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STRETCHED EXPONENTIAL DECAY FOR SUBCRITICAL PARKING
TIMES ON 7

MICHAEL DAMRON, HANBAEK LYU, AND DAVID SIVAKOFF

ABSTRACT. In the parking model on Z9, each vertex is initially occupied by a car (with
probability p) or by a vacant parking spot (with probability 1 — p). Cars perform in-
dependent random walks and when they enter a vacant spot, they park there, thereby
rendering the spot occupied. Cars visiting occupied spots simply keep driving (continu-
ing their random walk). It is known that p = 1/2 is a critical value in the sense that the
origin is a.s. visited by finitely many distinct cars when p < 1/2, and by infinitely many
distinct cars when p > 1/2. Furthermore, any given car a.s. eventually parks for p < 1/2
and with positive probability does not park for p > 1/2. We study the subcritical phase
and prove that the tail of the parking time 7 of the car initially at the origin obeys the
bounds

_d_ _d_
exp (—C’lt d+2) <Pp(r >1t) <exp (—czt d+2)

for p > 0 sufficiently small. For d = 1, we prove these inequalities for all p € [0,1/2).
This result presents an asymmetry with the supercritical phase (p > 1/2), where methods
of Bramson—Lebowitz imply that for d = 1 the corresponding tail of the parking time
of the parking spot of the origin decays like e~Vt Our exponent d/(d + 2) also differs
from those previously obtained in the case of moving obstacles.

1. STATEMENT OF RESULT

In this note, we study the tail of the distribution of the parking time of cars in the
subcritical phase for the parking model on Z¢. The model was introduced in [5] and studied
further in (a similar continuous-time particle system was introduced and studied earlier
in [3][4]), and is roughly defined as follows. Each vertex is initially assigned either a car
(with probability p € [0, 1]) or a vacant parking spot (with probability 1 — p), independently
between vertices. Cars perform simple symmetric discrete-time random walks, and when
a car visits a vacant spot, it parks there. (If multiple cars visit the same vacant spot, the
tie is broken using independent uniform [0, 1] random variables.) If a car visits an occupied
spot, it does not park, and moves at the next timestep. (We refer the reader to [5] for a
more precise definition of the process. Our probability space is defined in Section[2.1])

This parking model is a type of annihilating particle system, and can be described with
the short-hand rule A+B — 0, where cars are thought of as A particles, spots are B particles,
and A and B particles annihilate each other upon collision. There is a large literature of such
annihilating systems, and we only mention a few references including some for annihilating
random walk [1][6] [8] and for two-type annihilating random walk [2]. From the other side,
the parking model can be viewed as a generalization of the study of parking functions, which
are certain types of hashing functions resulting from particles parking in order on a line (see
and generalizations to trees in [7]).

In [3] 4] [5] it was shown that there is a phase transition in p: a.s. the origin is visited by
finitely many distinct cars for p < 1/2 (subcritical phase) and infinitely many for p > 1/2
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(critical and supercritical phases). Furthermore, the parking time for the car of the origin (if
it exists) is finite a.s. for p < 1/2, and infinite with positive probability when p > 1/2. Our
main result addresses the subcritical phase and determines the decay rate of the distribution
of the parking time of cars. To state it precisely, we use the following notation: for each
v € Z%, the parking time 7(*) is

(1) 7 = Z 1{a car starts at v and is unparked at time s — 1}.

s=1

When v = 0 we simply write 7 for 7(9). Note that if a car does not start at v, the convention
taken is that 7(") = 0. We also write P, for the probability measure associated to the
parking model with parameter p.

We will prove here:

Theorem 1.1. For any p > 0, there exists C1 > 0 such that
Py(r > t) > exp (—Cltﬁi?) for all integers t > 1.

o

if p € [0,po), then for some ca = ca(p) > 0,

For
ifd=1

[1— 1—(de)—2} ifd>2,

= D=

P,(r > t) < pexp (—cztﬁiﬁ for all integers t > 1
where ca(p) is bounded away from 0 on every closed subinterval of [0, po).

Remark 1.2. For p < pg we obtain E,7 < 0o and consequently, by a mass transport argument
(Lemma[3I] below) E,V < oo, where V is the total number of visits to the origin by cars.
In [5], this was shown for p < (256d%?)~! < d=¢. Our value of pg < d~2 improves on this
bound.

Remark 1.3. The key ingredient in our proof is Proposition 2:3] which gives an exponential
tail bound on the exit time of a random walk from a connected subset of Z¢ of size n that
is uniform over all such subsets. This may be of independent interest, and our proof relies
on the first moment bound of [12] and spectral bounds in [T1} Cor. 6.9.5, 6.9.6].

Remark 1.4. We expect similar bounds to hold in the continuous-time diffusion-limited
annihilating system (DLAS) with non-moving B particles, wherein A particles move as
continuous-time simple, symmetric random walks. (An analogue to the “busy subgraph
lemma” (Lemma [2:2) would need to be proved for the continuous time model, which would
no longer hold with a deterministic upper bound on the size of H. An upper bound with
exponential tails would suffice, and should be true.) In that model, if both A and B
particles perform continuous-time, simple, symmetric random walks with equal jump rates,
then Bramson-Lebowitz [2| have shown that the density of A particles decays to zero like
e 94(t) | with
VIiod=1
ga(t) < {t/logt d=2
t d >3,

when p < 1/2 (in fact, their results are stronger than this). By a straightforward mass-
transport argument, this is the same as the decay rate of the tail of the annihilation time



STRETCHED EXPONENTIAL DECAY FOR SUBCRITICAL PARKING TIMES ON Zz¢ 3

distribution of a single A particle. Therefore the above result indicates a clear difference
between the case of non-moving B-particles and moving B-particles.

Our result implies there is an asymmetry between stationary (spots) and mobile particles
(cars) due to an argument of [2], at least for d = 1. When d = 1, Theorem [[] states that
when p < 1/2 (so cars are in the minority), the distribution of the parking time of a car

_ctl/3

. In contrast, Theorem [[.5] below says that when p > 1/2 (spots are in

the minority), the distribution of the parking time of a spot decays like e ¢V®.

decays like e

Theorem 1.5. Let o be the time at which the parking spot at the origin is parked in by a
car (where o = 0 if there is no such spot). Suppose d =1 and p > 1/2. Then there exist
constants a,b > 0 such that

e Vi< Py(oc >1t) < e bVt for allt > 1.

Sketch proof of Theorem The lower bound on the probability follows from an argument
similar to the proof of the lower bound in Theorem [[.1] given in Section[2.1] That is, the
spot at the origin survives beyond time ¢ if all vertices within distance C'v/t of the origin are
initially spots, and all random walk trajectories associated to vertices beyond this distance
do not visit the origin by time ¢. This event has probability at least eVt

The upper bound is more complicated and follows closely the argument of [2] Sec. 7, p. 363-
371]; we give a (very) brief sketch here. If the spot of the origin survives beyond time ¢, then
one can identify approximately v/# many random walks (car trajectories) that must avoid
the origin. Since each trajectory has at least a uniformly positive probability ¢ to reach the
origin in time ¢, one obtains the upper bound (1 — c)c\/z, which is of order e~*Vt. To define
these random walks, one labels cars c1, ¢, ... as follows. Write D(j),j > 0 for the initial
number of cars in [0, j] minus the initial number of spots. Let ¢; be the car at the first
vertex j such that D(k) > 0 for all k > j. Define ¢, similarly: the car at the first vertex
j such that D(k) > r — 1 for all £k > j. (These cars are a.s. well-defined because p > 1/2,
and for some ¢,C > 0, at least cy/t labeled cars initially lie in [0, Cy/t] with probability at
least 1 — efc\/{.) One can then pair cars and spots in the intervals between the c,’s: strictly
between the initial locations of ¢, and ¢,11, proceeding from left to right, each car can be
paired uniquely to a spot initially to its right that is the first such unpaired spot. (Note
that some cars between the origin and the initial location of ¢; remain unpaired.) Now, as
the parking process evolves, if a paired car parks in a spot that is paired to different car
(necessarily to its left), then this other car is re-paired with the spot that had been paired
with the first car. We focus now on the cars labeled {¢.}. If ¢, parks in a paired spot,
then we reassign the label ¢, to the car that is paired with that spot. In this way, we see
that except for finitely many of the ¢,’s (which may park in the unpaired spots between the
origin and the initial location of ¢;), if the spot of the origin survives for time ¢, then none
of the c¢,’s can reach the origin by time ¢. Any ¢, that begins within distance C'v/t of the
origin has probability at least ¢ > 0 to reach the origin within time ¢ because the trajectory
of ¢, follows a random walk with only negative drift (each reassignment moves a car strictly
to the left). Therefore we find that the probability that the spot of the origin survives for
at least time ¢ is at most (1 — c)“/E + e VT as claimed. 0

As a corollary to Theorem we also derive the small p asymptotic for the expected
total number of visits to the origin by cars. We say that a car visits x at time ¢ > 1 if it
is unparked at time ¢ — 1 and moves to x at time ¢ (it may or may not park at x). Each
time a car visits the site x is referred to as a wvisit. Let V; denote the number of visits by all
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cars to the origin, 0, through time ¢. Multiple cars may visit 0 at the same time, and a car
may visit 0 at multiple times — these are all counted as distinct visits. Let V' = lim;_, V4
denote the number of visits to the origin for all time. The asymptotic behaviors of E; 5V,
and E,V as ¢ — oo and p 1 1/2, respectively, are the subjects of [9} [13] on 74, While it
remains an open question whether E,V < oo for all p < 1/2 and d > 2, here we give the
small p asymptotic for E,V in every dimension.

Theorem 1.6. For all p € [0,1], we have E,V > p+p?. Asp — 0 we have
B,V =p+0 (p*(logp™!)@2/7),
where the constant in the O term depends on d.

Essentially, this says that for small p the origin is most likely never visited by a car, or
else it is visited once by a car that is initially adjacent to the origin.

2. PROOF oF THEOREM [I 1]

To formalize the model, we recall from [5] Sec. 2] that our space is

Q= ({~1.1} x (24" x 0,11,

with probability measure P, under which all coordinates are independent, and for each
v € Z%, the three components are distributed as follows. The first coordinate is a random
variable with probability p to be 1 (if there is a car initially at v) and probability 1 —p to be
—1 (otherwise). The second is a simple symmetric random walk started at v, which is the
path that an unparked car placed at v will follow (this path continues past the parking time).
The third is a sequence of i.i.d. uniform [0, 1] random variables to break ties if multiple cars
arrive at the same parking spot at the same time (the car that parks is the one with the
largest value of uniform variable whose index corresponds to the present time).

2.1. Lower bound. We first prove the easier inequality, the lower bound. The idea is to
force a large box centered at the origin initially to contain only cars, and for the car initially
at the origin to stay in this box until time ¢. Optimizing the size of this box gives the bound.
For any integer M > 0, let Aps be the event that for all v € [—M, M]?, the vertex v initially
has a car. If Ap; occurs, and the car starting at 0 does not leave [— M, M]d by time t, then
7 > t. By independence of the initial particle locations and the random walk trajectories,
we have

P, (T > t) > P,(Ap, car starting at 0 stays in [—M, M]¢ through time )
= (1—p)@MDP (X stays in [~ M, M]? through time ).

Here, X = (X;) is the random walk started at 0. By [L1| Cor. 6.9.5, 6.9.6], the second factor
is bounded below by ¢4 exp (—Cgt/M2), S0 we obtain

t
Py(r > 1) 2 (1 - p) 2D’ < o <‘C3m>>

t
= ¢4 €xXp (_C3W + (2M +1)%log(1 — p))

> ¢4 €Xp (—C5 (# +Md)> ;
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where C5 depends on p and d. Last, we set M = [t'/(4+2)] to obtain the bound

C4 €Xp <—C5 (Ltdliﬁ + Ltdizjd>> > cg exp (—Cﬂfd%z) .

By increasing C; in the statement of Theorem [I.1] this proves the lower bound.

2.2. Upper bound. For the upper bound, we refine the “busy subgraph” method intro-
duced in [5]. Specifically, we combine it with consequences of a spectral isoperimetric bound
of Levine-Peres. To begin, let us recall the definition of a busy subgraph.

Definition 2.1. We call a finite subgraph H C Z? busy if H is connected and there are at
least as many cars as spots initially on H.

As stated in [5] p. 2111], for p < 1/2 and any fixed connected subgraph H of Z? with j
vertices,

@) B,(H is busy) < (2v/5(1 =)’

We therefore, from this point on, restrict to p < 1/2.

Busy subgraphs are important because if 7 > t > 0, we can always construct one that
contains the trajectory of the car of the origin until time ¢, as stated in [5] Lem. 4.12] and
reproduced below. In its statement, B(v, 2t) is the subgraph of Z¢ induced by the set of
vertices within ¢!-distance 2t of v.

Lemma 2.2. Lett > 1 and v € Z. For each w € {T(”) > t}, there is a busy subgraph
H = H(w) such that H C B(v,2t) and H contains the trajectory of the car started at v up
to time t.

Following |5l p. 2111], this lemma is used as follows. We first note that |B(0,2t)| <
(4t + 1)4. Letting X = (X;);>0 be a simple symmetric random walk trajectory on Z¢ with
Xo = 0, we then apply (2), Lemma[2:2] and a union bound to obtain for integers ¢ > 1 that

Py(r > t)
(4t+1)¢ ;
<> 3 (2 p(l—p)) P (X}, € H forall 0 < k < ¢)
j=1 H connected

[H|=j,0eH
(4t4+1)¢

(3) =YY (viw) Bes 0.

j=1 H connected
|H|=35,0eH

Here, ty is the exit time of H by X,
tg =inf{t >0: X; ¢ H},

and we abuse notation by identifying H with its vertex set, so |H| is the number of vertices
in H and 0 € H indicates that 0 is a vertex of H.

At this point, our strategy diverges from that of [5] as we can more finely control the
distribution of the exit time using the following new proposition. Again, although we use
the measure P, the bound does not depend on p.
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Proposition 2.3. Let (X;);>0 be a simple symmetric random walk on Z¢ with Xy = 0.
There exists cg > 0 such that

Py(ta >1t) < Vnexp (—Cgtn_%>
for all integers t > 1 and n > 1, and all subgraphs H of Z* with |H| = n.

Note that the order of the exponent in Proposition is sharp by considering H =
[—M, M]%, which has P, (tg > t) > csexp (—Cst/M?) by [11] Cor. 6.9.5, 6.9.6], and taking
(2M +1)4 < n.

We now show how to complete the proof of the upper bound in Theorem given this
proposition. Afterward, we will finish by proving the proposition. Applying it to (3), using
the fact that there are at most (2de)? many connected subgraphs with j vertices containing
0, and the fact that if j = 1 then ty < 1, we obtain

Py(r>1t) < (4§) (4dem>j VJjexp (—08tj7%> .
j=2

(When d = 1, the number of such subgraphs is at most j + 1.) If p < pg, the term

4de+/p(1 — p) is less than 1 (and for d = 1 the corresponding term 24/p(1 — p) is also less
than 1 for p < pg), and is bounded away from 1 for p in any closed subinterval of [0, po), so
we can bound the last expression above by

17| . |
(4de)*pVt > exp (—estj*%) +@+nr Ny (4de\/p(1—p))J

j=2 _d_

! j:[tdﬂbl

- " (1t + 14 i
< (4de)*pt2 exp (—Cgtd+ ) + T tde/p(1=7) (4de\/p(1 —p))

< p-exp (-earrt),
for ¢ chosen sufficiently small and ¢ > C, where co, C' can be chosen to hold for all p in any
fixed, closed subinterval of [0, pg). To handle ¢ € [1,C), we write

Py(r>1t) <Py(r >1)

< pP,(at least one nonzero site within ¢'-distance 2 of 0 is initially a car)

< p(1 = (1—po)'®)

d/(d+2)
S pe—CQC

d/(d+2)
< pe—czt

where ¢g is possibly chosen smaller (but still bounded away from 0 on any closed subinterval
of [0,p0)). This gives the upper bound in Theorem [Tl
We are therefore left to prove the proposition.

Proof of Proposition[2.3, For integers n,t > 1, let H = H, (t) be a subgraph of Z? with n
vertices that maximizes P, (tg > t). Clearly H contains the origin. We will view a random
walk on H as a Markov chain, so we define the matrix

Py with entries (p(z,Y))z,yeH-



STRETCHED EXPONENTIAL DECAY FOR SUBCRITICAL PARKING TIMES ON Zz¢ 7

Here, p(z, y) is the transition probability from x to y, which for our simple symmetric random
walk is 1/(2d) if = and y are neighbors, and 0 otherwise. Note that Py is symmetric but its
rows do not necessarily sum to 1, since transitions out of H are not represented. Write P}
for the t-th product of Py with itself, with entries (p%; (z,y)). Then

(4) Pylty >1) =Y pi(0,y).
yeH
Note that the right side actually equals max,cp Zyer‘}{ (z,y). Indeed, if z € H, then
Z P (x,y) = Pty > t) = Py(ta= > t).
yeH

Here, t%; is the exit time from H of a random walk started at =, and H* is the subgraph
obtained from H by shifting « to the origin. Since H® is a subgraph of Z¢ with n vertices,
maximality of H implies that -,y ply(2,y) < 3 c i (0,y). In conclusion,

P = ¢ .
p(ty > 1) = max > ()
yeH
The term on the right is the maximal row-sum of P};, which equals

Pt
1Pl oo = sup L2220

20 2l

the operator norm of the matrix P}, considered as a map from ¢*° to £*°. We conclude from
this and (4) that

(5) ]Pp(tH > t) = ”Plt{”oo

We next relate the infinity-norm of P}, to its eigenvalues. Letting a = oy be the largest
eigenvalue of Py, we claim that

(6) ! <P,y(ty >t) < /na'.

The lower bound follows from (§) by letting v be an eigenvector for Py and noting that
since v is also an eigenvector for P}; with eigenvalue o,

Pt
[0l
For the upper bound, since af = sup,_ || P z|l2/]12ll2 =: || P2, we can apply (5) along

with the estimate
IPE2lloo < I1PEzll2 < Py ll2ll2ll2 < vl Prll2ll2]l
to obtain || P |lcc < v1||Pl2 = v/nat.
After (6), we need a theorem of Levine—Peres [12] Thm. 1.2] on the expected exit time

of domains by random walk. It is a form of a spectral isoperimetric inequality, and implies
that there exists Cg > 0 such that
(7) sup Eptx < CoEptp, for all n > 1,

KCZ4,|K|=n
where B, is the “lattice ball” of cardinality n. This is defined as the subgraph induced by
the “first n points in an ordering of points in Z? according to increasing distance from the
origin.” (Actually the result is more precise, but we only need the existence of Cy.) Note
that B, C [—~Cion'/?, Cion'/?? for some constant Cyo > 0 and therefore

I['EptBn < ]Ept[_clonl/d)clonl/d]d.



8 MICHAEL DAMRON, HANBAEK LYU, AND DAVID SIVAKOFF

By integrating the upper bound of [11} Cor. 6.9.6] we obtain the standard estimate that the
right side of the above inequality is bounded above by C11n%/?. Putting this in (7)), we get

(8) sup Eptg < Clln%.
KCZ4,|K|=n

Last, we use the above tools to complete the proof. Using the lower bound of (€) and
inequality (), we obtain

Cunt > Pty >1)> Y af =

t>0 t>0

1
1—a’

and solving this for «, we see that
1
Clln% '

Plugging this into the upper bound of (6], we finish with

a<l-—

Pp(ty > 1) < v/na' < v/n (1 — )t = Vnexp (tlog (1 - 0111n3>)

Clln%
< v/nexp (—clgtn_%> ,

which is the bound of Proposition|2.3] |

3. PROOF oF THEOREM [1.6]

Our proof uses Theorem|1.1]in combination with the following lemma, which appears with
a small error in [5| Prop. 4.10]. We provide the corrected (short) proof for completeness.

Lemma 3.1. For allt > 1 we have
t
B,V = Py(r > s).
s=1

Proof. For each x,y € Z% and integers s > 1 define
Zs(x,y) = 1{a car is at « initially and visits y at time s}.
Then, for s > 1,
> Z.(y,0) = #{cars visiting 0 at time s} =V, — Vo_1.
yezd
Also,
Z Z5(0,y) = 1{a car starts at 0 and is unparked at time s — 1} = {7 > s}.
yezd

Taking expectations and using the fact that translations are measure preserving for P, we
have

Ep(Ve = Vi1) = Y EpZi(y,0) = > EpZo(0,—y) = > E,Zi(0,y) = Pp(r > s).
yezZd yeZd yezZd

Summing from s = 1 to ¢t and noting that Vi = 0 finishes the proof. |
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Observe that P,(7 > 1) = p. The lower bound in Theorem [L6]will therefore follow from
Lemma once we show that P,(7 > 2) > p%. Let y be a neighbor of 0 in Z4, denoted
y ~ 0, and let A, be the event that there is a car initially at the origin and it moves to y at
time 1. Let B, be the event that there is a car initially at y. Observe that A, and A, are
disjoint whenever y # z, and A, and B, are independent, so

PP(TZQ)ZPP< U (AymBy)> - Z ]P’p(AyﬂBy): Z (p/Qd)(p)ZPQ'

y:y~0 y:y~0 y:y~0

For the upper bound, fix p* € [0,po), and for each p € [0,p*] let ca(p) be the constant
that appears in the upper bound in Theorem[I.1] Let c¢i3 = infc0,p+ c2(p) > 0, so that for
all p € [0,p*] and all ¢ > 1 we have

(9) P,(r > t) < pexp (—Clgtﬁ) .

Let
9 (d+2)/d
k= <—— logp> .
€13

P,(7 > 1) < P,(initially, there is a car at 0 and another car within two steps of 0) < 4d*p?,

Since P,(7 > 0) = p and

and P, (7 > t) is decreasing in ¢, it follows that

k
(10) S By(r > t) < p+ k(4d*p?) < p+ Crap® (log(p~ ")) 4+2/4
t=0

for a sufficiently large constant C1y.

2

_d
Applying the bound (J)) and using that e~¢13t*"

Z Py(r > t) Z pexp (—0131%#2)

t=k+1 t=k+1

oS} _d_
< p/ et gt
k

h dt2
= o wTre “ d
p/clgkd/(d+2) d(cl3)(d+2)/du e “au

is decreasing in t, we have

(11) = 015]9/ u?/ e~ du.

13kd/ (d+2)

Now assume p is such that —2logp > 2, and note that ¢;3k% (@2 > —2logp. For d = 1,
by evaluating the integral, (I1)) is at most

5C15 p(c1sk'/®)? exp(—ci3k/®).

Plugging in our choice of k and noting that u2e%

last expression is at most

is a decreasing function for v > 2, the

20015 p®(log p)* < Cip*(log(p™1))?
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for a large enough constant Ci6. Combining this with (@) and (I0) finishes the proof for
d=1. For d > 2, since u2/4 < y for u > 1 we have that is at most

C15p/ e " du < 2015p(013kd/(d+2)) exp(—clg,kd/(d”)),

13kd/ (d+2)

and plugging in our choice of k and noting that ue™™ is decreasing for u > 1 gives an upper
bound of

4C15p® logp™! < Crop?(logp~t)d+2)/d
for a large enough constant Cy7. Combining this with (9) and finishes the proof for
d>2. O
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