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ABSTRACT

Restricting left turns throughout a network improves overall flow capacity by reducing conflicts
between left-turning and through-moving vehicles. However, doing so comes with the drawback
of requiring vehicles to travel longer distances on average. Implementing these restrictions at only
a subset of locations can help by balancing this tradeoff between increased capacity and longer
trips. Unfortunately, identifying exactly where these restrictions should be implemented is a
complex problem due to the very large number of configurations that must be tested and
interdependencies between left-turn restriction decisions at adjacent intersections. This paper
implements three heuristic solution algorithms—population-based incremental learning, Bayesian
optimization and a hybrid of the two—to identify optimal locations of left-turn restrictions at
individual intersections in a grid network. Scenarios are tested in which restriction decisions are
the same for all intersection approaches and in which this decision is only the same for approaches
in the same direction. The latter case is particularly complex as it increases the number of potential
configurations exponentially. The results suggest all methods can be effectively used to solve this
problem, though the population-based incremental learning method appears to perform the best in
the more complex scenario. The proposed framework and procedures can be applied to realistic
city networks to identify where left-turn restrictions should be implemented to improve overall
network operations.
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INTRODUCTION

Conflicting left turns represent a significant safety issue at signalized intersections. Left-turning
vehicles have to cross the path opposing through vehicles to traverse the intersection and managing
these left-turning and opposing through vehicle conflicts is a primary driver of Signal Phasing and
Timing (SPaT) plans (/, 2). Providing protected phases for left turns is the safest option as it
eliminates these conflicts. However, this takes time away from through movements and introduces
additional lost times during which the intersection is not serving any vehicles, both of which can
reduce overall intersection capacity (3, 4). Serving left turns in a permitted manner requires drivers
to select appropriate gaps in which to move, which is less safe since the conflicts still exist. This
might be more operationally efficient if sufficient gaps exist for left-turning vehicles to move;
however, the left-turning vehicles might block other vehicles from discharging if they have to wait
a long time for an appropriate gap (35). Dedicated left-turn pockets can be installed to mitigate this,
but queued left-turn vehicles can still spillover and block vehicles in adjacent lanes from
discharging through the intersection (6).

Several strategies have been proposed to mitigate these issues. Alternative intersection
designs have been developed that allow left-turning vehicles in non-traditional ways. These
strategies manage left-turn conflicts by using additional features (e.g., downstream U-turns or
additional signals) and/or changing the intersection geometry (7—13). However, these designs are
generally not well-suited for urban areas with limited road space since they require large spatial
footprints or long blocks.

Instead, conflicting left turns can be simply restricted at signalized intersections. This
simplifies the SPaT plan and allows the intersection to achieve higher overall flow capacities due
to fewer change intervals and use of only through/right-turn phases. However, such restrictions
will require vehicles that would have otherwise made a left turn to reroute, which may induce
longer average travel distances. Several recent studies have examined the competing impacts of
such left-turn restrictions enacted across entire grid networks (/4—18). The studies generally agree
that eliminating left turns can improve overall network operation (specifically, the rate that trips
can be completed in the network), particularly when the network is operating near its capacity.
However, these prior studies fail to consider the optimal spatial location of such restrictions at
individual intersections within a network.

This type of problem is most closely related to general facility location problems in the
transportation research literature, which are classified as NP-hard optimization problems due to
the large solution space and lack of analytical solution (/9). Within urban networks, many studies
have proposed methods to determine optimal locations of treatments along individual links—e.g.,
optimal bus lanes locations (20-23)—or at individual intersections—e.g., optimal transit signal
priority locations (24, 25). Very few studies have examined the application of left-turn restrictions
or alternative left-turn treatments at individual intersections on a network. The problem is complex
as changes in left-turn treatments at one intersection might influence traffic patterns and operations
at adjacent intersections. Additionally, vehicles will reroute themselves due to the left-turn
restrictions enacted. These issues do not facilitate the expression of the optimal left-turn restriction
problem as a traditional mathematical program. Instead, one study proposed a generic
methodology to identify intersections that should restrict left turns that relied on fairly simplistic
traffic models that did not account for traffic dynamics, such as queue spillbacks and changes in
vehicle routing (26). Others utilized simulation to test the performance of a set of candidate left-
turn restriction configurations but did not necessarily perform any optimization (27, 2§).
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The purpose of this paper is to apply and compare several methods to determine the optimal
spatial configuration of left-turn restrictions within a dense, grid-like urban network. Several
heuristic algorithms are considered to identify candidate configurations, the performance of which
are tested in a micro-simulation environment. The first is a population-based incremental learning
(PBIL) algorithm that combines the evolutionary nature of genetic algorithms with competitive
learning features (29). The second is a Bayesian optimization algorithm that seeks to directly learn
and leverage dependencies inherent within the solution space using Bayesian networks (30). The
final method is a hybrid of the two that uses the PBIL method to generate a set of candidate
solutions and then implements a Bayesian network to generate similar solutions that might also
perform well. The results suggest that these methods are generally suitable for the optimal spatial
left-turn optimization problem and provide insights into the conditions under which each might
perform best.

The remainder of this paper is organized as follows. First, the proposed optimization
methods and experimental setup are described. Then, the results of the proposed algorithms are
provided for two optimization scenarios that are considered. Finally, some concluding remarks are
provided.

METHODOLOGY

This section describes the methods that were used in this paper to determine where left turns should
be restricted spatially across an urban network. The remainder of this section describes the methods
used to optimize the left-turn restrictions and the network-setup.

Optimization of left-turn restriction configurations

The methodology used in this study can be classified as a bi-level optimization algorithm. The
upper level involves the selection of left-turn restriction locations, the lower level simulates the
traffic for the selected left-turn restriction locations and estimates the total travel time of the
network. The next two subsections describe the methods used for the network evaluation and the
selection of left-turn restriction locations.

The lower level network assessment

The lower of the bi-level optimization algorithm aims to calculate total travel time for a given left-
turn restriction configuration. For this purpose, an accurate method is needed to capture routing
behavior of drivers, the effects of network elements (e.g., traffic signals), and the related traffic
phenomena (e.g., queue spillbacks, heterogeneous driver behavior). Due to the accuracy needed
for travel time calculation, the Aimsun micro-simulation platform is selected for network
assessment (37).

The stochastic c-logit route choice model is used for vehicle routing within the micro-
simulation environment. This model emulates a user-equilibrium routing pattern in which drivers
select the route to minimize their own expected travel time. The drivers make the routing decision
when they initiate the trip and the decisions are based on the average travel time on links over the
past 3 minutes. However, a portion of the drivers (50% in the tests performed in this paper) are
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allowed to change their route during their trip based on the current traffic situation. The rerouting
occurs at regular intervals of 3 minutes. Previous research has shown that such adaptive traffic
routing algorithms provide better network-wide operational performance (32).

The upper level optimization

The upper level optimization procedure seeks to identify the optimal configuration of left-turn
restrictions—i.e., the locations at which left-turn restrictions should be enacted to optimal traffic
performance. Here, traffic performance is measured using total travel time that is experienced by
all vehicles during a simulated peak period. Three different optimization algorithms are considered
for this upper level optimization. These methods are selected due to their capability of accounting
for spatial dependencies in the left-turn restriction decisions at individual locations.

Population-based incremental learning

Population-based incremental learning combines the generational evolution of genetic algorithms
with competitive learning (29). The flowchart of the PBIL algorithm is shown in FIGURE 1. The
algorithm has four basic steps that will be described in this section: 1) initiation, 2) generation and
evaluation, 3) mutation and update of the probability vector, and 4) termination.

( Generate initial population - Step 1 )

v

Evaluate initial population- Step 2

v

Select the best solution vector - Step 3 [4—

v

Update probability vector- Step 3

v

Generate a new population - Step 2

v

Evaluate the new population - Step 2

Check

Stopping
criteria

False

Output the best configuration found - Step 4

FIGURE 1. Flow chart of population-based incremental learning
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The initiation step involves generating an initial probability vector, P!, that serves as a
starting point for the algorithm. Each element i of this vector is associated with a specific
intersection (or intersection approach) and the corresponding value in the initial probability vector,
P!, represents the probability that left-turn restriction is applied at that intersection (or approach).
Thus, the size of the probability vector is equal to the number of candidate locations that left-turn
restrictions are considered for implementation. In this paper, the probability vector is initiated by
setting the value of each element to 0.5. This represents a truly random guess with no prior
knowledge on if left-turn restrictions should be applied at each candidate location.

The generation and evaluation step generates a population of candidate left-turn restriction
configurations (60 individual configurations in this paper) by randomly sampling the solution
space using the probability vector associated with the current generation, P*. Each candidate
configuration is represented by a vector of the same size as P and consists of binary values, where
the value 1 represents a left-turn restriction and the value 0 represents no left-turn restriction. After
the set of candidate configurations are generated, each is evaluated by the lower level to obtain the
total travel time value associated with each configuration.

After the evaluation, the probability vector is updated by learning from the best solution
vector (i.e. the configuration with the lowest total travel time) in the current generation, BY, and
the worst solution in the current generation. The former adjustment (1) represents positive learning,
while the latter (2) represents negative learning.

Pit+1 — (Pit X (1 _ LR+)) + (Blt X LR+) (1)
PI*' =Pt x (1+LR™) —wf X LR @)

where, P! is the probability of LTs at a location i in generation t, LR™ is the positive learning rate,
LR~ is the negative learning rate, and Bf is the value (0 or 1) of the ith position of the best solution
found in generation t, and wf is the value of the ith position of the worst solution found in
generation t. Equation (1) essentially adjusts the probability vector so that future solutions that are
evaluated are more likely to adopt features of the best solution found in the current generation,
while Equation (2) essentially adjusts the probability vector so that future less likely to adopt
features of the worst solution found in the current generation.

Similar to other evolutionary algorithms, PBIL converges around a solution as the search
progresses. However, PBIL allows explicit control of the speed of convergence with the learning
rate parameters, LR™ and LR™. The learning rate parameters enables the PBIL to explore a larger
portion of the solution space, which is essential for problems with dependencies, before starting to
converge to a solution. The LR values seek to create a balance between the portion of the solution
space explored and the convergence speed. In this study, we apply LR* = 0.1 and LR~ = 0. The
latter is selected as negative learning might restrict the search for optimal solutions in some cases.

In addition to the learning process, the mutation operator is also responsible for expanding
the explored solution space by randomly changing the probabilities in Pt by some magnitude of
Am = 0.05. Mutation is applied with a predefined random probability m = 0.02, known as the
mutation rate. Each element in the solution vector is randomly updated according to (3) with
probability m.

PH*1 =Pl x (1 - Am) + Am (3)



O NWn A~ W=

17

18
19

20

Bayrak and Gayah 6

After the probability vector is updated using (1-3), steps 2 and 3 are repeated until the
termination criteria is met. The termination criteria can be based on convergence of probability
vector or maximum number of generations. In this study, the PBIL algorithm is terminated after
60 generations.

Bavesian optimization algorithm (BOA)

PBIL relies on random sampling of potential solutions and learning about the performance of these
sampled solutions to generate better solutions. Unlike PBIL, the BOA does not assume an
independent relationship between decision variables (e.g., locations of left-turn restrictions). BOA
aims to learn the dependency structure between decision variables using Bayesian networks and
uses this information to generate better solutions. The Bayesian networks represent the
dependencies between left-turn restriction decisions at individual intersection. Each node of a
Bayesian network corresponds to a possible left-turn restriction location, and each directed edge
of a Bayesian network represents a dependent relationship between locations of left-turn
restrictions. The flowchart of the BOA is shown in FIGURE 2.

( Generate initial population - Step 1 )

v

Evaluate initialpopulation - Step 1

v

Select parents of Bayesian network - Step 2

v

Fit a Bayesian network- Step 3

v

Generate offspring population - Step 4

v

Evaluate offspringpopulation - Step 5

v

Recombine offspring and parent population - Step 6

False

Check
Stopping
criteria

Output the best configuration found - Step 7

FIGURE 2. Flow chart of Bayesian optimization algorithm
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The BOA has 7 steps: 1) initiation, 2) selection, 3) Bayesian network construction, 4)
offspring creation, 5) evaluation, 6) recombination, and 7) termination. The algorithm starts by
randomly generating an initial population (in this case, 60) individual left-turn restriction
configurations. Similar to PBIL, each solution vector is a binary vector that represents the left-turn
restriction at each location. After the initial population is generated, each individual solution is
evaluated by the lower level to compute the total travel time associated with each left-turn
restriction configuration.

The selection step selects the parent solutions that will be used for Bayesian network
construction. A tournament selection method is used (33) in which two left-turn restriction
configurations are randomly selected from the initial population and the better performing
configuration of the two options is identified as a parent. The process repeats itself until a pre-
specified number of parents are determined (30 in this paper), where repetition is allowed (i.e., a
particular solution can be used as a parent multiple times if randomly selected).

A Bayesian network is then constructed using a greedy algorithm. The procedure used to
construct the Bayesian network is essentially a separate optimization algorithm inside the BOA.
The procedure starts with a Bayesian network with no edges (i.e., a network with no dependencies).
Then, basic graph operations (edge addition, removal, and reversal) are applied to a random node
pair. The operation that increases the quality of the Bayesian network most is kept and the others
are discarded. These two steps (testing and selecting operations) are repeated until the network can
no longer be improved. Notice that only one graph operation is performed at each cycle of the
Bayesian network construction process. For the selection of the graph operation that is applied, the
quality of the Bayesian network is assessed with a scoring metric. In this study, the Bayesian
information criterion (BIC) is used as a scoring metric (34). The BIC assumes that the number of
dependencies in the network is proportional to the amount of compression of the data allowed by
the Bayesian network. Therefore, a Bayesian network structure that maximizes the BIC metric can
describe the dependencies.

Next, offspring solutions are generated by sampling the fitted Bayesian network. In the
Bayesian network, each variable (i.e., the of left-turn restrictions at a given intersection) can be
categorized into one of three groups: 1) completely independent (i.e., no links are formed in the
Bayesian network); 2) dependent on others; and, 3) others are dependent on this variable (i.e., the
value of the variables in group 2 depend on the value of the variables in group 3). In order to
sample from these sets of variables, a forward simulation process is used (35). This sampling is
done based on the conditional probabilities encoded in the Bayesian network, by assigning first
the value (0 — no left-turn restrictions, or 1 — left-turn restriction) of independent variables (those
in group 1), next the value of variables in group 3 (since the values of these do not depend on other
variables) and finally by assigning the values of variables in group 2 (since their values depend on
the values of the variables in group 3). The sampling process is repeated until 30 offspring
solutions are generated.

After the offspring solutions are generated, they are evaluated by the lower level. After the
evaluation step, the offspring solutions and the previous population are recombined by replacing
the worse half of the population with the offspring solutions. Similar to PBIL, BOA is run for 60
generations. The steps 2-6 are repeated until enough number of generations are evaluated.
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PBIL-BOA hybrid algorithm

Both BOA and PBIL are capable algorithms to solve complicated problems but have several
limitations. PBIL samples configurations from different parts of the solution space due to its
exploration focus, but this makes the PBIL algorithm slow to converge to a point in solution space
(29). BOA is faster to converge to a solution due to its focus on learning dependencies between
decision variables, but requires a large population to accurately learn the dependencies between
decision variables for problems with a large number of dependent decision variables. When the
solution evaluation is computationally intensive (e.g., like in the micro-simulation approach that
is applied here) large number of evaluations may not be feasible. Thus, in this study, a hybrid
method that combines the exploration capability of PBIL and dependency learning capability of
BOA is proposed.

The hybrid algorithm has three main steps. First, generate a large set of promising solutions
(i.e., a set of left-turn restriction configurations that has good total travel time values). Second, use
this large set of solutions to create a Bayesian network. Finally, use the constructed Bayesian
network to generate new solutions. The flowchart of the Hybrid algorithm is shown in FIGURE 3.

( Start parallel PBIL runs - Step 1 $

v

Collect and rank all tested configurations - Step 1

v

Select top 500 LT configurations - Step 1

v

Fit a Bayesiannetwork - Step 2

v

Produce a new set of configurations - Step 3

v

Evaluate the new set- Step 3

v

Output the best configuration found

FIGURE 3. Flow chart of PBIL-BOA hybrid optimization algorithm

The first step involves shorter independent PBIL runs with small populations. The aim of
this step is not to necessarily find the global optimum solution. Instead, the aim is to identify
promising solutions from different parts of the solutions space. Thus, several PBIL runs with
different initial populations are used to identify promising solutions. To select the sample that will
be used for Bayesian network construction, all configurations evaluated during the independent
PBIL runs are ranked, and the top 500 unique configurations are selected for Bayesian network
construction.
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The selected sample of promising configurations are then used to construct a Bayesian
network. The algorithm used for Bayesian network construction is similar to the one used for BOA
algorithm. Since a much larger population (500 unique configurations) is used in the hybrid
algorithm to create the Bayesian network compared to BOA’s procedure, the hybrid algorithm is
more likely to capture dependencies between decision variables. After the Bayesian network
creation, a new set of solutions is generated by forward simulation, similar to BOA. Finally, the
new set of solutions are evaluated by the lower level to estimate total travel time values.

Experimental setup

The methodology described above is tested using an illustrative network shown in FIGURE 4. The
test network is a 8x8 grid. The block length is 200 meters. Each link is coded as an arterial in
Aimsun and has two lanes per direction and the speed limit and capacity of links are 48 km/h and
1600 veh/h. Every intersection in the network is a signalized intersection with 90-sec cycle length
without any offset between adjacent intersections. During each cycle, each direction receives 42
seconds of green time with three seconds of change interval is applied between consecutive phases.
Left turns are either set to permitted operation during each phase or restricted altogether. When
permitted, left-turning vehicles waiting for a gap at the intersection tend to block one lane and
reduce overall intersection capacity. Origin and destination nodes are located in the middle of each
block and 32 entry/exit points on the periphery of the network. A uniform demand pattern in which
each origin generates the same number of trips (on average) and each destination is equally like to
be selected is used. The simulation run using an average of 367 total trips per minute. The selected
demand level is enough to saturate the network when LTs are permitted at all intersections.
However, due to the randomness of Aimsun’s simulation process, there are small variations in the
uniform demand pattern in each simulation.

ul u ui u] o ui u i
O Origin and destinatin nodes

FIGURE 4. Test network and OD locations
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The BOA, PBIL, and hybrid algorithms described in the methodology section are tested on
two different optimization scenarios related to how left-turn restrictions are implemented at
individual intersections. The first scenario considers the case where a single left-turn restriction is
made for each intersection. In this case, the same decision (restrict or allow left turns) is made at
all intersection approaches at a given intersection. In this scenario, there are 64 possible left-turn
restriction locations for this scenario. The second scenario considers the case where multiple left-
turn restriction decisions are made at each intersection. Specifically, left-turn restrictions decisions
are made independently at each intersection for each of the two competing directions (e.g.,
north/south and east/west) at each intersection. In this scenario, there are two left-turn restriction
decisions that can be made for each of the 64 intersections for a total of 128 binary decisions.

Given that the number of possible left-turn restriction configurations increases
exponentially with the number of possible restriction locations, the number of possible left-turn
restriction configurations for both scenarios is extremely large (24 in the first scenario, (2 x 2)%*
in the second). To reduce the size of the solution space, several constraints are implemented. First,
a symmetry constraint is implemented. Since the network is a perfect grid with a uniform demand
pattern, the global optimum solution is likely to be rotationally symmetrical. For both scenarios,
the upper-level algorithms only search for left-turn restriction configurations that are rotationally
symmetrical around the center of the network. The second constraint is left-turn restrictions are
never applied at the intersections at the corners of the network to always provide a feasible path
between all OD pairs. These two constraints reduced the number of possible left-turn restriction
configurations to 32,768 and 1.07x10° for first and second scenarios, respectively. For the first
scenario, the reduced number of possible left-turn restriction configurations is low enough to use
brute-force enumeration to determine the global optimal configuration.

RESULTS

This section describes the results of the optimal left-turn restriction configuration problem using
the three proposed methods. First, the results of the first scenario with only one restriction decision
per intersection are provided. Then, the results of the second scenario with two decisions per
intersection are provided.

Scenario 1: One left-turn restriction decision per intersection

The PBIL, BOA, and hybrid algorithms were run multiple times to obtain best-performing
solutions. Multiple runs of each algorithm were performed since they are heuristic methods that
rely on random processes, particularly the first set of randomly generated solutions. The PBIL and
BOA algorithm were each run 15 times since they were the most well-known of the three methods
tested but also the most computationally intensive. The hybrid optimization procedure was
repeated 100 times to learn more about how well it is able to improve upon the PBIL and BOA
methods. The sample used for Bayesian network construction contains the best 500 left-turn
restriction configurations found during a subset of independent PBIL runs. At each instance of this
algorithm, a Bayesian network that represents the dependencies between left-turn restriction
locations was constructed by using these 500 configurations. Using the constructed Bayesian
network, 500 new configurations are generated. Since Bayesian network construction and new
configuration generation are heuristic processes, each run of the hybrid algorithm created a
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different set of new solutions. The best solutions found in each instance of the Hybrid algorithm
is presented below. The results of the optimal configurations obtained from these methods are
provided in FIGURE 5a. From the 130 total optimization runs, only seven unique left-turn
configurations were identified: five unique configurations were found using the PBIL approach,
five unique configurations were found using the PBIL approach, and four of the configurations are
common across the two methods. In addition, to these heuristic methods, a brute-force enumerate
approach was applied to identify the global optimal solution. In this method, all 32,768 potential
configurations were tested to determine the configuration with the lowest travel time.
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FIGURE 5. Results of Scenario 1. (a) Optimal left-turn restriction configurations obtained by proposed

algorithms; and, (b) common locations of left-turn restrictions identified in top-performing algorithms.
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The implementation of left-turn restrictions at a subset of intersections using any of the
methods reduces travel time significantly compared to implementing left-turn restrictions at no
intersections (at least 3.8% reduction) or at all intersections (at least 12.3% reduction). Note that
accommodating left turns at all intersections outperforms restricting left turns at all intersections
due to the low level of congestion in the network. Under these conditions, it is not necessary to
prohibit left turns everywhere since some intersections are under-saturated.

All configurations obtained from the proposed optimization methods and the global
optimal configuration are presented in FIGURE 6. In this figure, red dots represent intersections
at which left-turn restrictions are applied. Note that only seven unique configurations were
identified: five using PBIL, five using the BOA, and five using the hybrid approach. The results
reveal that all methods are able to identify a solution that provides travel times within 1.7% of the
global optimal solution; i.e., the maximum optimality gap of any solution identified was 1.71%.
Comparing the three methods, the average optimality gap of the PBIL, BOA and hybrid methods
are 1.51%, 1.44%, and 1.11%, respectively. Overall, this suggest strong performance across the
three optimization methods. However, the hybrid method appears to provide better results. For
one, it has the smallest average optimality gap. In addition, it is the only method to identify the
global optimal solution (though this was just found 2% of the times and can be attributed to
randomness). Still, was able to outperform or equal the PBIL method in 92% of runs and
outperform or equal the BOA method 47% of runs. A comparison of these methods by TTT
produced is illustrated in FIGURE 6.

6

38010 . . |

375/ | I Hybrid

' I BOA
73761 CpBIL
= 3740
=
£3721
h

3.7

3.68

0 20 40 60 80 100 120
Rank

FIGURE 6. Ranking of best-performing left-turn restriction configurations identified (Scenario 1)

A review of these configurations suggests some common features about where left-turn
restrictions should be enacted. FIGURE 5b overlays the configurations so that darker points
represent intersections at which left-turn restrictions are applied more commonly in the
configurations shown in FIGURE 5a. Notice that left-turn restrictions in the best-performing
solutions are more likely in the central portion of the network. This is reasonable as these locations
serve the highest flows (combined across all approaches) in the network. Restricting left turns at
these locations increases the capacity at these locations, which helps to improve overall network
operations. Although vehicles will have to reroute when left turns are restricted, the central portion
of the network has many alternative routes that can be used for those vehicles wishing to make left
turns. When left turns are restricted at these central locations, this rerouting can often occur without
additional incurred travel distance. By contrast, left-turn restrictions are less likely on the periphery
of the network. This is reasonable as these intersections generally carry lower total flows so the
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additional capacity gained by restricting left turns is less beneficial. Furthermore, these
intersections experience a higher proportion of vehicles turning left so left-turn restrictions would
cause more vehicles to reroute. Finally, left-turn restrictions at these periphery locations are more
likely to induce additional travel distance due fewer routing options available at the edge of the
network.

Scenario 2: Two left-turn restriction decisions per intersection

The optimization procedure was then repeated for the scenario in which two left-turn restrictions
decisions are made per intersection. This is a much more challenging problem as there are 32,768
times more feasible configurations. Because of this, a brute-force enumeration is not possible and
thus, the global optimal configuration is not known in this scenario. As with Scenario 1, the PBIL,
BOA and hybrid methods were repeated multiple times. However, the number of times were
reduced due to the computational burden required. Thus, the PBIL method was performed four
times, the BOA method was performed four times, and the hybrid method was performed 35 times.

Comparing the results of this scenario with Scenario 1, we find that separating the left-turn
restrictions between the north/south and east/west approaches provides more efficient network
operations (i.e., reduced travel time). This is expected since having more options is more flexible
and left-turn restrictions do not necessarily need to be enacted simultaneously at all intersection
approaches. Overall, travel time is found to be reduced by an additional 1.25% (worst-performing
configuration identified) to 2.38% (best-performing configuration identified) over the global
optimal solution in Scenario 1. This represents a reduction in total travel time over not
implementing any left-turn restrictions at any intersections of 7.7% and a reduction in total travel
time over implementing left-turn restrictions at all approaches of all intersections of 15.8%. All
methods were always able to outperform the best-performing configuration identified in Scenario
1, which suggests that these methods are still able to improve upon the problem in this more
flexible case even though the solution space is much larger. FIGURE 7 provides a graphical
comparison of the configurations identified using each method.
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FIGURE 7. Ranking of best-performing left-turn restriction configurations identified (Scenario 2)

The unique configurations that were identified are shown in FIGURE 8a. In this figure, red
vertical or horizontal lines represent left-turn restrictions in the north-south or east-west direction,
respectively, implemented at a specific intersection. As shown, only 17 unique configurations were
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identified. The PBIL was able to provide the best-performing configuration, while the
configurations identified using the BOA and hybrid methods performed a bit worse. A review of
these configurations again reveals common features about where left-turn restrictions should be
enacted. FIGURE 8b overlays the configurations so that darker lines represent approaches at which
left-turn restrictions are applied more commonly in the configurations shown in FIGURE 8a. A
very clear pattern of common left-turn restriction locations emerges from this overlapping figure.
The general pattern is similar to Scenario 1: left-turn restrictions occur frequently in the central
portion of the network and generally do not occur in the periphery of the network. These reasons
are the same as those in the previous scenario. However, there are some key differences. Left turns
are generally permitted at approaches that lead from the central portion of the network toward the
periphery of the network, whereas they are restricted at those approaches leading toward the central
portion of the network.
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FIGURE 8. Results of Scenario 2.

(@)

- -1

(b)

(a) Optimal left-turn restriction configurations obtained by proposed

algorithms; and, (b) common locations of left-turn restrictions identified in top-performing algorithms.
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DISCUSSION AND CONCLUDING REMARKS

This paper has extended recent work on the impact of restricting left turns at signalized
intersections. It specifically considers the identification of which intersections left-turn restrictions
should be implemented at to maximize overall network efficiency, measured by the total travel
time for all vehicles on the network. Two scenarios are considered: one where the same left-turn
restriction decision is made for all approaches at an intersection and another where two decisions
are made (one for the north-south approach and another for the east-west approach). Both are
complex combinatorial problems with an incredibly large solution space. To determine optimal
left-turn restriction configurations, three heuristic methods are compared: a population-based
incremental learning algorithm, a Bayesian optimization algorithm and a hybrid of the two.

The results reveal that all three methods are fairly reasonable for solving this problem and
identifying a left-turn configuration that reduces total travel time within the network. In general,
the population-based incremental learning algorithm performs slightly better than the other two
methods, particularly in the second scenario where multiple left-turn restriction decisions are made
at each intersection. However, the three methods provide configurations with consistent and
similar features. Namely, that left turns should be restricted at intersections in the inner portion of
the network that carry the largest vehicle flows, and left turns should be allowed at the intersections
in the periphery where flows are low and the proportion of vehicles making a left turn is higher.
In general, the two-decision-per-intersection case always provides lower travel times than the one-
decision-per-intersection case. While this is expected because it is more flexible, the fact that
better-performing configurations can be obtained even though the solution space is exponentially
greater is promising.

The results provide a general framework for how to implement such decisions at more
complicated and realistic network structures. While the actual configuration on any network would
be subject to its network-specific features and demand pattern, the overall pattern that were
observed here should be fairly general and serve as a good starting point that could be refined due
to network-specific features. Further work should also consider how these central left-turn
restrictions might influence overall network resilience to disruptions that might occur along links,
such as traffic crashes or bottlenecks caused by freight vehicles.
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