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ABSTRACT 1 

Restricting left turns throughout a network improves overall flow capacity by reducing conflicts 2 

between left-turning and through-moving vehicles. However, doing so comes with the drawback 3 

of requiring vehicles to travel longer distances on average. Implementing these restrictions at only 4 

a subset of locations can help by balancing this tradeoff between increased capacity and longer 5 

trips. Unfortunately, identifying exactly where these restrictions should be implemented is a 6 

complex problem due to the very large number of configurations that must be tested and 7 

interdependencies between left-turn restriction decisions at adjacent intersections. This paper 8 

implements three heuristic solution algorithms—population-based incremental learning, Bayesian 9 

optimization and a hybrid of the two—to identify optimal locations of left-turn restrictions at 10 

individual intersections in a grid network. Scenarios are tested in which restriction decisions are 11 

the same for all intersection approaches and in which this decision is only the same for approaches 12 

in the same direction. The latter case is particularly complex as it increases the number of potential 13 

configurations exponentially. The results suggest all methods can be effectively used to solve this 14 

problem, though the population-based incremental learning method appears to perform the best in 15 

the more complex scenario. The proposed framework and procedures can be applied to realistic 16 

city networks to identify where left-turn restrictions should be implemented to improve overall 17 

network operations.   18 
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INTRODUCTION 1 

Conflicting left turns represent a significant safety issue at signalized intersections. Left-turning 2 

vehicles have to cross the path opposing through vehicles to traverse the intersection and managing 3 

these left-turning and opposing through vehicle conflicts is a primary driver of Signal Phasing and 4 

Timing (SPaT) plans (1, 2). Providing protected phases for left turns is the safest option as it 5 

eliminates these conflicts. However, this takes time away from through movements and introduces 6 

additional lost times during which the intersection is not serving any vehicles, both of which can 7 

reduce overall intersection capacity (3, 4). Serving left turns in a permitted manner requires drivers 8 

to select appropriate gaps in which to move, which is less safe since the conflicts still exist. This 9 

might be more operationally efficient if sufficient gaps exist for left-turning vehicles to move; 10 

however, the left-turning vehicles might block other vehicles from discharging if they have to wait 11 

a long time for an appropriate gap (5). Dedicated left-turn pockets can be installed to mitigate this, 12 

but queued left-turn vehicles can still spillover and block vehicles in adjacent lanes from 13 

discharging through the intersection (6). 14 

Several strategies have been proposed to mitigate these issues. Alternative intersection 15 

designs have been developed that allow left-turning vehicles in non-traditional ways. These 16 

strategies manage left-turn conflicts by using additional features (e.g., downstream U-turns or 17 

additional signals) and/or changing the intersection geometry (7–13). However, these designs are 18 

generally not well-suited for urban areas with limited road space since they require large spatial 19 

footprints or long blocks. 20 

Instead, conflicting left turns can be simply restricted at signalized intersections. This 21 

simplifies the SPaT plan and allows the intersection to achieve higher overall flow capacities due 22 

to fewer change intervals and use of only through/right-turn phases. However, such restrictions 23 

will require vehicles that would have otherwise made a left turn to reroute, which may induce 24 

longer average travel distances. Several recent studies have examined the competing impacts of 25 

such left-turn restrictions enacted across entire grid networks (14–18). The studies generally agree 26 

that eliminating left turns can improve overall network operation (specifically, the rate that trips 27 

can be completed in the network), particularly when the network is operating near its capacity. 28 

However, these prior studies fail to consider the optimal spatial location of such restrictions at 29 

individual intersections within a network.  30 

This type of problem is most closely related to general facility location problems in the 31 

transportation research literature, which are classified as NP-hard optimization problems due to 32 

the large solution space and lack of analytical solution (19). Within urban networks, many studies 33 

have proposed methods to determine optimal locations of treatments along individual links—e.g., 34 

optimal bus lanes locations (20–23)–or at individual intersections—e.g., optimal transit signal 35 

priority locations (24, 25). Very few studies have examined the application of left-turn restrictions 36 

or alternative left-turn treatments at individual intersections on a network. The problem is complex 37 

as changes in left-turn treatments at one intersection might influence traffic patterns and operations 38 

at adjacent intersections. Additionally, vehicles will reroute themselves due to the left-turn 39 

restrictions enacted. These issues do not facilitate the expression of the optimal left-turn restriction 40 

problem as a traditional mathematical program. Instead, one study proposed a generic 41 

methodology to identify intersections that should restrict left turns that relied on fairly simplistic 42 

traffic models that did not account for traffic dynamics, such as queue spillbacks and changes in 43 

vehicle routing (26). Others utilized simulation to test the performance of a set of candidate left-44 

turn restriction configurations but did not necessarily perform any optimization (27, 28).  45 
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The purpose of this paper is to apply and compare several methods to determine the optimal 1 

spatial configuration of left-turn restrictions within a dense, grid-like urban network. Several 2 

heuristic algorithms are considered to identify candidate configurations, the performance of which 3 

are tested in a micro-simulation environment. The first is a population-based incremental learning 4 

(PBIL) algorithm that combines the evolutionary nature of genetic algorithms with competitive 5 

learning features (29). The second is a Bayesian optimization algorithm that seeks to directly learn 6 

and leverage dependencies inherent within the solution space using Bayesian networks (30). The 7 

final method is a hybrid of the two that uses the PBIL method to generate a set of candidate 8 

solutions and then implements a Bayesian network to generate similar solutions that might also 9 

perform well. The results suggest that these methods are generally suitable for the optimal spatial 10 

left-turn optimization problem and provide insights into the conditions under which each might 11 

perform best.  12 

The remainder of this paper is organized as follows. First, the proposed optimization 13 

methods and experimental setup are described. Then, the results of the proposed algorithms are 14 

provided for two optimization scenarios that are considered. Finally, some concluding remarks are 15 

provided.  16 

 17 

METHODOLOGY 18 

This section describes the methods that were used in this paper to determine where left turns should 19 

be restricted spatially across an urban network. The remainder of this section describes the methods 20 

used to optimize the left-turn restrictions and the network-setup. 21 

  22 

Optimization of left-turn restriction configurations 23 

The methodology used in this study can be classified as a bi-level optimization algorithm. The 24 

upper level involves the selection of left-turn restriction locations, the lower level simulates the 25 

traffic for the selected left-turn restriction locations and estimates the total travel time of the 26 

network. The next two subsections describe the methods used for the network evaluation and the 27 

selection of left-turn restriction locations.  28 

 29 

The lower level network assessment 30 

The lower of the bi-level optimization algorithm aims to calculate total travel time for a given left-31 

turn restriction configuration. For this purpose, an accurate method is needed to capture routing 32 

behavior of drivers, the effects of network elements (e.g., traffic signals), and the related traffic 33 

phenomena (e.g., queue spillbacks, heterogeneous driver behavior). Due to the accuracy needed 34 

for travel time calculation, the Aimsun micro-simulation platform is selected for network 35 

assessment (31).   36 

The stochastic c-logit route choice model is used for vehicle routing within the micro-37 

simulation environment. This model emulates a user-equilibrium routing pattern in which drivers 38 

select the route to minimize their own expected travel time. The drivers make the routing decision 39 

when they initiate the trip and the decisions are based on the average travel time on links over the 40 

past 3 minutes. However, a portion of the drivers (50% in the tests performed in this paper) are 41 
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allowed to change their route during their trip based on the current traffic situation. The rerouting 1 

occurs at regular intervals of 3 minutes. Previous research has shown that such adaptive traffic 2 

routing algorithms provide better network-wide operational performance (32). 3 

 4 

The upper level optimization 5 

The upper level optimization procedure seeks to identify the optimal configuration of left-turn 6 

restrictions—i.e., the locations at which left-turn restrictions should be enacted to optimal traffic 7 

performance. Here, traffic performance is measured using total travel time that is experienced by 8 

all vehicles during a simulated peak period. Three different optimization algorithms are considered 9 

for this upper level optimization. These methods are selected due to their capability of accounting 10 

for spatial dependencies in the left-turn restriction decisions at individual locations.  11 

 12 

Population-based incremental learning 13 

Population-based incremental learning combines the generational evolution of genetic algorithms 14 

with competitive learning (29). The flowchart of the PBIL algorithm is shown in FIGURE 1. The 15 

algorithm has four basic steps that will be described in this section: 1) initiation, 2) generation and 16 

evaluation, 3) mutation and update of the probability vector, and 4) termination.  17 

 18 

 19 

 20 
FIGURE 1. Flow chart of population-based incremental learning  21 

 22 



Bayrak and Gayah  5 

The initiation step involves generating an initial probability vector, 𝑃1, that serves as a 1 

starting point for the algorithm. Each element 𝑖  of this vector is associated with a specific 2 

intersection (or intersection approach) and the corresponding value in the initial probability vector, 3 

𝑃𝑖
1, represents the probability that left-turn restriction is applied at that intersection (or approach). 4 

Thus, the size of the probability vector is equal to the number of candidate locations that left-turn 5 

restrictions are considered for implementation. In this paper, the probability vector is initiated by 6 

setting the value of each element to 0.5. This represents a truly random guess with no prior 7 

knowledge on if left-turn restrictions should be applied at each candidate location.  8 

The generation and evaluation step generates a population of candidate left-turn restriction 9 

configurations (60 individual configurations in this paper) by randomly sampling the solution 10 

space using the probability vector associated with the current generation, 𝑃𝑡 . Each candidate 11 

configuration is represented by a vector of the same size as 𝑃𝑡 and consists of binary values, where 12 

the value 1 represents a left-turn restriction and the value 0 represents no left-turn restriction. After 13 

the set of candidate configurations are generated, each is evaluated by the lower level to obtain the 14 

total travel time value associated with each configuration.  15 

After the evaluation, the probability vector is updated by learning from the best solution 16 

vector (i.e. the configuration with the lowest total travel time) in the current generation, 𝐵𝑡, and 17 

the worst solution in the current generation. The former adjustment (1) represents positive learning, 18 

while the latter (2) represents negative learning.     19 

𝑃𝑖
𝑡+1 = (𝑃𝑖

𝑡 × (1 − 𝐿𝑅+)) + (𝐵𝑖
𝑡 × 𝐿𝑅+) (1) 20 

𝑃𝑖
𝑡+1 = 𝑃𝑖

𝑡 × (1 + 𝐿𝑅−) − 𝑤𝑖
𝑡 × 𝐿𝑅 (2) 21 

where,  𝑃𝑖
𝑡 is the probability of LTs at a location 𝑖 in generation 𝑡, 𝐿𝑅+ is the positive learning rate, 22 

𝐿𝑅− is the negative learning rate, and 𝐵𝑖
𝑡 is the value (0 or 1) of the 𝑖th position of the best solution 23 

found in generation 𝑡 , and 𝑤𝑖
𝑡  is the value of the 𝑖 th position of the worst solution found in 24 

generation 𝑡. Equation (1) essentially adjusts the probability vector so that future solutions that are 25 

evaluated are more likely to adopt features of the best solution found in the current generation, 26 

while Equation (2) essentially adjusts the probability vector so that future less likely to adopt 27 

features of the worst solution found in the current generation.  28 

Similar to other evolutionary algorithms, PBIL converges around a solution as the search 29 

progresses. However, PBIL allows explicit control of the speed of convergence with the learning 30 

rate parameters, 𝐿𝑅+ and 𝐿𝑅−. The learning rate parameters enables the PBIL to explore a larger 31 

portion of the solution space, which is essential for problems with dependencies, before starting to 32 

converge to a solution. The 𝐿𝑅 values seek to create a balance between the portion of the solution 33 

space explored and the convergence speed. In this study, we apply 𝐿𝑅+ = 0.1 and 𝐿𝑅− = 0. The 34 

latter is selected as negative learning might restrict the search for optimal solutions in some cases.  35 

In addition to the learning process, the mutation operator is also responsible for expanding 36 

the explored solution space by randomly changing the probabilities in 𝑃𝑡 by some magnitude of 37 

∆𝑚 = 0.05. Mutation is applied with a predefined random probability 𝑚 = 0.02, known as the 38 

mutation rate. Each element in the solution vector is randomly updated according to (3) with 39 

probability 𝑚. 40 

𝑃𝑖
𝑡+1 = 𝑃𝑖

𝑡 × (1 − ∆𝑚) + ∆𝑚 (3) 41 
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After the probability vector is updated using (1-3), steps 2 and 3 are repeated until the 1 

termination criteria is met. The termination criteria can be based on convergence of probability 2 

vector or maximum number of generations. In this study, the PBIL algorithm is terminated after 3 

60 generations.  4 

 5 

Bayesian optimization algorithm (BOA) 6 

PBIL relies on random sampling of potential solutions and learning about the performance of these 7 

sampled solutions to generate better solutions. Unlike PBIL, the BOA does not assume an 8 

independent relationship between decision variables (e.g., locations of left-turn restrictions). BOA 9 

aims to learn the dependency structure between decision variables using Bayesian networks and 10 

uses this information to generate better solutions. The Bayesian networks represent the 11 

dependencies between left-turn restriction decisions at individual intersection. Each node of a 12 

Bayesian network corresponds to a possible left-turn restriction location, and each directed edge 13 

of a Bayesian network represents a dependent relationship between locations of left-turn 14 

restrictions. The flowchart of the BOA is shown in FIGURE 2. 15 

 16 

 17 

 18 
FIGURE 2. Flow chart of Bayesian optimization algorithm 19 

 20 
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The BOA has 7 steps: 1) initiation, 2) selection, 3) Bayesian network construction, 4) 1 

offspring creation, 5) evaluation, 6) recombination, and 7) termination. The algorithm starts by 2 

randomly generating an initial population (in this case, 60) individual left-turn restriction 3 

configurations. Similar to PBIL, each solution vector is a binary vector that represents the left-turn 4 

restriction at each location. After the initial population is generated, each individual solution is 5 

evaluated by the lower level to compute the total travel time associated with each left-turn 6 

restriction configuration.  7 

The selection step selects the parent solutions that will be used for Bayesian network 8 

construction. A tournament selection method is used (33) in which two left-turn restriction 9 

configurations are randomly selected from the initial population and the better performing 10 

configuration of the two options is identified as a parent. The process repeats itself until a pre-11 

specified number of parents are determined (30 in this paper), where repetition is allowed (i.e., a 12 

particular solution can be used as a parent multiple times if randomly selected).  13 

A Bayesian network is then constructed using a greedy algorithm. The procedure used to 14 

construct the Bayesian network is essentially a separate optimization algorithm inside the BOA. 15 

The procedure starts with a Bayesian network with no edges (i.e., a network with no dependencies). 16 

Then, basic graph operations (edge addition, removal, and reversal) are applied to a random node 17 

pair. The operation that increases the quality of the Bayesian network most is kept and the others 18 

are discarded. These two steps (testing and selecting operations) are repeated until the network can 19 

no longer be improved. Notice that only one graph operation is performed at each cycle of the 20 

Bayesian network construction process. For the selection of the graph operation that is applied, the 21 

quality of the Bayesian network is assessed with a scoring metric. In this study, the Bayesian 22 

information criterion (BIC) is used as a scoring metric (34). The BIC assumes that the number of 23 

dependencies in the network is proportional to the amount of compression of the data allowed by 24 

the Bayesian network. Therefore, a Bayesian network structure that maximizes the BIC metric can 25 

describe the dependencies.  26 

Next, offspring solutions are generated by sampling the fitted Bayesian network. In the 27 

Bayesian network, each variable (i.e., the of left-turn restrictions at a given intersection) can be 28 

categorized into one of three groups: 1) completely independent (i.e., no links are formed in the 29 

Bayesian network); 2) dependent on others; and, 3) others are dependent on this variable (i.e., the 30 

value of the variables in group 2 depend on the value of the variables in group 3). In order to 31 

sample from these sets of variables, a forward simulation process is used (35). This sampling is 32 

done based on the conditional probabilities encoded in the Bayesian network, by assigning first 33 

the value (0 – no left-turn restrictions, or 1 – left-turn restriction) of independent variables (those 34 

in group 1), next the value of variables in group 3 (since the values of these do not depend on other 35 

variables) and finally by assigning the values of variables in group 2 (since their values depend on 36 

the values of the variables in group 3). The sampling process is repeated until 30 offspring 37 

solutions are generated. 38 

After the offspring solutions are generated, they are evaluated by the lower level. After the 39 

evaluation step, the offspring solutions and the previous population are recombined by replacing 40 

the worse half of the population with the offspring solutions. Similar to PBIL, BOA is run for 60 41 

generations. The steps 2-6 are repeated until enough number of generations are evaluated.  42 

 43 
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PBIL-BOA hybrid algorithm  1 

Both BOA and PBIL are capable algorithms to solve complicated problems but have several 2 

limitations. PBIL samples configurations from different parts of the solution space due to its 3 

exploration focus, but this makes the PBIL algorithm slow to converge to a point in solution space 4 

(29). BOA is faster to converge to a solution due to its focus on learning dependencies between 5 

decision variables, but requires a large population to accurately learn the dependencies between 6 

decision variables for problems with a large number of dependent decision variables. When the 7 

solution evaluation is computationally intensive (e.g., like in the micro-simulation approach that 8 

is applied here) large number of evaluations may not be feasible. Thus, in this study, a hybrid 9 

method that combines the exploration capability of PBIL and dependency learning capability of 10 

BOA is proposed.  11 

The hybrid algorithm has three main steps. First, generate a large set of promising solutions 12 

(i.e., a set of left-turn restriction configurations that has good total travel time values). Second, use 13 

this large set of solutions to create a Bayesian network. Finally, use the constructed Bayesian 14 

network to generate new solutions. The flowchart of the Hybrid algorithm is shown in FIGURE 3.  15 

 16 

 17 

 18 
FIGURE 3. Flow chart of PBIL-BOA hybrid optimization algorithm 19 

 20 

The first step involves shorter independent PBIL runs with small populations. The aim of 21 

this step is not to necessarily find the global optimum solution. Instead, the aim is to identify 22 

promising solutions from different parts of the solutions space. Thus, several PBIL runs with 23 

different initial populations are used to identify promising solutions. To select the sample that will 24 

be used for Bayesian network construction, all configurations evaluated during the independent 25 

PBIL runs are ranked, and the top 500 unique configurations are selected for Bayesian network 26 

construction.  27 
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The selected sample of promising configurations are then used to construct a Bayesian 1 

network. The algorithm used for Bayesian network construction is similar to the one used for BOA 2 

algorithm. Since a much larger population (500 unique configurations) is used in the hybrid 3 

algorithm to create the Bayesian network compared to BOA’s procedure, the hybrid algorithm is 4 

more likely to capture dependencies between decision variables. After the Bayesian network 5 

creation, a new set of solutions is generated by forward simulation, similar to BOA. Finally, the 6 

new set of solutions are evaluated by the lower level to estimate total travel time values.   7 

 8 

Experimental setup 9 

The methodology described above is tested using an illustrative network shown in FIGURE 4. The 10 

test network is a 8x8 grid. The block length is 200 meters. Each link is coded as an arterial in 11 

Aimsun and has two lanes per direction and the speed limit and capacity of links are 48 km/h and 12 

1600 veh/h. Every intersection in the network is a signalized intersection with 90-sec cycle length 13 

without any offset between adjacent intersections. During each cycle, each direction receives 42 14 

seconds of green time with three seconds of change interval is applied between consecutive phases. 15 

Left turns are either set to permitted operation during each phase or restricted altogether. When 16 

permitted, left-turning vehicles waiting for a gap at the intersection tend to block one lane and 17 

reduce overall intersection capacity. Origin and destination nodes are located in the middle of each 18 

block and 32 entry/exit points on the periphery of the network. A uniform demand pattern in which 19 

each origin generates the same number of trips (on average) and each destination is equally like to 20 

be selected is used. The simulation run using an average of 367 total trips per minute. The selected 21 

demand level is enough to saturate the network when LTs are permitted at all intersections. 22 

However, due to the randomness of Aimsun’s simulation process, there are small variations in the 23 

uniform demand pattern in each simulation.  24 

 25 

 26 

FIGURE 4. Test network and OD locations 27 

 28 
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The BOA, PBIL, and hybrid algorithms described in the methodology section are tested on 1 

two different optimization scenarios related to how left-turn restrictions are implemented at 2 

individual intersections. The first scenario considers the case where a single left-turn restriction is 3 

made for each intersection. In this case, the same decision (restrict or allow left turns) is made at 4 

all intersection approaches at a given intersection. In this scenario, there are 64 possible left-turn 5 

restriction locations for this scenario. The second scenario considers the case where multiple left-6 

turn restriction decisions are made at each intersection. Specifically, left-turn restrictions decisions 7 

are made independently at each intersection for each of the two competing directions (e.g., 8 

north/south and east/west) at each intersection. In this scenario, there are two left-turn restriction 9 

decisions that can be made for each of the 64 intersections for a total of 128 binary decisions.  10 

Given that the number of possible left-turn restriction configurations increases 11 

exponentially with the number of possible restriction locations, the number of possible left-turn 12 

restriction configurations for both scenarios is extremely large (264 in the first scenario, (2 × 2)64 13 

in the second). To reduce the size of the solution space, several constraints are implemented. First, 14 

a symmetry constraint is implemented. Since the network is a perfect grid with a uniform demand 15 

pattern, the global optimum solution is likely to be rotationally symmetrical.  For both scenarios, 16 

the upper-level algorithms only search for left-turn restriction configurations that are rotationally 17 

symmetrical around the center of the network.  The second constraint is left-turn restrictions are 18 

never applied at the intersections at the corners of the network to always provide a feasible path 19 

between all OD pairs. These two constraints reduced the number of possible left-turn restriction 20 

configurations to 32,768 and 1.07x109 for first and second scenarios, respectively. For the first 21 

scenario, the reduced number of possible left-turn restriction configurations is low enough to use 22 

brute-force enumeration to determine the global optimal configuration.  23 

 24 

RESULTS  25 

This section describes the results of the optimal left-turn restriction configuration problem using 26 

the three proposed methods. First, the results of the first scenario with only one restriction decision 27 

per intersection are provided. Then, the results of the second scenario with two decisions per 28 

intersection are provided.  29 

 30 

Scenario 1: One left-turn restriction decision per intersection 31 

The PBIL, BOA, and hybrid algorithms were run multiple times to obtain best-performing 32 

solutions. Multiple runs of each algorithm were performed since they are heuristic methods that 33 

rely on random processes, particularly the first set of randomly generated solutions. The PBIL and 34 

BOA algorithm were each run 15 times since they were the most well-known of the three methods 35 

tested but also the most computationally intensive. The hybrid optimization procedure was 36 

repeated 100 times to learn more about how well it is able to improve upon the PBIL and BOA 37 

methods. The sample used for Bayesian network construction contains the best 500 left-turn 38 

restriction configurations found during a subset of independent PBIL runs. At each instance of this 39 

algorithm, a Bayesian network that represents the dependencies between left-turn restriction 40 

locations was constructed by using these 500 configurations. Using the constructed Bayesian 41 

network, 500 new configurations are generated. Since Bayesian network construction and new 42 

configuration generation are heuristic processes, each run of the hybrid algorithm created a 43 
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different set of new solutions. The best solutions found in each instance of the Hybrid algorithm 1 

is presented below. The results of the optimal configurations obtained from these methods are 2 

provided in FIGURE 5a. From the 130 total optimization runs, only seven unique left-turn 3 

configurations were identified: five unique configurations were found using the PBIL approach, 4 

five unique configurations were found using the PBIL approach, and four of the configurations are 5 

common across the two methods. In addition, to these heuristic methods, a brute-force enumerate 6 

approach was applied to identify the global optimal solution. In this method, all 32,768 potential 7 

configurations were tested to determine the configuration with the lowest travel time.  8 
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 (a)  1 

(b)  2 

FIGURE 5. Results of Scenario 1. (a) Optimal left-turn restriction configurations obtained by proposed 3 
algorithms; and, (b) common locations of left-turn restrictions identified in top-performing algorithms.  4 
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The implementation of left-turn restrictions at a subset of intersections using any of the 1 

methods reduces travel time significantly compared to implementing left-turn restrictions at no 2 

intersections (at least 3.8% reduction) or at all intersections (at least 12.3% reduction). Note that 3 

accommodating left turns at all intersections outperforms restricting left turns at all intersections 4 

due to the low level of congestion in the network. Under these conditions, it is not necessary to 5 

prohibit left turns everywhere since some intersections are under-saturated. 6 

 All configurations obtained from the proposed optimization methods and the global 7 

optimal configuration are presented in FIGURE 6. In this figure, red dots represent intersections 8 

at which left-turn restrictions are applied. Note that only seven unique configurations were 9 

identified: five using PBIL, five using the BOA, and five using the hybrid approach. The results 10 

reveal that all methods are able to identify a solution that provides travel times within 1.7% of the 11 

global optimal solution; i.e., the maximum optimality gap of any solution identified was 1.71%. 12 

Comparing the three methods, the average optimality gap of the PBIL, BOA and hybrid methods 13 

are 1.51%, 1.44%, and 1.11%, respectively. Overall, this suggest strong performance across the 14 

three optimization methods. However, the hybrid method appears to provide better results. For 15 

one, it has the smallest average optimality gap. In addition, it is the only method to identify the 16 

global optimal solution (though this was just found 2% of the times and can be attributed to 17 

randomness). Still, was able to outperform or equal the PBIL method in 92% of runs and 18 

outperform or equal the BOA method 47% of runs. A comparison of these methods by TTT 19 

produced is illustrated in FIGURE 6.  20 

 21 

 22 

FIGURE 6. Ranking of best-performing left-turn restriction configurations identified (Scenario 1) 23 

A review of these configurations suggests some common features about where left-turn 24 

restrictions should be enacted. FIGURE 5b overlays the configurations so that darker points 25 

represent intersections at which left-turn restrictions are applied more commonly in the 26 

configurations shown in FIGURE 5a. Notice that left-turn restrictions in the best-performing 27 

solutions are more likely in the central portion of the network. This is reasonable as these locations 28 

serve the highest flows (combined across all approaches) in the network. Restricting left turns at 29 

these locations increases the capacity at these locations, which helps to improve overall network 30 

operations. Although vehicles will have to reroute when left turns are restricted, the central portion 31 

of the network has many alternative routes that can be used for those vehicles wishing to make left 32 

turns. When left turns are restricted at these central locations, this rerouting can often occur without 33 

additional incurred travel distance. By contrast, left-turn restrictions are less likely on the periphery 34 

of the network. This is reasonable as these intersections generally carry lower total flows so the 35 
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additional capacity gained by restricting left turns is less beneficial. Furthermore, these 1 

intersections experience a higher proportion of vehicles turning left so left-turn restrictions would 2 

cause more vehicles to reroute. Finally, left-turn restrictions at these periphery locations are more 3 

likely to induce additional travel distance due fewer routing options available at the edge of the 4 

network.  5 

 6 

Scenario 2: Two left-turn restriction decisions per intersection 7 

The optimization procedure was then repeated for the scenario in which two left-turn restrictions 8 

decisions are made per intersection. This is a much more challenging problem as there are 32,768 9 

times more feasible configurations. Because of this, a brute-force enumeration is not possible and 10 

thus, the global optimal configuration is not known in this scenario. As with Scenario 1, the PBIL, 11 

BOA and hybrid methods were repeated multiple times. However, the number of times were 12 

reduced due to the computational burden required. Thus, the PBIL method was performed four 13 

times, the BOA method was performed four times, and the hybrid method was performed 35 times. 14 

 Comparing the results of this scenario with Scenario 1, we find that separating the left-turn 15 

restrictions between the north/south and east/west approaches provides more efficient network 16 

operations (i.e., reduced travel time). This is expected since having more options is more flexible 17 

and left-turn restrictions do not necessarily need to be enacted simultaneously at all intersection 18 

approaches. Overall, travel time is found to be reduced by an additional 1.25% (worst-performing 19 

configuration identified) to 2.38% (best-performing configuration identified) over the global 20 

optimal solution in Scenario 1. This represents a reduction in total travel time over not 21 

implementing any left-turn restrictions at any intersections of 7.7% and a reduction in total travel 22 

time over implementing left-turn restrictions at all approaches of all intersections of 15.8%. All 23 

methods were always able to outperform the best-performing configuration identified in Scenario 24 

1, which suggests that these methods are still able to improve upon the problem in this more 25 

flexible case even though the solution space is much larger. FIGURE 7 provides a graphical 26 

comparison of the configurations identified using each method.  27 

 28 

 29 

FIGURE 7. Ranking of best-performing left-turn restriction configurations identified (Scenario 2) 30 

The unique configurations that were identified are shown in FIGURE 8a. In this figure, red 31 

vertical or horizontal lines represent left-turn restrictions in the north-south or east-west direction, 32 

respectively, implemented at a specific intersection. As shown, only 17 unique configurations were 33 



Bayrak and Gayah  15 

identified. The PBIL was able to provide the best-performing configuration, while the 1 

configurations identified using the BOA and hybrid methods performed a bit worse. A review of 2 

these configurations again reveals common features about where left-turn restrictions should be 3 

enacted. FIGURE 8b overlays the configurations so that darker lines represent approaches at which 4 

left-turn restrictions are applied more commonly in the configurations shown in FIGURE 8a. A 5 

very clear pattern of common left-turn restriction locations emerges from this overlapping figure. 6 

The general pattern is similar to Scenario 1: left-turn restrictions occur frequently in the central 7 

portion of the network and generally do not occur in the periphery of the network. These reasons 8 

are the same as those in the previous scenario. However, there are some key differences. Left turns 9 

are generally permitted at approaches that lead from the central portion of the network toward the 10 

periphery of the network, whereas they are restricted at those approaches leading toward the central 11 

portion of the network.   12 

 13 
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 1 

(a) 2 

(b)  3 

FIGURE 8. Results of Scenario 2. (a) Optimal left-turn restriction configurations obtained by proposed 4 
algorithms; and, (b) common locations of left-turn restrictions identified in top-performing algorithms.  5 

 6 

 7 
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DISCUSSION AND CONCLUDING REMARKS 1 

This paper has extended recent work on the impact of restricting left turns at signalized 2 

intersections. It specifically considers the identification of which intersections left-turn restrictions 3 

should be implemented at to maximize overall network efficiency, measured by the total travel 4 

time for all vehicles on the network. Two scenarios are considered: one where the same left-turn 5 

restriction decision is made for all approaches at an intersection and another where two decisions 6 

are made (one for the north-south approach and another for the east-west approach). Both are 7 

complex combinatorial problems with an incredibly large solution space. To determine optimal 8 

left-turn restriction configurations, three heuristic methods are compared: a population-based 9 

incremental learning algorithm, a Bayesian optimization algorithm and a hybrid of the two.  10 

The results reveal that all three methods are fairly reasonable for solving this problem and 11 

identifying a left-turn configuration that reduces total travel time within the network. In general, 12 

the population-based incremental learning algorithm performs slightly better than the other two 13 

methods, particularly in the second scenario where multiple left-turn restriction decisions are made 14 

at each intersection. However, the three methods provide configurations with consistent and 15 

similar features. Namely, that left turns should be restricted at intersections in the inner portion of 16 

the network that carry the largest vehicle flows, and left turns should be allowed at the intersections 17 

in the periphery where flows are low and the proportion of vehicles making a left turn is higher. 18 

In general, the two-decision-per-intersection case always provides lower travel times than the one-19 

decision-per-intersection case. While this is expected because it is more flexible, the fact that 20 

better-performing configurations can be obtained even though the solution space is exponentially 21 

greater is promising.  22 

The results provide a general framework for how to implement such decisions at more 23 

complicated and realistic network structures. While the actual configuration on any network would 24 

be subject to its network-specific features and demand pattern, the overall pattern that were 25 

observed here should be fairly general and serve as a good starting point that could be refined due 26 

to network-specific features. Further work should also consider how these central left-turn 27 

restrictions might influence overall network resilience to disruptions that might occur along links, 28 

such as traffic crashes or bottlenecks caused by freight vehicles.  29 

 30 

ACKNOWLEDGEMENTS 31 

This research was supported by NSF Grant CMMI-1749200 32 

 33 

AUTHOR CONTRIBUTION STATEMENT 34 

The authors confirm contribution to the paper as follows: study conception and design: MB, VG; 35 

analysis and interpretation of results: MB, VG; draft manuscript preparation: MB, VG. All authors 36 

reviewed the results and approved the final version of the manuscript. 37 

 38 

REFERENCES 39 

1.  Roess, R. P., E. S. Prassas, and W. R. McShane. Traffic Engineering, 4th Edition. 2010. 40 



Bayrak and Gayah  19 

2.  Cottrell, B. H. Guidelines for Protected/Permissive Left-Turn Signal Phasing. 1 

Transportation Research Record: Journal of the Transportation Research Board, No. 1069, 2 

1986, pp. 54–61. 3 

3.  Messer, C. J., and D. B. Fambro. Effects of Signal Phasing and Length of Left-Turn Bay on 4 

Capacity. Transportation Research Record: Journal of the Transportation Research Board, 5 

No. 644, 1977, pp. 95–101. 6 

4.  Newell, G. F. The Effect of Left Turns on the Capacity of a Traffic Intersection. Quarterly 7 

of Applied Mathematics, Vol. 17, No. 1, 1959, pp. 67–76. 8 

5.  Fambro, D. B., C. J. Messer, and D. A. Andersen. Estimation of Unprotected Left-Turn 9 

Capacity at Signalized Intersections. Transportation Research Record: Journal of the 10 

Transportation Research Board, No. 644, 1977, pp. 113–119. 11 

6.  Haddad, J., and N. Geroliminis. Effect of Left Turns for Arterials with Queue Spillbacks. 12 

92nd Annual Meeting of the Transportation Research Board, 2013. 13 

7.  Chowdhury, M. S. An Evaluation of New Jersey Jug-Handle Intersection (NJJI) with and 14 

without Pre-Signals. 2011. 15 

8.  Hummer, J. E. Unconventional Left-Turn Alternatives for Urban and Suburban Arterials--16 

Part One. Institute of Transportation Engineers. ITE Journal Sep, Vol. 68, No. 9, 1998, pp. 17 

26–29. 18 

9.  Hughes, W., R. Jagannathan, D. Sengupta, and J. E. Hummer. Alternative 19 

Intersections/Interchanges: Informational Report (AIIR). FHWA Technical Report FHWA-20 

HRT-09-060. 21 

10.  Berkowitz, C., C. Bragdon, and F. Mier. Continuous Flow Intersection: A Public Private 22 

Partnership. Vehicle Navigation and Information Systems Conference, Vol. 7, 1996, pp. 23 

277–287. https://doi.org/10.1109/VNIS.1996.1623758. 24 

11.  Reid, J., and J. E. Hummer. Travel Time Comparisons between Seven Unconventional 25 

Arterial Intersection Designs. Transportation Research Record: Journal of the 26 

Transportation Research Board, No. 1751, 2007, pp. 56–66. 27 

12.  Xuan, Y., V. V. Gayah, M. J. Cassidy, and C. F. Daganzo. Presignal Used to Increase Bus-28 

and Car-Carrying Capacity at Intersections. Transportation Research Record: Journal of 29 

the Transportation Research Board, No. 2315, 2012, pp. 191–196. 30 

https://doi.org/10.3141/2315-20. 31 

13.  Xuan, Y., C. F. Daganzo, and M. J. Cassidy. Increasing the Capacity of Signalized 32 

Intersections with Separate Left Turn Phases. Transportation Research Part B: 33 

Methodological, Vol. 45, No. 5, 2011, pp. 769–781. 34 

https://doi.org/10.1016/j.trb.2011.02.009. 35 

14.  Gayah, V. V., and C. F. Daganzo. Analytical Capacity Comparison of One-Way and Two-36 

Way Signalized Street Networks. Transportation Research Record: Journal of the 37 

Transportation Research Board, No. 2301, 2012, pp. 76–85. 38 

15.  Ortigosa, J., V. V. Gayah, and M. Menendez. Analysis of Network Exit Functions for 39 

Various Urban Grid Network Configurations. Transportation Research Record: Journal of 40 

the Transportation Research Board, No. 2491, 2015, pp. 12–21. 41 



Bayrak and Gayah  20 

16.  Ortigosa, J., V. V. Gayah, and M. Menendez. Analysis of One-Way and Two-Way Street 1 

Configurations on Urban Grids. Transportmetrica B: Transport Dynamics, Vol. 7, No. 1, 2 

2019, pp. 61–81. 3 

17.  DePrator, A., O. Hitchcock, and V. V. Gayah. Improving Urban Street Network Efficiency 4 

by Prohibiting Left Turns at Signalized Intersections. Transportation Research Record: 5 

Journal of the Transportation Research Board, Vol. 2622, No. 1, 2017, pp. 58–69. 6 

18.  Ortigosa, J., and M. Menendez. Traffic Performance on Quasi-Grid Urban Structures. 7 

Cities, Vol. 36, 2014, pp. 18–27. 8 

19.  Wu, P., F. Chu, and C. Ada. Mixed-Integer Programming for a New Bus-Lane Reservation 9 

Problem. No. 2015-October, 2015, pp. 2782–2787. 10 

20.  Mesbah, M., M. Sarvi, and G. Currie. Optimization of Transit Priority in the Transportation 11 

Network Using a Genetic Algorithm. IEEE Transactions on Intelligent Transportation 12 

Systems, Vol. 12, No. 3, 2011, pp. 908–919. https://doi.org/10.1109/TITS.2011.2144974. 13 

21.  Mesbah, M., M. Sarvi, and G. Currie. New Methodology for Optimizing Transit Priority at 14 

the Network Level. Transportation Research Record: Journal of the Transportation 15 

Research Board, Vol. 2089, No. 1, 2008, pp. 93–100. https://doi.org/10.3141/2089-12. 16 

22.  Bagherian, M., M. Mesbah, and L. Ferreira. Using Delay Functions to Evaluate Transit 17 

Priority at Signals. Public Transportation, Vol. 7, 2015, pp. 61–75. 18 

https://doi.org/10.1007/s12469-014-0090-3. 19 

23.  Bayrak, M., and S. I. Guler. Optimizing Bus Lane Placement on Networks While 20 

Accounting for Queue Spillbacks. No. 2018-November, 2018, pp. 920–925. 21 

24.  Bayrak, M., and S. I. Guler. Determining Optimum Transit Signal Priority Implementation 22 

Locations on a Network. Transportation Research Record: Journal of the Transportation 23 

Research Board, 2020, p. 036119812093479. https://doi.org/10.1177/0361198120934792. 24 

25.  Ahn, K., and H. Rakha. System-Wide Impacts of Green Extension Transit Signal Priority. 25 

2006. 26 

26.  Tang, Q., and B. Friedrich. Minimization of Travel Time in Signalized Networks by 27 

Prohibiting Left Turns. Transportation Research Procedia, Vol. 14, No. 14, 2016, pp. 28 

3446–3455. https://doi.org/10.1016/j.trpro.2016.05.306. 29 

27.  Hajbabaie, A., J. C. Medina, and R. F. Benekohal. Effects of ITS-Based Left Turn Policies 30 

on Network Performance. 13th International IEEE Conference on Intelligent 31 

Transportation Systems, 2010, pp. 80–84. https://doi.org/10.1109/ITSC.2010.5625269. 32 

28.  Chowdhury, M., N. Derov, P. Tan, and A. Sadek. Prohibiting Left-Turn Movements at Mid-33 

Block Unsignalized Driveways: Simulation Analysis. ASCE Journal of Transportation 34 

Engineering, Vol. 4, No. 279, 2005, pp. 279–295. 35 

29.  Baluja, S. Population-Based Incremental Learning: A Method for Integrating Genetic 36 

Search Based Function Optimization and Competitive Learning. Report No. CMS-CS-94-37 

163, 1994. 38 

30.  Pelikan, M., D. E. Goldberg, and E. Cantú-Paz. BOA: The Bayesian Optimization 39 

Algorithm. 40 



Bayrak and Gayah  21 

31.  Barceló, J., and J. Casas. Dynamic Network Simulation with AIMSUN. In Simulation 1 

Approaches in Transportation Analysis, Springer, pp. 57–98. 2 

32.  Daganzo, C. F., V. V. Gayah, and E. J. Gonzales. Macroscopic Relations of Urban Traffic 3 

Variables: Bifurcations, Multivaluedness and Instability. Transportation Research Part B: 4 

Methodological, Vol. 45, No. 1, 2011, pp. 278–288. 5 

33.  Miller, B. L., and D. E. Goldberg. Genetic Algorithms , Tournament Selection, and the 6 

Effects of Noise. 1995. 7 

34.  Schwarz, G. Estimating the Dimension of a Model. Annals of Statistics, Vol. 6, No. 2, 1978, 8 

pp. 461–464. https://doi.org/10.1214/AOS/1176344136. 9 

35.  Henrion, M. Propagating Uncertainty in Bayesian Networks by Probabilistic Logic 10 

Sampling. In Machine Intelligence and Pattern Recognition, North-Holland, pp. 149–163. 11 

 12 


