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STRETCHED EXPONENTIAL DECAY FOR SUBCRITICAL PARKING

TIMES ON Zd

MICHAEL DAMRON, HANBAEK LYU, AND DAVID SIVAKOFF

Abstract. In the parking model on Zd, each vertex is initially occupied by a car (with
probability p) or by a vacant parking spot (with probability 1 − p). Cars perform in-
dependent random walks and when they enter a vacant spot, they park there, thereby
rendering the spot occupied. Cars visiting occupied spots simply keep driving (continu-
ing their random walk). It is known that p = 1/2 is a critical value in the sense that the
origin is a.s. visited by finitely many distinct cars when p < 1/2, and by infinitely many
distinct cars when p ≥ 1/2. Furthermore, any given car a.s. eventually parks for p ≤ 1/2
and with positive probability does not park for p > 1/2. We study the subcritical phase
and prove that the tail of the parking time τ of the car initially at the origin obeys the
bounds

exp

(

−C1t
d

d+2

)

≤ Pp(τ > t) ≤ exp

(

−c2t
d

d+2

)

for p > 0 sufficiently small. For d = 1, we prove these inequalities for all p ∈ [0, 1/2).
This result presents an asymmetry with the supercritical phase (p > 1/2), where methods
of Bramson–Lebowitz imply that for d = 1 the corresponding tail of the parking time

of the parking spot of the origin decays like e−c
√

t. Our exponent d/(d + 2) also differs
from those previously obtained in the case of moving obstacles.

1. Statement of result

In this note, we study the tail of the distribution of the parking time of cars in the
subcritical phase for the parking model on Zd. The model was introduced in [5] and studied
further in [13] (a similar continuous-time particle system was introduced and studied earlier
in [3, 4]), and is roughly defined as follows. Each vertex is initially assigned either a car
(with probability p ∈ [0, 1]) or a vacant parking spot (with probability 1−p), independently
between vertices. Cars perform simple symmetric discrete-time random walks, and when
a car visits a vacant spot, it parks there. (If multiple cars visit the same vacant spot, the
tie is broken using independent uniform [0, 1] random variables.) If a car visits an occupied
spot, it does not park, and moves at the next timestep. (We refer the reader to [5] for a
more precise definition of the process. Our probability space is defined in Section 2.1.)

This parking model is a type of annihilating particle system, and can be described with
the short-hand rule A+B → 0, where cars are thought of as A particles, spots are B particles,
and A and B particles annihilate each other upon collision. There is a large literature of such
annihilating systems, and we only mention a few references including some for annihilating
random walk [1, 6, 8] and for two-type annihilating random walk [2]. From the other side,
the parking model can be viewed as a generalization of the study of parking functions, which
are certain types of hashing functions resulting from particles parking in order on a line (see
[10] and generalizations to trees in [7]).

In [3, 4, 5] it was shown that there is a phase transition in p: a.s. the origin is visited by
finitely many distinct cars for p < 1/2 (subcritical phase) and infinitely many for p ≥ 1/2
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(critical and supercritical phases). Furthermore, the parking time for the car of the origin (if
it exists) is finite a.s. for p ≤ 1/2, and infinite with positive probability when p > 1/2. Our
main result addresses the subcritical phase and determines the decay rate of the distribution
of the parking time of cars. To state it precisely, we use the following notation: for each
v ∈ Zd, the parking time τ (v) is

τ (v) :=
∞
∑

s=1

1{a car starts at v and is unparked at time s− 1}.(1)

When v = 0 we simply write τ for τ (0). Note that if a car does not start at v, the convention
taken is that τ (v) = 0. We also write Pp for the probability measure associated to the
parking model with parameter p.

We will prove here:

Theorem 1.1. For any p > 0, there exists C1 > 0 such that

Pp(τ > t) ≥ exp
(

−C1t
d

d+2

)

for all integers t ≥ 1.

For

p0 =

{

1
2 if d = 1
1
2

[

1−
√

1− (de)−2
]

if d ≥ 2,

if p ∈ [0, p0), then for some c2 = c2(p) > 0,

Pp(τ > t) ≤ p exp
(

−c2t
d

d+2

)

for all integers t ≥ 1

where c2(p) is bounded away from 0 on every closed subinterval of [0, p0).

Remark 1.2. For p < p0 we obtain Epτ < ∞ and consequently, by a mass transport argument
(Lemma 3.1 below) EpV < ∞, where V is the total number of visits to the origin by cars.
In [5], this was shown for p < (256d6e2)−1 ' d−6. Our value of p0 ' d−2 improves on this
bound.

Remark 1.3. The key ingredient in our proof is Proposition 2.3, which gives an exponential
tail bound on the exit time of a random walk from a connected subset of Zd of size n that
is uniform over all such subsets. This may be of independent interest, and our proof relies
on the first moment bound of [12] and spectral bounds in [11, Cor. 6.9.5, 6.9.6].

Remark 1.4. We expect similar bounds to hold in the continuous-time diffusion-limited
annihilating system (DLAS) with non-moving B particles, wherein A particles move as
continuous-time simple, symmetric random walks. (An analogue to the “busy subgraph
lemma” (Lemma 2.2) would need to be proved for the continuous time model, which would
no longer hold with a deterministic upper bound on the size of H . An upper bound with
exponential tails would suffice, and should be true.) In that model, if both A and B
particles perform continuous-time, simple, symmetric random walks with equal jump rates,
then Bramson-Lebowitz [2] have shown that the density of A particles decays to zero like
e−gd(t), with

gd(t) '











√
t d = 1

t/ log t d = 2

t d ≥ 3,

when p < 1/2 (in fact, their results are stronger than this). By a straightforward mass-
transport argument, this is the same as the decay rate of the tail of the annihilation time
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distribution of a single A particle. Therefore the above result indicates a clear difference
between the case of non-moving B-particles and moving B-particles.

Our result implies there is an asymmetry between stationary (spots) and mobile particles
(cars) due to an argument of [2], at least for d = 1. When d = 1, Theorem 1.1 states that
when p < 1/2 (so cars are in the minority), the distribution of the parking time of a car

decays like e−ct1/3 . In contrast, Theorem 1.5 below says that when p > 1/2 (spots are in

the minority), the distribution of the parking time of a spot decays like e−c
√
t.

Theorem 1.5. Let σ be the time at which the parking spot at the origin is parked in by a
car (where σ = 0 if there is no such spot). Suppose d = 1 and p > 1/2. Then there exist
constants a, b > 0 such that

e−a
√
t ≤ Pp(σ > t) ≤ e−b

√
t for all t ≥ 1.

Sketch proof of Theorem 1.5. The lower bound on the probability follows from an argument
similar to the proof of the lower bound in Theorem 1.1, given in Section 2.1. That is, the
spot at the origin survives beyond time t if all vertices within distance C

√
t of the origin are

initially spots, and all random walk trajectories associated to vertices beyond this distance
do not visit the origin by time t. This event has probability at least e−a

√
t.

The upper bound is more complicated and follows closely the argument of [2, Sec. 7, p. 363-
371]; we give a (very) brief sketch here. If the spot of the origin survives beyond time t, then
one can identify approximately

√
t many random walks (car trajectories) that must avoid

the origin. Since each trajectory has at least a uniformly positive probability c to reach the
origin in time t, one obtains the upper bound (1− c)c

√
t, which is of order e−b

√
t. To define

these random walks, one labels cars c1, c2, . . . as follows. Write D(j), j ≥ 0 for the initial
number of cars in [0, j] minus the initial number of spots. Let c1 be the car at the first
vertex j such that D(k) ≥ 0 for all k ≥ j. Define cr similarly: the car at the first vertex
j such that D(k) ≥ r − 1 for all k ≥ j. (These cars are a.s. well-defined because p > 1/2,
and for some c, C > 0, at least c

√
t labeled cars initially lie in [0, C

√
t] with probability at

least 1− e−c
√
t.) One can then pair cars and spots in the intervals between the cr’s: strictly

between the initial locations of cr and cr+1, proceeding from left to right, each car can be
paired uniquely to a spot initially to its right that is the first such unpaired spot. (Note
that some cars between the origin and the initial location of c1 remain unpaired.) Now, as
the parking process evolves, if a paired car parks in a spot that is paired to different car
(necessarily to its left), then this other car is re-paired with the spot that had been paired
with the first car. We focus now on the cars labeled {cr}. If cr parks in a paired spot,
then we reassign the label cr to the car that is paired with that spot. In this way, we see
that except for finitely many of the cr’s (which may park in the unpaired spots between the
origin and the initial location of c1), if the spot of the origin survives for time t, then none
of the cr’s can reach the origin by time t. Any cr that begins within distance C

√
t of the

origin has probability at least c > 0 to reach the origin within time t because the trajectory
of cr follows a random walk with only negative drift (each reassignment moves a car strictly
to the left). Therefore we find that the probability that the spot of the origin survives for

at least time t is at most (1− c)c
√
t + e−c

√
t, as claimed. !

As a corollary to Theorem 1.1, we also derive the small p asymptotic for the expected
total number of visits to the origin by cars. We say that a car visits x at time t ≥ 1 if it
is unparked at time t − 1 and moves to x at time t (it may or may not park at x). Each
time a car visits the site x is referred to as a visit. Let Vt denote the number of visits by all
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cars to the origin, 0, through time t. Multiple cars may visit 0 at the same time, and a car
may visit 0 at multiple times – these are all counted as distinct visits. Let V = limt→∞ Vt

denote the number of visits to the origin for all time. The asymptotic behaviors of E1/2Vt

and EpV as t → ∞ and p ↑ 1/2, respectively, are the subjects of [9, 13] on Zd. While it
remains an open question whether EpV < ∞ for all p < 1/2 and d ≥ 2, here we give the
small p asymptotic for EpV in every dimension.

Theorem 1.6. For all p ∈ [0, 1], we have EpV ≥ p+ p2. As p → 0 we have

EpV = p+O
(

p2(log p−1)(d+2)/d
)

,

where the constant in the O term depends on d.

Essentially, this says that for small p the origin is most likely never visited by a car, or
else it is visited once by a car that is initially adjacent to the origin.

2. Proof of Theorem 1.1

To formalize the model, we recall from [5, Sec. 2] that our space is

Ω =
(

{−1, 1} × (Zd)N × [0, 1]N
)Z

d

,

with probability measure Pp under which all coordinates are independent, and for each
v ∈ Zd, the three components are distributed as follows. The first coordinate is a random
variable with probability p to be 1 (if there is a car initially at v) and probability 1−p to be
−1 (otherwise). The second is a simple symmetric random walk started at v, which is the
path that an unparked car placed at v will follow (this path continues past the parking time).
The third is a sequence of i.i.d. uniform [0, 1] random variables to break ties if multiple cars
arrive at the same parking spot at the same time (the car that parks is the one with the
largest value of uniform variable whose index corresponds to the present time).

2.1. Lower bound. We first prove the easier inequality, the lower bound. The idea is to
force a large box centered at the origin initially to contain only cars, and for the car initially
at the origin to stay in this box until time t. Optimizing the size of this box gives the bound.
For any integer M > 0, let AM be the event that for all v ∈ [−M,M ]d, the vertex v initially
has a car. If AM occurs, and the car starting at 0 does not leave [−M,M ]d by time t, then
τ > t. By independence of the initial particle locations and the random walk trajectories,
we have

Pp(τ > t) ≥ Pp(AM , car starting at 0 stays in [−M,M ]d through time t)

= (1 − p)(2M+1)d
Pp(X stays in [−M,M ]d through time t).

Here, X = (Xt) is the random walk started at 0. By [11, Cor. 6.9.5, 6.9.6], the second factor
is bounded below by c4 exp

(

−C3t/M2
)

, so we obtain

Pp(τ > t) ≥ (1− p)(2M+1)d
(

c4 exp

(

−C3
t

M2

))

= c4 exp

(

−C3
t

M2
+ (2M + 1)d log(1 − p)

)

≥ c4 exp

(

−C5

(

t

M2
+Md

))

,
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where C5 depends on p and d. Last, we set M = +t1/(d+2), to obtain the bound

c4 exp

(

−C5

(

t

+t
1

d+2 ,2
+ +t

1
d+2 ,d

))

≥ c6 exp
(

−C7t
d

d+2

)

.

By increasing C1 in the statement of Theorem 1.1, this proves the lower bound.

2.2. Upper bound. For the upper bound, we refine the “busy subgraph” method intro-
duced in [5]. Specifically, we combine it with consequences of a spectral isoperimetric bound
of Levine-Peres. To begin, let us recall the definition of a busy subgraph.

Definition 2.1. We call a finite subgraph H ⊂ Zd busy if H is connected and there are at
least as many cars as spots initially on H .

As stated in [5, p. 2111], for p < 1/2 and any fixed connected subgraph H of Zd with j
vertices,

(2) Pp(H is busy) ≤
(

2
√

p(1− p)
)j

.

We therefore, from this point on, restrict to p < 1/2.
Busy subgraphs are important because if τ > t > 0, we can always construct one that

contains the trajectory of the car of the origin until time t, as stated in [5, Lem. 4.12] and
reproduced below. In its statement, B(v, 2t) is the subgraph of Zd induced by the set of
vertices within #1-distance 2t of v.

Lemma 2.2. Let t ≥ 1 and v ∈ Zd. For each ω ∈ {τ (v) > t}, there is a busy subgraph
H = H(ω) such that H ⊆ B(v, 2t) and H contains the trajectory of the car started at v up
to time t.

Following [5, p. 2111], this lemma is used as follows. We first note that |B(0, 2t)| ≤
(4t+ 1)d. Letting X = (Xt)t≥0 be a simple symmetric random walk trajectory on Zd with
X0 = 0, we then apply (2), Lemma 2.2, and a union bound to obtain for integers t ≥ 1 that

Pp(τ > t)

≤
(4t+1)d
∑

j=1

∑

H connected
|H|=j,0∈H

(

2
√

p(1− p)
)j

P (Xk ∈ H for all 0 ≤ k ≤ t)

=

(4t+1)d
∑

j=1

∑

H connected
|H|=j,0∈H

(

2
√

p(1− p)
)j

P(tH > t).(3)

Here, tH is the exit time of H by X ,

tH = inf{t ≥ 0 : Xt /∈ H},

and we abuse notation by identifying H with its vertex set, so |H | is the number of vertices
in H and 0 ∈ H indicates that 0 is a vertex of H .

At this point, our strategy diverges from that of [5] as we can more finely control the
distribution of the exit time using the following new proposition. Again, although we use
the measure Pp, the bound does not depend on p.



6 MICHAEL DAMRON, HANBAEK LYU, AND DAVID SIVAKOFF

Proposition 2.3. Let (Xt)t≥0 be a simple symmetric random walk on Zd with X0 = 0.
There exists c8 > 0 such that

Pp(tH > t) ≤
√
n exp

(

−c8tn
− 2

d

)

for all integers t ≥ 1 and n ≥ 1, and all subgraphs H of Zd with |H | = n.

Note that the order of the exponent in Proposition 2.3 is sharp by considering H =
[−M,M ]d, which has Pp(tH > t) ≥ c4 exp

(

−C3t/M2
)

by [11, Cor. 6.9.5, 6.9.6], and taking
(2M + 1)d ≤ n.

We now show how to complete the proof of the upper bound in Theorem 1.1 given this
proposition. Afterward, we will finish by proving the proposition. Applying it to (3), using
the fact that there are at most (2de)j many connected subgraphs with j vertices containing
0, and the fact that if j = 1 then tH ≤ 1, we obtain

Pp(τ > t) ≤
(4t+1)d
∑

j=2

(

4de
√

p(1− p)
)j √

j exp
(

−c8tj
− 2

d

)

.

(When d = 1, the number of such subgraphs is at most j + 1.) If p < p0, the term
4de
√

p(1 − p) is less than 1 (and for d = 1 the corresponding term 2
√

p(1− p) is also less
than 1 for p < p0), and is bounded away from 1 for p in any closed subinterval of [0, p0), so
we can bound the last expression above by

(4de)2p
√
t

⌈

t
d

d+2

⌉

∑

j=2

exp
(

−c8tj
− 2

d

)

+ (4t+ 1)
d
2

∞
∑

j=

⌈

t
d

d+2

⌉

+1

(

4de
√

p(1− p)
)j

≤ (4de)2pt
3
2 exp

(

−c8t
d

d+2

)

+
(4t+ 1)

d
2

1− 4de
√

p(1− p)

(

4de
√

p(1− p)
)t

d
d+2 +1

≤ p · exp
(

−c2t
d

d+2

)

,

for c2 chosen sufficiently small and t ≥ C, where c2, C can be chosen to hold for all p in any
fixed, closed subinterval of [0, p0). To handle t ∈ [1, C), we write

Pp(τ > t) ≤ Pp(τ > 1)

≤ pPp(at least one nonzero site within #1-distance 2 of 0 is initially a car)

≤ p(1− (1− p0)
4d2

)

≤ pe−c2C
d/(d+2)

≤ pe−c2t
d/(d+2)

where c2 is possibly chosen smaller (but still bounded away from 0 on any closed subinterval
of [0, p0)). This gives the upper bound in Theorem 1.1.

We are therefore left to prove the proposition.

Proof of Proposition 2.3. For integers n, t ≥ 1, let H = Hn(t) be a subgraph of Zd with n
vertices that maximizes Pp(tH > t). Clearly H contains the origin. We will view a random
walk on H as a Markov chain, so we define the matrix

PH with entries (p(x, y))x,y∈H .
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Here, p(x, y) is the transition probability from x to y, which for our simple symmetric random
walk is 1/(2d) if x and y are neighbors, and 0 otherwise. Note that PH is symmetric but its
rows do not necessarily sum to 1, since transitions out of H are not represented. Write P t

H
for the t-th product of PH with itself, with entries (ptH(x, y)). Then

(4) Pp(tH > t) =
∑

y∈H

ptH(0, y).

Note that the right side actually equals maxx∈H
∑

y∈H ptH(x, y). Indeed, if x ∈ H , then
∑

y∈H

ptH(x, y) = Pp(t
x
H > t) = Pp(tHx > t).

Here, txH is the exit time from H of a random walk started at x, and Hx is the subgraph
obtained from H by shifting x to the origin. Since Hx is a subgraph of Zd with n vertices,
maximality of H implies that

∑

y∈H ptH(x, y) ≤
∑

y∈H ptH(0, y). In conclusion,

Pp(tH > t) = max
x∈H

∑

y∈H

ptH(x, y).

The term on the right is the maximal row-sum of P t
H , which equals

‖P t
H‖∞ = sup

z '=0

‖P t
Hz‖∞
‖z‖∞

,

the operator norm of the matrix P t
H considered as a map from #∞ to #∞. We conclude from

this and (4) that

(5) Pp(tH > t) = ‖P t
H‖∞.

We next relate the infinity-norm of P t
H to its eigenvalues. Letting α = αH be the largest

eigenvalue of PH , we claim that

(6) αt ≤ Pp(tH > t) ≤
√
nαt.

The lower bound follows from (5) by letting v be an eigenvector for PH and noting that
since v is also an eigenvector for P t

H with eigenvalue αt,

‖P t
H‖∞ ≥

‖P t
Hv‖∞
‖v‖∞

= αt.

For the upper bound, since αt = supz '=0 ‖P t
Hz‖2/‖z‖2 =: ‖P t

H‖2, we can apply (5) along
with the estimate

‖P t
Hz‖∞ ≤ ‖P t

Hz‖2 ≤ ‖P t
H‖2‖z‖2 ≤

√
n‖P t

H‖2‖z‖∞
to obtain ‖P t

H‖∞ ≤
√
n‖P t

H‖2 =
√
nαt.

After (6), we need a theorem of Levine–Peres [12, Thm. 1.2] on the expected exit time
of domains by random walk. It is a form of a spectral isoperimetric inequality, and implies
that there exists C9 > 0 such that

(7) sup
K⊂Zd,|K|=n

EptK ≤ C9EptBn for all n ≥ 1,

where Bn is the “lattice ball” of cardinality n. This is defined as the subgraph induced by
the “first n points in an ordering of points in Zd according to increasing distance from the
origin.” (Actually the result is more precise, but we only need the existence of C9.) Note
that Bn ⊂ [−C10n1/d, C10n1/d]d for some constant C10 > 0 and therefore

EptBn ≤ Ept[−C10n1/d,C10n1/d]d .
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By integrating the upper bound of [11, Cor. 6.9.6] we obtain the standard estimate that the
right side of the above inequality is bounded above by C11n2/d. Putting this in (7), we get

(8) sup
K⊂Zd,|K|=n

EptK ≤ C11n
2
d .

Last, we use the above tools to complete the proof. Using the lower bound of (6) and
inequality (8), we obtain

C11n
2
d ≥

∑

t≥0

Pp(tH > t) ≥
∑

t≥0

αt =
1

1− α
,

and solving this for α, we see that

α ≤ 1−
1

C11n
2
d

.

Plugging this into the upper bound of (6), we finish with

Pp(tH ≥ t) ≤
√
nαt ≤

√
n

(

1−
1

C11n
2
d

)t

=
√
n exp

(

t log

(

1−
1

C11n
2
d

))

≤
√
n exp

(

−c12tn
− 2

d

)

,

which is the bound of Proposition 2.3. !

3. Proof of Theorem 1.6

Our proof uses Theorem 1.1 in combination with the following lemma, which appears with
a small error in [5, Prop. 4.10]. We provide the corrected (short) proof for completeness.

Lemma 3.1. For all t ≥ 1 we have

EpVt =
t
∑

s=1

Pp(τ ≥ s).

Proof. For each x, y ∈ Zd and integers s ≥ 1 define

Zs(x, y) = 1{a car is at x initially and visits y at time s}.

Then, for s ≥ 1,
∑

y∈Zd

Zs(y, 0) = #{cars visiting 0 at time s} = Vs − Vs−1.

Also,
∑

y∈Zd

Zs(0, y) = 1{a car starts at 0 and is unparked at time s− 1} = {τ ≥ s}.

Taking expectations and using the fact that translations are measure preserving for Pp, we
have

Ep(Vs − Vs−1) =
∑

y∈Zd

EpZs(y, 0) =
∑

y∈Zd

EpZs(0,−y) =
∑

y∈Zd

EpZs(0, y) = Pp(τ ≥ s).

Summing from s = 1 to t and noting that V0 = 0 finishes the proof. !
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Observe that Pp(τ ≥ 1) = p. The lower bound in Theorem 1.6 will therefore follow from
Lemma 3.1 once we show that Pp(τ ≥ 2) ≥ p2. Let y be a neighbor of 0 in Zd, denoted
y ∼ 0, and let Ay be the event that there is a car initially at the origin and it moves to y at
time 1. Let By be the event that there is a car initially at y. Observe that Ay and Az are
disjoint whenever y 1= z, and Ay and By are independent, so

Pp(τ ≥ 2) ≥ Pp

(

⋃

y:y∼0

(Ay ∩By)

)

=
∑

y:y∼0

Pp(Ay ∩By) =
∑

y:y∼0

(p/2d)(p) = p2.

For the upper bound, fix p∗ ∈ [0, p0), and for each p ∈ [0, p∗] let c2(p) be the constant
that appears in the upper bound in Theorem 1.1. Let c13 = infp∈[0,p∗] c2(p) > 0, so that for
all p ∈ [0, p∗] and all t ≥ 1 we have

(9) Pp(τ > t) ≤ p exp
(

−c13t
d

d+2

)

.

Let

k =

⌈

(

−
2

c13
log p

)(d+2)/d
⌉

.

Since Pp(τ > 0) = p and

Pp(τ > 1) ≤ Pp(initially, there is a car at 0 and another car within two steps of 0) ≤ 4d2p2,

and Pp(τ > t) is decreasing in t, it follows that

(10)
k
∑

t=0

Pp(τ > t) ≤ p+ k(4d2p2) ≤ p+ C14p
2(log(p−1))(d+2)/d

for a sufficiently large constant C14.

Applying the bound (9) and using that e−c13t
d

d+2 is decreasing in t, we have

∞
∑

t=k+1

Pp(τ > t) ≤
∞
∑

t=k+1

p exp
(

−c13t
d

d+2

)

≤ p

∫ ∞

k
e−c13t

d
d+2

dt

= p

∫ ∞

c13kd/(d+2)

d+ 2

d(c13)(d+2)/d
u2/de−u du

= C15 p

∫ ∞

c13kd/(d+2)

u2/de−u du.(11)

Now assume p is such that −2 log p ≥ 2, and note that c13kd/(d+2) ≥ −2 log p. For d = 1,
by evaluating the integral, (11) is at most

5C15 p(c13k
1/3)2 exp(−c13k

1/3).

Plugging in our choice of k and noting that u2e−u is a decreasing function for u ≥ 2, the
last expression is at most

20C15 p
3(log p)2 ≤ C16p

2(log(p−1))3
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for a large enough constant C16. Combining this with (9) and (10) finishes the proof for
d = 1. For d ≥ 2, since u2/d ≤ u for u ≥ 1 we have that (11) is at most

C15 p

∫ ∞

c13kd/(d+2)

ue−u du ≤ 2C15 p(c13k
d/(d+2)) exp(−c13k

d/(d+2)),

and plugging in our choice of k and noting that ue−u is decreasing for u ≥ 1 gives an upper
bound of

4C15 p
3 log p−1 ≤ C17p

2(log p−1)(d+2)/d

for a large enough constant C17. Combining this with (9) and (10) finishes the proof for
d ≥ 2. !
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