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ABSTRACT

Mobile applications demand is on the rise, leading to more pro-
grammers learning to develop or having to maintain this kind of
programs. Developers often refer to online resources to find inspira-
tion or answers to questions they have about mobile programming
topics and screencasts are a popular resource. However, given the
multitude of screencasts available, it can be difficult to quickly
comprehend which of the many videos is relevant to one’s needs.

We propose a novel approach, called UlScreens, which detects,
extracts, and presents the most representative user interface (UI)
screens embedded in mobile development screencasts. This could
help developers quickly comprehend what an app displayed in a
video is about, therefore saving time searching for useful videos.

UlScreens has been evaluated in two empirical studies on iOS
and Android programming screencasts. The first study investigates
the accuracy of our Ul extraction and shows that our approach is
able to detect and extract Ul screens with an accuracy of 94%. The
second is a user study with mobile app developers, who evaluated
both the accuracy and the usefulness of UlScreens. They agreed that
UlScreens is accurate and extracts representative Ul screens from
videos. They considered that the extracted UI screens are useful for
understanding what a video is about and if it is relevant to a search.
Our approach has been implemented as a free online tool.

CCS CONCEPTS

« Software and its engineering — Documentation;  Computer
vision — Image recognition;

KEYWORDS

Program comprehension, Programming video tutorials, Mobile de-
velopment, Software documentation, Deep learning, Video mining

ACM Reference Format:

Mohammad Alahmadi'-2, Abdulkarim Khormi!>3, Sonia Haiduc!. 2020. UI
Screens Identification and Extraction from Mobile Programming Screen-
casts. In 28th International Conference on Program Comprehension (ICPC
"20), October 5-6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3387904.3389265

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC ’20, October 5-6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7958-8/20/05....$15.00
https://doi.org/10.1145/3387904.3389265

1 INTRODUCTION

Smartphones are some of the most widely used devices today, with
more than 2.5 billion users worldwide [56]. The two most popular
app stores, the Apple App Store! and Google Play Store? host
millions of smartphone applications that people use for a variety
of tasks in their daily lives [5, 17, 27]. The increasing demand for
these applications has spurred growth in mobile app development
with more and more programmers learning to develop new mobile
applications or having to maintain and evolve existing ones.

When learning about new concepts and technologies, debugging,
or looking for answers to programming questions, online resources
are developers’ preferred documentation sources [9]. Screencasts
are particularly on the rise [36, 37, 48], with tens of millions of
videos available on many programming topics, hosted on platforms
like YouTube?. Screencasts can be effective learning tools for mobile
app developers due to their ability to offer in-depth, step-by-step ex-
planations on a particular programming topic [36] and the fact that
they show the mobile apps and their features in action. However,
it can be often hard to find a screencast that addresses the topics,
features, or app elements for which a developer might be searching
for. This is due in part to the fact that the hosting platforms (e.g.,
YouTube) display very limited information for each video, making
it hard for developers to quickly determine if a video contains the
app features, user interface (UI) elements, or mobile development
topics that are relevant to their information need.

In this paper, we make a step towards addressing this problem
by localizing, extracting, and presenting to the developer the most
representative UI screens found in a mobile programming screen-
cast. This can be seen as a UI overview of a video, which can help
developers quickly comprehend what the apps developed in pro-
gramming screencasts are about and if they are relevant to their
information needs. We focus on the UI of an app, since it captures
the essence of an application [8, 39, 42], by showcasing the features
it provides in action.

Our approach for extracting the UI overview, called UlScreens,
is based on a deep Convolutional Neural Network (CNN) which
includes an image feature extractor and an object detector to locate
Ul screens within the frames of a programming screencast. The
detected Ul screens are then extracted and filtered such that only
unique Ul screens are kept. The approach was also integrated into

a tool, which is freely available to use online?.
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We conducted an evaluation of UlScreens through two empir-
ical studies. The first study focused on determining the accuracy
of our approach in correctly locating UI screens in 1,000 i0S and
Android programming videos from YouTube. The results indicated
that UlScreens can precisely locate UI screens in screencast frames,
achieving an accuracy of 94%. The second part of the evaluation in-
volved a user study where 25 professional developers and computer
science students were asked to assess the results of our approach
based on quality and usefulness. The evaluation was done on a new
set of 50 iOS and Android screencasts, not involved in the training
of our approach. The results indicated that participants valued the
extracted Ul screens and found them appropriate and useful.

In summary, the main contributions of this paper are:

o The first approach for locating and extracting UI screens from
mobile programming screencasts, providing a Ul overview
of a video. This can enable developers to quickly compre-
hend which are the main features of an app explained in
a screencast and determine if the video is relevant to their
information needs.

e An evaluation based on two empirical studies showing that
the proposed approach is not only accurate, but also consid-
ered useful by developers.

o A freely available tool implementing our approach.

e A replication package® containing our complete dataset, re-
sults, and scripts.

The rest of the paper is organized as follows: Section 2 introduces
the main architectures and approaches for image analysis used in
our work, Section 3 introduces our approach and its components,
Section 4 describes the two empirical studies we performed, Sec-
tion 5 discusses the threats to the validity of our results, Section
6 presents an overview of the related work, and finally Section 8
concludes the paper.

2 BACKGROUND

RETNSIE] TNy AR el
Figure 1: Keypoints extraction in a video frame using SURF
Using algorithms and techniques from other fields has proven

extremely beneficial to software engineering research over the past
couple of decades, with countless applications addressing various

Shttps://zenodo.org/record/3743842
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software engineering problems [12, 35, 50, 55, 59]. Deep learning
algorithms have been particularly successful and their application
in software engineering research has soared over the past few years
[20, 31, 61, 62], including in work analyzing software development
screencasts [43, 44] and GUI prototyping [38]. Given their proven
benefits and the nature of our problem, we make use of the deep
architecture of Convolutional Neural Networks (CNN), first intro-
duced and most widely used in the field of computer vision [51]. We
want to underline the fact that, while the backbone architectures
we use are not novel, their training and application for generating
Ul-focused overviews of programming screencasts is.

The rest of this section introduces the specific techniques we
use and their backbone architectures, which are at the core of our
approach.

2.1 Image Feature Extraction

In the field of computer vision, describing an image by detecting its
main features or so-called “keypoints” using image feature extraction
techniques has been successfully applied to solve several image
recognition challenges [6, 33]. In our approach, we use an image
feature extractor in order to determine distinctive features in the
frames of a mobile programming screencast and then compare
consecutive frames based on these features in order to determine if
they contain distinct information or not. If two consecutive frames
are very similar, only one of them will be kept (more details about
how we implement this in our approach will be presented in Section
3). This step is essential for reducing the number of frames analyzed
to just those that contain unique information, as previous work has
shown that programming screencasts contain many more duplicate
frames than other types of videos [13].

As a general rule for feature extraction in images, the extracted
features have to be distinctive and robust (i.e., invariant to rotation,
transformation, and scaling). In UlScreens, we make use of SURF for
feature extraction. Speeded Up Robust Features (SURF) [6] is one
of the best approaches towards extracting distinctive and robust
features for images. Figure 1 shows an example of the features
detected by SURF in a frame from a mobile programming screencast.

In order to determine the similarity between two frames and
identify duplicates using SURF, three steps are performed. First, a
Fast-Hessian detector is used to find the keypoints in distinctive
areas (e.g., blobs and corners). Then, a robust-to-noise feature vector
(aka descriptor) is assigned for each keypoint identified in a frame.
This descriptor has to be distinctive for the frame. To extract the
descriptor, SURF assigns an orientation that is invariant to rotation
for each keypoint by computing Haar wavelet response. Lastly, the
similarity between two frames is determined by matching their
descriptor vectors. If this similarity is above a threshold, one of the
images is considered redundant and is discarded.

2.2 Object Detection based on Convolutional
Neural Networks

Convolutional Neural Networks (CNNs) have been widely and suc-
cessfully used in solving several computer vision challenges such
as image recognition, classification, and detection [29, 54, 67]. Sim-
ilar to other types of artificial neural networks, CNNs for these
types of tasks typically consist of multiple layers, including: (i) an
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Figure 2: An overview of our approach and its main components

input layer that is typically an image with a three denominational
pixel matrix (i.e., RGB), (ii) convolution layers, where most of the
mathematical computations occur to extract features from the input
image through the use of filters, and (iii) fully connected layers,
which are used to classify the input image based on the extracted
low dimensional feature maps, typically by utilizing a softmax acti-
vation function. This function outputs the probability that an input
image belongs to one of the pre-defined classes. After each convolu-
tion layer, there are typically a non-linear unit and a pooling layer.
One of the most commonly used non-linear activation functions
is Rectified Linear Units (ReLU) which can simply be defined as
f(x) = max(0, x) (i.e, it outputs 0 for a negative input). The max
pooling layer is used to downsample the feature map while keeping
the salient features.

One of the successful applications of CNNs in computer vision
has been in the area of object detection, where recent algorithms
have shown impressive performance in finding objects inside an
image or a scene. Most state-of-the-art object detection methods
utilize CNNs to not only classify an object into a specific category
but also to find a precise location of that object inside the image [24,
32]. Given their prior record on the object detection and localization
task, we make use of CNNs to identify and precisely locate UI
screens inside the frames of mobile programming screencasts.

There are two main approaches for detecting an object inside an
image using CNNs: region-based and region-free. In our work, we
utilize a region-based approach, namely Faster R-CNN, which is
faster than other region-based approaches [51] and more accurate
than region-free approaches [25, 63].

Region-based CNN object detection: Region-based approaches
for object detection create a number of potential regions of interest
in an image where an object is more likely to be located [60]. This
selective search approach reduces the computational cost compared
to processing all parts of an image. The features of the potential
regions are extracted using a CNN and eventually classified by the
output layer of the network using a softmax unit. Several region-
based approaches have been proposed over the last few years. The
earliest approach, called Region-based CNN (R-CNN) detects an

object inside an image by running a CNN classifier on each pro-
posed region [19]. Forward propagation is performed to extract
the low dimensional feature map from each region. Each region
is then classified using a Support Vector Machine. The bounding
box of the potential location of the object is then adjusted to the
position of the object using a linear regressor. Because R-CNN runs
the CNN on every region, it is very slow in the object detection
task. Fast R-CNN is a follow-up approach that was intended to
optimize the performance of R-CNN [18]. Fast R-CNN reduces the
computation cost by running the CNN on the entire image just
once, rather than feeding each region independently to the CNN.
The Region of Interest is identified after that, on the feature map of
the entire image that was generated using the CNN. The Region of
Interest (Rol) pooling layer is used to adjust the size of the region to
a fixed size, leading to a representation of the region using feature
vectors of that size. These fixed-size boxes are classified using a
fully connected layer. While a softmax layer is used for the classifi-
cation, the offset values adjust the bounding box. Faster R-CNN is
the third and the most influential iteration of region-based CNN
approaches [51]. Faster R-CNN optimizes the performance even
further by using a Region Proposal Network (RPN) as an alternative
to the selective search algorithm. The RPN creates region proposals
that are adjusted using an Rol pooling layer and eventually classi-
fied with a tighter bounding box. Faster R-CNN outperformed all
previous R-CNN iterations and has inspired several works in the
field of object detection [53, 66, 68]. We use Faster R-CNN as the
object detector in our approach.

3 APPROACH

In this section we describe UlScreens, our approach for extracting
Ul overviews of mobile programming screencasts. Figure 2 offers a
general overview of our approach, which consists of three major
steps. During the first step, video frames are collected from a set of
mobile programming screencasts, and frames containing redundant
information are removed, in order to speed up the processing time
and ensure the diversity in our dataset. After that, the remaining
frames are manually labeled as either containing UI screens or not.
The frames containing UI screens are then manually annotated
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with a bounding box that frames the UL This data is then used for
training a deep network based on the Faster R-CNN architecture
which is then able to predict the presence and location of Ul screens
in unseen mobile screencasts. The last steps reduces the predicted
set of Ul screens to a smaller set of key Ul screens, which consists
the final Ul-focused overview that is displayed to the user. The
following subsections describe each of these steps in more detail.

3.1 Data Collection and Pre-Processing

3.1.1 Collecting Mobile Development Screencasts. Our approach,
UlScreens, requires training data in order to build a prediction
model that is able to detect and localize UI screens in mobile pro-
gramming screencasts. This data, however, only needs to be col-
lected once, after which the constructed model can be used on any
number of new, unseen video tutorials.

In order to provide training (and testing) data for our approach,
we manually collected a set of 1,000 mobile programming screen-
casts from YouTube®: 500 iOS tutorials and 500 Android tutorials.
We aimed to collect a diverse set of videos in order to train a ro-
bust prediction model, able to recognize Ul screens in a variety
of circumstances. To ensure diversity in our dataset, we collected
videos that: (i) display a variety of UI emulators for different mo-
bile devices (e.g., iPhone 6, iPhone X, iPad, Nexus 4, Google Pixel,
etc.) and different screen sizes, (ii) display different IDEs and dif-
ferent programming languages specific for mobile development,
such as Swift and Objective C for iOS, Java for Android, as well
as cross-platform programming languages such as C# and Kotlin?,
(iii) display different phone orientations (portrait and landscape) in
emulators, and (iv) cover a wide variety of mobile application types,
such as puzzle, animation, quiz, augmented reality, etc. In addition,
we also ensured that we collected no more than five videos per
channel. On average, the length of the iOS and Android videos are
~ 13 and ~ 16 minutes, respectively.

It took a total of 83 hours to collect these videos manually follow-
ing the above criteria. The videos were collected and validated by
two authors who have a strong background in mobile development.
We used the youtube-dI® API tool to download the videos to our
server.

3.1.2  Distinct-Frames Detection. Previous work has found that pro-
gramming tutorials are generally much more static than other types
of videos [13], meaning that it is common for the content displayed
on the screen to remain the same for longer periods of time during
the screencast. This is due to the fact that programming tutors often
spend some time explaining a piece of code or a programming con-
cept displayed on the screen, in which time there is no noticeable
change in the video frames. Therefore, many frames in a program-
ming screencast are duplicates of each other. In consequence, the
next step in our approach deals with eliminating duplicate frames
and keeping only distinct ones for the analysis. This serves several
purposes: first, it allows for a greater diversity in our dataset, en-
suring that the deep learning object detector used in our next step
has a more diverse set of frames to learn from and to be tested on;
second, it reduces the unnecessary computation time that would be

®https://www.youtube.org/
"https://kotlinlang.org
8https://github.com/rg3/youtube-dl
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Table 1: Statistics of our dataset before and after applying
our approach to remove duplicate frames (in number of
frames, at 1fps extraction rate)

Mobile OS Min. Mean 1%t Qu. Median 3" Qu. Max.

Before iOS 42 773 394 675 1032 2345
Android 39 962 364 576 891 8259

After i0S 1 64 24 50 86 366
Android 1 57 25 42 71 455

spent when training a model on similar images, having the same
features; third, given that manual labeling of frames is needed for
the next steps in our approach, this also reduces the amount of
human effort involved.

We start by extracting one frame per second from each screen-
cast, as it is custom when analyzing programming video tutorials
[47, 65] and use the FFMPEG® off-the-shelf tool for this task. Let us
then denote a video as V and a frame as f where V={fi, f2,..., fu},
and n is the number of seconds in that video. We apply the feature
descriptor SURF (see Section 2.1) on all n frames in the video to
extract keypoints in each frame and the feature vectors that de-
scribe them. Then, given two neighboring frames f; and f3, for
each keypoint ky, ; in frame fi, we find the best matching keypoint
kg, j and the second-best matching keypoint k, ; in f; based on the
Euclidean distance between their features. If the Euclidean distance
between kg, ; and ky, ; is smaller than 75% of the distance between
kg, ; and the kg, ; (i.e., the best matching point is significantly closer
than the second-best match) then the pair of keypoints (kg ;.kf, ;)
is considered a strong match and added to the set of matching
keypoints mj 2 pairs for f; and f. The threshold of 75% for the dis-
tance was determined empirically, based on testing different values
between 50% and 95%. This process is repeated for all keypoints
in fi, and at the end, the number of matched keypoints in mj
represents the similarity measure between frames f; and f (i.e.,
the more similar keypoints in mj 3, the more similar the two frames
are). In other words, we obtain the similarity percentage between
two frames by dividing the number of matched keypoints by the
maximum between the total number of keypoints in each of the two
frames. Then, if the similarity is greater than a given threshold, we
consider that the frames contain mostly duplicate information and
one of them can be discarded without losing relevant information.

Choosing the similarity threshold can impact the results of this
step. Choosing a high threshold can result in many very similar
frames being kept in the dataset, which can lead to overfitting when
training our network and also increases the human effort when
manually labeling the dataset. Choosing a low threshold can lead to
removing frames that contain unique and relevant information that
could be useful for training the model. Therefore, finding the right
balance is important. We performed experiments involving various
thresholds between 50% and 95% and found that a similarity thresh-
old of 80% between frames offered a good compromise (together
with the distance between keypoints of 75%, as mentioned above).
When two frames are found to be similar based on these criteria, we
remove the first frame and keep the last one, as it contains the latest
version of the information. For example, assume a video remains

https://www.fimpeg.org/
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static for its first 60 seconds while the tutor explains a piece of code.
In this case, we remove fi through f59 and only keep fs0.

Table 1 shows detailed statistics about the collected number of
frames (at 1 frame per second) before and after applying our ap-
proach for removing duplicate frames. The duplicate frame removal
step resulted in a drop in the total number of frames from ~ 732k to
only ~ 61k frames. The average sizes of the remaining sets of frames
for iOS and Android screencasts are ~ 60 frames. All the remaining
~ 61k frames were then manually classified by two of the authors as
either containing Ul screens or not. The Ul-containing frames were
then further manually annotated by the two authors with bound-
ing boxes that surround the Ul screens appearing in them. These
annotated frames represent the training data for our approach. The
manual classification and annotation step is described below.

3.1.3  Manual Frame Classification and Annotation. In order to ex-
tract Ul overviews of mobile programming screencasts, our ap-
proach first needs to be able to distinguish the frames that contain
Ul screens from those that do not. For this purpose, we need labeled
training data exemplifying both frames containing UI screens and
frames that do not contain such elements.

In order to obtain this data, two authors manually classified the
remaining 60,865 distinct frames after duplicate frame removal into
one of two categories:

o User Interface (UI): This category includes all frames that
contain at least one fully visible mobile UI screen. The UI
screens could be appearing in a layout editor page, interface
builder, emulator, etc.

e Non-User Interface (NonUI): This category includes all
frames that do not contain any fully visible UI (i.e., they
contain no mobile UI screen or mobile UI screens that are
obstructed by other windows).

The two authors classified and verified these frames as follows.
First, a supporting tool was built to make the classification faster.
The tool displayed one frame at a time through a GUI that had four
main buttons which allowed the authors to classify the frame as UI
or NonUI and to move to the next or previous image. All frames
were classified by one author and validated by another author. For
easing navigation to a specific image during the validation process,
a search bar was integrated into the tool. The two authors disagreed
on 20 frames out of the 60,865 frames, and reached an agreement
for each of them after a discussion. The disagreements arose when
a Ul was just slightly obstructed by another window. In those cases,
one author considered the frame as UI, while the other considered
it as NonUL In the end, the agreement was to consider all these
cases as NonUI, since we are interested in detecting non-obstructed,
fully-visible UI screens for the final UI overview.

The total number of frames that were classified as UI by the
authors was 5,695 for Android and 9,025 for iOS out of the total of
28,698 and 32,167 frames, respectively. On average, 14 frames were
classified as UI from each video.

Our end goal is to extract the Ul screens from the frames that con-
tain them in a mobile programming screencast and then display the
most representative ones as a Ul overview of the video. To achieve
this, our approach needs to also be able to locate where exactly
the Ul screens are found in the video frames and then extract only
those portions of each image. This requires manually annotating
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the video frames in the UI category with the precise position of
the Ul screens they contain. More precisely, we annotate each UI
screen with the coordinates of the bounding box that encloses it:
(Xmins Ymins> Xmax> Ymax)> where xmin and ymin denote the upper
left corner of the box and xmax, Ymax denote its lower right corner.
The NonUI frames are also annotated, since our model needs to
also learn the features of a frame without a Ul screen. However, we
perform this annotation automatically and set the bounding box
of NonUI frames to the entire frame (i.e., (Xmin, Ymin) = (0,0) and
(Xmax> Ymax) = (width, height)). Using this kind of annotated data,
our model will be able to output the class name (either UI or NonUI)
and the bounding box information for each input frame. Then, we
use this information to isolate the UI frames and then extract the
Ul screens they contain based on the bounding box coordinates
predicted by our approach.

Given the significant effort associated with manual labeling,
we select a subset of the Ul and NonUI frames for the bounding
box annotation. Randomly selecting these frames from the entire
dataset might result in unbalanced samples with respect to the
number of videos in our dataset. That is, with random selection,
we could obtain more Ul frames from one video and none or few
UI frames from other videos. To ensure diversity and uniformity,
we randomly select one frame at a time from each collected video
as follows. Given a set of videos V = {v1, v2,...,v,}, we select a
random UI; frame and a random nonU]I; frame from each video v;
and add them to our selected set. We apply and repeat this process
until we have a total of 2,000 UI and 2,000 NonUI frames selected,
distributed fairly across the videos. Our goal is to have a diverse
frame set from all the videos and selecting small samples from each
video. On average, we select two random UI frames and two random
NonUI frames from each video. Given that we have 500 iOS and
500 Android screencasts, the result of this process is a total of 1,000
iOS UI frames, 1,000 Android UI frames, as well as 1,000 NonUI
i0S frames and 1,000 NonUI Android frames. Note that this way
we also handled the class imbalance problem, preventing issues
such as the model being biased toward the dominant class while
working poorly for the minority class [21].

The manual annotation of each Ul screen with its location was
performed by two of the authors, using the cloud-based Dataturks!®
tool. All Ul frames were annotated by one author and then the
annotations were verified by another author.

While the manual annotation of UI frames is a tedious and time-
consuming task, it only needs to be performed once, when gathering
training data. The resulting trained model can then be applied over
and over again on new videos, without the need for additional
manual labeling. We also note that manually labeling data is often
a necessary step when using supervised learning approaches.

The annotated UI and NonUI frames represent the input for the
next step in the approach, which trains the object detector.

3.2 Classification and Localization of Ul
Screens

Our goal is to accurately identify and locate UI screens embedded
in mobile development screencasts, such that they can be automati-
cally extracted to produce Ul overviews of the videos. To accomplish

Ohttps://dataturks.com/
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this, we aim to train a model with the distinguishing features of
UI and NonUI frames and the location of UI screens within them.
To detect and extract the features from the images, there are two
main approaches. The first, intuitive approach would be to find
hand-crafted features that describe the UI frames and train a classi-
cal machine learning algorithm such as Support Vector Machines,
Naive Bayes, etc. to learn based on these features. However, this is
impractical considering the large amount of features that could be
considered for an image. Instead, the state-of-the-art approach is to
automatically extract features using a deep Convolutional Neural
Network (CNN) that considers a large number of parameters dis-
tributed across several layers. This approach has been used with
impressive results in various computer vision tasks [22, 26, 54],
and has also been successfully employed in software engineering
tasks [38, 43, 44, 69]. To this end, we adopted a CNN-based object
detector to extract the features of the Ul screens.

In particular, we fine-tune the architecture of Faster R-CNN [51]
described in Section 2.2 to locate Ul screens based on features ex-
tracted using the backbone feature extractor Inception-Resnet V2
[57]. Inception-Resnet V2 automatically extracts relevant spatial
features of the Ul regions that map to their coordinates (i.e., their
bounding boxes). We used Inception-Resnet V2 as a backbone net-
work [57], since it was shown to outperform previous Inception and
Inception-Resnet architectures [22, 26, 58] and also outperformed
many other architectures in the ImageNet Large-Scale Visual Recog-
nition Competition (ILSVRC) [52]. In addition, Inception-Resnet
V2 has also been proven efficient in analyzing programming video
tutorials [69]. We train the Faster R-CNN with Inception-Resnet
V2 as it has been shown that this combination outperformed sev-
eral other object detectors with various backbone networks in an
object detection task [25]. Although Faster R-CNN was designed to
work with natural scene images, we believe it can work even better
for recognizing mobile Ul screens in programming video tutorials
because they have more predictable features and outlines/shapes
than natural scenes do (e.g., the dark color and unique shape of the
phone emulator, a camera located at the top of the phone emulator,
phone buttons at the bottom of the emulated phone, etc.).

During the training of our deep network, we follow the process
depicted in the second phase in Figure 2, as follows: 1) A feature
map is obtained for each input frame using deep convolutional
layers that use a large number of parameters (i.e., there are 164
convolutional layers in the Inception-Resnet architecture). 2) The
feature map is then fed into a Region Proposal Network (RPN),
which in turn generates regions of interest (ROIs) that have a high
chance of containing objects. RPN considers in total nine differ-
ent scales and aspect ratios, which is important because objects
could have different shapes. 3) Finally, the extracted feature map
is cropped based on the size of the Rols obtained using the second
step. The cropped batches must have the same size before feeding
them into the detection network. Thus, Rol pooling is applied to
obtain fixed-size batches. Then, the CNN-based region classifier
takes the pooled feature of each region of interest as an input batch
and uses Fully Connected (FC) layers to output the object’s class
and its bounding box coordinates.

Implementing our Object Detector: Our CNN-based object
detector was trained end-to-end using back-propagation where
the weights get adjusted using Stochastic Gradient Descent (SGD)
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with momentum optimizer [49]. We avoided overfitting by using
the learning rate schedules technique, which adjusted the learning
rate during the training process. The initial learning rate we used
during our training was 3 x 1074, to guarantee the convergence
of the training phase. Additionally, we used data augmentation
techniques to make our model more robust and generalizable. An
example of our data augmentation techniques involved randomly
flipping our images horizontally during the training phase. The
corresponding bounding boxes were also updated accordingly (i.e.,
flipped horizontally). We also randomly scaled some of our training
regions to make sure that the model learns the features of Ul screens
with different sizes.

The batch size is the total number of training samples that will be
passed through the network at once. The batch size can be adjusted
based on the computer hardware performance such as the GPU
memory, as well as the input image size. We set the batch size to 16
based on the limitations of our hardware configuration. We then
resized the input image dimensions to the default values of 600 X
1024 pixels, using a stride of 8 X 8, resulting in a total of 9,600 grids.
Nine anchors of different scales and aspect ratios are generated for
each grid (86,400 anchors).

We trained our network using the Tensorflow API'* on a ma-
chine with an Intel Xeon 3.40GHz processor, 128GB RAM, and a
GeForce GTX 1080 GPU with 8 GB of memory for about 12 hours.

Ill

3.3 Key-UI Screen Selection

Once our model has been trained in the previous step, it can be
applied to unseen mobile development screencasts from YouTube to
detect and extract Ul screens from a video tutorial. However, the list
of extracted Ul screens can still contain duplicates. While duplicate
frames were initially removed in the Distinct Frame Detection step
of our approach (see Section 3.1.2), the focus there was on the full
frames, rather than extracted Ul screens. Two frames that contain
identical UI screens may overall look dissimilar due to the fact
that the rest of the frames besides the Ul screen is dissimilar. Since
the UI screens appear often only as a part of the image, the two
frames would be considered overall distinct and both would be kept,
leading to two identical UI screens being extracted. The additional
filtering step we perform in this step assures that these cases are
found and duplicate Ul screens are removed.

Our Key-UI screen selection process can be described as fol-
lows. Given the set of extracted UI screens in video V as U =
{U1,Us,...,Uy}, this set might contain duplicate UI screens. To
remove the duplicates, we could follow two approaches. The first
involves comparing each two consecutive screens U; and Uj1 to
find if they are very similar. The problem when using this approach
is the fact that there could be two non-consecutive UI screens such
that U; is a duplicate of U; where j > i+1. Therefore, comparing
only consecutive Ul screens would result in this pair of duplicates
not being detected. The second approach, which overcomes this
problem, involves comparing all pairs of any two UI screens ex-
tracted, such that all duplicates can be located and removed. We
used this second approach since it is more comprehensive.

https://github.com/tensorflow/tensorflow
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Our approach is deployed in a publicly available web-based
tool!?. The tool mines mobile programming screencasts, extracts
the Ul screens embedded in the videos, removes the duplicates, and
then displays the resulting UI overviews of the screencasts to the
user. By using the UlScreens tool, developers can, therefore, get
an up-front overview of what the video is about without having
to watch the entire video. An overview of the tool can be seen in
Figure 3.

@U|Screens

MORE VIDEOS

|

P ) 011,144

i0S MapKit Tutorial - How To Get Directions

Ul Overview

Figure 3: UlScreens tool

4 EMPIRICAL EVALUATION

We performed two empirical studies to evaluate our approach. The
first study focuses on the accuracy of UlScreens in correctly identi-
fying and extracting Ul screens from mobile programming screen-
casts. The second study is a user study where 25 developers and
computer science students with mobile programming experience
were asked to evaluate the quality of the Ul screens extraction, as
well as the usefulness of extracting them. In the following subsec-
tions, we describe the research questions we address and the results
of the studies. We release our complete dataset, results, and source
code in our replication package'3.

4.1 Study I: Classification and Localization of
Ul screens

Motivation: In this study, we focus on evaluating our trained clas-

sification and localization model (step 2 of our UlScreens ap-

proach in Figure 2). Specifically, we aim to determine how well the

model can classify video frames into UI and NonUI, and then locate

2http://uiscreens.ddns.net/
Bhttps://zenodo.org/record/3743842
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the Ul screens embedded in the UI frames. An accurate approach
would precisely locate the UI screens, allowing us to then crop
them correctly and present them to developers in the UI overviews
of the videos in step 3 of our approach (see Figure 2). Therefore,
our research question in this study is as follows:

e RQ;: How accurate is our approach at classifying UI frames
and locating Ul screens in mobile programming screencasts?

Methodology: We trained our approach as described in Section 3
on the 4,000 Ul and NonUI frames and their locations. We performed
10-fold cross-validation, where we split the data in each fold into
training, validation, and testing sets. The validation and testing sets
are each 10% of the data, while the training set is represented by the
remaining 80% of the dataset. The validation dataset is used during
the training to avoid overfitting. Our training process involved 4,000
iterations, until the network stopped improving and the validation
loss was stable (i.e., convergence occurred).

Evaluation metrics: To answer RQ;, we used different metrics for
each of the classification and localization tasks.

First, to evaluate the binary classification of the video frames into
UI and NonUI, we used the standard metrics of Precision, Recall, F;
score, and Accuracy. We denote Tp as the number of true positives,
T, as the number of true negatives, Fp as the number of false
positives, and Fy, as the number of false negatives. Precision is then

defined as P = TI)TJr—pr and Recall is computed as R = T,:r_pF,,' The

F; score is the harmonic mean of precision and recall, defined as
Fi =2- % Accuracy represents the percentage of correctly

classified instances and is formally defined as Acc = %.

To evaluate the task of locating UI screens within the UI frames,
we used the Intersection over Union (IoU) metric between the
predicted location and the ground truth location. IoU is the stan-
dard metric in the object detection field, where it has been used
in several competitions, such as PASCAL VOC Challenge [15], Im-

ageNet Large Scale Visual Recognition Challenge [52], and Mi-

crosoft COCO [34]. Formally, IOU;)trEd is defined as IoUgtred =

Area of (predngt)
Area of (predUgt)’
the location of the ground truth. In other words, IoU measures

the accuracy of the predicted area by comparing it to the ground
truth area. Here, the ground truth is the annotated UI bounding
box described in Section 3.1.3 and the predicted bounding box is
the output of our trained model depicted in step 2 in Figure 2. The
overall prediction performance is finally determined using an IoU
threshold. More precisely, if the IoU is above a predefined thresh-
old, the prediction is considered correct and if the IoU is below
that threshold the prediction is considered incorrect. A lower IoU
threshold typically results in an overall higher performance, while
a higher IoU threshold generally decreases the overall performance.
To account for this, we computed our results at different IoU thresh-
olds between 0.70 and 0.90, with a step size of 0.10. This allows us
to get a comprehensive view of the impact of the IoU threshold
on the performance of our model. We then compute the Average
Precision (AP) of our model at different IoU thresholds. AP has been
used as a standard metric in several object detection competitions
[11, 53]. We also computed the overall Accuracy of predicting the
UI screens in our dataset.

where pred is the predicted location and gt is
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Table 2: The classification results of the UI and NonUI Cate-
gories

Category Precision Recall F-Score Accuracy
Ul 0.99 0.98 0.98 0.98
NonUI 0.98 0.99 0.98 0.98

Table 3: The average precision and accuracy of localizing UI
screens using 10-fold cross-validation

IoU Threshold Average Precision Accuracy

0.70 0.98 0.98
0.80 0.97 0.97
0.90 0.92 0.94

Results: Table 2 shows the results for the binary classification
task using 10-fold cross-validation. Overall, our model performed
extremely well, achieving both an F-Score and an Accuracy of 98%
for both the UI and NonUI categories, as well as Precision and Recall
of up to 99%. Table 3 presents the results of localizing the UI screens
within UI frames with respect to the ground truth bounding box.
The table shows the results at different IoU thresholds starting from
0.70 up to 0.90 with a step size of 0.10. Our model achieved an AP
of 92% at an IoU threshold of 0.90, and an Accuracy of 94% at the
same threshold. At lower IoU values, both the AP and the Accuracy
increase. However, since we want the prediction to be as precise
as possible, we consider the IoU threshold of 0.90 to be the most
adequate for an overall picture of the results.

Figure 4 depicts a few examples of Ul screen predictions made by
our model compared to the ground truth bounding boxes. As it can
be clearly seen in Figures 4a, 4b, 4c, the predicted UI screen location
almost overlaps with the ground truth bounding box, yielding a
high localization accuracy. In these examples, the IoU threshold
was set to 0.90, therefore, 4d was considered an incorrect prediction.
The speed of our model’s prediction is 1.7 seconds per frame.

4.2 Study II: UlScreens Evaluation by
Developers

Motivation: The second part of our evaluation is represented by a
user study which focuses on assessing the end result of UlScreens,
namely the UI overview generated at the end of the last step in our
approach (see Figure 2). We believe that high-quality UI overviews
have the potential to help developers get a quick comprehension
of the main points of a program explained in a video, which could
save them time when searching for helpful videos for their infor-
mation needs. Therefore, in this user study, we aimed to evaluate
both the quality of the UI overviews generated by our approach,
as well as their perceived usefulness by developers. In terms of
quality, we specifically focused on two aspects relating to the UI
screens extracted by our approach. The first aspect is the Ul screens’
uniqueness: the extracted Ul overview should not contain dupli-
cate or very similar UI screens, in order to avoid overwhelming
the developer with screens that do not convey new information.
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Figure 4: Detecting the UI bounding box and computing the
Intersection over Union (IoU) (ground truth is in blue, cor-
rect predictions in green, and incorrect predictions in red)

The second quality aspect considered is the UI overview’s suf-
ficiency: the extracted Ul screens should be sufficient to offer a
comprehensive overview of the video and its main points.

We summarize these goals in two research questions:

o RQy: To what extent are the extracted UI screens considered
unique and sufficient by developers?

o RQs3: What are the perceived benefits of the UI overview ex-
tracted by UlScreens for developers?

Methodology: The study was conducted through an online survey
composed of two main sections. The first section was designed to
capture demographic data, such as the main occupation (profes-
sional developer, academic, student) and the mobile programming
experience (i0S and/or Android and number of years) of our par-
ticipants. Each participant was required to have at least 6 months
experience in at least one of the two mobile programming platforms
to be qualified for participating in our survey. The study partici-
pants were recruited through announcements on professional social
media channels.

For this study, we collected a brand new set of 50 programming
screencasts (25 i0OS and 25 Android), on which we applied our ap-
proach. This was done in order to avoid any bias that could be
caused by applying UlScreens on a video from which frames were
used during the training of our model. This is important for en-
suring that our model is generalizable and that our evaluation is
unbiased. The average length of the videos in this study was ~ 10
minutes. Each participant was assigned one i0S and one Android
video. For each of the two videos, they were asked to first watch
the video in its entirety and then evaluate the extracted Ul screens
by indicating their agreement level with two statements. The first
statement referred to the sufficiency of the extracted UI screens
(“The list of UI screens extracted is sufficient to understand what
are the main concepts discussed in the video”) and the second one
referred to their uniqueness (“The list of Ul screens extracted does
not present duplicate information, i.e., all Ul screens presented are
unique”). We ensured that the same video is not displayed to more
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Figure 5: Quality of extracted Ul overviews (sufficiency and
uniqueness)

than one respondent by evenly selecting among the videos. The an-
swers to these two questions were on a 4-point Likert scale, namely:
Strongly Agree, Weakly Agree, Weakly Disagree, and Strongly Dis-
agree. The questionnaire also contained a third question for each
video, concerning the perceived benefits of Ul overviews (RQz). A list
of possible answers was displayed to each participant, who could
select one or more of the available options (see Figure 6 for the list
of possible answers) or enter their own answer. The last answer
in Figure 6 (“It is not useful for any purpose”) is exclusive (i.e., all
other choices would be automatically unselected when this choice
is selected).

Results: A total of 25 developers completed our survey, having
various levels of experience in Android and iOS development. Most
of our participants were M.S. and Ph.D. students in computer sci-
ence with 28% of the total participants in each of these categories.
In addition, 24% of the participants were undergraduate students
and the remaining 20% were professional developers.

Figure 5 shows the results of the study for RQ». In 85% of their
responses, developers either weakly or strongly agreed that the UI
screens extracted by our approach were sufficient in understanding
what the main elements discussed in the video were. At the same
time, 83% of responses either weakly or strongly agreed that the
extracted Ul screens were unique when compared to each other.
This indicates that UlScreens can efficiently extract distinct and suf-
ficient UI screens in order to provide comprehensive UI overviews
for mobile programming screencasts.

Figure 6 depicts the answers to the question: "Seeing a Ul overview
of a mobile programming screencast helps you understand:..". Only
2% of the participants indicated that seeing a UI overview of a mo-
bile programming screencast is not useful for any purpose. In total,
68% of the participants indicated that the extracted UI overview can
help them understand if the video contains Ul design or not, 66%
thought the UI screens can help them understand the relevance of a
video for their search needs, and 64% said the UI screens help them
understand the main points of the video.
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Figure 6: Usefulness of an Ul overview

5 THREATS TO VALIDITY

The main threats to the internal validity of our findings relate to the
subjective nature of the manual data classification and annotation
tasks. To mitigate these threats, two authors participated in the clas-
sification and annotation of each frame and reached an agreement
upon any conflict. For our second evaluation study, the threats to
the internal validity of our findings relate to the possibility that our
model overfit the training data. In order to mitigate this threat, we
randomly selected a brand new set of 50 screencasts from YouTube
and applied our approach on this new set of videos for the user
study. The 50 videos were unseen to the model and have not been
used during the training phase. In addition, in order to ensure that
the study participants are not influenced by fatigue, we limited the
number of videos they watched and answered questions about to
two, and limited the maximum length of each video to 10 minutes.

Construct validity concerns the metrics used to evaluate our
approach for classifying and locating UI screens. We mitigated this
threat by using well-established performance measurements from
the classification and object detection fields [11, 52, 53]. In addition,
we reported results at different IoU thresholds for the localization
task, in order to account for the variability in accuracy and average
precision that can occur when different IoU thresholds are chosen.

Regarding the threats to external validity, our results may not be
generalizable to all mobile programming screencasts. To mitigate
this threat, we trained UIScreens on a diverse set of videos covering
a variety of programming languages, IDEs, different OS platforms,
different phone orientations, etc. In addition, our video dataset is the
largest compared to other works on video programming tutorials
[13, 41, 43, 44, 48, 65]. During our second study, we evaluated our
model on unseen videos to ensure that it is generalizable.

6 RELATED WORK

In the following subsections, we survey a sizable body of recent
works that aim to mine video programming tutorials, along with
other works related to analyzing mobile Uls.
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6.1 Analyzing Video Programming Tutorials

Programming screencasts have been analyzed by several works over
the past few years due to the increase of their popularity among
developers, who use them as a source of information to support
their programming tasks. MacLeod et al. [36, 37] performed a set
of interviews with programming screencast creators and revealed
their motivations for creating screencasts. Bao et al. proposed two
approaches that analyzed programming screencasts. The first one
automatically produces time-series HCI data from development
screen-captured videos [3], while the second one is meant to capture
the workflow of programming tasks and display it along with the
video [4]. Zhao et al. proposed ActionNet to also track the workflow
of programming screencasts, using a CNN-based classifier with an
Inception-Resnet V2 backbone [69].

Several works aimed to detect code frames in programming video
tutorials [1, 43, 44, 47, 48] and to extract source code from them
[28, 65]. Ott et al. proposed a CNN-based classifier to (i) classify
video frames based on the presence or absence of source code in
them [43], and to (ii) detect the programming language used in
screencasts [44]. In our previous work, we located the code editing
window in programming screencasts using object detection algo-
rithms [1, 2]. A tool called CodeTube was proposed by Ponzanelli et
al. [48] to fragment programming video tutorials into smaller parts
and then categorize each fragment based on its intent (e.g., code
implementation fragment). CodeTube also identified source code in
video frames and extracted it using OCR for indexing. Khandwala
et al. proposed an approach to extract and combine different code
snippets from screencasts and display them using the Codemotion
tool [28]. Yadid and Yahav [65] introduced a tool to extract source
code from video tutorials using OCR and a statistical language
model.

Some previous works aimed to automatically tag software de-
velopment video tutorials [14, 45]. In addition, Poché et al. [46]
proposed a YouTube comment classification approach based on ma-
chine learning techniques. Moreover, Moslehi et al. [41] proposed
an approach to link source code files to the corresponding screen-
casts by leveraging Ul information, as well as the audio transcripts.

Our goal is different than all these previous works since we
are targeting the extraction of Ul screens in order to provide UI
overviews of mobile programming screencasts. To the best of our
knowledge, this is the first work that has aimed to extract mobile
Ul screens from videos.

6.2 Analyzing Mobile Graphical User Interfaces

There have been several works that analyzed the changes made to
the GUI during the evolution of mobile apps, with the purpose of
documenting them. Some approaches addressed this problem by
automatically detecting the changes to the GUI [64] and summa-
rizing them [40]. Moran et al. [40] extract a set of GUI images and
their metadata files from different versions of an app and compare
them using computer vision algorithms. The main goal of our work
is different, as we focus on screencasts.

Initially, mock-ups of UI screens can be designed using several
prototyping techniques [10, 30]. Developers then use this proto-
type to design the actual Ul screens and integrate them into the
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mobile app implementation. The implementation of the GUI, how-
ever, could differ from the mock-ups. Moran et al. [39] focus on
detecting violations of the GUI design. Similarly, other work fo-
cuses on validating the GUI consistency across different platforms
[16, 23]. A recent work was also proposed by Moran et al. [38] to
detect and classify different components of the mock-up design.

A notable approach was also proposed by Bernal-Cardenas et
al. [8] to enable searching for mobile app UI screens through a
light-weight search engine tool (Guigle). The tool currently indexes
a corpus of Ul screens extracted from the Google play store. The
users can type a query as input, and a list of UI screens along with
the app name is returned. Our approach is different as it identi-
fies and extracts the most representative Ul screens from mobile
programming screencasts. While Guigle can help developers with
the conceptualization of a GUI, developers still have to implement
them. Our approach could help with this latter aspect and could
potentially be integrated with Guigle to further support developers
in going from concept to implementation.

Another approach, called GUIFetch, was proposed by Behrang
et al. [7] and it enables using a Ul sketch as input to search for code
that may help in implementing the UL
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8 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel approach, called UlScreens, to
locate and extract UI screens embedded in mobile programming
screencasts, with the purpose of offering developers a Ul-focused
overview of a video. Our approach extracts the deep features from
video frames using a CNN and these features are then fed into an
object detector to identify the exact location of Ul screens within the
video frames. UlScreens was also implemented as a freely available
tool. We conducted two evaluation studies to assess our approach
in terms of its accuracy, and the quality and usefulness of its results.
The evaluation showed that UlScreens was able to accurately clas-
sify and locate Uls in video frames. Additionally, UlScreens received
positive feedback from mobile developers, showing potential for
our approach to help developers in navigating and understanding
the contents of mobile programming screencasts. To our knowledge,
UlScreens is the first approach to perform Ul screen extraction from
mobile development screencasts.

In our future work, we plan to explore and identify in more detail
the particular GUI elements present in the extracted Ul screens and
to allow indexing and searching based on UI element types (e.g.,
drop-down list). Furthermore, we plan to conduct more user studies
where professional developers and computer science students get to
evaluate our tool in the context of specific program comprehension
and UI programming tasks. We also plan to explore UI extraction
from other types of programming videos besides those focused on
mobile applications.
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