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In Brief

We develop a guided network
propagation approach to identify disease
genes that combines prior knowledge of
disease-associated genes with newly
identified candidate genes. We
demonstrate the effectiveness of our
approach by applying it to somatic
mutations observed across tumors to
discover genes causal for cancer, as well
as to genome-wide association data to
discover genes causal for complex
diseases.
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SUMMARY

Protein interaction networks provide a powerful framework for identifying genes causal for complex genetic
diseases. Here, we introduce a general framework, uKIN, that uses prior knowledge of disease-associated
genes to guide, within known protein-protein interaction networks, random walks that are initiated from
newly identified candidate genes. In large-scale testing across 24 cancer types, we demonstrate that our
network propagation approach for integrating both prior and new information not only better identifies cancer
driver genes than using either source of information alone but also readily outperforms other state-of-the-art
network-based approaches. We also apply our approach to genome-wide association data to identify genes
functionally relevant for several complex diseases. Overall, our work suggests that guided network propaga-
tion approaches that utilize both prior and new data are a powerful means to identify disease genes. uKIN is
freely available for download at: https://github.com/Singh-Lab/uKIN.

INTRODUCTION

Large-scale efforts such as the 1000 Genomes Project (1000 Ge-
nomes Project Consortium et al., 2015), The Cancer Genome
Atlas (TCGA) (TCGA Research Network, n.d.), and the Genome
Aggregation Database (Karczewski et al., 2019), among others,
have cataloged millions of variants occurring in tens of thou-
sands of healthy and disease genomes. Despite this abundance
of genomic data, however, understanding the genetic basis un-
derlying complex human diseases remains challenging (Kim and
Przytycka, 2012). In contrast to simple Mendelian diseases, for
which a small set of commonly shared genetic variants are
responsible for disease phenotypes, complex heterogeneous
diseases are driven by a myriad of combinations of different al-
terations. Individuals exhibiting the same phenotypic
outcome—a particular disease—may share very few, if any, ge-
netic variants, thereby making it difficult to discover which of the
numerous variants are associated with heterogeneous diseases,
even when focusing just on changes that occur within genes.
Biological networks provide a powerful, unifying framework for
identifying disease genes (Barabasi et al., 2011; Cowen et al.,
2017; Goh et al., 2007; Ozturk et al., 2018). Genes relevant for
a given disease typically target a relatively small number of bio-
logical pathways, and since genes that take part in the same
pathway or process tend to be close to each other in networks
(Hartwell et al., 1999; Spirin and Mirny, 2003), disease genes
cluster within networks (Gandhi et al., 2006; Oti and Brunner,

2007). Consequently, if genes known to be causal for a particular
disease are mapped onto a network, other disease-relevant
genes are likely to be found in their vicinity (Krauthammer
et al., 2004). Thus, the signal from known disease genes can
be “propagated” across a network to prioritize either all genes
within the network or just candidate genes within a genomic lo-
cus where single nucleotide polymorphisms have been corre-
lated with an increased susceptibility to disease (Chen et al.,
2009; Erten et al.,, 2011; Kohler et al., 2008; Lundby et al.,
2014; Navlakha and Kingsford, 2010; Smedley et al., 2014; Va-
nunu et al., 2010).

While early network approaches to identify disease genes
focused on propagating knowledge from a set of known “gold
standard” disease genes, with the widespread availability of
cancer sequencing data and genome-wide association studies
(GWAS), the source of where information is propagated from
has shifted to genes that are newly identified as perhaps playing
arole in disease (Babaei et al., 2013; Carlin et al., 2019; Cerami
etal.,, 2010; Jia and Zhao, 2014; Lee et al., 2011; Leiserson et al.,
2015; Vandin et al., 2011). For example, in the cancer context,
diffusing a signal from genes that are somatically mutated across
tumors is highly effective for identifying cancer-relevant genes
and pathways (Leiserson et al., 2015; Vandin et al., 2011);
notably, while frequency-based approaches identify genes that
“drive” cancer by searching for those that are recurrently
mutated across tumor samples beyond some background rate
(Lawrence et al., 2013), such a network propagation approach
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Biological networks provide a powerful framework for discovering disease genes. Genes relevant for a given disease typically
target a relatively small number of biological pathways, and since genes that take part in the same pathway or process tend to
be close to each other in networks, disease genes cluster within networks. It is well-established that if genes known to be causal
for a particular disease are mapped onto a network, other disease-relevant genes are likely to be found in their vicinity. The simplest
methods to predict disease genes using interaction networks rely on finding those that directly interact with a known disease gene
or that are a short number of “hops” on the network to at least one known disease gene.

More sophisticated methods aim to uncover genes that are close not just to a single disease gene but that are close, as a whole, to
all disease genes. The concept of random walks on graphs (or networks) underlies many approaches to measure these distances
within biological networks. In its simplest version, we imagine a “walker” at a particular protein (or node) at a specific time, and at
every time point, the walker moves to one of its neighbors at random. We consider a variant where at the start of the process, the
walker is at each node with some probability, and at each subsequent time point, the walker can either restart with probability « or
otherwise walk to one its neighbors. When we constrain these walks by having the walker only start at a set of known disease
genes, then the walker will tend to “hover” around this set of genes. Mathematically, it is possible to compute the fraction of
time the walker is at each node over very long random walks, and this so-called stationary distribution can be used to prioritize
disease genes, as those genes that are closer to the initial set of disease genes will tend to have higher values. An alternative
but closely related formalism relies on the idea of diffusion, where fluid is pumped into an initial set of genes and spreads through
the graph over the edges with fluid “leaking” out at some rate at each node; again, in the limit, genes closer to the initial set of genes
will have more fluid, and this can be computed mathematically.

Random walk and diffusion-based methods can each be used to identify disease genes by spreading signals either from well-es-
tablished, annotated disease genes or from genes that have some new evidence of being disease relevant (e.g., genes somatically
mutated in cancers or identified via GWAS). Here, we introduce a framework that uses both sources of biological information, as
existing knowledge of disease genes should inform the way new mutational data are examined within networks (Figure 1). We pro-
pose a guided random walk approach to uncover disease genes, where walks initiate from the new data and when choosing which
nodes to walk to, the walks are biased so as to tend to move toward genes that have been determined via a diffusion process to be
closer to known disease genes. We apply our approach to somatic mutations observed across tumors to discover genes causal for
cancer, as well as to genome-wide association data to discover genes causal for complex diseases. We demonstrate that prop-
agating signal by integrating both known disease genes as well as new putative disease genes performs substantially better than
propagating signal from either source alone.

can even pinpoint rarely mutated driver genes if they are within
subnetworks whose component genes, when considered
together, are frequently mutated.

Thus, there are two dominant network propagation paradigms
for uncovering disease genes: spreading signal either from well-
established, annotated disease genes or from genes that have
some new evidence of being disease relevant. While both have
been successful independently, we argue that both sources of
information should be utilized together, and that existing knowl-
edge of disease genes should inform the way new data are
examined within networks. That is, while our prior knowledge
of causal genes for a given disease may be incomplete, it never-
theless is a valuable source of information about the biological
processes underlying the disease; furthermore, in many cases,
there is substantial prior knowledge, and there is no reason dis-
ease gene discovery should proceed de novo from newly
observed alterations.

In this paper, we introduce a guided network propagation
framework to uncover disease genes, where signal is propa-
gated from new data so as to tend to move toward genes that
are closer to known disease genes (see Box 1 and Figure 1).
Our core method of propagating information within a network
is via either diffusion (Qi et al., 2008) or random walks with re-
starts (RWRs) (Kohler et al., 2008), as these are mathematically
sound, well-established approaches, where numerical solutions

are easily obtained. In particular, our approach first diffuses a
signal from known disease genes and then performs either
guided random walks or guided diffusion from the new data so
as to preferentially move toward genes that have received higher
amounts of signal from the initial set of known disease genes. In
contrast, previous network propagation methods for disease
gene discovery have performed diffusion or random walks uni-
formly from each node (i.e., in an “unguided” manner, as in
e.g., Jia and Zhao, 2014; Vandin et al., 2011), or where the diffu-
sion is scaled by weights on network edges that reflect their esti-
mated reliabilities (e.g., Babaei et al., 2013). Alternatively, several
approaches have attempted to uncover disease genes by
explicitly connecting in the network genes that have genetic al-
terations with genes that have expression changes (Bashashati
et al., 2012; Kim et al., 2011; Paull et al., 2013; Ruffalo et al.,
2015; Shi et al., 2016; Shrestha et al., 2014); while well suited
for finding genes causal for observed expression changes,
such approaches are less appropriate as a means to link prior
and new information, and our approach instead uses prior
knowledge to simply influence information propagation within
the network.

We demonstrate the efficacy of our method uKIN (using knowl-
edge in networks) by first applying it to discover genes causal for
cancer. Here, new information consists of genes that are found to
be somatically mutated in tumors—only a small number of which

Cell Systems 10, 470-479, June 24, 2020 471



¢? CellPress

OPEN ACCESS

Fluid received
from red

:0.7
:0.8
1.7
14
:03
:4.3
:0.6

—)

NO O A WN =

Figure 1. lllustration of Guided Random Walks

Cell Systems

Guided transition
probabilities:

1-2: 0.32
1-4: 0.56
1-5: 0.12

2=1: 0.29
2=-3: 0.71

032

A schematic of a network with seven genes is shown, with node 1 as a putatively implicated disease gene (in green) and node 6 as a known disease gene (in red).

Our approach performs guided RWRs from putatively implicated genes.

(Left) In a traditional random walk procedure, a walker at node 1 is equally likely to move to one of the neighboring nodes. In our procedure, before random walks
are initiated from putative disease genes, fluid is injected at known disease genes and diffused along the edges of the network. (Center) Nodes closer to the

source of the fluid receive larger amounts of fluid.

(Right) Instead of performing a random walk with uniform transition probabilities to any neighboring node, the walker uses the amount of fluid at each node to
update the transition probabilities; these transition probabilities guide the walk so as to tend to move the walker closer to known disease genes.

are thought to play a functional role in cancer—and prior informa-
tion is comprised of subsets of “driver” genes known to be cancer
relevant (Futreal et al., 2004). In rigorous large-scale, cross-valida-
tion style testing across 24 cancer types, we demonstrate that
propagating signal by integrating both of these sources of
information performs substantially better in uncovering known
cancer genes than propagating signal from either source alone.
Notably, even using just a small number of known cancer genes
(5-20) to guide the network propagation from the set of mutated
genes results in substantial improvements over the unguided
approach. Next, we compare uKIN with four state-of-the-art
network-based methods that use somatic mutation data for can-
cer gene discovery and find that uKIN readily outperforms them,
thereby demonstrating the advantage of additionally incorpo-
rating prior knowledge. We also show that by using cancer-
type-specific prior knowledge, uKIN can better uncover causal
genes for specific cancer types. Finally, to showcase uKIN’s
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versatility, we show its effectiveness in identifying causal genes
for three other complex diseases, where the genes known to be
associated with the disease come from the Online Mendelian In-
heritance in Man (OMIM) (OMIM, 2000) and genes comprising
the new information arise from GWAS.

RESULTS

Algorithm Overview

At a high level, our approach propagates new information across a
network, while using prior information to guide this propagation
(Figure 2). While our approach is generally applicable, here, we
focus onthe case of propagating information across biological net-
works in order to find disease genes. We assume that prior knowl-
edge about a disease is given by a set of genes already implicated
as causal for that disease, and new information consists of genes
that are potentially disease relevant. In the scenario of uncovering

---------------- Figure 2. Overview of Our Approach
(A) Known disease-relevant genes (prior knowledge)
s<IDIp< are mapped onto an interaction network (shown in
New_ red, top). Signal from this prior knowledge is propa-
nformation

gated through the network via a diffusion approach
(Qi et al., 2008), resulting in each gene in the network
being associated with a score such that higher scores
(visualized in darker shades of red, bottom) corre-
spond to genes closer to the set of known disease
genes. These scores are used to set transition
probabilities between genes such that a neighboring
gene thatis closer to the set of prior knowledge genes
is more likely to be chosen.

(B) Genes putatively associated with the disease—
corresponding to the new information—are mapped
onto the network (shown in green, top). To integrate
both sources of information, RWRs are initiated from
the set of putatively associated genes, and at each
step, the walk either restarts or moves to a neigh-
boring gene according to the transition probabilities
(i.e., walks tend to move toward genes outlined in
darker shades of red).

These prior knowledge “guided” RWRs have a stationary distribution corresponding to how frequently each gene is visited, and this distribution is used to order
the genes. Higher scores correspond to more frequently visited genes (depicted in darker greens, bottom).
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cancer genes, prior information comes from the set of known can-
cer genes, and new information corresponds to those genes that
are found to be somatically mutated across patient tumors. For
other complex diseases, new information may arise from (say)
genes weakly associated with a disease via GWAS or found to
have de novo or rare mutations in a patient population of interest.

The first step of our approach is to compute for each gene a
measure that captures how close it is in the network to the prior
knowledge set of genes K (Figure 2A). To accomplish this, we
spread the signal from the genes in K using a diffusion kernel
(Qi et al., 2008). Next, we consider new information consisting
of genes M that have been identified as potentially being asso-
ciated with the disease. As we expect those that are actually dis-
ease relevant to be proximal to each other and to the previously
known set of disease genes, we spread the signal from these
newly implicated genes M, biasing the signal to move toward
genes that are closer to the known disease genes K (Figure 2B).
We accomplish this by performing RWRs, where with probability
«a, the walk jumps back to one of the genes in M. That is, « con-
trols the extent to which we use new versus prior information,
where higher values of « weigh the new information more heavily.
With probability 1 — «, the walk moves to a neighboring node, but
instead of moving from one gene to one of its neighbors uni-
formly at random as is typically done, the probability instead is
higher for neighbors that are closer to the prior knowledge set
of genes K. Genes that are visited more frequently in these
random walks are more likely to be relevant for the disease
because they are more likely to be part of important pathways
around K that are also close to M. We numerically compute
the probability with which each gene is visited in these random
walks, and then use these probabilities to rank the genes. See
STAR Methods for details.

We apply our method uKIN to uncover cancer genes as well as
genes associated with three rare heterogeneous disorders. Un-
less stated otherwise, uKIN integrates prior and new information
using « = 0.5; further, prior knowledge is spread using the diffusion
kernel with its sole parameter vy set to 1, as in Qi et al. (2008). To
uncover cancer genes, we use somatic point mutation data
from 24 different TCGA cancer types. Genes that have missense
and nonsense somatic mutations comprise the new information,
and random walks start from these genes with probability propor-
tional to their mutation rates. We use the curated list of 499 cancer
census genes (CGCs) available from COSMIC (Futreal et al., 2004)
to derive both our prior knowledge K of cancer driver genes as
well as the hidden set of true positives which we will use for eval-
uation. We test our approach for all 24 cancer types but showcase
results for glioblastoma multiforme (GBM). To uncover genes
associated with each of the three rare diseases, we obtain our
prior knowledge from the OMIM, and genes that have been impli-
cated via GWAS provide our new information. All results in the
main paper use the HPRD protein-protein interaction network (Ke-
shava Prasad et al., 2009), with results shown for BioGrid (Stark
et al., 2006) in the Supplemental Information.

uKIN Successfully Integrates Prior Knowledge and New
Information

We compare uKIN’s performance when using both prior and new
knowledge (RWRs with « =0.5), to versions of uKIN using either
only new information («=1) or only prior information («= 0).

¢? CellPress

Briefly, we use 20 randomly drawn CGCs to represent the prior
knowledge K and another 400 randomly drawn CGCs to be
the hidden set ‘H of unknown cancer-relevant genes that we
aim to uncover (see Performance Evaluation for details). We
repeat this process 100 times, each time spreading signal using
the diffusion approach (Qi et al., 2008) before performing RWRs
from the genes observed to be somatically mutated. For each
run, we analyze the ranked list of genes output by uKIN as we
consider an increasing number of output genes and average
across runs the fraction that are members of the hidden set H
consisting of cancer driver genes.

For «=0.5, we observe that a large fraction of the top pre-
dicted genes using the GBM dataset are part of the hidden set
of known cancer genes (Figure 3A). At a=1, our method
completely ignores both the network and the prior information
K and is equivalent to ordering the genes by their mutational fre-
quencies. The very top of the list output by uKIN when a=1 con-
sists of the most frequently mutated genes (in the case of GBM,
this includes TP53 and PTEN). As we consider an increasing
number of genes, ordering them by mutational frequency is
clearly outperformed by uKIN with « =0.5. At the other extreme
with « =0, the starting locations and their mutational frequencies
are ignored as the random walk is memoryless and the stationary
distribution depends only upon the propagated prior information.
As expected, performance is considerably worse than when
running uKIN with « =0.5. Nevertheless, we observe that several
CCGs are found for o = 0; this is due to the fact that known can-
cer genes tend to cluster together in the network (Cerami et al.,
2010), and our propagation technique ranks highly the genes
close to the genes in K.

We also consider uKIN’s performance as compared with an
“unguided” walk with the same restart probability «=0.5. In
this case, the walk selects a neighboring node to move to uni-
formly at random. The stationary distribution that the walk con-
verges to depends upon the starting locations and the network
topology but is independent of the prior information. Such a
walk provides a good baseline to judge the impact the propa-
gated prior information has on the performance of our algorithm
and is an approach that has been widely applied (Kohler et al.,
2008). As evident in Figure 3A, an unguided walk (purple line)
performs considerably worse than uKIN with « = 0.5, highlighting
the importance of prior information in guiding the walk.

Notably, the trends we observe on GBM hold across all 24
cancers (Figure 3B). For each cancer type, we consider the
log» ratio of the area under the precision-recall curve (AUPRC)
of the version of uKIN that uses both prior and new information
with a = 0.5 to the AUPRC for each of the other variants. For all
cancer 24 cancers, when uKIN uses both prior and new informa-
tion with « =0.5, it outperforms the cases when using only prior
information (Figure 3B, left) or using only new information (Fig-
ure 3B, middle and right).

uKIN Is Effective in Uncovering Cancer-Relevant Genes

We next evaluate uKIN’s performance in uncovering cancer-rele-
vant genes as compared with several previous methods. These
methods do not use any prior knowledge of cancer genes, and
any performance differences between uKIN and them may be
due either to the use of this important additional source of informa-
tion or to specific algorithmic differences between the methods.

Cell Systems 10, 470-479, June 24, 2020 473




¢? CellPress

OPEN ACCESS

alpha

—=—=0 (prior)

—— 0.5 (uKIN)

—— 0.5 (unguided)
(

—1

0.8-

new)

o
o

Fraction of genes that are CGCs
o
»

0.2-

%

0.0+

0 25 50 75 100
Number of genes considered

Cell Systems

B a = 0 (prior) a = 0.5 (unguided) a=1(new)

QIR
J|-|||||||||||-||||||||||

,_
[=
=
o

o
N
w

40 2 4 6 8 0
Log, Fold Change in AUPRC

N
w
IS

Figure 3. uKIN Successfully Integrates New Information and Prior Knowledge

(A) We illustrate the effectiveness of our approach uKIN on the GBM dataset and the HPRD protein-protein interaction network using 20 randomly drawn CGCs to
represent the prior knowledge. We combine prior and new knowledge using a restart probability of « = 0.5 (blue line). As we consider an increasing number of high
scoring genes, we plot the fraction of these that are part of the hidden set of CGCs. As baseline comparisons, we also consider versions of our approach where we
use only the new information (« = 1) and order genes by their mutational frequency (green line); where we use new information to perform “unguided” random
walks with a« = 0.5 and order genes by their probabilities in the stationary distribution of the walk (which uses new information but not prior information, purple line);
and where we use only prior information (« = 0) and order genes based on information propagated from the set of genes comprising our prior knowledge (orange
line). Integrating both prior and new sources of information results in better performance.

(B) The performance of uKIN when integrating information at « = 0.5 is compared with the three baseline cases where either only prior information is used (= 0,
left) or only new information is used (« =1, right and unguided RWRs with « = 0.5, middle). In all three panels, for each cancer type, we plot the log, ratio of the
AUPRC of uKIN with guided RWRs with o =0.5 to the AUPRC of the other approach. Across all 24 cancer types, using both sources of information outperforms

using just one source of information.

Nevertheless, such comparisons are necessary to get an idea of
how well uKIN performs as compared with the current state of
the art. All methods are run and AUPRCs computed as described
in STAR Methods. First, we compare uKIN with a«=0.5 to Mut-
SigCV 2.0 (Lawrence et al., 2013), perhaps the most widely
used frequency-based approach to identify cancer driver genes.
We find that uKIN outperforms MutSigCV 2.0 on 22 of 24 cancer
types (Figure 4A). Next, we compare uKIN to three network-based
approaches (Figure 4B): Muffinn (Cho et al., 2016), which con-
siders mutations found in interacting genes; DriverNet (Bashashati
et al., 2012), which finds driver genes by uncovering sets of so-
matically mutated genes that are linked to dysregulated genes;
and nCOP (Hristov and Singh, 2017), which examines the per-in-
dividual mutational profiles of cancer patients in a biological
network. uKIN exhibits superior performance across all cancer
types when compared with DriverNet and outperforms Muffinn
in 23 out of 24 cancer types and nCOP in 17 of the 24 cancer
types. In several cancers, the performance improvements of
uKIN are substantial. For example, uKIN has a 4-fold improvement
over MutSigCV 2.0 in predicting cancer genes for ovarian cancer
(OV) and pancreas adenocarcinoma (PAAD) and a 4-fold improve-
ment over DriverNet for uterine corpus endometrial carcinoma
(UCEC) and lung squamous cell carcinoma (LUSC). The limited
number of patient samples available for uterine carcinosarcoma
(UCS) limits nCOP’s performance (Hristov and Singh, 2017),
whereas uKIN is able to leverage the prior knowledge available,

474 Cell Systems 10, 470-479, June 24, 2020

resulting in uKIN’s 2-fold improvement over nCOP; this high-
lights the benefits of incorporating existing knowledge of dis-
ease-relevant genes, especially when the new data are
sparse. We also compare with Hotnet2 (Leiserson et al.,
2015), whose core algorithmic component is diffusion (Qi
et al., 2008), and as such uKIN is more similar to it than other
methods. Hotnet2 does not output a ranked list of genes, so
we instead examine the list of genes highlighted by both
methods. We find that uKIN exhibits higher precision and
recall than Hotnet2 for all cancer types (Figure S1); since
both uKIN and Hotnet2 are network propagation approaches,
these performance improvements illustrate the benefit of us-
ing prior information in identifying cancer-relevant genes.

Robustness Tests

The overall results shown hold when we use different lists of
known cancer genes as a gold standard (Figure S2A), different
numbers of predictions considered when computing AUPRCs
(Figure S2B), and different networks (Figure S2C). Further, we
confirm the importance of network structure to uKIN, by running
uKIN on two types of randomized networks, degree preserving
and label shuffling, and show that, as expected, overall perfor-
mance deteriorates across the cancer types (Figure S2D); we
note that although network structure is destroyed by these ran-
domizations, per-gene mutational information is preserved,
and thus highly mutated genes are still output.
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Figure 4. uKIN Is More Effective Than Other Methods in Identifying Known Cancer Genes

For each method, for each cancer type, we plot the log. ratio of uKIN’s AUPRC to its AUPRC.

(A) Comparison of uKIN with MutSigCV 2.0, a state-of-the-art frequency-based approach. uKIN outperforms MutSigCV 2.0 on 22 of the 24 cancer types.

(B) Comparison of uKIN with DriverNet (left), Muffinn (middle), and nCOP (right). Our approach uKIN outperforms DriverNet on all cancer types, Muffinn on all but

one cancer type, and nCOP on 17 out of 24 cancer types.

We also determine the effect of using different values of « (Fig-
ure S3) and find that running uKIN with ae [0.1,0.9] is superior to
running it using only prior (« = 0) or new (« = 1) information; that is,
the integration of prior and new information is helpful even when
the precise value of « is not carefully tuned. Further, we deter-
mine the effect of the amount of prior knowledge used by uKIN
and find that although performance increases with larger
numbers of genes comprising our prior knowledge, even as
few as five prior knowledge genes leads to a ~4-fold improve-
ment over ranking genes by mutational frequency (Figure S4A).
Finally, we investigate the effect of some incorrect prior knowl-
edge and find that while uKIN’s performance decreases with
more incorrect knowledge, uKIN with «=0.5 performs reason-
ably with less than 20% incorrect annotations (Figure S5B).

Alternate Formulations

We also tested guided diffusion from the somatically mutated
genes instead of RWRs (see STAR Methods). We empirically
find that, for « =0.5, diffusion with v =1 yields nearly identical
per-gene scores on the cancer datasets we tested (GBM and
kidney renal cell carcinoma). Similarly, for other «, we were
able to find values of y such that the RWRs and diffusion have
highly similar results. On the other hand, replacing the initial diffu-
sion from the prior knowledge with a RWR (with « = 0.5) results in

somewhat worse performance (e.g., ~10% drop in AUPRC
for GBM).

uKIN Highlights Infrequently Mutated Cancer-

Relevant Genes

A major advantage of network-based methods is that they are
able to identify cancer-relevant genes that are not necessarily
mutated in large numbers of patients (Leiserson et al., 2015).
We next analyze the mutation frequency of genes output by
uKIN with «=0.5. In particular, for each cancer type, for each
gene, we obtain a final score by averaging scores across the
100 runs of uKIN; to prevent “leakage” from the prior knowledge
set, if a gene is in the set of prior knowledge genes K for a run,
this run is not used when determining its final score. We confirm
that, for all cancer types, the top scoring genes exhibit diverse
mutational rates and include both frequently and infrequently
mutated genes (Figure S5).

We next highlight some infrequently mutated genes in GBM that
are given high final scores by uKIN (i.e., are predicted as cancer
relevant). Forexample, LAD1 and SMAD4 are two well-known can-
cer players that are highly ranked by uKIN and that have mutational
rates in GBM that are in the bottom 70% of all genes and are there-
fore hard to detect with frequency-based approaches. Of uKIN’s
top 100 scoring genes, 23 are in the bottom half with respect to
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mutational rates, and five of these are CGCs (p < .01, hypergeo-
metric test). When considering the top scoring 100 genes by
uKIN for each cancer type, those that have mutational ranks in
the bottom half of all genes are each found to have a statistically
significant enrichment of CGC genes. Thus, uKIN provides a
means for pulling out cancer genes from the “long tail” (Garraway
and Lander, 2013) of infrequently mutated genes.

In addition to highlighting known cancer genes, uKIN also
ranks highly several non-CGC genes that may or may not
play a functional role in cancer, as our knowledge of cancer-
related genes is incomplete. Among these predictions for
GBM are ATXN1, SMURF1, and CCR3, all of which have
been recently suggested to play a role in cancers (Kang
et al., 2017; Lee et al., 2016; Li et al., 2017) and are each
mutated in less than 5% of the samples. ATXN1 is a chro-
matin-binding factor that plays a critical role in the develop-
ment of spinocerebellar ataxia, a neurodegenerative disorder
(Rousseaux et al., 2018), and mutants of ATXN7 have been
found to stimulate the proliferation of cerebellar stem cells in
mice (Edamakanti et al., 2018). This is a promising gene for
further investigation because glioblastoma is a cancer that
usually starts in the cerebrum and the potential role of
ATXN1 in tumorigenesis has only recently been suggested
(Kang et al.,, 2017). SMURF1 and its interacting protein
SMAD1 (also highly ranked by uKIN) have already been impli-
cated in the development of several cancers (Yang et al.,
2017). SMURF1 also interacts with the nuclear receptor TLX
whose inhibitory role in glioblastoma has been revealed (Jo-
hansson et al., 2016). Overall, we also find that the top scoring
genes by uKIN for GBM are enriched in many KEGG pathways
and the Gene Ontology (GO) terms relevant for cancer,
including microRNAs in cancer, cell proliferation, choline
metabolism in cancer, and apoptosis (Bonferroni-corrected
p < 0.001, hypergeometric test).

Cancer-Type-Specific Prior Knowledge Yields Better
Performance

In several cases, CGC genes are annotated with the specific
cancers they play driver roles in. We next test how uKIN’s perfor-
mance changes when using such highly specific prior knowl-
edge. We consider four cancer types, GBM, breast invasive car-
cinoma (BRCA), skin cutaneous carcinoma (SKCM), and thyroid
carcinoma (THCA), with 33, 32, 42, and 29 CGC genes annotated
to them, respectively. We repeatedly split each of these sets of
genes in half and use half as the set X of prior knowledge and
the other half as the set H to test performance.

We first use knowledge consisting of genes specific to a can-
cer type of interest together with the TCGA data for that cancer
to uncover that cancer’s specific drivers. Given the small number
of genes annotated to each cancer, we assess performance by
computing, for each of these genes, the rank of its score by
uKIN over the splits where these genes are in H. Next, for the
same cancer type, we use a set K corresponding to a different
cancer type as prior knowledge (excluding any genes that are
annotated to the original cancer type) while still trying to uncover
the genes in the original cancer of interest (i.e., using TCGA
mutational data and H belonging to the original cancer type).
That is, we are testing the performance of uKIN when using
knowledge corresponding to a different cancer type. For all
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four cancer types, we find that performance is best when uKIN
uses prior knowledge for the same cancer type (Figure 5A), as
genes in ‘H appear higher in the list of genes output by uKIN.
This suggests that uKIN can utilize cancer-type-specific knowl-
edge and highlights the benefits of having accurate prior
information.

Application to Identify Disease Genes for Complex
Inherited Disorders

A major advantage of our method is that it can be easily applied
in diverse settings. As proof of concept, we apply uKIN to detect
disease genes for three complex diseases: amyotrophic lateral
sclerosis (ALS), age-related macular degeneration (AMD), and
epilepsy. For each disease, we randomly split in half the OMIM
database’s (OMIM, 2000) list of genes associated with the dis-
ease 100 times to form the set of prior knowledge K and the hid-
den set H. We use the GWAS catalog list of genes with their cor-
responding p values to form the set M. For all three diseases,
UKIN combining both GWAS and OMIM sources of information
(a=0.5) performs better than diffusing the signal with v =1 using
only knowledge from OMIM (Figure 5B, left panel). For each of
these diseases, there is virtually no overlap between the
GWAS hits M and a set of OMIM genes H; simply sorting genes
by their significance in GWAS studies (i.e., uKIN with a=1) re-
sults in AUPRC of 0. Instead, we spread information from the
set of GWAS genes M in the same fashion as from OMIM and
observe again that using this single source of information alone
does not work as well as uKIN’s using both GWAS and OMIM in-
formation together (Figure 5B, right panel).

DISCUSSION

In this paper, we have shown that uKIN, a network propagation
method that incorporates both existing knowledge as well as
new information, is a highly effective and versatile approach for
uncovering disease genes. Our method is based upon the intui-
tion that prior knowledge of disease-relevant genes can be used
to guide the way information from new data are spread and inter-
preted in the context of biological networks. Because uKIN uses
prior knowledge, it has higher precision than other state-of-the-
art methods in detecting known cancer genes. Further, it excels
at highlighting infrequently mutated genes that are nevertheless
relevant for cancer. Additionally, we have shown that uKIN can
be applied to discover genes relevant for other complex dis-
eases as well.

The extent to which uKIN uses prior and new knowledge is
balanced by a single parameter, «. While performance clearly
varies with different values of this parameter, all tested values
of « that combine both prior and new information result in perfor-
mance improvements as compared with using either source of
information alone (Figure S3); this suggests that careful calibra-
tion of « is not necessary as long as both prior and new data
are used. Nevertheless, the amount of prior knowledge available
can guide selection of «. In particular, when substantial prior
knowledge is available, uKIN can leverage it better when a
smaller « is employed (Figure S4). On the other hand, when
knowledge is sparse or unreliable, a larger « allows uKIN to focus
on the new information, as the walks restart more frequently and
hover around the newly implicated genes.
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Figure 5. Application of uKIN to Complex Diseases

(A) Use of cancer-type-specific knowledge improves performance. For four cancer types, BRCA, GBM, SKCM, and THCA, we consider the performance of uKIN
with a = 0.5 when using TCGA mutational data for that cancer type with prior knowledge consisting of genes known to be driver in that cancer type, as compared
with performance when the prior knowledge set consists of genes that are annotated as driver only for one of the other three cancer types. For each cancer,
performance is measured by the average ranking by uKIN of genes known to be driver for that cancer. For all combinations of possible prior knowledge sets (x-
axis) and specific cancer gene sets that we wish to recover (y-axis), using prior knowledge from another cancer (off diagonal entries) leads to a decrease in
performance as compared with the corresponding pairs (diagonal entries), as measured by the increase in uKIN’s average ranking of genes we aimed to uncover.
(B) uKIN is effective in identifying complex disease genes. We demonstrate the versatility of the uKIN framework by integrating OMIM and GWAS data for three
complex diseases, ALS, AMD, and epilepsy. For each disease, we compare uKIN’s performance when using OMIM annotated genes as prior information and
GWAS hits as new information with « = 0.5, with baseline versions that propagate only information via diffusion from OMIM (left) or GWAS studies (right). In each
panel, for each disease, we plot the logs ratio of the AUPRC obtained by uKIN to that obtained by the baseline method; in all cases, we observe that these values

are positive, thereby demonstrating that uKIN outperforms the baseline methods by successfully integrating prior and new information.

The framework presented here can be extended in a number
of natural ways. First, in addition to positive knowledge of
known disease genes, we may also have “negative” knowledge
of genes that are not involved in the development of a given
disease. These genes can propagate their “negative” informa-
tion, thereby biasing the random walk to move away from their
respective functional modules and perhaps further enhancing
the performance of our method. Second, uKIN is likely to
benefit from incorporating edge weights that reflect the reli-
ability of interactions between proteins; these weights will
have an impact on both the propagation of prior knowledge
as well as the guided random walks. Third, since a recent study
(Przytycki and Singh, 2017) has shown that contrasting cancer
mutation data with natural germline variation data helps boost
the true disease signal by downgrading genes that vary
frequently in nature, uKIN’s performance may benefit from
scaling the starting probabilities of the new putatively impli-
cated genes to account for their variation in healthy popula-
tions. Fourth, while we have demonstrated here how uKIN
can use cancer-type-specific knowledge, cancers of the
same type can often be grouped into distinct subtypes, and
such highly detailed knowledge may improve uKIN’s perfor-
mance even further. Finally, we note that network propagation
approaches have been applied to other settings as well,
including biological process prediction (Nabieva et al., 2005;
Wang and Marcotte, 2010) and drug target identification (Pic-
art-Armada et al., 2019). We conjecture that our guided

network propagation approach will have wide applicability in
computational biology, including where new data (e.g., arising
from functional genomics screens) need to be interpreted in
the context of what is already known about a biological process
of interest.

In conclusion, uKIN is a flexible and effective method that han-
dles diverse types of new information. As our knowledge of dis-
ease-associated genes continues to grow and be refined, and as
new experimental data become more abundant, we expect that
the power of uKIN for accurately prioritizing disease genes will
continue to increase.
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Hotnet2 Leiserson et al., 2015 https://github.com/raphael-group/hotnet2

Muffinn Cho et al., 2016 http://www.inetbio.org/muffinn/

MutSigCV Lawrence et al., 2013 http://archive.broadinstitute.org/cancer/
cga/mutsig

nCOP Hristov and Singh, 2017 https://github.com/Singh-Lab/nCOP

uKIN This paper https://github.com/Singh-Lab/uKIN

Other

Biogrid Stark et al., 2006 https://thebiogrid.org/

GWAS Buniello et al., 2019 https://www.ebi.ac.uk/gwas/

HPRD Keshava Prasad et al., 2009 http://www.hprd.org/

OMIM Online Mendelian Inheritance in Man https://omim.org/

TCGA TCGA Research Network https://cancergenome.nih.gov/

RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Mona
Singh (mona@cs.princeton.edu).

Materials Availability
This study did not generate new materials.

Data and Code Availability
All original code is freely available for download at https://github.com/Singh-Lab/uKIN.

METHOD DETAILS

Background and Notation

The biological network is modeled, as usual, as an undirected graph G=(V, E) where each vertex represents a gene, and there is
an edge between two vertices if an interaction has been found between the corresponding protein products. We require G to be
connected, restricting ourselves to the largest connected component if necessary. We explain our formulation with respect to can-
cer, but note that it is applicable in other settings (both disease and otherwise). The set of genes already known to be cancer
associated is denoted by K= {k1, k2, ...,k }. The set of genes that have been found to be somatically mutated in a cohort of in-
dividuals with cancer is denoted by M ={my,ms,...,m,}, with F={f,,fn,,....fm,} corresponding to the rate with which each
of these genes is mutated. We refer to K as the prior knowledge and M as the new information. We assume that XC V and
MCV; in practice, we remove genes not present in the network. The genes within £ and M may overlap (i.e., it is not required
that KNM = Q).

Guided RWR Algorithm

For each gene ieV, assume that we have a measure g; that represents how close i is to the set of genes K. We will use the
nonnegative vector q, which we describe in the next section, to guide a random walk starting at the nodes in M and walking to-
wards the nodes in K. Each walk starts from a gene i in M, chosen with probability proportional to its mutational rate f;. At each
step, with probability « the walk can restart from a gene in M, and with probability 1 — « the walk moves to a neighboring gene
picked probabilistically based upon q. Specifically, if A'(i) are the neighbors of node i, the walk goes from node i to node je N(i)
with probability proportional to g;/ Y~ qgx. That is, if at time t the walk is at node i, the probability that it transitions to node j at
time t+1 is ke N (i)

U

el Cell Systems 70, 470-479.e1-e3, June 24, 2020


mailto:mona@cs.princeton.edu
https://github.com/Singh-Lab/uKIN
https://bioconductor.org/packages/release/bioc/html/DriverNet.html
https://bioconductor.org/packages/release/bioc/html/DriverNet.html
http://dsd.cs.tufts.edu/server/
https://github.com/raphael-group/hotnet2
http://inetbio.org/muffinn/
http://archive.broadinstitute.org/cancer/cga/mutsig
http://archive.broadinstitute.org/cancer/cga/mutsig
https://github.com/Singh-Lab/nCOP
https://github.com/Singh-Lab/uKIN
https://thebiogrid.org/
https://ebi.ac.uk/gwas/
http://hprd.org/
https://omim.org/
https://cancergenome.nih.gov/

Cell Systems ¢ CellP’ress

OPEN ACCESS

q f;
= (1—a)o;- .
Py = (1=a)3y > ken) A ¢ > ke plk

where ;=1 if je (i) and 0 otherwise. Hence, the guided random walk is fully described by a stochastic transition matrix P with en-
tries p;. By the Perron-Frobenius theorem, the corresponding random walk has a stationary distribution 7 (a left eigenvector of P
associated with the eigenvalue 1). If the graph G is connected, then the back edges to M easily ensure that = is unique. Therefore,
P! = w and we can compute the stationary distribution 7 that the guided random walk converges to. For each gene , its score is given
by the ith element of 7. The genes whose nodes have high scores are most frequently visited and, therefore, are more likely relevant to
cancer as they are close to both the mutated starting nodes as well as to known cancer genes. For the results presented in the main
manuscript, « is set to 0.5.

Incorporating Prior Knowledge

For each gene in the network, we wish to compute how close it is to the set of cancer-associated genes K. While many approaches
have been proposed to compute “distances” in networks, we use a network flow/diffusion technique where each node ke K intro-
duces a continuous unitary flow which diffuses uniformly across the edges of the graph and is lost from each node ve V inthe graph at
a constant first-order rate y (Qi et al., 2008). Briefly, let A = (a;) denote the adjacency matrix of G (i.e., a; = 1if (i, /)< E and 0 otherwise)
and let S be the diagonal matrix where s;; is the degree of node ie V. Then, the Laplacian of the graph G shifted by v is defined as L =
S + vl — A. The equilibrium distribution of fluid density on the graph is computed as g=L~"b (Qi et al., 2008), where b is the vector with
1 for the nodes introducing the flow and 0 for the rest (i.e., b; =1 if vie K and b; =0 if v; &K for Vv;e V). Note that L is diagonally domi-
nant, hence nonsingular, for any v >0. When spreading information from the set of prior knowledge genes, we set vy = 1, as recom-
mended in Qi et al., 2008. The vector g can be efficiently computed numerically. Thus, at equilibrium, each node i in the graph is asso-
ciated with a score g; which reflects how close it is to the nodes already marked as causal for cancer.

Guided Diffusion
Instead of performing RWRs to propagate knowledge in a guided manner, it is also possible to adapt the diffusion approach just out-
lined by letting A= (a;) be defined such thata;=q;/ . q«, and using A to compute L and the equilibrium density as above.

ke N (i)

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Sources and Pre-processing

We test uKIN on two protein-protein interaction networks: HPRD (Release 9_041310) (Keshava Prasad et al., 2009) and BioGrid
(Release 3.2.99, physical interactions only) (Stark et al., 2006). Biological networks often contain spurious interactions as well as proteins
with many interactions. Since both can be problematic for network analysis, we pre-process the networks as described in (Hristov and
Singh, 2017). Briefly, we remove all proteins with an unusually high number of interactions (>900 interactions and more than 10 standard
deviations away from the mean number of interactions). For BioGrid, this removes UBC, APP, ELAVL1, SUMO2 and CULS. For HPRD,
this removes no proteins. To further handle the connectivity arising within networks due to proteins with many interactions, we filter in-
teractions using the diffusion state distance (DSD) metric introduced in Cao et al., 2013; the DSD metric captures the intuition that in-
teractions between proteins that also share interactions with low degree proteins are more likely to be functional than interactions that
do not (and thus are assigned closer distances). For each interaction, the DSD scores (as computed by the software of Cao et al., 2013)
between the corresponding proteins are Z-score normalized, and interactions with Z-scores >0.3 are removed. This process leaves us
with 9,379 proteins and 36,638 interactions for HPRD and 14,326 proteins and 102,552 interactions for BioGrid.

We use level 3 cancer somatic mutation data from TCGA (TCGA Research Network, n.d.) for 24 cancer types (Table S1). For each
cancer type, we process the data as previously described and exclude samples that are obvious outliers with respect to their total
number of mutated genes (Hristov and Singh, 2017). Our set of prior knowledge is constructed from the 719 CGC genes that are
labeled by COSMIC (version August 2018) as being causally implicated in cancer (Futreal et al., 2004). For each cancer type, our
new information consists of genes that have somatic missense or nonsense mutations, and we compute the mutational frequency
of a gene as the number of observed somatic missense and nonsense mutations across tumors, divided by the number of amino
acids in the encoded protein.

We obtain 24, 28, and 63 genes associated with three complex diseases, age-related macular degeneration (AMD), Amyotrophic
lateral sclerosis (ALS) and epilepsy, respectively, from OMIM (OMIM, 2000). These genes are used to construct the set of prior knowl-
edge. For each disease, we form the set M by querying from the GWAS database (Buniello et al., 2019) the genes implicated for the
disease; we note that the genes reported by a given GWAS study are usually, but not always, those closest to the identified SNPs. We
use the corresponding p-values for these genes to compute the starting frequencies f. Specifically, for each disease, for each GWAS
study , if a genej’s p-value is p;j, we set its frequency to log(p;i,)/> log(pix) and then for each gene average these frequencies over
the studies. k

Performance Evaluation
To evaluate our method in the context of cancer, we subdivide the CGC genes that appear in our network into two subsets. We

randomly draw from the CGCs 400 genes to form a set H of positives that we aim to uncover. From the remaining 199 CGCs present
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in the network, we randomly draw a fixed number / to represent the prior knowledge K and run our framework. Unless otherwise
stated, we use /=20 for all reported results. As we consider an increasing number of most highly ranked genes, we compute the frac-
tion that are in the set 1 of positives. All CGC genes not in H are ignored in these calculations. Importantly, the genes in K which are
used to guide the network propagation are never used to evaluate the performance of uKIN. Note that this testing set up, which mea-
sures performance on H, allows us to compare performance of uKIN when choosing prior knowledge sets of different size / from the
CGC genes not in H.

We also compute area under the precision-recall curve (AUPRC). In this case, all CGC genes in H are considered positives, all CGC
genes not in H are neutral (ignored), and all other genes are negatives. Though we expect that there are genes other than those
already in the CGC that play a role in cancer, this is a standard approach to judge performance (e.g., see Jia and Zhao, 2014) as can-
cer genes should be highly ranked. To focus on performance with respect to the top predictions, we compute AUPRCs using the top
100 predicted genes. To better estimate AUPRCs and account for the randomness in sampling, we repeatedly draw (10 times) the set
'H and for each draw we sample the genes comprising the prior knowledge K 10 times. The final AUPRC results from averaging the
AUPRCs across all 100 runs.

We compare uKIN on the cancer datasets to the frequency-based method MutSigCV 2.0 (Lawrence et al., 2013) and four network-
based methods, DriverNet (Bashashati et al., 2012), Muffinn (Cho et al., 2016), nCOP (Hristov and Singh, 2017) and HotNet2 (Leiser-
son etal., 2015). All methods are run on each of the 24 cancer types with their default parameters. Muffinn, N"COP and HotNet2 are run
on the same network as uKIN, whereas MutSigCV does not use a network and DriverNet instead uses an influence (i.e., functional
interaction) graph and transcriptomic data (we use their default influence graph and provide as input TCGA normalized expression
data). Since uKIN uses a subset of CGCs as prior knowledge, we ensure that all methods are evaluated with respect to the hidden
sets H (i.e., of CGCs not used by uKIN). Though we could just consider performance with respect to one hidden set, considering
multiple sets enables a better estimate of overall performance. For these comparisons, uKIN with «=0.5 is run 100 times, as
described above, with 20 randomly sampled genes comprising the prior knowledge, and evaluation is performed with respect to
the genes in the hidden sets. All methods’ AUPRCs are computed using the same randomly sampled test sets H and averaged at
the end. Since HotNet2 outputs a set of predicted cancer-relevant genes and does not rank them, we cannot compute AUPRCs
for it; instead we compute precision and recall for its output with respect to the test sets H and compare to uKIN’s when considering
the same number of top scoring genes. Note that all methods use all TCGA data for a cancer type for each run.

To evaluate our method in the context of the three complex diseases, we subdivide evenly the set of OMIM genes associated with
each disease into the prior knowledge set K and the set of positives H. As with the cancer data, we do this repeatedly (100 times) and
average AUPRCs at the end.
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