ),

where \widehat \Pi is the solution to the algebraic Riccati equation\widehat \Pi A+A\top \widehat \Pi + C\top \widehat \Pi C +Q

 - (B\top \widehat \Pi +D\top \widehat \Pi C + S)\top (R+D\top \widehat \Pi D) - 1(B\top \widehat \Pi +D\top \widehat \Pi C + S) = 0.

In this case,

E = \scrE (\widehat \Theta , \widehat v) = \langle \widehat \Pi \sigma , \sigma \rangle +2 \langle \widehat \eta , b \rangle  - \langle (R +D\top \widehat \Pi D)\widehat v, \widehat v \rangle .
4. Comparison with standard LQ problems. In this section, we recall some

results on classical LQ problems in the infinite horizon [0,\infty ) (see [20, 21] for details),
with certain improvements, and make some comparisons between these results and
results of ergodic problems presented in the previous section.

Consider the following linear controlled SDE:

(4.1)

\Biggl\{ 
dX(t) = [AX(t) +Bu(t) + b(t)]dt+ [CX(t) +Du(t) + \sigma (t)]dW (t), t \geq 0,

X(0) = x,

with the cost functional

(4.2)
\widehat J\infty (x;u(\cdot )) = E

\int \infty 

0

(\langle QX(t), X(t) \rangle +2 \langle SX(t), u(t) \rangle + \langle Ru(t), u(t) \rangle 

+2 \langle q(t), X(t) \rangle +2 \langle \rho (t), u(t) \rangle )dt.

Let (H1) hold and assume in addition that

(4.3) b(\cdot ), \sigma (\cdot ), q(\cdot ) \in L2
F(0,\infty ;Rn), \rho (\cdot ) \in L2

F(0,\infty ;Rm).

Then the set of admissible controls

(4.4) Uad[0,\infty ) =
\bigl\{ 
u(\cdot ) \in U [0,\infty )

\bigm| \bigm| X(\cdot ;x, u(\cdot )) \in L2
F(0,\infty ;Rn)

\bigr\} 
is nonempty, and \widehat J\infty (x;u(\cdot )) is well-defined for each u(\cdot ) \in Uad[0,\infty ). Therefore, the
following (nonhomogeneous) LQ problem on [0,\infty ) is well-formulated.

Problem (LQ)\infty . For given x \in Rn, find a \=u(\cdot ) \in Uad[0,\infty ) such that

(4.5) \widehat J\infty (x; \=u(\cdot )) = inf
u(\cdot )\in Uad[0,\infty )

\widehat J\infty (x;u(\cdot )).

Any \=u(\cdot ) \in Uad[0,\infty ) satisfying (4.5) is called an open-loop optimal control. When
such a control exists, we say that Problem (LQ)\infty is open-loop solvable at x \in Rn.
If Problem (LQ)\infty is open-loop solvable at every x \in Rn, we simply say that the
problem is open-loop solvable.

An important special case is that

(4.6) b(\cdot ) = \sigma (\cdot ) = q(\cdot ) = 0, \sigma (\cdot ) = 0.
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600 HONGWEI MEI, QINGMENG WEI, AND JIONGMIN YONG

When the above holds, the problem is said to be homogeneous. We denote the corre-
sponding state process by X0(\cdot ) = X0(\cdot ;x, u(\cdot )), the cost functional by \widehat J0

\infty (x;u(\cdot )),
and the problem by Problem (LQ)0\infty . It is not hard to see that the admissible control
sets Uad[0,\infty ) for any nonhomogeneous problems (with condition (4.3)), including
the homogeneous one, are the same.

Definition 4.1. (i) Any element (\Theta , v(\cdot )) \in U[0,\infty ) \equiv \Theta [A,C;B,D]\times U [0,\infty )
is called a closed-loop strategy of Problem (LQ)\infty .

(ii) Problem (LQ)\infty is said to be closed-loop solvable if there exists a ( \=\Theta , \=v(\cdot )) \in 
U[0,\infty ) such that

\widehat J\infty (x; \=\Theta , \=v(\cdot )) = inf
(\Theta ,v(\cdot ))\in U[0,\infty )

\widehat J\infty (x; \Theta , v(\cdot )).

The following result is essentially found in [20].

Theorem 4.2. Let (H1) and (4.3) hold. Then Problem (LQ)\infty is closed-loop
solvable if and only if the following algebraic Riccati equation admits a solution P \in 
Sn:

(4.7)

\left\{     
PA+A\top P + C\top PC +Q

 - (B\top P +D\top PC + S)\top (R+D\top PD)\dagger (B\top P +D\top PC + S) = 0,

R+D\top PD \geq 0, R(B\top P +D\top PC + S) \subseteq R(R+D\top PD),

such that for some \Lambda \in Rm\times n,

(4.8)
 - (R+D\top PD)\dagger (B\top P +D\top PC + S)

+ [I  - (R+D\top PD)\dagger (R+D\top PD)]\Lambda \in \Theta [A,C;B,D],

and the following backward stochastic differential equation (BSDE) admits an adapted
solution (\eta (\cdot ), \zeta (\cdot )) \in L2

F(0,\infty ;Rn)2:

(4.9)

d\eta (t) =  - 
\Bigl\{ 
[A - B(R+D\top PD)\dagger (B\top P +D\top PC + S)

\bigr] \top 
\eta (t)

+ [C  - D(R+D\top PD)\dagger (B\top P +D\top PC + S)]\top \zeta (t)

+Pb(t) + [C  - D(R+D\top PD)\dagger (B\top P +D\top PC + S)]\top P\sigma (t)

+ q(t) - [(R+D\top PD)\dagger (B\top P +D\top PC + S)]\top \rho (t)
\Bigr\} 
dt+ \zeta (t)dW (t), t \geq 0,

such that

(4.10) B\top \eta (t)+D\top \zeta (t)+D\top P\sigma (t)+\rho (t) \in R(R+D\top PD), a.e. t \in [0,\infty ), a.s.

In the above case, any closed-loop optimal strategy is given by the following:

(4.11)\left\{     
\=\Theta =  - (R+D\top PD)\dagger (B\top P +D\top PC + S) + [I  - (R+D\top PD)\dagger (R+D\top PD)]\Lambda ,

\=v(\cdot ) =  - (R+D\top PD)\dagger [B\top \eta (\cdot ) +D\top \zeta (\cdot ) +D\top P\sigma (\cdot ) + \rho (\cdot )]
+ [I  - (R+D\top PD)\dagger (R+D\top PD)]\nu (\cdot )

for some \Lambda \in Rm\times n and \nu (\cdot ) \in L2
F(0,\infty ;Rn).
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Note that (3.23) is the same as (4.7), which means that the major condition under
which Problem (EC) is solvable is the same as that for the closed-loop solvability of
Problem (LQ)\infty . Moreover, with the expression \=\Theta given in (4.11), BSDE (4.9) can
be written as

(4.12)
d\eta (t) =  - 

\bigl\{ 
(A+B \=\Theta )\top \eta (t) + (C +D \=\Theta )\top \zeta (t) + (C +D \=\Theta )\top P\sigma (t) + Pb(t)

+ q(t) + \=\Theta \top \rho (t)
\bigr\} 
dt+ \zeta (t)dW (t), t \geq 0,

Hence, formally, if in the case that b(\cdot ), \sigma (\cdot ), q(\cdot ), and \rho (\cdot ) are all constants and the
above BSDE has a constant solution (\eta , 0), then one has

(A+B \=\Theta )\top \eta + (C +D \=\Theta )\top P\sigma + Pb+ q + \=\Theta \top \rho = 0,

which coincides with (3.9). With the above, we also have

\=v =  - (R+D\top PD)\dagger (B\top \eta +D\top P\sigma + \rho ) + [I  - (R+D\top PD)\dagger (R+D\top PD)]\nu ,

which coincides with the expression for \=v0 in (3.25). The above formal comparison
shows that Problems (EC) and (LQ)\infty intrinsically match. Of course, this formal
comparison does not lead to a rigorous ``equivalence"" proof between two problems.

Comparing Theorem 3.3(ii) with Theorem 4.2, one can check the major solvabil-
ity condition (the solvability of the algebraic Riccati equation) of Problem (EC) by
checking the same condition for Problem (LQ)\infty , which is easier since the latter is
relatively easier to handle than the former. We point out that Theorem 4.2 only
gives an equivalence between the closed-loop solvability of Problem (LQ)\infty and the
solvability of the algebraic Riccati equation (4.7) such that (4.8) holds and BSDE
(4.9) has an adapted solution satisfying (4.10). It does not give conditions under
which such a set of conditions can be fulfilled. In particular, it does not provide
any useful information on conditions guaranteeing the solvability of the algebraic
Riccati equation and strictly beyond the classical positive semidefiniteness condition
(3.5). We now, therefore, would like to take a closer look at sufficient conditions
that ensure the solvability of the algebraic Riccati equation. We emphasize that
the conditions should be strictly beyond the classical positive semidefinite condition.
In other words, we want to include situations in which either Q or R is negative
definite.

We know that Problem (LQ)\infty is a minimization problem of a quadratic func-
tional on some Hilbert space. Thus the most natural sufficient condition is the uni-
form convexity of the functional. Clearly, such a condition is nothing to do with
the nonhomogeneous terms b(\cdot ), \sigma (\cdot ), q(\cdot ), \rho (\cdot ) and the initial state x. Hence, we need
only to consider the homogeneous state equation with zero initial condition (denoting
A\Theta = A+B\Theta and C\Theta = C +D\Theta ),

(4.13)

\Biggl\{ 
dX\Theta 

0 (t) =
\bigl[ 
A\Theta X

\Theta 
0 (t) +Bv(t)

\bigr] 
dt+

\bigl[ 
C\Theta X

\Theta 
0 (t) +Dv(t)

\bigr] 
dW (t), t \geq 0,

X\Theta 
0 (0) = 0,

and the cost functional

(4.14)\widehat J 0,\Theta 
\infty (0; v(\cdot )) = E

\int \infty 

0

\bigl[ 
\langle (Q\Theta X

\Theta 
0 (t), X\Theta 

0 (t) \rangle +2 \langle S\Theta X
\Theta 
0 (t), v(t) \rangle + \langle Rv(t), v(t) \rangle 

\bigr] 
dt,

with

Q\Theta = Q+ S\top \Theta + \Theta \top S + \Theta \top R\Theta , S\Theta = S +R\Theta .
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602 HONGWEI MEI, QINGMENG WEI, AND JIONGMIN YONG

The LQ problem associated the above is referred to as the stabilized LQ problem.
Suppose \Theta \in \Theta [A,C;B,D] is so chosen that the following holds:

(4.15) \widehat J 0,\Theta 
\infty (0; v(\cdot )) \geq \delta E

\int \infty 

0

| v(t)| 2dt \forall v(\cdot ) \in U [0,\infty )

for some \delta > 0. Then from [20], the corresponding homogeneous LQ problem admits
a unique open-loop optimal control (for any initial condition), which is equivalent to
the closed-loop solvability of the problem. Hence, the corresponding algebraic Riccati
equation admits a solution P \in Sn:

0 = P (A+B\Theta ) + (A+B\Theta )\top P + (C +D\Theta )\top P (C +D\Theta ) +Q+ S\top \Theta + \Theta \top S + \Theta \top R\Theta 

 - [B\top P +D\top P (C +D\Theta ) + S +R\Theta ]\top (R+D\top PD) - 1[B\top P +D\top P (C +D\Theta ) + S +R\Theta ]

= PA+A\top P + C\top PC +Q - (B\top P +D\top PC + S)\top (R+D\top PD) - 1(B\top P +D\top PC + S),

with R+D\top PD \geq \delta I, and

 - (R+D\top PD) - 1[B\top P +D\top P (C +D\Theta ) + S +R\Theta ]

=  - (R+D\top PD) - 1(B\top P +D\top PC + S) - \Theta \in \Theta [A+B\Theta , C +D\Theta ;B,D],

which means that

 - (R+D\top PD) - 1(B\top P +D\top PC + S) \in \Theta [A,C;B,D].

Hence, in this case, conditions of (ii) in Theorem 3.3 hold and therefore Problem (EC)
is solvable.

Now, we come to the question, When can condition (4.15) be verified by an easily
verifiable assumption, without assuming the classical positive-definiteness condition
(3.29)? The following gives a sufficient condition which is inspired by a result from
[19].

Lemma 4.3. Let (H1) hold and let \Theta \in \Theta [A,C;B,D], Q0 \in Sn with Q0 > 0 such
that the solution \Pi to the Lyapunov inequality

(4.16)
\Pi (A+B\Theta )+(A+B\Theta )\top \Pi +(C+D\Theta )\top \Pi (C+D\Theta )+S\top \Theta +\Theta \top S+\Theta \top R\Theta +Q - Q0 \geq 0

satisfies

(4.17)
R+D\top \Pi D  - [\Pi B + (C +D\Theta )\top \Pi D + S\top + \Theta \top R]\top 

\cdot Q - 1
0 [\Pi B + (C +D\Theta )\top \Pi D + S\top + \Theta \top R] \geq \delta I

for some \delta > 0. Then (4.15) holds.

Proof. Let X0(\cdot ) \equiv X\Theta 
0 (\cdot ; 0, v(\cdot )) be the solution to (4.13). Let \Pi \in Sn such that

(4.16)--(4.17) hold. Observe the following:

d \langle \Pi X0(t), X0(t) \rangle 
=
\bigl[ \bigl\langle \bigl( 

\Pi (A+B\Theta ) + (A+B\Theta )\top \Pi + (C +D\Theta )\top \Pi (C +D\Theta )
\bigr) 
X0(t), X0(t)

\bigr\rangle 
+2

\bigl\langle 
[B\top \Pi +D\top \Pi (C +D\Theta )]X0(t), v(t)

\bigr\rangle 
+ \langle D\top \Pi Dv(t), v(t) \rangle 

\bigr] 
dt+ [\cdot \cdot \cdot ]dW (t).
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Then

\widehat J 0,\Theta 
\infty (0; v(\cdot ))

= E
\int \infty 

0

\Bigl\{ \Bigl\langle \Bigl[ 
Q+ S\top \Theta + \Theta \top S + \Theta \top R\Theta +\Pi (A+B\Theta ) + (A+B\Theta )\top \Pi 

+(C +D\Theta )\top \Pi (C +D\Theta ) - Q0

\Bigr] 
X0(t), X0(t)

\Bigr\rangle 
+ \langle Q0X0(t), X0(t) \rangle 

+2
\Bigl\langle 
[S +R\Theta +B\top \Pi +D\top \Pi (C +D\Theta )]X0(t), v(t)

\Bigr\rangle 
+ \langle (R+D\top \Pi D)v(t), v(t) \rangle 

\Bigr\} 
dt

\geq E
\int \infty 

0

\biggl\{ \bigm| \bigm| \bigm| Q 1
2
0X0(t) +Q

 - 1
2

0 [S\top + \Theta \top R+\Pi \top B + (C\top + \Theta \top D\top )\Pi \top D]v(t)
\bigm| \bigm| \bigm| 2

+
\bigl\langle \bigl( 
R+D\top \Pi D  - [S +R\Theta +B\top \Pi +D\top \Pi (C +D\Theta )]Q - 1

0

\cdot [S\top + \Theta \top R+\Pi \top B + (C\top + \Theta \top D\top )\Pi \top D]
\bigr) 
v(t), v(t)

\bigr\rangle \biggr\} 
dt

\geq \delta E
\int \infty 

0

| v(t)| 2dt.

This proves (4.15).

The above result gives some compatibility conditions among the coefficients of
the state equation and the weighting matrices in the cost functional that ensure the
uniform convexity condition (4.15). Let us take a closer look at (4.16) and (4.17).
Let us assume R < 0 (or R \geq 0 fails). Since \Theta [A,C;B,D] \not = \emptyset , we may find a
\Theta \in \Theta [A,C;B,D] so that [A+ B\Theta , C +D\Theta ] is stable. Hence, one can find a \Pi > 0
so that

(4.18) \Pi (A+B\Theta ) + (A+B\Theta )\top \Pi + (C +D\Theta )\top \Pi (C +D\Theta ) < 0.

Note that the choices of \Theta ,\Pi are independent of the weighting matrices Q,S,R of the
cost functional. Therefore, under the condition

(4.19) R(R) \subseteq R(D),

taking into account (4.18), if necessary, replacing \Pi by \lambda \Pi for \lambda > 0 large, we may
have the following:

(4.20) R+D\top \Pi D \geq 2\delta I

for some \delta > 0. Then we can find a large Q0 > 0 such that (4.17) holds. Having the
\Theta ,\Pi , Q0 given, we see that if Q > 0 is sufficiently positive, the (4.16) will be true.
This very rough analysis shows that R < 0 could be compensated by the sufficient
positiveness of Q and the condition (4.19). Unfortunately, the above argument does
not apply to the case Q < 0. However, when Q < 0, one should expect certain
compensation from the sufficient positiveness R. To see this, let us recall (3.21) which
is rewritten here:
(4.21)\left\{     

\Pi 0A+A\top \Pi 0 + C\top \Pi 0C +Q

 - (B\top \Pi 0 +D\top \Pi 0C + S)\top (R+D\top \Pi 0D)\dagger (B\top \Pi 0 +D\top \Pi 0C + S) \geq 0,

R+D\top \Pi 0D \geq 0, R(B\top \Pi 0 +D\top \Pi 0C + S) \subseteq R(R+D\top \Pi 0D).

Again, we look at the following two interesting cases:
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Case 1. Let R < 0 (or R \geq 0 fails). Pick a \Pi 0 \in Sn with \Pi 0 > 0 so that

(4.22) R+D\top \Pi 0D \geq \delta I

for some \delta > 0. For this, we still need (4.19). With such a \Pi 0, if Q > 0 is sufficiently
positive, then

\Pi 0A+A\top \Pi 0 + C\top \Pi 0C +Q - 
\bigl( 
B\top \Pi 0 +D\top \Pi 0C + S

\bigr) \top \bigl( 
R+D\top \Pi 0D

\bigr)  - 1\bigl( 
B\top \Pi 0 +D\top \Pi 0C + S

\bigr) 
\geq \delta I,

will hold, which is the form of (4.21) under condition (4.22). This means that when
R < 0, as long as Q is sufficiently positive, conditions of Theorem 3.3(i) are satisfied.

Case 2. Let Q < 0 (or Q \geq 0 fails). If we can find a \Pi 1 \in Sn such that

\Pi 1A+A\top \Pi 1 + C\top \Pi 1C > 0 or \Pi 1A+A\top \Pi 1 + C\top \Pi 1C < 0,

then we can find an \alpha (\alpha is negative if in the above the second inequality holds) and
R > 0 such that the first inequality in (4.21) holds for \Pi 0 = \alpha \Pi 1. Next, if R is
positive enough, we will have the second inequality in (4.21).

From those observations, we see that conditions of Theorem 3.3(i) can be verified
even if one of Q and R is negative definite. Also, Case 2 suggests to us that when
R > 0 is sufficiently positive, then we may take some \delta > 0 and check the condition
(4.21) with R replaced by R - \delta I. If such a condition is satisfied, then Problem (EC)
will be solvable. We will present results relevant to this in the following section.

5. Optimal value and regularization of ergodic problem. Note that under
(H2), Problem (EC) is merely finite and may not be solvable. A natural question is to
ask how to find a proper minimizing sequence of strategies. The key observation here
is that the regularized ergodic problem is solvable under (H2). Thus we can proceed
a standard scheme to find the optimal strategy of the regularized Problem (EC) and
then let the regularization parameter become small. To achieve this, let us first refine
Theorem 3.3(i). We introduce the following hypothesis, which is a part of (H2).

(H2)\prime Let (H1) and (3.21) hold.

Let us again look at the homogeneous problem associated with (4.13)--(4.14) for
some \Theta \in \Theta [A,C;B,D]. We have the following result.

Proposition 5.1. Let (H2)\prime hold. Then for any (\Theta , v(\cdot )) \in U[0,\infty ),

(5.1) \widehat J 0,\Theta 
\infty (0; v(\cdot )) \geq 0.

Proof. Let P \in Sn and we apply It\^o's formula to \langle PX\Theta 
0 (\cdot ), X\Theta 

0 (\cdot ) \rangle .

0 = E
\int \infty 

0

\bigl[ \bigl\langle 
P
\bigl[ 
A\Theta X

\Theta 
0 (t) +Bv(t)

\bigr] 
, X\Theta 

0 (t)
\bigr\rangle 
+
\bigl\langle 
PX\Theta 

0 (t), A\Theta X
\Theta 
0 (t) +Bv(t)

\bigr\rangle 
+
\bigl\langle 
P
\bigl[ 
C\Theta X

\Theta 
0 (t) +Dv(t)

\bigr] 
, C\Theta X

\Theta 
0 (t) +Dv(t)

\bigr\rangle \bigr] 
dt

= E
\int \infty 

0

\bigl[ \bigl\langle \bigl( 
PA\Theta +A\top 

\Theta P + C\top 
\Theta PC\Theta 

\bigr) 
X\Theta 

0 (t), X\Theta 
0 (t)

\bigr\rangle 
+2

\bigl\langle \bigl( 
B\top P +D\top PC\Theta 

\bigr) 
X\Theta 

0 (t), v(t)
\bigr\rangle 
+ \langle D\top PDv(t), v(t) \rangle 

\bigr] 
dt.

Hence,

\widehat J 0,\Theta 
\infty (0; v(\cdot )) = E

\int \infty 

0

\bigl[ \bigl\langle \bigl( 
Q\Theta + PA\Theta +A\top 

\Theta P + C\top 
\Theta PC\Theta 

\bigr) 
X\Theta 

0 (t), X\Theta 
0 (t)

\bigr\rangle 
+ 2

\bigl\langle \bigl( 
S\Theta +B\top P +D\top PC\Theta 

\bigr) 
X\Theta 

0 (t), v(t)
\bigr\rangle 
+ \langle (R+D\top PD)v(t), v(t) \rangle 

\bigr] 
dt.
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Let P \in Sn satisfy (3.21). Then

R
\bigl( 
S\Theta +B\top P +D\top PC\Theta 

\bigr) 
=R

\bigl( 
S +B\top P +D\top PC + (R+D\top PD)\Theta 

\bigr) 
\subseteq R(R+D\top PD).

Hence, we may complete the square to obtain

\widehat J 0,\Theta 
\infty (0; v(\cdot ))

= E
\int \infty 

0

\biggl[ \Bigl\langle \Bigl( 
Q\Theta + PA\Theta +A\top 

\Theta P + C\top 
\Theta PC\Theta 

 - 
\bigl( 
S\Theta +B

\top P+D\top PC\Theta 

\bigr) \top 
(R+D\top PD)\dagger 

\bigl( 
S\Theta +B

\top P +D\top PC\Theta 

\bigr) \Bigr) 
X\Theta 

0 (t), X\Theta 
0 (t)

\Bigr\rangle 
+
\bigm| \bigm| \bigm| (R+D\top PD)

1
2

\bigl( 
v(t) + (R +D\top PD)\dagger 

\bigl( 
S\Theta +B\top P +D\top PC\Theta 

\bigr) 
X\Theta 

0 (t)
\bigr) \bigm| \bigm| \bigm| 2\biggr] dt.

Note that

Q\Theta + PA\Theta +A\top 
\Theta P + C\top 

\Theta PC\Theta 

 - 
\bigl( 
S\Theta +B\top P +D\top PC\Theta 

\bigr) \top 
(R+D\top PD)\dagger 

\bigl( 
S\Theta +B\top P +D\top PC\Theta 

\bigr) 
= Q+ S\top \Theta + \Theta \top S + \Theta \top R\Theta + P (A+B\Theta ) + (A+B\Theta )\top P

+(C +D\Theta )\top P (C +D\Theta ) - [S +R\Theta +B\top P +D\top P (C +D\Theta )]\top 

\cdot (R+D\top PD)\dagger [S +R\Theta +B\top P +D\top P (C +D\Theta )]

= Q+ PA+A\top P + C\top PC

 - (S +B\top P +D\top PC)\top (R+D\top PD)\dagger (S +B\top P +D\top PC) \geq 0.

Hence, (5.1) follows.

Now, for any \delta > 0, we denote R\delta = R+ \delta I, and

g\delta (x, u) = g(x, u) + \delta | u| 2 \equiv \langle Qx, x \rangle +2 \langle Sx, u \rangle + \langle R\delta u, u \rangle +2 \langle q, x \rangle +2 \langle \rho , u \rangle .

Then, correspondingly, we introduce the regularized ergodic cost functional

(5.2) \scrE \delta (\Theta , v) =
\int 
Rn

\bigl( 
g(x,\Theta x+ v) + \delta | \Theta x+ v| 2

\bigr) 
\pi \Theta ,v(dx)

and introduce the following optimal control problem.

Problem (EC)\delta . Let (H1) hold. Find a ( \=\Theta , \=v) \in U such that

\scrE \delta ( \=\Theta , \=v) = inf
(\Theta ,v)\in U

\scrE \delta (\Theta , v) \equiv E\delta .

Lemma 5.2. Let (H1) hold. If E is finite, then

(5.3) E = lim
\delta \rightarrow 0+

E\delta ,

which is true if (H2) holds. In particular, this is true if g is bounded below.

Proof. It is easy to see that E \leq E\delta . Next, let (\Theta k, vk) \in U be a minimizing
sequence of \scrE (\cdot ) such that

E \leq \scrE (\Theta k, vk) \equiv 
\int 
Rn

g(x,\Theta kx+ vk)\pi k(dx) < E +
1

k
, k \geq 1,
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where \pi k is the invariant measure corresponding to (\Theta k, vk) \in U. Then

(5.4)
E \geq \scrE (\Theta k, vk) - 

1

k
\equiv 
\int 
Rn

g(x,\Theta kx+ vk)\pi k(dx) - 
1

k

= lim
\delta \rightarrow 0+

\biggl( 
E\delta  - \delta 

\int 
Rn

| \Theta kx+ vk| 2\pi k(dx)
\biggr) 
 - 1

k
= lim
\delta \rightarrow 0+

E\delta  - 
1

k
.

Here we have used the fact that
\int 
Rn | x| 2\pi k(dx) <\infty . Then, one has

E \geq lim
\delta \rightarrow 0+

E\delta \geq E ,

proving (5.3).

The LQ problem with R replaced by R\delta is called Problem (LQ)\infty ,\delta . The corre-
sponding cost functional reads

\widehat J\infty ,\delta (x;u(\cdot )) = \widehat J\infty (x;u(\cdot )) + \delta E
\int \infty 

0

| u(t)| 2dt \forall u(\cdot ) \in Uad[0,\infty ).

Hence, by Proposition 5.1, the cost functional of the corresponding homogeneous
problem satisfies the following:

\widehat J 0,\Theta 
\infty ,\delta (0; v(\cdot )) = \widehat J 0,\Theta 

\infty (0; v(\cdot ))+\delta E
\int \infty 

0

| v(t)| 2dt \geq \delta E
\int \infty 

0

| v(t)| 2dt \forall (\Theta , v(\cdot ))\in U[0,\infty ).

Hence, Problem (LQ)\infty ,\delta is uniquely closed-loop solvable. Consequently, the following

algebraic Riccati equation admits a solution \widehat P\delta :
(5.5)\widehat P\delta A+A\top \widehat P\delta + C\top \widehat P\delta C +Q

 - 
\Bigl( 
B\top \widehat P\delta +D\top \widehat P\delta C + S

\Bigr) \top \Bigl( 
R\delta +D\top \widehat P\delta D\Bigr)  - 1 \Bigl( 

B\top \widehat P\delta +D\top \widehat P\delta C + S
\Bigr) 
= 0

with

(5.6) \widehat \Theta \delta =  - 
\Bigl( 
R\delta +D\top \widehat P\delta D\Bigr)  - 1 \Bigl( 

B\top \widehat P\delta +D\top \widehat P\delta C + S
\Bigr) 
\in \Theta [A,C;B,D].

Then applying Theorem 3.3(ii), we have the optimal strategy of Problem (EC)\delta given
by the following:

(5.7)

\left\{               

\widehat \Theta \delta =  - 
\Bigl( 
R\delta +D\top \widehat P\delta D\Bigr)  - 1 \Bigl( 

B\top \widehat P\delta +D\top \widehat P\delta C + S
\Bigr) 
,

\widehat v\delta =  - 
\Bigl( 
R\delta +D\top \widehat P\delta D\Bigr)  - 1 \Bigl( 

B\top \widehat \eta \delta +D\top \widehat P\delta \sigma + \rho 
\Bigr) 
,

\widehat \eta \delta =  - 
\biggl[ \Bigl( 
A+B\widehat \Theta \delta \Bigr) \top \biggr]  - 1 \biggl[ \widehat P\delta b+ \Bigl( C +D\widehat \Theta \delta \Bigr) \top \widehat P\delta \sigma + q + \widehat \Theta \delta \rho \biggr] 

with the optimal value

E\delta \equiv \scrE \delta 
\Bigl( \widehat \Theta \delta , \widehat v\delta \Bigr) =

\Bigl\langle \widehat P\delta \sigma , \sigma \Bigr\rangle + 2 \langle \widehat \eta \delta , b \rangle  - \Bigl\langle \Bigl( R\delta +D\top \widehat P\delta D\Bigr) \widehat v\delta , \widehat v\delta \Bigr\rangle .
Now we can present the approximation theorem for the value of Problem (EC), whose
proof is obvious.
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Theorem 5.3. Let (H2) hold. Then Problem (EC) is finite with

(5.8)
E = lim

\delta \rightarrow 0+
\scrE 
\Bigl( \widehat \Theta \delta , \widehat v\delta \Bigr) = lim

\delta \rightarrow 0+
\scrE \delta 
\Bigl( \widehat \Theta \delta , \widehat v\delta \Bigr) 

= lim
\delta \rightarrow 0+

\Bigl[ \Bigl\langle \widehat P\delta \sigma , \sigma \Bigr\rangle + 2 \langle \widehat \eta \delta , b\rangle  - \Bigl\langle \Bigl( R\delta +D\top \widehat P\delta D\Bigr) \widehat v\delta , \widehat v\delta \Bigr\rangle \Bigr] ,
i.e., (\widehat \Theta \delta , \widehat v\delta ) \in U is a minimizing sequence of Problem (EC). Moreover, if (\widehat \Theta \delta , \widehat v\delta ) has
a convergent subsequence with limit (\widehat \Theta , \widehat v) \in U, then Problem (EC) is solvable and

(\widehat \Theta , \widehat v) \in U is an optimal strategy.

To conclude this section, we point out the steps to obtain the optimal value of
Problem (EC) as follows:

Step 1. Consider homogeneous control system [A,C ;B,D] with cost functional

\widehat J\infty ,\delta (x;u(\cdot )) = E
\int \infty 

0

[\langle QX(t), X(t) \rangle +2 \langle SX(t), u(t) \rangle + \langle R\delta u(t), u(t) \rangle ]dt.

By [20], we know that the closed-loop and open-loop solvability are equivalent. Given

(H2), such a problem is solvable and we can find an optimal strategy (\widehat \Theta \delta , 0) \in U.
Step 2. Consider the nonhomogeneous controlled system

dX(t) =
\Bigl[ \Bigl( 
A+B\widehat \Theta \delta \Bigr) X(t) +Bv + b

\Bigr] 
dt+

\Bigl[ \Bigl( 
C +D\widehat \Theta \delta \Bigr) X(t) +Dv + \sigma 

\Bigr] 
dW (t)

with the cost function v \mapsto \rightarrow \scrE \delta (\widehat \Theta \delta , v), i.e., find an optimal \widehat v\delta \in Rm such that

\scrE \delta 
\Bigl( \widehat \Theta \delta , \widehat v\delta \Bigr) = inf

v\in Rm
\scrE \delta 
\Bigl( \widehat \Theta \delta , v\Bigr) .

Step 3. Let \delta \rightarrow 0+ and obtain E = lim\delta \rightarrow 0+ \scrE \delta (\widehat \Theta \delta , \widehat v\delta ).
Note that we cannot apply such a method to Problem (EC) directly, since the

first step is not necessarily going through under (H2) if R\delta is replaced by R.

6. Examples. In this section, we will present two one-dimensional examples to
illustrate our results.

Example 1. Consider the following one-dimensional controlled SDE:

dX(t) = [AX(t) + u(t) + b] dt+ [CX(t) + \sigma ] dW (t)

with cost functional rate

g(x, u) = Qx2 + 2Sxu.

Note that we assume B = 1, D = R = \rho = q = 0 in such an example. We can see that
R+D\top PD = 0 and the classical algebraic Riccati equation does not hold. Through
a direct calculation which will be presented in the appendix, we list all the possible
cases in Table 1, where

(6.1) v\Theta \equiv  - (2(A+ \Theta ) + C2)

2[Q - S(2A+ C2)]

\biggl( 
Sb+

(Q+ 2S\Theta )C\sigma 

2(A+ \Theta ) + C2

\biggr) 
.

We will see that our assumption (H2) corresponds to Case I and CSb + (Q  - 
2AS)\sigma = CS(b+C\sigma ) = 0 in Case II. Observing Case I, we can see that S(2A+C2) < Q
is sufficient for finiteness. Therefore, if S(2A+C2) < 0 is negative, Q is allowed to be
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608 HONGWEI MEI, QINGMENG WEI, AND JIONGMIN YONG

Table 1
Finiteness and solvability of Problem (EC) with R = D = 0.

S(2A+ C2)
CSb

+(Q - 2AS)\sigma 
Finite Solvable

I < Q
= 0 Yes

(\Theta , v\Theta ) is optimal
for any \Theta \in \Theta [A,C;B,D]

\not = 0 Yes No

II = Q
= 0 Yes

Any (\Theta , v) \in \Theta [A,C;B,D]
\times Rmis optimal

\not = 0 No No
III > Q No No

negative, even if R = 0. This is the case if the system [A,C ] is stable (which implies
2A+C2 < 0) and S > 0. In such a case, S(2A+C2) gives a lower bound for Q so that
Problem (EC) is finite. It is more surprising that as long as 2A+C2 \not = 0 with S having
the opposite sign, then S(2A+C2) < 0, which allows Q to be negative. Hence, S has
a contribution to the finiteness of Problem (EC). For example, if A = B = C = 1,
D = 0, then we may allow\biggl( 

Q S\top 

S R

\biggr) 
=

\biggl( 
 - 1  - 1
 - 1 0

\biggr) 
, g(x, u) =  - x2  - 2xu.

Therefore, the function g(x, u) is even unbounded below. This shows that our as-
sumptions assumed in Theorem 3.3 are much weaker than one could imagine.

Now we try to use Theorem 3.3 to conclude the finiteness and solvability of
Problem (EC). We can compare our results with Table 1.

Case I. S(2A+ C2) < Q. From (H2), we take a \Pi 0 =  - S, then\left\{     
(2A+ C2)\Pi 0 +Q > 0;

R(\Pi 0 + S) \subseteq R(0);

0 \geq 0.

One can see that (\Pi 0, \eta 0) = ( - S, 0) can guarantee (H2). Thus our theorem says that
if R = 0 and Q > S(2A+ C2), E is finite.

Case II. S(2A+C2) = Q. Note that (H3) requires us to take \Pi 0 =  - S, \eta 0 = 0, and
C\sigma +b = 0. Thus our theorem states that Problem (EC) is solvable if Q = S(2A+C2)
and C\sigma + b = 0. This corresponds to CSb+ (Q - 2AS)\sigma = 0 in Case II from Table 1.
We also can see that such case is a special class of (H2).

We can see that Problem (EC) is solvable in the case CSb+ (Q - 2AS)\sigma = 0 in
Case I where (H3) is not fulfilled. Therefore (H3) is not necessary for solvability of
Problem (EC).

Now we will present how the regularized problem approximates Problem (EC).
First let us assume S(2A+C2) < Q. As stated previously, (H2) is verified by \Pi 0 =  - S
and \eta 0 = 0. We write

\alpha = Q - S(2A+ C2) and \beta =
2A+ C2

2
.

The algebraic Riccati equation is written

(2A+ C2)P +Q - \delta  - 1(P + S)2 = 0,

D
ow

nl
oa

de
d 

03
/0

4/
21

 to
 5

.1
98

.1
37

.2
5.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL ERGODIC CONTROL OF LQ PROBLEM 609

which admits two solutions,

P =  - S + \delta \beta \pm 
\sqrt{} 
\delta \alpha + \delta 2\beta 2.

Then

\Theta =  - \delta  - 1( - S + \delta \beta \pm 
\sqrt{} 
\delta \alpha + \delta 2\beta 2 + S) =  - \beta \pm 

\sqrt{} 
\delta  - 1\alpha + \beta 2.

We have to select \Theta to stabilize the system, i.e.,\widehat \Theta \delta =  - \beta  - 
\sqrt{} 
\delta  - 1\alpha + \beta 2 and \widehat P\delta =  - S + \delta \beta +

\sqrt{} 
\delta \alpha + \delta 2\beta 2.

Then it follows that\left\{   \widehat \eta \delta =  - (A - \beta  - 
\sqrt{} 
\delta  - 1\alpha + \beta 2) - 1( - S + \delta \beta +

\sqrt{} 
\delta \alpha + \delta 2\beta 2)(b+ C\sigma );

\widehat v\delta = \delta  - 1(A - \beta  - 
\sqrt{} 
\delta  - 1\alpha + \beta 2) - 1( - S + \delta \beta +

\sqrt{} 
\delta \alpha + \delta 2\beta 2)(b+ C\sigma ).

As a result, as \delta \rightarrow 0+,

E\delta = \widehat P\delta \sigma 2 + 2b\widehat \eta \delta  - \delta \widehat v2\delta 
=  - (S + \delta \beta +

\sqrt{} 
\delta \alpha + \delta 2\beta 2)\sigma 2

 - 2b(A - \beta  - b
\sqrt{} 
\delta  - 1\alpha + \beta 2) - 1( - S + \delta \beta +

\sqrt{} 
\delta \alpha + \delta 2\beta 2)(b+ C\sigma )

 - \delta  - 1
\Bigl[ 
(A - \beta  - 

\sqrt{} 
\delta  - 1\alpha + \beta 2) - 1( - S + \delta \beta +

\sqrt{} 
\delta \alpha + \delta 2\beta 2)(b+ C\sigma )

\Bigr] 2
\rightarrow  - S2(b+ C\sigma )2

Q - S(2A+ C2)
 - S\sigma 2 = E .

This verifies the approximation procedure in Theorem 5.3.
From Table 1, we know that when CSb + (Q  - 2AS)\sigma = 0 (e.g., b = \sigma = 0),

Problem (EC) is solvable. We can see that since \alpha > 0, \widehat \Theta \delta blows up with a rate

of
\surd 
\delta  - 1. Hence the convergence of (\widehat \Theta \delta , \widehat v\delta ) is unnecessary for solvability of Problem

(EC) where the sufficiency is stated in Theorem 5.3.
In the case \alpha = Q - S(2A+ C2) = 0 and b+ C\sigma = 0, one can see that \Theta and v

are bounded and the limit is an optimal strategy. This coincides with our results in
Theorem 5.3.

If Q  - S(2A + C2) = 0 and b + C\sigma \not = 0, E\delta \rightarrow  - \infty . The problem is not finite
essentially.

Example 2. In this example, we will deal with the case D \not = 0. We consider a
one-dimensional SDE

dX(t) = (AX(t) +Bu(t) + b)dt+ (CX(t) +Du(t) + \sigma )dW (t)

with g(x, u) = Qx2+ 2Sxu+Ru2+ 2qx+ 2\rho u. We use the following notation in this
example only:\Biggl\{ 

\alpha = D - 2(B + CD)2  - (2A+ C2), \gamma = D - 2[D - 2R(B + CD) - S]2,

\beta = Q - D - 2(2A+ C2)R - 2D - 2[S  - D - 2R(B + CD)](B + CD).

We can see that (H1) is equivalent to \alpha > 0 and \Theta \in \Theta [A,C;B,D] if and only if
| D2\Theta + (B + CD)| <

\surd 
\alpha | D| . The results for finiteness using (H2) and solvability

using (H3) are presented in Table 2, where

\Theta \ast =  - D - 2(B + CD) - | D|  - 1
\surd 
\alpha \cdot sgn\{ [S  - D - 2R(B + CD)]\} /\in \Theta [A,C;B,D].
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Table 2
Finiteness and solvability of Problem (EC) with D \not = 0.

I \beta  - 2
\surd 
\alpha \gamma > 0 Solvable

II
\beta = \gamma = 0 and

Solvable
B\eta 0  - D - 1R\sigma + \rho = A\eta 0 + q  - D - 2R(b+ C\sigma ) = 0 for some \eta 0

III
\gamma \not = 0, \beta  - 2

\surd 
\alpha \gamma = 0, and

Finite
q + \Theta \ast \rho + [b+ (C +D\Theta \ast )\sigma ](

\sqrt{} 
\gamma /\alpha  - D - 2R) \in R(A+B\Theta \ast )

Denote \Delta = D - 1(S  - D - 2R(B + CD)). Then

\beta  - 2
\surd 
\alpha \gamma =

\Biggl\{ 
Q+D - 4R(D

\surd 
\alpha  - B  - CD)2 + 2D - 2S(D

\surd 
\alpha  - B  - CD) if \Delta \leq 0;

Q+D - 4R(D
\surd 
\alpha +B + CD)2  - 2D - 2S(D

\surd 
\alpha +B + CD) if \Delta > 0.

We can see if the third term is positive, Problem (EC) can be solvable even if Q and
R are all negative. For example, if A = B = C = D = 1, then \alpha = 1 and

D - 1
\bigl[ 
S  - D - 2R(B + CD)

\bigr] 
= S  - 2R < 0,

\beta  - 2
\surd 
\alpha \gamma = Q+R( - 1)2 + 2S( - 1) = Q+R - 2S > 0,

provided, say, Q = R =  - 1 and S =  - 5
2 . According to the above, we have the solv-

ability of the corresponding Problem (EC). Interestingly, in the current case, we have\biggl( 
Q S\top 

S R

\biggr) 
=

\biggl( 
 - 1  - 5

2
 - 5

2  - 1

\biggr) 
, g(x, u) =  - x2  - 5xu - u2.

Both Q and R are negative!

7. Concluding remarks. In the paper, we have explored the ergodic optimal
control problems for linear systems with quadratic costs. Compared to the previous
works on similar problems, we deal with a class of ergodic control problems allowing
the weighting matrices of the cost functional to be indefinite. We have presented suffi-
cient conditions for finiteness and solvability of the ergodic control problem. Compar-
ing Problem (EC) with the classical LQ problem on [0,\infty ), we see that the algebraic
Riccati equation in the condition for the solvability of the former coincides with that
for the latter. Further, we have found a general sufficient condition under which the
quadratic cost functional of the stabilized LQ problem is uniformly convex, which will
lead to the closed-loop solvability of the LQ problem and therefore the solvability of
Problem (EC). Moreover, when the problem is merely finite, we find a way of finding
the optimal value of the problem by solving a sequence of regularized ergodic prob-
lems. Examples for one-dimensional cases showed that conditions that we have found
for the solvability of Problem (EC) are sufficient but not necessary (see the discussion
on Cases I and II in Example 1). The difficulty of finding equivalent conditions for the
solvability of Problem (EC) is probably due to the fact that the ergodic cost function
\scrE (\Theta , v), involving invariant measure, is not a convex function of (\Theta , v). We hope to
report on the investigation of this in the near future.

Appendix. In this appendix, we briefly carry out some calculations for our
examples.

Calculation for Example 1. It is easy to see that U = \{ u(x) = \Theta x + v : \Theta <

 - 2A+C2

2 \} . Take u(x) = \Theta x + v \in U. By It\^o's formula, with simple calculation, we
obtain the first and the second moment of the invariant measure,
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m1 =  - b+ v

A+ \Theta 
,

m2 =
2(b+ v)2

[2(A+ \Theta ) + C2](A+ \Theta )
 - \sigma 2

2(A+ \Theta ) + C2
+

2C\sigma (b+ v)

(A+ \Theta )[2(A+ \Theta ) + C2]
.

Then,

\scrE (\Theta , v) = 2
Q - S(2A+ C2)

2(A+ \Theta ) + C2

(b+ v)2

A+ \Theta 
+

2(b+ v)

(A+ \Theta )

\biggl( 
Sb+

(Q+ 2S\Theta )C\sigma 

2(A+ \Theta ) + C2

\biggr) 
 - (Q+ 2S\Theta )\sigma 2

2(A+ \Theta ) + C2
.

Recall that A+\Theta < 0 and 2(A+ \Theta ) + C2 < 0.
(1) If S(2A+C2) > Q, the coefficient of the quadratic term is negative. Problem

(EC) is not finite.

(2) If S(2A+ C2) = Q, then

\scrE (\Theta , v) = 2(b+ v)

(A+ \Theta )
S(b+ C\sigma ) - (Q+ 2S\Theta )\sigma 2

2(A+ \Theta ) + C2
.

If b + C\sigma = 0, the problem is solvable and any admissible strategy is optimal. If
b+ C\sigma \not = 0, the problem is not finite.

(3) Assume S(2A+ C2) < Q. Since v can be taken arbitrarily, it follows that

h(\Theta ) = inf
v
\scrE (\Theta , v)

=  - 2(A+ \Theta ) + C2

2(A+ \Theta )[Q - S(2A+ C2)]

\biggl( 
Sb+

(Q+ 2S\Theta )C\sigma 

2(A+ \Theta ) + C2

\biggr) 2

 - (Q+ 2S\Theta )\sigma 2

2(A+ \Theta ) + C2

=  - [2(A+ \Theta ) + C2]S2(b+ C\sigma )2

2(A+ \Theta )[Q - S(2A+ C2)]
 - C\sigma S(b+ C\sigma )

A+ \Theta 

 - [Q - S(2A+ C2)]\sigma 2

2(A+ \Theta ) + C2

2(A+ \Theta ) + C2

2(A+ \Theta )
 - S\sigma 2,

where the minimum is attained at

v\Theta =  - 2(A+ \Theta ) + C2

2[Q - S(2A+ C2)]

\biggl( 
Sb+

(Q+ 2S\Theta )C\sigma 

2(A+ \Theta ) + C2

\biggr) 
.

One can see h(\Theta ) is bounded from below. Thus the problem is finite if 2AS+SC2 < Q.
Now we want to look at when it is solvable. Note that

h( - \infty ) =  - S2(b+ C\sigma )2

Q - S(2A+ C2)
 - S\sigma 2.

We solve the inequality h(\Theta ) \leq h( - \infty ). This is equivalent to

 - (2(A+ \Theta ) + C2)2S2(b+ C\sigma )2

Q - S(2A+ C2)
 - 2C\sigma S(b+ C\sigma )[2(A+ \Theta ) + C2]

 - [Q - S(2A+ C2)]\sigma 2[2(A+ \Theta ) + C2]

\leq  - S
2(b+ C\sigma )2[2(A+ \Theta ) + C2]2

Q - S(2A+ C2)
+
C2S2(b+ C\sigma )2[2(A+ \Theta ) + C2]

Q - S(2A+ C2)
.
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Straightforward calculation yields that

[2(A+ \Theta ) + C2]

\biggl( 
C2S2(b+ C\sigma )2

Q - S(2A+ C2)
+ 2C\sigma S(b+ C\sigma ) + [Q - S(2A+ C2)]\sigma 2

\biggr) 
\geq 0.

Note that the second term is a perfect square and 2(A+\Theta )+C2 < 0. It holds for some
\Theta < A+C2/2 if and only if the second term is 0, i.e., CS(b+C\sigma )+[Q - S(2A+C2)]\sigma =
0. In this case, any admissible strategy is optimal. Otherwise, the problem is finite
but not solvable.

Proof of Example 2. (1) Finiteness. (H2) is equivalent to that there exist \Theta \in 
\Upsilon [P ] and \eta 0 such that

(7.1)\left\{         
\Psi [P ] = (2A+ C2)P +Q - [P (B + CD) + S](R+D2P )\dagger [P (B + CD) + S] \geq 0;

R(P (B + CD) + S) \subseteq R(R+D2P );

R+D2P \geq 0; DP\sigma +B\eta 0 + \rho \in R(R+D2P );

(A+B\Theta )\eta 0 + q + Pb+ \Theta \rho + (C +D\Theta )P\sigma \in R(\Psi [P ]).

Note that for P >  - D - 2R,

\Psi [P ] = [(2A+ C2) - D - 2(B + CD)2](P +D - 2R) - D - 2(S  - D - 2R(B + CD))2

P +D - 2R
+Q - D - 2(2A+ C2)R - 2D - 2(S  - D - 2R(B + CD))(B + CD)

=  - \alpha (P +D - 2R) - \gamma (P +D - 2R) - 1 + \beta .

If \gamma = 0, \Psi [P ] is decreasing of P . Thus we need \beta \geq 0. If \beta > 0, we can select
a P =  - D - 2R + \delta for small \delta . Then (7.1) holds. If \beta = 0, (7.1) is equivalent to
P =  - D - 2R and there exists an \eta 0 such that B\eta 0 + DR\sigma  - \rho = 0 and A\eta 0 + q  - 
D - 2R(b+ C\sigma ) = 0.

If \gamma \not = 0, \Psi [P ] has a maximum \beta  - 2
\surd 
\alpha \gamma and the maximum point is taken at

P\ast =
\sqrt{} 
\gamma /\alpha  - D - 2R >  - D - 2R. Then Problem (EC) is finite if \beta  - 2

\surd 
\alpha \gamma > 0.

If \gamma \not = 0 and \beta  - 2
\surd 
\alpha \gamma = 0, take P\ast =

\sqrt{} 
\gamma /\alpha  - D - 2R >  - D - 2R, the fifth line

of (7.1) is equivalent to

q + P\ast b+ \Theta \ast \rho + (C +D\Theta \ast )P\ast \sigma \in R(A+B\Theta \ast ),

where

\Theta \ast =  - D - 2

\sqrt{} 
\alpha 

\gamma 

\biggl[ \biggl( \sqrt{} 
\gamma 

\alpha 
 - D - 2R

\biggr) 
(B + CD) + S

\biggr] 
=  - D - 2(B + CD) - | D - 1| 

\surd 
\alpha \cdot sgn(S  - D - 2R(B + CD)).

We also notice that | D2\Theta \ast + (B + CD)| = | D| 
\surd 
\alpha . Such \Theta \ast /\in \Theta [A,C;B,D].

(2) Solvability. Note that the sufficient condition (H3) for solvability requires

(LQ)
0
\infty to be solvable; we can directly take Theorem 7.2 (especially the (7.15) in

the proof) from [20] which presents an equivalence characterization. Then the result
follows directly by verifying (3.24). If \beta  - 2

\surd 
\alpha \gamma > 0, (3.24) holds naturally. If

\beta = \gamma = 0, we have to take P =  - D - 2R. Then (3.24) is equivalent to there existing
an \eta 0 such that B\eta 0  - D - 1R\sigma + \rho = A\eta 0 + q  - D - 2R(b + C\sigma ) = 0. The proof is
complete.
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