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ABSTRACT 1 

Relationships between average network productivity and accumulation or density aggregated 2 

across spatially compact regions of urban networks—so called network Macroscopic Fundamental 3 

Diagrams (MFDs)—have recently been shown to exist. Various analytical methods have been put 4 

forward to estimate a network’s MFD as a function of network properties, such as average block 5 

lengths, signal timings and traffic flow characteristics on links. However, real street networks are 6 

not homogeneous—they generally have a hierarchical structure where some streets (e.g., arterials) 7 

promote higher mobility than others (e.g., local roads). This paper provides an analytical method 8 

to estimate the MFDs of hierarchical street networks by considering features that are specific to 9 

hierarchical network structures. Since the performance of hierarchical networks is driven by how 10 

vehicles are routed across the different street types, two routing conditions— user equilibrium and 11 

system optimal routing—are considered in the analytical model. The proposed method is first 12 

implemented to describe the MFD of a hierarchical one-way limited access linear corridor and 13 

then extended to a more realistic hierarchical two-dimensional grid network. For both cases, it is 14 

shown that the MFD of a hierarchical network may no longer be unimodal or concave as 15 

traditionally assumed in most MFD-based modeling frameworks. These findings are verified using 16 

simulations of hierarchical corridors. Finally, the proposed methodology is applied to demonstrate 17 

how it can be used to make decisions related to the design of hierarchical street network structures.  18 

  19 
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INTRODUCTION 1 

Although aggregate (network-wide) traffic relationships have been studied intermittently for 2 

nearly 50 years (1–3), empirical confirmation of well-defined relationships just over a decade ago 3 

(4) has led to a renewed interest in this topic. This most recent study showed that a unimodal 4 

relationship exists between the average productivity and accumulation/density of vehicles 5 

traveling on a network using data from Yokohama, Japan. Such relationships are commonly 6 

referred to as network Macroscopic Fundamental Diagrams or MFDs. When present, MFDs can 7 

be used to model traffic dynamics within an urban network by dividing the network into a set of 8 

spatially compact homogeneous regions and tracking the average level of congestion in each (5). 9 

A variety of regional traffic control studies have been developed using this MFD-based 10 

representation of urban traffic networks; recent relevant examples in the literature include 11 

perimeter metering control (6–8), pricing (9, 10) and street network design (11, 12). Additional 12 

studies have examined situations or properties that are necessary for well-defined MFDs to exist 13 

(13–17)  14 

Various studies have proposed methods to estimate a network’s MFD using different data 15 

sources (18–21). However, very few empirical derived MFDs exist in the literature, due to a lack 16 

of data availability to quantify existing relationships on real networks (22–27). Thus, analytical 17 

methods have been proposed to estimate a network’s MFD as a function of various network 18 

properties, such as average block lengths, signal timings and traffic flow characteristics on links 19 

(28–32). These methods abstract a network into a single, infinitely long corridor and apply the 20 

variational theory of kinematic waves (33–35) to estimate the average flow-density relationship 21 

along the corridor. These existing methods can be applied to networks made up of homogeneous 22 

networks made up of similar link types. However, real street networks are far from 23 

homogeneous—they generally tend to have a hierarchical structure where some streets (e.g., 24 

arterials) promote higher mobility than others (e.g., local roads).  25 

Very few studies have considered the impacts of street network hierarchy on MFDs. One 26 

related study used simulation to examine how MFDs might change when links were removed in a 27 

grid network, which might create unintentional hierarchies (36). Knoop et al. (37) examined how 28 

various combinations of arterial and local street network patterns may influence the shape of the 29 

MFD using simulation. Network structures were generated randomly so they could not be directly 30 

compared. Muhlich et al. (38) used simulation to study flow-density relationships during 31 

congestion onset and dissipation when arterial streets were mixed with local streets. However, 32 

these previous studies all relied on simulation and thus they could not be used to determine general 33 

features that might arise in MFDs of hierarchical network structures.  34 

In light of this, this paper studies the MFDs of hierarchical street networks analytically to 35 

unveil features that should be generally expected in real-world MFDs. This work directly builds 36 

on a recent study that considers the MFDs of simple networks with route choice (30) by 37 

considering features that are specific to hierarchical network structures. The results contribute to 38 

the growing literature on relationships between traffic variables aggregated across large spatial 39 

regions and how these relationships are influenced by network features. 40 

The remainder of this paper is organized as follows. First, methods to estimate the MFD of 41 

a hierarchical linear corridor are described. This includes verification of the proposed methods 42 

within a simulation environment and application of this model to inform street network design. 43 
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Then, the methods are extended to hierarchical, two-dimensional grid networks. Finally, some 1 

discussion of these methods and results are provided.  2 

 3 

HIERARCHICAL ONE-WAY LINEAR CORRIDOR WITH LIMITED ACCESS 4 

We first consider a one-way linear corridor system. Without loss of generality, we assume two 5 

street types are available: arterials (𝑎) and local roads (𝑙). A well-defined MFD is assumed to exist 6 

for each roadway type 𝑖 ∈ {𝑎, 𝑙} that relates its average flow, 𝑞𝑖, to its average density, 𝑘𝑖. We 7 

denote this MFD 𝑄𝑖(𝑘), where 𝑞𝑖 = 𝑄𝑖(𝑘𝑖). Note also that the average travel speed on each 8 

roadway type 𝑖 is a function of the density on that roadway type and the MFD, 𝑣𝑖 = 𝑉𝑖(𝑘𝑖) =9 

𝑄𝑖(𝑘𝑖)/𝑘𝑖. If the total length of each roadway type, 𝐿𝑖 [lane-mile], is also known, the average flow 10 

(𝑞𝑇 ) and density (𝑘𝑡 ) on the entire corridor system can be determined using the generalized 11 

definitions of Edie (39) and written as: 12 

𝑞𝐻 =
𝑞𝑎𝐿𝑎+𝑞𝑙𝐿𝑙

𝐿𝑎+𝐿𝑙
 (1.1) 13 

𝑘𝐻 =
𝑘𝑎𝐿𝑎+𝑘𝑙𝐿𝑙

𝐿𝑎+𝐿𝑙
 (1.2) 14 

We assume that vehicles cannot switch freely between the two roadway types. Instead, 15 

vehicles can only travel between the two roadway types at predesignated points located some 16 

distance 𝑆 [mile] apart; see FIGURE 1. These switching locations are analogous to intersections 17 

in a two-dimensional network where vehicles can turn from one roadway type to another. In a 18 

linear corridor, this would represent access points. Such access points exist in several linear 19 

transportation facilities; e.g., HOV lanes with limited entry locations. 20 

  21 

 22 
FIGURE 1. Graphical depiction of linear corridor. 23 

 24 

We also assume that 𝑝𝑙 percent of trips begin and end on local roads and that 𝑝𝑎 percent of 25 

trips begin and end arterials (𝑝𝑙 + 𝑝𝑎 = 1). Therefore, there are four types of origin-destination 26 

(OD) pairs: both origin and destination on local (LL), origin on local and destination on arterial 27 

(LA), origin on arterial and destination on local (AL), and both origin and destination on arterial 28 

(AA). 29 

 30 
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Analytical method to obtain the system-wide MFD 1 

This section describes how the average flow-density relationship of the combined corridor (i.e., 2 

the MFD of the hierarchical linear network) can be estimated. We assume that each vehicle has 3 

two routing options to complete its trip: 1) primarily use local roads (i.e., only use arterials to 4 

access the local roads); or, 2) primarily use arterials (i.e., only use local roads to access the 5 

arterials). For example, consider the LL OD case. Under strategy 1, vehicles will stay on the local 6 

roads for their entire trip, while under strategy 2 vehicles will use the local roads to access the 7 

arterial, travel on the arterial to approach their destination, and then use local roads to access their 8 

destination.  9 

Let 𝐷 be the average shortest-path distance between OD pairs. If the spatial distributions 10 

of origins and destinations are known, then the average distance traveled per trip on roadway type 11 

𝑖 under each combination of routing option 𝑗 (𝑗 = 1 𝑜𝑟 2) and OD pair 𝑧 (𝑧 = 𝐿𝐿, 𝐿𝐴, 𝐴𝐿, 𝑜𝑟 𝐴𝐴), 12 

𝐷𝑖
𝑗
(𝑧), can be estimated using continuum approximation principles, as in (40). TABLE 1 provides 13 

these values for all OD pair-routing option combinations and the percentage of each type of OD 14 

pair, 𝑃(𝑧), assuming that origins and destinations on each roadway type are distributed uniformly 15 

in space.  16 

 17 
TABLE 1. Average trip distance on each roadway type 18 

OD pair 𝒛 

Percentage of 

OD pairs, 

𝑷(𝒛) 

Strategy 1 Strategy 2 

𝑫𝒍
𝟏(𝒛) 𝑫𝒂

𝟏(𝒛) 𝑫𝒍
𝟐(𝒛) 𝑫𝒂

𝟐(𝒛) 

LL 𝒑𝒍
𝟐 𝑫 0 𝑺 𝑫 − 𝑺 

LA 𝒑𝒍. 𝒑𝒂 𝑫 −
𝑺

𝟐
 

𝑺

𝟐
 

𝑺

𝟐
 𝑫 −

𝑺

𝟐
 

AL 𝒑𝒍. 𝒑𝒂 𝑫 −
𝑺

𝟐
 

𝑺

𝟐
 

𝑺

𝟐
 𝑫 −

𝑺

𝟐
 

AA 𝒑𝒂
𝟐 𝑫 − 𝑺 𝑺 0 𝑫 

 19 

Denote the fraction of vehicles that use strategy 1 are 𝑝. The ratio of flow on the arterial 20 

and local roads would be related by the total distance traveled on each of the two roadway types 21 

as per the generalized definitions of flow (39) as follows:  22 

𝑞𝑙

𝑞𝑎
=

𝐿𝑎

𝐿𝑙
×

[𝑝×∑ 𝑃(𝑧)×𝐷𝑙
1(𝑧)𝑧 +(1−𝑝)×∑ 𝑃(𝑧)×𝐷𝑙

2(𝑧)𝑧 ]

[𝑝×∑ 𝑃(𝑧)×𝐷𝑎
1(𝑧)𝑧 +(1−𝑝)×∑ 𝑃(𝑧)×𝐷𝑎

2(𝑧)𝑧 ]
  23 

      =
𝐿𝑎

𝐿𝑙
×

𝑝×[𝑝𝑙
2×𝐷+2×𝑝𝑙𝑝𝑎×(𝐷−

𝑆

2
)+𝑝𝑎

2×(𝐷−𝑆)]+(1−𝑝)×[𝑝𝑙
2×𝑆+2×𝑝𝑙𝑝𝑎×

𝑆

2
+𝑝𝑎

2×0]

𝑝×[𝑝𝑙
2×0+2×𝑝𝑙𝑝𝑎×

𝑆

2
+𝑝𝑎

2×𝑆]+(1−𝑝)×[𝑝𝑙
2×(𝐷−𝑆)+2×𝑝𝑙𝑝𝑎×(𝐷−

𝑆

2
)+𝑝𝑎

2×𝐷]
 (2) 24 

For given values of 𝑝 and average density on the hierarchical system, 𝑘ℎ, the flow and 25 

density on each of the local and arterial roads can be obtained by solving the set of equations given 26 

by (1.2), (2) and the MFD relationships, 𝑞𝑖 = 𝑄𝑖(𝑘𝑖). The corresponding average flow in the 27 

system can then be obtained from (1.1). Thus, what is left to be determined is the value of 𝑝. The 28 

remainder of this section considers two scenarios: 1) vehicles route themselves to minimize their 29 

personal travel time (user equilibrium); and, 2) vehicles are routed to minimize the total travel time 30 

in the system (system optimum). 31 
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 1 

User equilibrium (UE) conditions 2 

This section considers the case in which vehicles behave as according to Wardrop’s first principle 3 

(41) and route themselves in such a way as to minimize their own personal travel time. Consider 4 

the average travel times using option 1, 𝑡𝑡1(𝑘𝐻, 𝑝), and option 2, 𝑡𝑡2(𝑘𝐻, 𝑝), as a function of total 5 

network density 𝑘𝐻 and fraction of vehicles using strategy 1 𝑝: 6 

𝑡𝑡1(𝑘𝐻, 𝑝) =  ∑ 𝑃𝑧

𝑧

× (
𝐷𝑙

1(𝑧)

𝑉𝑙(𝑘𝑙)
+

𝐷𝑎
1(𝑧)

𝑉𝑎(𝑘𝑎)
) 8 

           = 𝑝𝑙
2 ×

𝐷

𝑉𝑙(𝑘𝑙)
+ 2 × 𝑝𝑙𝑝𝑎 × (

𝐷−𝑆/2

𝑉𝑙(𝑘𝑙)
+

𝑆/2

𝑉𝑎(𝑘𝑎)
) + 𝑝𝑎

2 × (
𝐷−𝑆

𝑉𝑙(𝑘𝑙)
+

𝑆

𝑉𝑎(𝑘𝑎)
)       (3.1) 7 

𝑡𝑡2(𝑘𝐻, 𝑝) = ∑ 𝑃𝑧

𝑧

× (
𝐷𝑙

2(𝑧)

𝑉𝑙(𝑘𝑙)
+

𝐷𝑎
2(𝑧)

𝑉𝑎(𝑘𝑎)
) 10 

          = 𝑝𝑙
2 × (

𝑆

𝑉𝑙(𝑘𝑙)
+

𝐷−𝑆

𝑉𝑎(𝑘𝑎)
) + 2 × 𝑝𝑙𝑝𝑎 × (

𝑆/2

𝑉𝑙(𝑘𝑙)
+

𝐷−𝑆/2

𝑉𝑎(𝑘𝑎)
) + 𝑝𝑎

2 ×
𝐷

𝑉𝑎(𝑘𝑎)
 (3.2) 9 

The optimal routing strategy under user equilibrium conditions for any 𝑘ℎ would be that 11 

which provides travel times such that no vehicles can reduce their travel times by changing routing 12 

options. This can be found from the following optimization problem: 13 

𝑚𝑖𝑛𝑝 ∫ 𝑡𝑡1(𝑘𝐻, 𝑝)𝑑𝑝
𝑝

𝑜
+ ∫ 𝑡𝑡2(𝑘𝐻, 𝑝)𝑑𝑝

1−𝑝

𝑜
 (4) 14 

which is subject to (1.2), (2), the MFD relationships and non-negativity constraints. Note that these 15 

equations assume that 𝑝 is the same for each OD pair. This can be easily relaxed in Equation (2); 16 

however, doing so does not significantly change the final MFD estimation while increasing the 17 

complexity of the formulation and analytical solution. Thus, this assumption is maintained for 18 

simplicity.  19 

 20 

System optimum (SO) conditions 21 

Under Wardrop’s second principle, vehicles select between the competing options to minimize the 22 

average travel time of all vehicles , 𝑡�̅�, in the network. In this case, the solution is found using the 23 

following optimization problem: 24 

𝑚𝑖𝑛𝑝 𝑡�̅�(𝑝) = 𝑚𝑖𝑛𝑝 𝑝 × 𝑡𝑡1(𝑝) + (1 − 𝑝) × 𝑡𝑡2(𝑝) (5) 25 

This condition can be proven to be equivalent to the condition required to maximize the average 26 

flow (𝑞𝐻) in the system for a given average system density.  27 

 28 
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Simulation verification 1 

A simulation of an infinite arterial corridor (i.e., ring road) is used to validate the MFDs obtained 2 

from the analytical derivations. This section describes the simulation parameters and compare the 3 

results with the analytical model.  4 

 5 

Simulation description 6 

In this section, a dual ring network is simulated to study the MFD of a hierarchical one-way 7 

corridor. The network simulated here—shown in FIGURE 2—consists of two one-way streets 8 

arrange to form concentric rings. One ring represents the arterial streets while the other the locals. 9 

The arterial street is assumed to have travel lane on which traffic obeys a triangular fundamental 10 

diagram with a free flow speed (40 mile/hour), capacity (2000 vehicle/hour) and jam density (250 11 

vehicle/mile). Each local street also has one travel lane on which traffic obeys a triangular 12 

fundamental diagram with a common free flow speed (20 mile/hour), capacity (1000 vehicle/hour) 13 

and jam density (250 vehicle/mile). Vehicles can only travel between the two roadway types at 14 

predesignated points located every 1 mile.  15 

 16 

FIGURE 2. Simulated hierarchical one-way linear corridor. 17 

Vehicles on the network were simulated using the cellular automata model (CAM) 18 

proposed by Daganzo (42), which is consistent with kinematic wave theory (43–45). In this 19 

framework, each street is broken up into homogeneous discrete cells of length 0.004 miles (equal 20 

to average vehicle spacing at jam density), which allows only a single vehicle to occupy any cell 21 

at any time period. Vehicle locations on arterials are updated at consistent intervals of 0.36 seconds 22 

while vehicle locations on local roads are updated at consistent intervals of 0.72 seconds. Average 23 

flow and density across the entire network are computed using the generalized definitions proposed 24 

by Edie (39) at discrete intervals of 6 minutes.  25 

The simulation starts with an empty network. Vehicles gradually enter the network with 26 

their origins and destinations uniformly distributed across all arterial and local streets until the 27 

average density of the network reaches a predefined value. This density is then maintained for the 28 

length of the simulation run. To do this, vehicles that arrive are to their destination are immediately 29 
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replaced by a randomly generated new trip. In the results shown here, the distance traveled for an 1 

individual trip is drawn randomly from a uniform distribution between 8 miles to 12 miles. 2 

Under user equilibrium assumption, each vehicle chooses its travel strategy based on the 3 

estimated travel time calculated using the average speed of local roads and arterials of the last 1-4 

minute period by the time it enters the network. Under system optimal assumption, multiple 5 

simulations are run with density of arterials kept around different pre-determined values by 6 

controlling the number of vehicles that uses strategy 2. The simulation with pre-determined arterial 7 

density that maximizes the average network flow is then used to obtain the MFD under system 8 

optimal assumption. 9 

 10 

Comparison of analytical and simulation results 11 

In this section, some key features of MFDs for one-way hierarchical linear corridor under user 12 

equilibrium assumption and system optimal assumption are identified by comparing analytical and 13 

simulation results. 14 

 15 

User equilibrium routing 16 

Error! Reference source not found.a illustrates the fundamental diagrams for local and arterial 17 

roads, as well as the analytically derived MFD for the corridor and observed flow-density 18 

relationship in the simulation under user equilibrium routing conditions. As expected, the UE 19 

MFDs fall somewhere between the individual fundamental diagrams of the local roads and 20 

arterials. The network-wide flow-density relationships obtained analytically and from the 21 

simulation are remarkably consistent, particularly in the uncongested and capacity regimes. Small 22 

differences between the simulated and analytical MFDs occur when the network is highly 23 

congested. This is likely due to the tendency of ring networks to become imbalanced and 24 

gridlocked when heavily congested (14, 46).    25 

Notice that the network-wide MFD is not unimodal or concave under user equilibrium 26 

routing conditions. In Error! Reference source not found.a, flow increases with density in the 27 

range 𝑘𝐻 ∈ (0,28) , decreases in the range 𝑘𝐻 ∈ (28,44) , increases again in the range 𝑘𝐻 ∈28 

(44,67), and finally decreases from 𝑘𝐻 ∈ (67,250). Examination of Error! Reference source 29 

not found.b, which plots the density on each individual roadway type as a function of the average 30 

density, reveals that the latter decreasing section represents the congested branch in which both 31 

the local and arterial roads are congested, while the former decreasing section represents cases in 32 

which the arterial is congested but local roads are not. This non-concave shape is particularly 33 

interesting as most MFD-based modeling frameworks in the research literature rely on the 34 

assumption of a unimodal, concave MFD. Repeated tests show that this non-unimodal and non-35 

concave shape is a general finding under various scenarios and settings in both the simulation 36 

environment and analytical derivation in user equilibrium routing conditions.  37 
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(a) (b)  1 

FIGURE 3. Comparison of (a) MFDs and (b) densities on individual roadway types for hierarchical corridor 2 
under user equilibrium conditions.   3 

 4 

System optimal routing 5 

Error! Reference source not found.a provides the fundamental diagrams for the local and arterial 6 

roads, as well as MFDs obtained analytically and from the simulation under system optimal routing 7 

conditions, while Error! Reference source not found.b provides the density on each individual 8 

roadway type as a function of the average network density for this case. Great consistency is 9 

observed between the analytically obtained and simulated flow-density relationship in the 10 

uncongested and near-capacity regimes. However, the simulation results show that the network 11 

becomes unstable when it starts to congested. Differences between the analytically derived MFD 12 

and the MFD observed in the simulations tend to grow as the network becomes more congested. 13 

Several reasons account for this discrepancy problem: 14 

1) As in the UE case, the network has the tendency towards inhomogeneous congestion 15 

distributions and will produce non-MFD states as it gets congested and unstable, as identified in 16 

many previous works (14, 15, 17, 46).  17 

2) Constraint (2) which provides the relationship between flow of the two roadway types 18 

is only valid in a long stable period where all vehicles should be able to finish their trips. However, 19 

in the simulations, when the network gets so congested that many vehicles cannot finish their trip 20 

in the simulated period, the flow relationship will not be the same as the analytical solution 21 

suggested. 22 

3) Bottlenecks arise at the transition points between locals and arterials. The analytical 23 

solution suggests that the arterial should be always used with flow as high as possible, which makes 24 

the local roads have a high density and a low flow when the network is congested. The significant 25 

discrepancy between flow of the two roadway types makes it extremely difficult for vehicles to 26 

turn from arterials to the local roads in the linear corridor. As a result, bottlenecks may form at the 27 

transition points, which makes the network highly unstable.  28 

 29 

 30 

 31 
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(a) (b)  1 

FIGURE 4. Comparison of (a) MFDs and (b) densities on individual roadway types for hierarchical corridor 2 
under system optimal conditions.  3 

Differences between Error! Reference source not found. and Error! Reference source 4 

not found. indicate that vehicles tend to use arterials more than locals to minimize their own travel 5 

time under user equilibrium condition. By contrast, arterials are used at their capacity under the 6 

system optimal condition, which provides the higher overall flow and lowest travel time to all 7 

vehicles in the network. This suggests that hierarchical networks can be made more productive by 8 

carefully routing vehicles within the network. Comparison of the UE and SO MFDs also shows 9 

that the MFDs are unimodal and concave in the SO, whereas they are not in the UE case.  10 

 11 

Applications for hierarchical street network design 12 

For a hierarchical one-way linear corridor, two roadway features affect the network MFD: the 13 

spacing of the transition points where vehicles can switch roadway types and the MFD of each 14 

roadway type. This section demonstrates how the analytical model—which provides a reasonable 15 

estimate of the MFDs under both UE and SO conditions, except when the network is highly 16 

congested—can be used to understand the impact of these features on the network MFD. This 17 

information can be used to inform network design decisions related to these features.  18 

 19 

Spacing of the transition points 20 

The following numerical example illustrates how spacing of transition points can affect MFD of a 21 

one-way linear corridor. FIGURE 5a and FIGURE 5b illustrate the MFDs of the entire hierarchical 22 

system with different spacings under UE and SO routing assumptions, respectively, assuming the 23 

same FD for the local and arterial networks as in the previous section. Under UE routing 24 

conditions, smaller transition spacings lead to higher flows at low network densities. However, 25 

larger transition spacings have a higher first apex of the MFD. The rest of the MFD is insensitive 26 

to this spacing. Since maximizing network flow at or near these peaks is most critical to 27 

accommodate surges in demand, a larger transition spacing would be preferred under UE routing 28 

conditions. By contrast, smaller transition spacings lead to higher network flow for most part of 29 

the uncongested regime and congested regime under SO conditions.  30 
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 1 

(a)         Entire range of densities                         Uncongested regime 2 

 3 

(b)         Entire range of densities                         Uncongested regime 4 

 5 

(c) 6 

FIGURE 5. (a) Comparison of MFDs for linear corridors with different spacings of transition points under 7 
UE conditions; (b) Comparison of MFDs for linear corridors with different spacings of transition points 8 

under SO conditions; and, (c) Differences between MFD under SO condition and MFD under UE condition 9 

 10 
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FIGURE 5c shows the difference in average flows observed for each density under the SO 1 

and UE conditions. This is related to the price of anarchy or the loss in network efficiency that 2 

occurs by allowing travelers free will to make routing decisions. As expected, this difference is 3 

greater than or equal to zero for all spacing values, since the SO MFD is always greater than or 4 

equal to the UE MFD. In general, the difference between the SO and UE flows decreases with the 5 

transition spacing. This occurs because vehicles have to travel longer distances before switching 6 

between roadway types as the transition spacing increases, and this results in the decision variable 7 

𝑝 having a reduced impact on the network MFD. Therefore, even if different 𝑝 values are obtained 8 

for the UE and SO cases, the resulting MFDs will be close. 9 

By understanding how these two routing assumptions impacts the MFD, agencies can 10 

design the network based on their objectives and how much flexibility travelers have in routing. If 11 

agencies care about user equilibrium allowing people to choose their paths that minimize their own 12 

travel time, then a smaller spacing is preferred. If agencies seek to minimize the difference between 13 

observed network efficiency and maximum network efficiency (i.e., the price of anarchy) or have 14 

limited ability to induce certain routing behaviors, a larger spacing is preferred as it results in 15 

smaller difference between MFD of the two routing conditions. 16 

 17 

Signals at the transition points 18 

The presence of signals at the transition points between the arterials and local roads can 19 

dramatically impact both safety performance, as well as the fundamental diagrams of both the local 20 

and arterial roadways and the overall network MFD. Here, we assume two-phase signals are 21 

implemented at all transition points with one phase for all movements of arterials and the other for 22 

all movements of local roads. The impact of green time allocation between the arterials and the 23 

local roads on the overall network MFD is examined. Consider the following example with same 24 

arterial and local roads as before. Assume the spacing of the transition points is 1 mile and the 25 

cycle length of the signals at the transition points is 60 seconds. The MFDs of arterial and locals 26 

under different signal settings are obtained using the method of cuts (28), which accounts for green 27 

time allocation between the two street types. 28 

FIGURE 6a illustrates how the UE MFD changes with the signal allocation at the transition 29 

points. It is worth noting that the functional form of the network MFD under UE condition becomes 30 

unimodal when the effects of signals are added but is still non-concave. For the free flow regime, 31 

the system-wide flow increases with the proportion of the cycle allocated to the arterial since 32 

arterials have a faster free flow speed than the local roads. The difference among MFDs under 33 

different signal allocations becomes even larger as soon as the first apex is reached. Moreover, a 34 

network with more green assigned to arterial has a higher capacity since the capacity of arterials 35 

becomes much higher than capacity of local roads. However, the network gets congested faster 36 

and has lower flow for the congested regime as more green time allocated to movements of 37 

arterials. Therefore, more green time should be allocated to arterials if the network is expected to 38 

operate at lower densities under UE conditions. On the contrary, cycle time should be more evenly 39 

allocated if the network is expected to operate at or near capacity since capacity flows can be 40 

maintained for a wider range of densities. 41 

 42 
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 1 

(a)                                     (b) 2 

 3 

(c) 4 

FIGURE 6. (a) Comparison of MFDs for linear corridors with different signal settings under UE; (b) 5 
Comparison of MFDs for linear corridors with different signal settings under SO; and, (c) Differences 6 

between MFD under SO condition and MFD under UE condition 7 

 8 

FIGURE 6b shows the network MFD under SO conditions with different signals. It is clear 9 

that assigning more cycle time to arterials leads to higher flows for the entire range of network 10 

densities. Therefore, more green time should be assigned for the movements of arterials under SO 11 

conditions. FIGURE 6c provides the differences between network MFDs under system optimal 12 

and user equilibrium conditions. It is shown that signals with more green assigned to arterials 13 

results in smaller differences in flow in the free flow regime but more significant differences for 14 

the capacity and congested regimes. This indicate that while assigning more green time to arterials 15 

can improve network efficiency, it might lead to more reduced relative efficiency when users are 16 

allowed to route themselves. 17 

 18 
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HIERARCHICAL TWO-DIMENSIONAL NETWORK 1 

Now, we extend the analytical formulations to obtain the MFD of a linear corridor to a two-2 

dimensional network system with hierarchical roadways. Again, without loss of generality, we 3 

assume this system is composed of two street types that allow travel in two directions: arterials 4 

with 𝑁𝑎 travel lanes in each direction, block length (𝑙𝑎) and total length (𝐿𝑎), and local roads with 5 

𝑁𝑙 travel lanes in each direction, block length (𝑙𝑙) and total length (𝐿𝑙). The arterials and locals are 6 

assumed to be arranged in a sequence such that there is one arterial for every 𝑁 ∈ 𝑍 + locals. An 7 

example for 𝑁 = 2  is illustrated in FIGURE 7. One can easily prove the following two 8 

relationships: 9 

𝑙𝑎 = (𝑁 + 1) × 𝑙𝑙 (9.1) 10 

𝑟 =
𝐿𝑙

𝐿𝑎
=

𝑁×𝑁𝑙

𝑁𝑎
 (9.2) 11 

where 𝑟 refers to the ratio of the total length of local roads to the total length of arterials. 12 

 13 

FIGURE 7. Two-dimensional hierarchical network 14 

 15 

Again, vehicles cannot travel between the two roadway types freely. Instead, vehicles are 16 

only able to switch the two roadway types at the intersections of local roads and arterials. 17 

Intersections between arterials are assumed to be signalized, while intersections involving a local 18 

road are assumed to be stop-controlled. Moreover, we assume that all trips begin and end on the 19 

local roads. 20 

The average flow (𝑞𝐻) and density (𝑘𝐻) of this system two-dimensional network can be 21 

determined using (1.1) and (1.2), respectively. As in the linear corridor, we assume that each 22 
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vehicle has two travel options: 1) mainly use local roads for their trip and only use arterials to 1 

access the nearest local road or approach their destination; or, 2) mainly use arterials for their trip 2 

and only use local roads to access the nearest arterial or approach their destination. The difference 3 

when these strategies are applied in the two-dimensional network is that a vehicle may experience 4 

additional total travel distance in order to access the nearest local road or arterial depending on its 5 

OD location. For example, FIGURE 7 shows the two travel strategies for one combination OD 6 

pair. We can see that when using strategy 1, local roads are used for the entire trip and thus there 7 

is no additional trip distance. When using strategy 2, in order to access the nearest arterial from 8 

the origin, the vehicle has additional travel distance to access the arterial streets.  9 

TABLE 2 shows the percentage of each OD pair 𝑃(𝑧) and the average distance traveled 10 

per trip on roadway type 𝑖 under each OD pair-routing option combination, 𝐷𝑖
𝑗
(𝑧), assuming ODs 11 

are uniformly distributed across the network.  12 
 13 

TABLE 2. Average trip distance on each roadway type 14 

OD pair z 

Percentage of 

OD pairs, 

P(z) 

Strategy 1 Strategy 2 

𝑫𝒍
𝟏(𝒛) 𝑫𝒂

𝟏(𝒛) 𝑫𝒍
𝟐(𝒛) 𝑫𝒂

𝟐(𝒛) 

LL 
𝒓𝟐

(𝒓 + 𝟏)𝟐
 𝑫 0 

𝒍𝒂

𝟑
 𝑫 −

𝒍𝒂

𝟒𝟖
 

LA 
𝒓

(𝒓 + 𝟏)𝟐
 𝑫 

𝒍𝒍

𝟒
 

𝒍𝒂

𝟔
 𝑫 

AL 
𝒓

(𝒓 + 𝟏)𝟐
 𝑫 

𝒍𝒍

𝟒
 

𝒍𝒂

𝟔
 𝑫 

AA 
𝟏

(𝒓 + 𝟏)𝟐
 𝑫 

𝒍𝒍

𝟐
 0 𝑫 

 15 

Let 𝑝 denote the fraction of vehicles that use routing strategy 1. The ratio of flow on the 16 

arterial and local roads would be related by the total distance traveled on each of the two roadway 17 

types can be defined similarly to (2) as follows:  18 

𝑞𝑙

𝑞𝑎
=

𝐿𝑎

𝐿𝑙
×

𝑝×𝐷+(1−𝑝)×[
𝑟2

(𝑟+1)2×
𝑙𝑎
3

+
2𝑟

(𝑟+1)2×
𝑙𝑎
6

+
1

(𝑟+1)2×0]

𝑝×[
𝑟2

(𝑟+1)2×0+
2𝑟

(𝑟+1)2×
𝑙𝑙
4

+
1

(𝑟+1)2×
𝑙𝑙
2

]+(1−𝑝)×[
𝑟2

(𝑟+1)2×(𝐷−
𝑙𝑎
48

)+
2𝑟

(𝑟+1)2×𝐷+
1

(𝑟+1)2×𝐷]
 (10) 19 

The remainder of this section describes how MFD of the hierarchical two-dimensional 20 

network can be determined under user equilibrium and system optimum conditions. 21 

 22 

Analytical method to obtain the system-wide MFD 23 

User equilibrium (UE) conditions 24 

Under these assumptions, the corresponding average travel times of using option 1 and 2, 25 

respectively, are:  26 
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𝑡𝑡1(𝑘𝐻, 𝑝) =
𝑟2

(𝑟+1)2 ×
𝐷

𝑉𝑙(𝑘𝑙)
+

2𝑟

(𝑟+1)2 × (
𝐷

𝑉𝑙(𝑘𝑙)
+

𝑙𝑙
4

𝑉𝑎(𝑘𝑎)
) +

1

(𝑟+1)2 × (
𝐷

𝑉𝑙(𝑘𝑙)
+

𝑙𝑙
2

𝑉𝑎(𝑘𝑎)
) (11.1) 1 

𝑡𝑡2(𝑘𝐻, 𝑝) =
𝑟2

(𝑟+1)2 × (
𝑙𝑎
3

𝑉𝑙(𝑘𝑙)
+

𝐷−
𝑙𝑎
48

𝑉𝑎(𝑘𝑎)
) +

2𝑟

(𝑟+1)2 × (
𝑙𝑎
6

𝑉𝑙(𝑘𝑙)
+

𝐷

𝑉𝑎(𝑘𝑎)
) +

1

(𝑟+1)2 ×
𝐷

𝑉𝑎(𝑘𝑎)
 (11.2) 2 

Under Wardrop’s first principle, the optimal routing strategy for any 𝑘ℎ can be obtained 3 

by solving (4), which subject to constraints (1.2), (9), (10) the MFD relationships and non-4 

negativity constraints. Again, the underlying assumption is that the value of  𝑝 is the same for all 5 

OD pair types. This assumption can be easily relaxed but does not change the final MFD 6 

estimations in a significant way.   7 

 8 

System optimum (SO) conditions 9 

Under Wardrop’s second principle of system optimality, the optimal routing strategy is found by 10 

solving (5) which is subject to same constraints as the UE case.  11 

Note that for a two-dimensional network, this condition is no longer necessarily equivalent 12 

to the condition required to maximize the average flow (𝑞𝐻) in the system for a given average 13 

system density. This occurs because the average travel distance changes based on how vehicles 14 

route themselves. However, if 𝐷 ≫ 𝑙𝑙  and 𝐷 ≫ 𝑙𝑎 , the additional trip distance arising from 15 

switching roadway type is negligible compared to 𝐷 and the two conditions can be considered 16 

equivalent. 17 

 18 

Numerical example 19 

In this section, some key features of MFDs for hierarchical two-dimensional networks are unveiled 20 

using a numerical example. The local roads as assumed to have a block length of 300ft, a free flow 21 

speed of 20 mph, capacity of 1000 veh/hr/lane and jam density of 250 veh/mi/lane. The arterial 22 

roads have a free flow speed of 40 mi/hr, capacity of 2000 veh/hr/lane and jam density of 250 23 

veh/mi/lane. Assume that all local roads have one travel lane in each direction while all arterials 24 

have two travel lanes in each direction. The MFD of both local roads and arterial roads are obtained 25 

using analytical methods based on variational theory (13) as a function of block length, signal 26 

settings and fundamental diagram of individual links. Assume all signals have exactly the same 27 

green period equal to half of the cycle length of 72 seconds. Moreover, vehicles are assumed to 28 

travel an average distance of 𝐷 = 10 mi. 29 

FIGURE 8a and FIGURE 8b illustrates the MFDs for the local and arterial roads, as well 30 

as the MFD of the entire hierarchical network under both the UE and SO optimal routing 31 

assumptions. The MFDs are estimated for the cases when the number of local roads is 2 times and 32 

5 times the number of arterials, respectively. From (9.1), we can obtain that the corresponding 33 

block lengths of arterials are 900 ft (𝑁 = 2) and 1800 ft (𝑁 = 5), respectively. 34 
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 1 
FIGURE 8. (a) Comparison of theoretical MFD for hierarchical network under UE and SO conditions when 2 

the number of local roads are 2 times the number of arterials; (b) Comparison of theoretical MFD for 3 
hierarchical network under UE and SO conditions when the number of local roads are 5 times the number of 4 

arterials 5 

As expected, the network MFDs always fall somewhere between the individual MFDs of 6 

the local and arterial roadways and the MFD under SO routing always has higher flows for a given 7 

density than the MFD under UE routing conditions. Again, the MFD under UE routing condition 8 

is not concave, but is unimodal. By comparing FIGURE 8a and FIGURE 8b, it is clear that the 9 

ratio of the number of local roads to the number of arterials (𝑁) not only has a great impact on the 10 

shape of MFD of arterials, but affects the shape and capacity of MFD of the hierarchical network 11 

as well. A smaller 𝑁 indicates a denser arterial network, which leads to higher network flow and 12 

overall capacity under both UE and SO routing conditions. Note that if the arterial network is too 13 

dense (the block length of arterials is too short), the capacity of arterials will be significantly 14 

reduced due to queue spillovers. 15 

 16 

Applications for hierarchical street network design 17 

Consider the case where an arterial network will be created to supplement an existing local road 18 

grid network. This can be done by converting existing local roads to arterials by changing signal 19 

timings and potentially adding lanes. This presents a decision between selecting a choosing a 20 

sparser arterial network with more travel lanes or a denser arterial network with fewer travel lanes. 21 

Assume all local roads have one lane in each direction (𝑁𝑙 = 1). If the total lane-mile of the arterial 22 

network to construct is pre-determined, which means the ratio of total length of locals to total 23 

length of arterials 𝑟 is fixed, then (8.2) yields: 24 

𝑟 =
𝐿𝑙

𝐿𝑎
=

𝑁×𝑁𝑙

𝑁𝑎
=

𝑁

𝑁𝑎
 (14) 25 

Consider the case in which that fundamental diagrams of local roads and arterials, block 26 

length of local roads, and signals settings are same as the numerical example in the previous 27 

section. Assume the average trip distance (𝐷) is 5 miles. Block length of arterials are calculated 28 

from (8.1). The ratio of total length of local roads to total length of arterials 𝑟 is assumed to be 2. 29 

      30 
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Error! Reference source not found.a and Error! Reference source not found.b shows 1 

how ratio of the number of local roads to the number of arterials roads (𝑁) and the number of lanes 2 

each arterial has (𝑁𝑎) jointly affect the network MFD. Overall, under both the UE and SO routing 3 

conditions, the arterial network with 𝑁𝑎 = 4 and 𝑁 = 8 contributes to a higher average network 4 

flow for the uncongested regime while the arterial network with 𝑁𝑎 = 3 and 𝑁 = 6 contributes to 5 

a higher average network flow for the congested regime. This indicates that for a fixed ratio of 6 

total length of locals to total length of arterials, there is a balance between the ratio of the number 7 

of local roads to the number of arterials roads and the number of arterial lanes that will maximize 8 

the average network flow for a given range of average network density.  9 

 10 

 11 
(a)         Entire range of densities                       Uncongested regime 12 

 13 
(b)         Entire range of densities                       Uncongested regime 14 

FIGURE 9. (a) Comparison of MFDs for two-dimensional networks with different arterial structures under 15 
UE conditions; (b) Comparison of MFDs for two-dimensional networks with different arterial structures 16 

under SO conditions 17 

As is proven previously, the real average trip distance depends on 𝑝 and is larger than 𝐷 18 

due to the additional arising from switching roadway type. Settings that allows for a higher flow 19 

is likely to result in longer real total trip distance and thus does not necessarily indicate a more 20 

efficient network. Therefore, instead of using network MFD, Gayah and Daganzo (47) suggests 21 

that the efficiency of these networks be measured by the rate at which trips can be served. Error! 22 
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Reference source not found.a and Error! Reference source not found.b provide NEFs with 1 

different ratios of the number of local roads to the number of arterials roads (𝑁) and different 2 

numbers of lanes each arterial has (𝑁𝑎). The shapes of the NEFs are quite similar to the shapes of 3 

MFDs expect for the capacity regime. The arterial network with 𝑁𝑎 = 1 and 𝑁 = 2 provides a 4 

higher capacity for the average trip completion rate because the corresponding short arterial block 5 

length enables vehicles to switch easily between arterial and local roads without travelling too 6 

much additional amount of distance. However, such a network is low in efficiency for both free-7 

flow and congested regime. By contrast, the arterial network with 𝑁𝑎 = 4 and 𝑁 = 8, though is 8 

highly efficient for the free-flow regime, provides lowest capacity as vehicles have to travel a large 9 

amount of additional distance switching between the two roadway types. The difference of 10 

capacities among different network structure can be even more significant when 𝐷  is small. 11 

Therefore, the optimal arterial network structure depends on the average trip distance and the 12 

average network density regime that are designed for. 13 

 14 

 15 
(a)         Entire range of densities                       Uncongested regime 16 

 17 
(b)         Entire range of densities                       Uncongested regime 18 

FIGURE 10. (a) Comparison of NEFs for two-dimensional networks with different arterial structures under 19 
UE conditions; (b) Comparison of NEFs for two-dimensional networks with different arterial structures 20 

under SO conditions 21 

 22 
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DISCUSSION 1 

This paper develops an analytical method to estimate the MFDs of hierarchical street networks 2 

that should be generally expected in real-world MFDs. This method directly builds on a recent 3 

study that considers the MFDs of simple networks with route choice by considering features that 4 

are specific to hierarchical network structures. Since the performance of hierarchical networks 5 

depends on how users route themselves in the network, the analytical method considers both user 6 

equilibrium and system optimal routing conditions. The method is applied to a linear corridor and 7 

then extended to a more realistic two-dimensional grid network. The analytical results in the linear 8 

case are compared to MFDs obtained from a cellular automata simulation. The results are found 9 

to match up quite well for the entire range of densities in the UE routing case, and well for free-10 

flow and capacity states in the SO routing case. Thus, the simulation results validate the use of the 11 

analytical method for MFD estimation.  12 

The analytical results reveal interesting findings into the functional form of hierarchical 13 

network MFDs. In both the corridor and grid network case, MFDs obtained under user equilibrium 14 

routing conditions are found to not be unimodal or concave, even though the MFDs of individual 15 

street types are unimodal and concave. The non-unimodal nature of the MFDs of hierarchical street 16 

networks is important as the assumption of a concave, unimodal MFD is common in almost all 17 

MFD modeling frameworks to date. This assumption is then leveraged for optimization purposes 18 

and in proofs when developing network-wide traffic control strategies using the MFD. However, 19 

the findings here are not necessarily surprising. Most MFDs obtained from empirical data have 20 

relatively few data points available from congested states. This could lead to inaccurate 21 

conclusions about the MFD shape and functional form, especially if multiple peaks exist as would 22 

be expected from the findings here. Furthermore, there is empirical and simulation evidence to 23 

support the finding of non-unimodal and/or non-concave MFDs in the research literature. Some 24 

examples are provided in FIGURE 11. In the San Francisco, MFD, there is a small range of 25 

densities (highlighted) where average flow appears flat as density increases, only to increase again. 26 

In Chicago, the free-flow branch has several slopes that appear to create a non-concave shape.  In 27 

Zurich, the free-flow branch of several MFDs appear to have what might be similar non-concave 28 

features. All are examples of larger networks in which street types are likely to represents different 29 

hierarchical levels.  30 

 31 



Xu and Gayah  20 

(a)   (b)   1 

(c)   2 

FIGURE 11. Example of potential non-concavity in functional form of MFDs in the literature. (a) San 3 
Francisco, California from simulation, taken from (48); (b) Chicago, Illinois from simulation, taken from (49); 4 
(c) Zurich, Switzerland from empirical data, taken from (27). 5 

Applications of the proposed methodology to the design hierarchical street network 6 

structure are also discussed. For hierarchical one-way linear corridors, the numerical example 7 

indicates that the access to switch between the two roadway types should be constrained under UE 8 

routing conditions while easy access between the two roadway types should be provided under the 9 

SO routing conditions to achieve higher network flow. Moreover, application to signal design at 10 

the transition points is also provided. Under user equilibrium routing, more green time should be 11 

allocated to arterials when the network is expected to operate at low densities, while green time 12 

should be more evenly distributed if the network is expected to operate at capacity or in congestion. 13 

For hierarchical two-dimensional networks, a balance of number of arterial lanes and arterial 14 

density is shown to be important in designing the arterial network above an existing local road 15 

network. 16 

Overall, this paper contributes to the growing literature on relationships between traffic 17 

variables aggregated across large spatial regions and how these relationships are influenced by 18 

network features. Future work should compare the MFDs of hierarchical two-dimensional network 19 

obtained from the proposed method with MFDs from simulation of network under more realistic 20 

conditions. Future work should also seek to develop analytical methods to account for bottlenecks 21 

at transition points between roadway types. Additional work is also needed to understand how 22 

route choice will affect turning movements at intersections, which should be considered in 23 

developing the functional form of the flow-density of a network.  24 

 25 



Xu and Gayah  21 

AUTHOR CONTRIBUTION STATEMENT 1 

The authors confirm contribution to the paper as follows: study conception and design: G. Xu, V. 2 

V. Gayah; analysis and interpretation of results: G. Xu, V. V. Gayah; draft manuscript preparation: 3 

G. Xu, V. V. Gayah. All authors reviewed the results and approved the final version of the 4 

manuscript. 5 

 6 

REFERENCES 7 

1.  Godfrey, J. W. The Mechanism of a Road Network. Traffic Engineering & Control, Vol. 8 

11, No. 7, 1969, pp. 323–327. 9 

2.  Mahmassani, H., J. C. Williams, and R. Herman. Investigation of Network-Level Traffic 10 

Flow Relationships: Some Simulation Results. Transportation Research Record: Journal 11 

of the Transportation Research Board, Vol. 971, 1984, pp. 121–130. 12 

3.  Mahmassani, H., J. C. Williams, and R. Herman. Performance of Urban Traffic Networks. 13 

1987. 14 

4.  Geroliminis, N., and C. F. Daganzo. Existence of Urban-Scale Macroscopic Fundamental 15 

Diagrams: Some Experimental Findings. Transportation Research Part B: Methodological, 16 

Vol. 42, No. 9, 2008, pp. 759–770. 17 

5.  Daganzo, C. F. Urban Gridlock: Macroscopic Modeling and Mitigation Approaches. 18 

Transportation Research Part B: Methodological, Vol. 41, No. 1, 2007, pp. 49–62. 19 

6.  Haddad, J. Optimal Perimeter Control Synthesis for Two Urban Regions with Aggregate 20 

Boundary Queue Dynamics. Transportation Research Part B: Methodological, Vol. 96, 21 

2017, pp. 1–25. https://doi.org/10.1016/j.trb.2016.10.016. 22 

7.  Ren, Y., Z. Hou, I. I. Sirmatel, and N. Geroliminis. Data Driven Model Free Adaptive 23 

Iterative Learning Perimeter Control for Large-Scale Urban Road Networks. 24 

Transportation Research Part C: Emerging Technologies, Vol. 115, 2020, p. 102618. 25 

https://doi.org/10.1016/j.trc.2020.102618. 26 

8.  Haitao, H., K. Yang, H. Liang, M. Menendez, and S. I. Guler. Providing Public Transport 27 

Priority in the Perimeter of Urban Networks: A Bimodal Strategy. Transportation Research 28 

Part C: Emerging Technologies, Vol. 107, 2019, pp. 171–192. 29 

https://doi.org/10.1016/j.trc.2019.08.004. 30 

9.  Gu, Z., S. Shafiei, Z. Liu, and M. Saberi. Optimal Distance- and Time-Dependent Area-31 

Based Pricing with the Network Fundamental Diagram. Transportation Research Part C: 32 

Emerging Technologies, Vol. 95, 2018, pp. 1–28. https://doi.org/10.1016/j.trc.2018.07.004. 33 

10.  Yang, K., M. Menendez, and N. Zheng. Heterogeneity Aware Urban Traffic Control in a 34 

Connected Vehicle Environment: A Joint Framework for Congestion Pricing and Perimeter 35 

Control. Transportation Research Part C: Emerging Technologies, Vol. 105, 2019, pp. 36 

439–455. https://doi.org/10.1016/j.trc.2019.06.007. 37 

11.  DePrator, A., O. Hitchcock, and V. V. Gayah. Improving Urban Street Network Efficiency 38 

by Prohibiting Left Turns at Signalized Intersections. Transportation Research Record: 39 

Journal of the Transportation Research Board, Vol. 2622, No. 1, 2017, pp. 58–69. 40 



Xu and Gayah  22 

12.  Ortigosa, J., V. V. Gayah, and M. Menendez. Analysis of One-Way and Two-Way Street 1 

Configurations on Urban Grids. Transportmetrica B: Transport Dynamics, Vol. 7, No. 1, 2 

2019, pp. 61–81. 3 

13.  Geroliminis, N., and J. Sun. Properties of a Well-Defined Macroscopic Fundamental 4 

Diagram for Urban Systems. Transportation Research Part B, Vol. 45, No. 3, 2011, pp. 5 

605–617. https://doi.org/10.1016/j.trb.2010.11.004. 6 

14.  Daganzo, C. F., V. V. Gayah, and E. J. Gonzales. Macroscopic Relations of Urban Traffic 7 

Variables: Bifurcations, Multivaluedness and Instability. Transportation Research Part B: 8 

Methodological, Vol. 45, No. 1, 2011, pp. 278–288. 9 

15.  Mazloumian, A., N. Geroliminis, and D. Helbing. The Spatial Variability of Vehicle 10 

Densities as Determinant of Urban Network Capacity. Philosophical Transactions of the 11 

Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 368, No. 1928, 12 

2010, pp. 4627–4647. 13 

16.  Knoop, V., and S. Hoogendoorn. Empirics of a Generalized Macroscopic Fundamental 14 

Diagram for Urban Freeways. Transportation Research Record: Journal of the 15 

Transportation Research Board, Vol. 2391, 2013, pp. 133–141. 16 

https://doi.org/10.3141/2391-13. 17 

17.  Saberi, M., A. Zockaie, and H. Mahmassani. Network Capacity, Traffic Instability, and 18 

Adaptive Driving: Findings from Simulated Network Experiments. EURO Journal on 19 

Transportation and Logistics, Vol. 3, No. 3–4, 2014, pp. 289–308. 20 

18.  Nagle, A. S., and V. V. Gayah. Accuracy of Networkwide Traffic States Estimated from 21 

Mobile Probe Data. Transportation Research Record: Journal of the Transportation 22 

Research Board, No. 2421, 2014, pp. 1–11. https://doi.org/10.3141/2421-01. 23 

19.  Leclercq, L., N. Chiabaut, and B. Trinquier. Macroscopic Fundamental Diagrams: A Cross-24 

Comparison of Estimation Methods. Transportation Research Part B: Methodological, Vol. 25 

62, 2014, pp. 1–12. 26 

20.  Du, J., H. Rakha, and V. V. Gayah. Deriving Macroscopic Fundamental Diagrams from 27 

Probe Data: Issues and Proposed Solutions. Transportation Research Part C: Emerging 28 

Technologies, Vol. 66, 2016, pp. 136–149. 29 

21.  Ambühl, L., and M. Menendez. Data Fusion Algorithm for Macroscopic Fundamental 30 

Diagram Estimation. Transportation Research Part C: Emerging Technologies, Vol. 71, 31 

2016, pp. 184–197. https://doi.org/10.1016/J.TRC.2016.07.013. 32 

22.  Buisson, C., and C. Ladier. Exploring the Impact of Homogeneity of Traffic Measurements 33 

on the Existence of Macroscopic Fundamental Diagrams. Transportation Research Record: 34 

Journal of the Transportation Research Board, No. 2124, 2009, pp. 127–136. 35 

23.  Tsubota, T., A. Bhaskar, and E. Chung. Brisbane Macroscopic Fundamental Diagram: 36 

Empirical Findings on Network Partitioning and Incident Detection. Transportation 37 

Research Record: Journal of the Transportation Research Board, No. 2421, 2014, pp. 12–38 

21. 39 

24.  Paipuri, M., Y. Xu, M. C. González, and L. Leclercq. Estimating MFDs, Trip Lengths and 40 

Path Flow Distributions in a Multi-Region Setting Using Mobile Phone Data. 41 



Xu and Gayah  23 

Transportation Research Part C: Emerging Technologies, Vol. 118, 2020, p. 102709. 1 

https://doi.org/10.1016/j.trc.2020.102709. 2 

25.  Knoop, V. L., P. B. C. Van Erp, L. Leclercq, and S. P. Hoogendoorn. Empirical MFDs 3 

Using Google Traffic Data. No. 2018-November, 2018, pp. 3832–3839. 4 

26.  Loder, A., L. Ambühl, M. Menendez, and K. W. Axhausen. Empirics of Multi-Modal 5 

Traffic Networks – Using the 3D Macroscopic Fundamental Diagram. Transportation 6 

Research Part C: Emerging Technologies, Vol. 82, 2017, pp. 88–101. 7 

https://doi.org/10.1016/J.TRC.2017.06.009. 8 

27.  Ambühl, L., A. Loder, N. Zheng, K. W. Axhausen, and M. Menendez. Approximative 9 

Network Partitioning for MFDs from Stationary Sensor Data. Transportation Research 10 

Record: Journal of the Transportation Research Board, Vol. 2673, No. 6, 2019, pp. 94–11 

103. https://doi.org/10.1177/0361198119843264. 12 

28.  Daganzo, C. F., and N. Geroliminis. An Analytical Approximation for the Macroscopic 13 

Fundamental Diagram of Urban Traffic. Transportation Research Part B: Methodological, 14 

Vol. 42, No. 9, 2008, pp. 771–781. 15 

29.  Laval, J. A., and F. Castrillón. Stochastic Approximations for the Macroscopic Fundamental 16 

Diagram of Urban Networks. Transportation Research Part B, Vol. 81, 2015, pp. 904–916. 17 

30.  Leclercq, L., and N. Geroliminis. Estimating MFDs in Simple Networks with Route Choice. 18 

Transportation Research Part B: Methodological, Vol. 57, 2013, pp. 468–484. 19 

31.  Dakic, I., L. Ambühl, O. Schümperlin, and M. Menendez. On the Modeling of Passenger 20 

Mobility for Stochastic Bi-Modal Urban Corridors. Transportation Research Part C: 21 

Emerging Technologies, 2019. https://doi.org/10.1016/j.trc.2019.05.018. 22 

32.  Xu, G., Z. Yu, and V. V. Gayah. Analytical Method to Approximate the Impact of Turning 23 

on the Macroscopic Fundamental Diagram. Transportation Research Record: Journal of 24 

the Transportation Research Board, 2020, p. 036119812093327. 25 

https://doi.org/10.1177/0361198120933274. 26 

33.  Daganzo, C. F. A Variational Formulation of Kinematic Waves: Basic Theory and Complex 27 

Boundary Conditions. Transportation Research Part B: Methodological, Vol. 39, No. 2, 28 

2005, pp. 187–196. 29 

34.  Daganzo, C. F., and M. Menendez. A Variational Formulation of Kinematic Waves: 30 

Bottleneck Properties and Examples. 2005. 31 

35.  Daganzo, C. F., and L. J. Lehe. Traffic Flow on Signalized Streets. Transportation Research 32 

Part B: Methodological, Vol. 90, 2016. https://doi.org/10.1016/j.trb.2016.03.010. 33 

36.  Ortigosa, J., and M. Menendez. Traffic Performance on Quasi-Grid Urban Structures. 34 

Cities, Vol. 36, 2014, pp. 18–27. 35 

37.  Knoop, V. L., D. De Jong, and S. Hoogendoorn. The Influence of the Road Layout on the 36 

Network Fundamental Diagram. 2014. 37 

38.  Muhlich, N., V. V. Gayah, and M. Menendez. An Examination of MFD Hysteresis Patterns 38 

for Hierarchical Urban Street Networks Using Micro-Simulation. Transportation Research 39 

Record: Journal of the Transportation Research Board, No. 2491, 2015, pp. 117–126. 40 



Xu and Gayah  24 

39.  Edie, L. C. Discussion of Traffic Stream Measurements and Definitions. 1965. 1 

40.  Daganzo, C. F. Public Transportation Systems: Basic Principles of System Design, 2 

Operations Planning and Real-Time Control. Institute of Transportation Studies, University 3 

of California, Berkeley, 2010. 4 

41.  Wardrop, J. G. Some Theoretical Aspects of Road Traffic Research. No. 1, 1952, pp. 325–5 

362. 6 

42.  Daganzo, C. F. In Traffic Flow, Cellular Automata = Kinematic Waves. Transportation 7 

Research Part B: Methodological, Vol. 40, No. 5, 2006, pp. 396–403. 8 

43.  Lighthill, M. J., and G. B. Whitham. On Kinematic Waves. I. Flood Movement in Long 9 

Rivers. Proceedings of the Royal Society of London. Series A. Mathematical and Physical 10 

Sciences, Vol. 229, No. 1178, 1955, pp. 281–316. 11 

44.  Lighthill, M. J., and G. B. Whitham. On Kinematic Waves. II. A Theory of Traffic Flow on 12 

Long Crowded Roads. Proceedings of the Royal Society of London. Series A. Mathematical 13 

and Physical Sciences, Vol. 229, No. 1178, 1955, pp. 317–345. 14 

45.  Richards, P. I. Shock Waves on the Highway. Operations Research, Vol. 4, No. 1, 1956, 15 

pp. 42–51. 16 

46.  Gayah, V. V., X. (Shirley) Gao, and A. S. Nagle. On the Impacts of Locally Adaptive Signal 17 

Control on Urban Network Stability and the Macroscopic Fundamental Diagram. 18 

Transportation Research Part B: Methodological, Vol. 70, 2014, pp. 255–268. 19 

https://doi.org/10.1016/j.trb.2014.09.010. 20 

47.  Gayah, V. V., and C. F. Daganzo. Analytical Capacity Comparison of One-Way and Two-21 

Way Signalized Street Networks. Transportation Research Record: Journal of the 22 

Transportation Research Board, No. 2301, 2012, pp. 76–85. 23 

48.  Gonzales, E. J., C. Chavis, Y. Li, and C. F. Daganzo. Multimodal Transport in Nairobi, 24 

Kenya: Insights and Recommendations with a Macroscopic Evidence-Based Model. 2011. 25 

49.  Mahmassani, H. S., M. Saberi, and A. Zockaie. Urban Network Gridlock: Theory, 26 

Characteristics, and Dynamics. Transportation Research Part C: Emerging Technologies, 27 

Vol. 36, 2013, pp. 480–497. 28 

 29 


