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Abstract As societal dependence on software continues to grow, bugs are
becoming increasingly costly in terms of financial resources as well as human
safety. Bug localization is the process by which a developer identifies buggy code
that needs to be fixed to make a system safer and more reliable. Unfortunately,
manually attempting to locate bugs solely from the information in a bug report
requires advanced knowledge of how a system is constructed and the way its
constituent pieces interact. Therefore, previous work has investigated numerous
techniques for reducing the human effort spent in bug localization. One of the
most common approaches is Text Retrieval (TR) in which a system’s source code
is indexed into a search space that is then queried for code relevant to a given
bug report. In the last decade, dozens of papers have proposed improvements to
bug localization using TR with largely positive results. However, several other
studies have called the technique into question. According to these studies,
evaluations of TR-based approaches often lack sufficient controls on biases
that artificially inflate the results, namely: misclassified bugs, tangled commits,
and localization hints. Here we argue that contemporary evaluations of TR
approaches also include a negative bias that outweighs the previously identified
positive biases: while TR approaches expect a natural language query, most
evaluations simply formulate this query as the full text of a bug report. In this
study we show that highly performing queries can be extracted from the bug
report text, in order to make TR effective even without the aforementioned
positive biases. Further, we analyze the provenance of terms in these highly
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performing queries to drive future work in automatic query extraction from
bug reports.

Keywords Bug Localization · Query Formulation · Text Retrieval

1 Introduction

Bug localization techniques are used to identify source code components that
are likely to be responsible for a given bug. These techniques represent an
important aid to reduce the time and effort spent on bug fixing activities. For
this reason, many researchers defined various bug localization approaches, with
Text Retrieval (TR) techniques playing a major role in this context (Dit et al.,
2013). The basic idea in TR is that the user (usually, a software developer
trying to localize the bug) formulates a natural language query describing the
observed bug. The query is then run through a TR engine, which returns a
ranked list of code components (e.g., classes or methods, depending on the
desired granularity), containing the most relevant results (i.e., the components
likely related to the bug) in the top-most positions.

Despite the many successful applications of TR-based approaches to bug
localization, recent research questioned their actual usefulness by pointing to
major weaknesses in the way these techniques are evaluated (Kochhar et al.,
2014). Before describing these weaknesses, let us briefly summarize the four
main steps behind the most used design adopted for the empirical evaluation of
TR-based bug localization techniques. First, a set of fixed bug reports (i.e., bug
reports related to bugs that have already been fixed by developers) is collected
by mining the issue tracking system of the subject software. Second, for each
collected bug report, the code components impacted by the bug fixing activity
(i.e., modified/deleted methods or classes, depending on the granularity of
the approach) are identified by analyzing the versioning system and/or by
downloading the patch attached to the bug report. This allows the creation of a
ground truth reporting what the relevant code components are for a given bug
report. Third, the text of the bug report is used to generate a query, usually
composed by the report’s title and description. This query is used to simulate a
user-formulated query that is then provided as input to the TR-based technique
and run against the corpus of documents represented by the code components
of the system. Finally, the ranked list of code components returned by the
TR approach and the previously defined ground truth are used to compute
performance metrics assessing the quality of the approach.

Three main biases have been identified in the assessment of TR-based
techniques using the described design (Kochhar et al., 2014). First, using
misclassified bugs, e.g., issues that have been classified as bugs, when in fact
they represent new features. Second, using bloated ground truths that include
code changes irrelevant to a bug fix. Third, using bug reports that explicitly
point to a code location such as a code snippet, file or class name, etc., which
we refer to as localization hints. Previous work (Kochhar et al., 2014) showed
that while the first two do not significantly impact the evaluation, bug reports
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containing localization hints have a major impact on TR results. Other work
(Wang et al., 2015) further analyzed the bias introduced by three types of
localization hints: program entity names, test cases, and stack traces. Of the
three, they found that program entity names significantly boost retrieval results.

Summarizing, these studies highlight the fact that TR-based approaches
perform very well when the bug report description already includes the bug
location, by listing all (or some) of the buggy code components. However, in
such scenarios TR-based bug localization techniques are not needed in the first
place, as the bug has already been localized (Kochhar et al., 2014). On the
other hand, when hints to localize the bug are not found in the bug report
description (e.g., when the bug report is written by a user of the system that
lacks knowledge of the system’s technical implementation), the studies showed
that the performance of TR-based bug localization techniques significantly drops,
thus questioning their usefulness in this scenario as well.

While we agree on the performance inflation provided by positive biases
identified in previous work, most of the studies focusing on TR-based bug
localization, including the ones questioning their validity, also include an
additional bias that negatively affects the performance of the TR technique:
they use the text of the bug report (i.e., its title, description, or a combination of
both) as the TR query, without considering alternatives. Since TR effectiveness
strongly depends on the quality of the formulated query (Mills et al., 2017), the
choice of query is crucial in ensuring the success of TR. Bug reports, however,
can often be lengthy and contain “noise” (i.e., words that do not efficiently
describe the bug) (Chaparro and Marcus, 2016). We therefore conjecture that
TR approaches have a lot more potential for bug localization than they have
been given credit for, so long as they can be provided with an optimized query.

In this paper we present an empirical study providing new evidence on the
true potential of TR bug localization approaches and the significant impact
that optimizing queries can have on their effectiveness. Further, we show that
given a bug report, we can often obtain an optimal query using only words
selected from its vocabulary, even when localization hints are not present.

To perform this study, we first collected 1,037 bug reports from 15 open
source systems used in previous bug localization experiments (Wang et al.,
2015; Ye et al., 2015; Chaparro and Marcus, 2016). To account for the potential
biases named above, we manually analyzed each bug report (BR) and its fixing
commits. From the BR, we extracted two queries: one containing all terms in
BR’s title and description (Qa), and one (QnH) obtained by removing all code-
related terms possibly representing localization hints (e.g., class/method/file
names, stack traces, test cases, etc.) from Qa. This allowed us to investigate
the bias that the presence of localization information can have on TR results,
as discussed in prior work (Kochhar et al., 2014; Wang et al., 2015). Then,
in the fixing commit of BR, we also manually analyzed each modified file to
verify that two conditions were met. First, we verified that the change was
actually made to fix the bug rather than being the result of a tangled commit
(Herzig and Zeller, 2013). Second, we checked that the change actually modified
the functionality of the system and was not purely aesthetic (e.g., changes to
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comments or code formatting). This manual verification of the changes ensured
a reliable ground truth for our experiments, free of the misclassified bugs and
bloated ground truth biases previously identified (Kochhar et al., 2014). With
this extracted data, we show that it is almost always possible to formulate an
effective query returning relevant results in the top positions of the ranked
result list by only using the terms present in either Qa or in QnH . Therefore, we
are able to derive an effective query in either case: with or without localization
hints in the BR.

Our study differs from previous work in that we are interested in establishing
the potential of TR for bug localization by finding the most effective query
that can be extracted from the BR and evaluating the performance of that
query, rather than considering the default query composed of the entire bug
title and/or description. Finding this query by brute force, however, would
require testing all possible queries of any length that can be obtained from the
BR’s vocabulary. For example, assuming a BR composed of n distinct terms,
the number of possible queries to test is 2n, representing all queries of any
length that can be generated using the n terms in the bug report, without
considering word order. Given that our QnH and Qa queries have on average 24
and 40 distinct terms, respectively, this would mean running between 1.7E+7
and 1.1E+12 queries for each bug report, which is computationally infeasible.

For this reason, we devised a Genetic Algorithm (GA) able to converge
towards an optimal query obtained from a bug report vocabulary, knowing
a priori the ground truth for the query. While our GA is not meant to be
used in a real bug localization scenario, where the ground truth is unknown,
it represents a needed tool to run our large-scale study and provide evidence
on the potential of TR bug localization with optimal queries. We also analyze
the provenance of terms in the obtained GA queries to drive future work in
automatic query extraction from bug reports.

This work builds upon our previously published paper (Mills et al., 2018)
establishing the applicability of TR-based approaches to bug localization, and
extends it in several ways:
– In our previous work, we investigated a single fitness function to drive our

GA through the formulation of near-optimal queries. In contrast, here we
experiment with two additional fitness functions. While the original work
focused only on effectiveness, which gauges a query’s ability to find a single
relevant document, this paper also considers average precision and recall,
which represent a query’s ability to find all of the relevant documents.

– In our previous work, we investigated a single search engine to drive our GA
through the formulation of near-optimal queries. In contrast, in this paper,
we investigate how much the particular search engine impacts the results of
the experiments by using two different versions of the Lucene search engine.
The selected versions employ different ranking functions, thus allowing us
to measure the impact of the search engine on the possibility to formulate
high-quality queries.

– Our previous work focused solely on determining if TR approaches are still
viable solutions to bug localization or if they are suffering from crippling
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biases that make them no longer worthy of study. More than showing that
TR-based approaches are relevant, this paper also seeks to understand
how near-optimal queries are derived from a bug report, to provide lessons
learned that we believe will be useful to devise the next generation of TR
query formulation techniques.

– This paper aims to increase the generalizability of the results by expanding
the set of queries in our dataset through the addition of 200 new bug reports
(+24% as compared to our previous work) from two additional open source
systems, namely, Birt and Tomcat.

2 Background and Related Work

2.1 TR Approaches to Bug Localization

TR allows users to search in a corpus (i.e., a set of text documents) for
documents relevant to a given text-based query. In bug localization, developers
must find buggy code given a bug report. Both the system’s code and the bug
report can be stored as textual documents. Therefore, TR perfectly fits in the
bug localization process: the source code can be seen as the document corpus
(e.g., by considering each class/method/file as a different textual document),
while the text from a bug report can be used to formulate a query aimed
at retrieving code documents that are semantically similar to that text. The
underlying assumption of TR-based bug localization is that code components
that contain terms similar to the formulated query are likely related to the
observed bug, and thus are recommended for inspection.

Many studies have focused on the application of TR to the bug localization
domain (Marcus et al., 2004; Lukins et al., 2008; Rao and Kak, 2011), on
providing tool support (Poshyvanyk et al., 2005; Zhao et al., 2006; Linstead
et al., 2008; Savage et al., 2010; McMillan et al., 2011; Zhou et al., 2012;
Shepherd et al., 2012) and improvements over standard TR techniques (Lukins
et al., 2010; Saha et al., 2013; Wang et al., 2014; Wang and Lo, 2014). Due to
the breadth of existing research and space constraints, we direct the interested
reader to a survey (Dit et al., 2013), which contains a detailed account of many
approaches to bug localization, including TR-based techniques. Alternatively,
a more recent study on feature localization (Razzaq et al., 2018), a tangential
software task focused on locating features rather than bugs, provides additional
context for these approaches. Despite this immense body of work, there are still
doubts within the software engineering community regarding the applicability
of TR-based approaches to bug localization. Therefore, rather than introducing
a new approach or application of TR to bug localization, our study focuses on
the general potential of these techniques and how they are evaluated based on
information extracted from bug repositories.
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2.2 Potential Biases in Empirical Evaluations of TR-based Bug Localization

A previous study (Kochhar et al., 2014) empirically investigated three potential
biases: bug misclassification, bloated golden sets, and localized bugs reports.
The researchers found that localized bug reports (i.e., bug reports which
already list in their text the code location where the bug is present) lead to
significantly better results for TR-based bug localization, while no significant
impact was observed for the other two potential biases. This finding questions
the usefulness of TR-based bug localization, as this process is actually needed
only when localization hints are not present in the bug report, i.e., exactly
when their performance significantly drops (Kochhar et al., 2014). We partially
replicate this study by investigating TR performance on localized vs unlocalized
bug reports in our dataset. Our study is conducted on a larger set of software
projects and above all it shows that the chosen query matters more than the
presence of localization information.

Further, another study (Kawrykow and Robillard, 2011) reported the
presence of changes unneeded to fix a bug in bug-fixing commits (e.g., renaming
a variable) as a possible source of bias in the evaluation of bug localization
techniques. Indeed, these changes artificially increase the number of code
components that appear relevant to a bug fix but are actually unrelated.
This is the same form of bias defined by (Herzig and Zeller, 2013) as “tangled
commits", meaning commits containing changes addressing a specific bug mixed
with unrelated changes (e.g., refactoring). If TR approaches are evaluated on
these commits, their performance might be artificially boosted by the fact that
there are many more “relevant" files to be found in the search space, even
though finding some of these files would not practically assist with localizing
the bug. In order to remove such a bias from our study, we manually analyzed
all the changed files in each bug fix commit and removed any file whose changes
were not directly related to the bug being fixed.

Another study (Wang et al., 2015) provides a detailed analysis of the
impact that localized bugs have on evaluating TR-based bug localization. The
authors consider different types of identifiable information that localize a bug
explicitly: program entity names, stack traces, and test cases. They found that
the presence of program entity names significantly improves the performance of
TR-based bug localization. Our study also addresses the impact of localization
hints on TR performance, but does so in a different way. First, Wang et al.
classify bug reports as containing/not containing localization hints on the basis
of the information that they report, and then compare the performance of
TR-based bug localization on these disjoint sets of bugs. Instead, we manually
derive from each bug two versions: one containing the complete title and
description, and one from which we manually remove any reference to code
components (i.e., any possible localization hint). This allows us to compare
the performance of TR-based bug localization with and without localization
hints between the same set of bugs, thus removing conflating variables that
are introduced by comparing disjoint bug sets. Through this analysis, we show
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that the formulated query is more important than the presence or absence of
localization hints in ensuring the success of TR in bug localization.

Finally, according to (Bettenburg et al., 2008), the inclusion of identifiable
information is considered to be important when writing a good bug report, yet
developers answering a survey indicated that few bugs contain error messages
(53%), code examples (36%), or test cases (56%). Moreover, developers who
took the survey indicated that the biggest detracting factors in bug reports were
unstructured, lengthy text and non-technical language. This further suggests
that localization techniques should focus on optimizing performance in these
difficult situations. Through investigating queries in the QnH set, this study
also investigates whether sufficient information to localize a bug exists even
for bugs composed of strictly unstructured, natural language. This concept is
related to other work which has sought to quantify the quality of a query used
for a software engineering task (Haiduc et al., 2012; Mills et al., 2017) and
derive a more effective query when required.

2.3 Query Reformulation for TR-based Bug Localization Approaches

In the event that a query leads to poor results, there have been numerous
techniques devised to reformulate the query (Shepherd et al., 2007; Haiduc et al.,
2013; Roldan-vega et al., 2013; Rahman and Roy, 2017; Rahman and Roy, 2017;
Lawrie and Binkley, 2018) using either expansion (Carpineto and Romano,
2012) (i.e., adding additional terms to broaden the query) or reduction (Haiduc
et al., 2013; Chaparro and Marcus, 2016) (i.e., removing words unlikely to
contribute to the inherent meaning of the query, in order to reduce noise).

A recent study by (Chaparro and Marcus, 2016) empirically quantified the
improvement in verbose queries achieved by eliminating words that negatively
impact effectiveness by removing up to six “noisy" terms from the query. These
terms are identified through a brute-force approach. In a subsequent study
(Chaparro et al., 2017a), Chaparro et al. manually reduced noisy, ineffective
queries to reformulated queries that contain only terms that describe observed
behaviors and find that the reformulated queries have much-improved perfor-
mance. In an extension, (Chaparro et al., 2019) showed that selecting the steps
to reproduce or the expected behavior information (when available) along with
the bug title and the observed behavior leads to higher performance. (Chaparro
et al., 2017b) identified the presence of 154 discourse patterns that indicate the
presence of information describing expected behavior and steps-to-reproduce
in bug report descriptions and introduced a set of strategies to identify them.

Chaparro et al.’s studies are the closest related to the work presented in
this paper. Therefore, we include a post-hoc analysis of the effectiveness of
queries common to both studies in Section 4. Further, we also incorporate
these concepts in our provenance analysis, specifically identifying which type
of terms remain in near-optimal queries.

Some previous work has also focused on reformulating queries based on
the quality of a bug report. (Rahman and Roy, 2018) introduce BLIZZARD,
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a query reformulation technique for bug location which evaluates the quality
of a bug report, and applies different reformulation strategies on it based on
its quality. BLIZZARD uses pseudo-relevance feedback to improve queries by
using the terms in the top-N results retrieved after applying TR approaches.

(Kim and Lee, 2019) present a query reformulation technique that expands
upon BLIZZARD and reformulates poor quality queries by expanding the
query using the content of textual attachments to the bug report (e.g., patches,
stack traces), removing terms that express emotion, executing the resulting
query using TR, and applying relevance feedback to reformulate a new query.
By using information from patch attachments, Kim et al.’s approach turns
unlocalized bug reports into localized bug reports, consequently improving the
results of TR-based bug localization.

Work by (Lawrie and Binkley, 2018) applied a sequence-to-sequence neural
network model to generate summaries of the bug reports used in this study to
be used as queries for TR-based bug localization. However, those summaries
were unable to achieve performance close to the near-optimal queries presented
here. This provides further evidence that a larger-scale data collection effort
and advanced techniques to mitigate the need for immense amounts of training
data should be the focus of future work.

Different from previous studies, we leverage a genetic algorithm which
allows us to perform any reformulation (using the bug report) that converges to
an improved, near-optimal query using a performance metric as a cost function.
From this perspective, a major contribution of our study is empirical evidence
that more complex techniques leveraging external sources of context (Youm
et al., 2017) are not needed to optimize queries in most cases. Furthermore,
our results show that while observable behaviors help with refining a query
based on bug report text, there exist even more effective queries that can be
derived from the bug report. That is, there exists some combination of terms
from the bug report text that serve as an effective query for localization that
may or may not have any relationship to the observable behavior of the bug.

3 Empirical Study Design

In this paper we investigate TR-based approaches for bug localization from
two perspectives. First, we show that TR is able to effectively support bug
localization despite recently raised positive biases that suggest previously
reported performance is artificially inflated. We do this by exposing a larger
negative bias in previous work that makes TR performance appear much worse
than it is in reality: most evaluations use the full bug report as a query. To
show the effects of this bias we use a genetic algorithm (GA) to formulate
near-optimal queries. Using these queries rather than the full bug report,
we show that TR achieves high performance even when controlling for the
aforementioned positive biases. Second, we analyze near-optimal queries to
determine the provenance of their terms in the components of a bug report (i.e.,
title, description, or a combination of the two), files from the golden set for the
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bug, and bug report text related to specific types of technical information such
as observed/expected behavior (Chaparro et al., 2017a). The latter analysis
serves as an important step toward understanding how near-optimal queries
are derived from bug report text by a GA in an effort to translate that process
into one understandable and implementable by humans.

3.1 Research Questions

We start by investigating the potential effectiveness of TR-based bug localization
assuming the ability to formulate an optimal query from the bug report
vocabulary. In particular, in the first part of our study, we address the following
research questions:

RQ1: What is the effectiveness of TR-based bug localization tech-
niques when using the whole bug report text as a query? This is a
preliminary research question in which we establish a baseline by studying
the performance of out-of-the-box TR-based bug localization techniques when
using the whole text contained in the bug report (i.e., a concatenation of its
title and description) as a query, as usually done in empirical evaluations of
these techniques (Kochhar et al., 2014). RQ1 serves as a term of comparison
for our second research question (RQ2), in which we study what the potential
effectiveness of these techniques could be, given the ability to formulate an
“optimal query” starting from the bug report vocabulary. As part of this research
question we also present a differentiated, partial replication of the work by
(Kochhar et al., 2014), in which we analyze the impact that localization hints
in the bug report text have on the performance of TR-based bug localization.

RQ2: What is the effectiveness of TR-based bug localization tech-
niques when using an optimal query selected from the vocabulary
of the bug report? In this research question, we study what the potential
effectiveness of out-of-the-box TR-based bug localization techniques truly are.
Specifically, we devised an experimental design allowing us to formulate a
“near-optimal query” from a bug report (i.e., the most effective query that
can be derived by a GA from solely the vocabulary of the bug report). By
using near-optimal queries, the negative bias of poor quality query selection is
removed and allows us to determine the potential of TR approaches controlling
for both types of common biases. This research question can be further divided
into sub-research questions based on the overall goal of the optimization: finding
a single or multiple relevant documents in the top part of the ranked results.

RQ2.1: Can queries based on bug report text be optimized to find a single
relevant class?

RQ2.2: Can queries based on bug report text be optimized to find multiple
relevant classes?

RQ3: Does changing TR engine implementation impact query
optimization?

For RQ2, queries were optimized using Lucene 2.9.4. In this research ques-
tion, we perform the same experiments used to answer RQ2.1, but with Lucene
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8.2.0, which uses a different ranking function. In both cases, we use the default
similarity metric class for computing document ranks in the result set. For
2.9.4, the default similarity is based on tf-idf1. Lucene 8.2.0, on the other
hand, uses a similarity based on BM252. This research question measures how
dependent optimization is on the specific TR engine implementation. We use
two out-of-the-box approaches with minimal customization over more complex,
state-of-the-art approaches to show that in light of optimization, more complex
TR engines are not strictly required to obtain good results. To that end, we
also replicate the experiments used to answer RQ1 using Lucene 8.2.0.

As will be shown later, the results of the first three research questions show
that near-optimal queries are on average much shorter than their unoptimized
counterparts. However, it is difficult to gain insights on the origin of the terms
in near-optimal queries from such a finding. Therefore, in the second part of
our study we aim at understanding the provenance of query terms that appear
in near-optimal queries. That is, we analyze where the most effective query
terms in a bug report come from, and whether there are patterns that can
be observed to assist with formulating near-optimal queries without a priori
knowledge of the ground truth. We consider provenance from three different
perspectives. First, we analyze where in a bug report the most useful query
terms come from: its title, description, or both. Second, we investigate the
proportion of query terms that overlap between the bug report text and the
vocabulary extracted from the files that were changed to fix the bug. Third, we
compute the proportion of near-optimal queries containing terms coming from
sentences in the bug report describing the expected and observed behaviors
(EB and OB, respectively) and the steps to reproduce the bug (S2R). More
specifically, we seek to answer the following research questions:

RQ4: Where in a bug report do effective near-optimal query
terms appear?

By answering this research question, we can begin to observe patterns
that could eventually lead to automatically formulating better queries through
boosting terms that are most likely to appear in a near-optimal query and/or
by penalizing those least likely to contribute to a near-optimal query.

RQ5: What is the term overlap between near-optimal queries and
changed files in the associated bug report’s golden set? The intent of
this investigation is to determine the overlap existing between terms in the bug
reports and those in the related code components after localization hints are
removed from the bug report (i.e., excluding the names of classes, exceptions,
etc.). Effectively, this analysis illustrates the effects of proper alignment between
identifiers within the code and domain concepts expressed in bug reports on
near-optimal query formulation.

RQ6: What is the overlap between near-optimal query terms and
the EB, OB, and S2R as described in the bug report? Previous research

1 https://lucene.apache.org/core/2_9_4/api/core/org/apache/lucene/search/
Similarity.html

2 https://lucene.apache.org/core/8_2_0/core/org/apache/lucene/search/
similarities/BM25Similarity.html
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Table 1 Changes unrelated to bug-fixing identified by the two evaluators
Change Description #Files %Files
Added code only A file was changed by only adding new code (i.e., existing code was not modified/deleted) 395 46.58
Test code Changes to the test code, not impacting the system’s behavior 262 30.90
Refactoring Changes do not affect the system’s behavior (e.g., renaming a variable) 74 8.73
Comments Adding/removing/modifying code comments 72 8.49

(Bettenburg et al., 2008; Chaparro et al., 2017a) has shown that specific
technical language like EB, OB, and S2R is instrumental in assisting developers
to take a bug report and find relevant buggy code within the system. However,
no previous work has looked at how terms used to describe these bug features
overlap with terms in near-optimal queries derived from the bug report text.
Understanding which of these bug features contribute the most terms to a
near-optimal query provides insight into which type of feature is most helpful
for linking bug reports and buggy code via a TR-based approach.

For research questions RQ4 to RQ6 we used the near-optimal queries
generated using Lucene 2.9.4 as the search engine.

3.2 Data Collection

We used a set of 803 bug reports manually extracted and verified from 15
software systems. To obtain these bug reports, we initially started from datasets
that were used in three previous studies to analyze the effectiveness of TR-
based bug/feature localization techniques (Wang et al., 2015; Ye et al., 2015;
Chaparro and Marcus, 2016). We then manually inspected each bug report in
these datasets and their corresponding commit and further cleaned the data,
as described below.

First, each commit associated with a bug report BR in the datasets was
manually analyzed to verify the validity of the ground truth (i.e., the set of files
actually modified to fix the bug described in BR). This step was necessary to
ensure that only valid files and bugs are being used in our study. In particular,
two of the authors manually verified the data, each of them focusing on
around half of the bug reports in the dataset and their fixes. Moreover, a third
author double-checked the manual labeling done by the other two authors, in
order to identify any involuntary errors or misunderstandings, as well as to
determine any cases in which additional screening or discussion was required.
The authors first identified each BR’s bug-fixing commit fixBR, by looking in
the project’s versioning system for commit notes explicitly reporting the BR
id (e.g., DERBY− 6150). Note that git is used by all subject systems except
JodaTime, which uses SVN; however, the process for JodaTime remains the same
using analogous SVN features. The mapping between bugs and their respective
fixing commits was possible for all the bugs included in our study. Since the
presence of a bug id does not always guarantee that the commit contains only
the needed bug fix (Kawrykow and Robillard, 2011), a manual inspection of
the actual changes was needed to ensure that only files relevant to the bug are
included in the ground truth. Therefore, the two authors manually inspected
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the changes performed in fixBR by exploiting the git show command (or
the equivalent svn diff −c command), and tagged each modified file as true
positive (i.e., the file has been actually modified to fix the bug reported in BR)
or as false positive (i.e., the file has been modified as the result of a tangled
commit and/or the changes in the file do not indicate the fixing of a bug). For
false positive changes, the authors also tagged the change with a reason why
it was considered not relevant to fixing the bug; these tags are available as
part of the replication package for our study (Mills, 2019). In total, 2,311 files
have been modified in the bug-fixing commits, but only 1,154 of them were
indeed found to be true positives. The most common reasons for which the two
evaluators excluded modified files from the set of true positives are reported
in Table 1. While the rationale for excluding changes related to refactoring
and code comments is quite obvious, the other two “categories of changes” we
excluded may need clarifications. For what concerns the “Test code” category,
while the test code is certainly relevant in the context of bug-fixing activities
(i.e., to verify that the bug has actually been fixed), it is not the main target
of bug localization, which usually focuses on production code. Regarding the
exclusion of instances where only new code was added, we only excluded those
scenarios in which a new class was established. This is because the granularity
of this work is at the class level. Should we include these scenarios, we would
be considering instances in which entirely new classes were created to resolve
an issue, and therefore no bug localization technique would be able to locate
these files, since they do not already exist in the code. Finally, while we do not
list “tangled changes” in Table 1 as one of the main reasons for excluding files,
note that all reasons listed in Table 1 are potential tangled changes (e.g., a
commit fixes a bug and refactors the code.

This manual verification process resulted in the exclusion of 234 bug reports
from the 1,037 bugs found in the original datasets. Of those, 198 bugs were
excluded because no modified files were left for them in the true positives set
after verification. An additional 36 bug reports were excluded due to insufficient
information in the downloaded source files to reconcile the bug’s golden set
with the code used to construct the corpus (e.g., package migrations with no
documentation linking the old and new location, platform-specific code that
was not available in the current source download, etc.). These cases arose most
frequently for the ZXing project, which has been migrated between several
version control systems. The final result was a set of 803 bugs that we used in
our study.

Such a cleaning process of our dataset was needed to avoid the use of a
bloated ground truth or misclassified bugs in our study (Kochhar et al., 2014).
Table 2 shows the number of bugs before and after the manual verification
process in each dataset we used.

Next, for each remaining bug report BR in our data, we extracted a basic
query by concatenating BR’s title and description. This type of query (from
now on called Qa, as it contains all the terms in the bug report) is the one
most often used to automatically assess the effectiveness of TR-based bug
localization techniques (Kochhar et al., 2014). In addition, we also manually
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Table 2 The fifteen systems in our dataset, with their corresponding number of bug reports,
average number of files changed per bug report, and average query lengths

Project # Original
Bugs

# Cleaned
Bugs

Avg. Changed
Files

Avg. Qa

Size
Avg. QnH

Size
AspectJ 286 188 2.50 224.35 49.10
Birt 100 97 2.94 119.16 53.20
BookKeeper 40 24 3.96 83.63 24.83
Derby 96 49 2.64 190.41 44.14
JodaTime 9 7 1.00 126.57 46.14
Lucene 34 32 2.09 232.90 27.43
Mahout 30 25 3.12 97.72 34.24
OpenJpa 18 16 2.06 166.06 41.06
Pig 48 36 1.53 117.44 25.00
Solr 55 45 2.22 87.80 42.93
SWT 98 85 1.68 100.56 42.80
Tika 23 21 2.38 74.33 26.00
Tomcat 100 86 1.43 120.71 41.13
ZooKeeper 80 78 1.91 106.09 38.14
ZXing 20 14 1.07 123.31 73.23

Total 1037 803 2.17 131.40 40.62

extracted a second query (from now on, QnH) obtained from Qa by removing
all code-specific terms that could represent localization hints: package, class,
method, and identifier names, stack traces, code snippets, file paths, fully
qualified names, and version control URLs pointing to code locations. Note
that for words embedded in a localization hint (e.g., the word “pointcut” in
the localization hint “IfPointCut”), the word itself is still considered relevant
and kept. However, the complete localization hint (i.e., “IfPointCut”) refers
to a specific class and is removed from both the bug title and description. In
total, we extracted 1,606 queries from the 803 bug reports. Table 2 reports the
systems we considered, the number of bug reports per system, and the average
size of the extracted queries in number of words.

We then downloaded the source code of each system and constructed a
corpus by considering each Java file as a document. We applied preprocessing
to both the queries we previously extracted and the corpus documents in order
to remove English stop words and reserved Java keywords, stem words to
their root form, and split identifiers in the source code based on CamelCase
and the underscore separator. Each preprocessed query was then run on its
corresponding document corpus (i.e., the code files of the related project) by
using the lucene3 implementation of the Vector Space Model (VSM).

VSM is an approach that represents each document in a corpus in an
n-dimensional space, where each dimension represents a particular word. A
document is represented as a vector within this “term space”. To obtain the
vector corresponding to a document, the document is split up into words. For
each word in the document, a real number indicating its weight is placed in the
corresponding dimension. A common way to represent the weight of a word for
a document is tf-idf (Term Frequency-Inverse Document Frequency). Tf-idf is

3 https://lucene.apache.org/
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a function of the frequency of the word in the document and the number of
documents in the corpus in which the term appears (Salton et al., 1975).

VSM with tf-idf is a popular TR approach in software engineering applica-
tions. A common method to evaluate how similar a document is to another
document or to a query is to calculate the cosine of the angle between their
vectors (Wong et al., 1985). In this work, we primarily use VSM with tf-idf
because it is a simple but very commonly used TR approach in bug localization
and by showing that queries based on the text of a bug report can be optimized
for this approach implicitly shows that more advanced TR techniques could
potentially do even better when given an optimized query. However, we also
provide an analysis of the Lucene 8.2.0 implementation that uses a probabilistic
document similarity based on BM25 in order to verify that our near optimal
queries are not unique to a single TR-engine implementation.

The data collected until now are enough to answer RQ1, RQ2, and RQ3.
However, to analyze the provenance of the terms used in the near-optimal
queries (i.e., RQ4, RQ5, and RQ5) we also had to extract some additional data.
First, we tagged all terms in each bug report query based on their provenance,
meaning whether the term appears in the bug report title, description, or in
both (RQ4). Second, we extracted a vocabulary consisting of every unique
term in the preprocessed source code in the golden set of each bug (i.e., the
classes that were fixed) to determine the overlap of terms in that vocabulary
and each corresponding near-optimal query (i.e., how many of the terms used
in the near-optimal queries also appear in the code components relevant for
the bug report – RQ5). Third, we used a series of regular expressions provided
in a previous study (Chaparro et al., 2017a) to identify the sentences in the
bug report describing the expected and observed behaviors and the steps to
reproduce the bug. This allows to identify terms used in the description of
these information items (i.e., EB, OB, and S2R) and therefore answer RQ6.

3.3 Data Analysis

Next, we describe the data analysis performed to answer our research questions.

3.3.1 Effectiveness of TR-based Bug Localization (RQ1, RQ2, and RQ3)

To answer RQ1 we compare the performance of queries derived from the
complete text of each bug report from each system before and after the manual
removal of all localization hints. This allows us to directly measure the impact
of localization hints on query performance. While similar studies have been
conducted in the past (Kochhar et al., 2014; Ye et al., 2015; Wang et al.,
2015), our study provides a one-to-one comparison between two versions of
the same bug: one with and one without hints. Different from previous work
that compared disjoint sets of bugs with and without localization hints, our
methodology allows us to remove conflating variables such as bug type or
severity that are not controlled for in these other studies.
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We use a targeted set of metrics to evaluate queries that consider those
biased in “favor” and “against” bugs requiring a large number of files to be
modified. The Effectiveness Score and the HITS@K metrics are biased in favor
of bug reports having a large number of relevant documents in the golden set.
Further, statistically speaking, it is “easier” to find at least one file relevant to
a bug report as the number of its relevant files increases. This is why (Wang
et al., 2015) pointed out that, since it is unlikely that all files modified in the
commit fixing a bug are actually relevant for the bug fix, these metrics tend
to represent a threat to conclusion validity. For this reason, we also consider
MAP, which takes all files marked as relevant into account. This means that
for a bug report having many files associated with it, the MAP will be biased
against that bug report in contrast to the other two metrics. In the following
we formally define these four metrics:
– Effectiveness - The highest rank in the list of results of any relevant document
(i.e., Java file) in the golden set. The rationale is that given a single relevant
file in the top results, developers can then easily navigate from it to the
other relevant files using built-in IDE navigation. Because the effectiveness
distributions in this study are highly skewed by outlying queries that perform
particularly poorly, we report the median scores to provide a fair depiction
of the overall effectiveness of queries in each project.

– HITS@K - For a set of queries run on a document corpus, it is the percentage
of queries that retrieve a relevant file in the top K positions of the ranked
list. For example, HITS@1 provides the percentage of queries that return
a relevant file as the topmost result. In this study, similar to (Wang et al.,
2015), we use HITS@1, HITS@5, and HITS@10.

– Average Precision (AP) - This is calculated as the mean of precision values
at each k such that the document returned at position k is relevant.

– Mean Average Precision (MAP) - Mean average precision is the mean across
all average precision values within a set of queries.

– Recall - The proportion of relevant documents retrieved to the total number
of relevant documents.

– Mean Reciprocal Rank (MRR) - The reciprocal rank is the inverse of the
rank of the first relevant document in a result set. MRR is the average of all
reciprocal ranks within a set of queries.
It is also important to consider different types of metrics because bug

localization is not the only software engineering task that has been partially
automated by TR (Marcus and Antoniol, 2012). While a single relevant file is
sufficient to perform bug localization in most cases, as a developer can easily
move from one relevant file to another through IDE support for call graph
navigation, this is not true for other tasks such as program comprehension and
traceability link recovery. Effectiveness provides insight into how well a query
retrieves a single relevant document, but other metrics such as MAP illustrate
how well a query retrieves multiple relevant documents.

To further analyze data collected to answer RQ1, we also statistically
compare the TR-based bug localization performance (as assessed by the four
metrics) when using Qa vs QnH (i.e., when localization hints are present/not



16 Chris Mills et al.

present in the bug report). While the Mann-Whitney U or Kolmogorov-Smirnov
tests provide a mechanism to compare two potentially non-normal, independent
distributions, neither of these tests handle frequent ties in compared distribu-
tions well. As such, these tests are not directly suitable for our case where,
as will be shown in our results discussion, many queries are able to achieve a
perfect effectiveness score of one. Therefore, we applied the Asymptotic General
Independence test (Strasser and Weber, 1999) implemented in the coin R
package. This is a generalized permutation test that uses random sampling to
determine the independence of two distributions based on mean-differences.
It is applicable to non-normal, independent, discrete distributions despite the
presence of ties. We also assess the magnitude of the observed difference using
Cliff’s delta (d) effect size (Grissom and Kim, 2005), suitable for non-parametric
data. Cliff’s d ranges in the interval [−1, 1] and is negligible for |d| < 0.148,
small for 0.148 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474, and large for
|d| ≥ 0.474. This statistical analysis is primarily intended to provide additional
insight about the deviation of the distribution means. Significance in this
context means that the distributions are independent, which suggests that
the presence of localization hints fundamentally alters the distribution of the
performance metric in question. Note that a lack of significance does not imply
that the distributions are identical or even equivalent, we just lack support
that they are independent of one another.

To address RQ2, we still need to extract an “optimal query” from the
vocabulary of each bug report without the use of localization hints. Given the
vocabulary of BR without hints (i.e., the QnH query) composed of n terms, it
quickly becomes computationally infeasible to try all possible queries of any
length that can be extracted from QnH in order to observe which one leads
to the best results (this would result in running 2n queries through the TR
engine). For this reason, we instead opt for an approximation of the “optimal”
query obtained using a single-objective Genetic Algorithm (GA) (Mitchell,
1998) that quickly converges towards a “near-optimal” query4 starting from a
given vocabulary (in our case, the terms in QnH).

The solution representation (chromosome) and the GA operators are defined
as follows. Given a vocabulary composed of n terms, the chromosome is
represented as an n-sized integer array, where the value of the ith element
equals 1 if that term is part of the formulated query, and 0 otherwise. The
only constraint we set on the generated solutions is that the chromosome
must contain at least one “1” (i.e., the query must contain at least one term).
The crossover operator is a one-point crossover, while the mutation operator
randomly identifies a gene (i.e., a position in the array), and modifies it by
randomly assigning it to 0 or 1. This translates to removing/adding a term to
the query. The selection operator is the roulette-wheel.

A major component of a single-objective GA is a fitness function that is
minimized as a completion criteria for optimization. That is, optimization

4 We use the term “near-optimal” since the GA will ultimately converge to a local optimal
solution which may or may not be the global optima.
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is complete after either the fitness function value for an iteration is below a
provided threshold or after a maximum number of iterations are performed. For
each RQ2 sub-research question, we use a different quality metric as a fitness
function for the GA to determine if different fitness functions result in different
optimizations. For RQ2.1 we use effectiveness, and for RQ2.2 we use inverse
average precision and inverse recall. Note that AP and recall are inverted
because the fitness function must decrease as the query becomes increasingly
optimized. That is, while effectiveness has an inherently inverse relationship
with query performance, AP and recall do not. In all of these cases, the fitness
function is possible thanks to the fact that the ground truth is known for each
bug report. In essence, we look for the query optimizing retrieval performance
as represented by either effectiveness, AP, or recall, which are often used to
evaluate TR-based approaches for software engineering tasks (Dit et al., 2013).

Our GA is built on top of the jmetal framework5 and uses the following
parameter configuration: population size: 500; maximum number of generations:
30,000; crossover probability: 0.9; mutation probability: 1/n (where n is the
number of terms in the bug report). Also, given that a run of the GA involves
some elements of randomness (e.g., in the roulette-wheel selection), we run
the algorithm ten times and average the results to mitigate threats to validity
introduced by chance.

We acknowledge that in many cases, modern automatic query formulation
techniques would not be able to derive such an optimal query without knowing
the ground truth a priori. However, our goal in this study is not to present
the GA as a query formulation technique. Instead, we seek to identify a near-
optimal query that can be formulated from a bug report in order to empirically
assess the potential of TR-based bug localization. The existence of a query with
sufficient performance despite the absence of positive bias suggests that those
biases do not preclude TR-based approaches from being worthy of continued
study. Finally, note that the GA is given the vocabulary from QnH after
preprocessing all queries, therefore ensuring the same treatment is applied to
both queries and corpus documents.

The same performance metrics/statistical analyses used in RQ1 are also
computed for RQ2, where we compare the performance of Qa and QnH with
the performance of the near-optimal queries QGAa and QGAnH , obtained by
the GA starting from the vocabulary present in Qa and in QnH , respectively.

For RQ3 we analyze changing the Lucene implementation from version 2.9.4,
which uses a similarity based on tf-idf, to version 8.2.0, which uses a BM25
similarity for document ranking. To perform this analysis we compute the same
baseline given for RQ1 and compare that with the optimized queries using the
same experimental procedures of RQ2.1. Ultimately, this research question in-
vestigates how susceptible to the TR implementation our optimization strategy
is. Indeed, if query optimization is possible with version 2.9.4 but not 8.2.0,
that indicates some issue of stability, but does not diminish the impact of the
results provided by the earlier version. However, if version 8.2.0 provides even

5 http://jmetal.sourceforge.net
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greater performance, that suggests that more advanced TR implementations
may be able to provide even more optimized queries than more rudimentary
approaches. Note that in either case, we use an out of the box implementation
with minimal customization rather than a state-of-the-art approach to show
that optimization reduces the need for complex TR implementations.

3.3.2 Provenance of Terms in Near-Optimal Queries (RQ4, RQ5, and RQ6)

While RQ1, RQ2, and RQ3 show that TR-approaches to bug localization have
merit and can achieve high performance given an appropriate selection of
query terms, they do not provide much insight into how the GA is able to
optimize a given query based on a bug report. Although some trends may be
present in the data generated to answer those questions, in the end we need
more than an anecdotal understanding of such trends to comprehend what
makes a near-optimal query better than the original query. Therefore, for the
remaining three research questions, we perform a statistical analysis of the
provenance of unique terms that remain in a query through optimization. To
that end, we seek to categorize near-optimal search terms in three ways based
on original queries from the QnH set. First, we categorize terms based on
where they appear in the bug report: the title, description, or both. Second, we
categorize terms based on if the words appear in the files to be fixed even after
localization hints have been removed. Third, we categorize query terms based
on if the words appear in components of the bug report that represent specific
pieces of technical information that have been found helpful for TR queries in
previous research (Chaparro et al., 2019): expected behavior (EB), observed
behavior (OB), and steps to reproduce (S2R). Based on previous research that
suggests effective queries retrieve relevant results in the top ten positions of the
result list (Zhou et al., 2012), we focus the analysis on those queries in QnH

that begin with an effectiveness > 10 and result in a near-optimal query with
effectiveness ≤ 10. That is, for this analysis we are interested in the provenance
of terms in near-optimal queries that began with poor performance, but have
high performance after optimization. Finally, note that we base this analysis
on queries optimized using effectiveness score.

Specifically, to answer RQ4, we take each bug report and build three
mutually exclusive term sets: title-only, description-only, and both. That is, a
term that is in both the title and description belongs to the “both" set and not
the other two, while a term that appears in the “title-only” set, or “description-
only” set appears only in the title, or only in the description, respectively. Using
these term sets, we then calculate the proportion of terms in the initial query
from each set and compare that to the proportion of terms in the optimized
query from each set. We then aggregate the results of all trials of all bugs for
each dataset to arrive at some intuition about how the proportion of query
terms in each term set changes through the process of optimization.

To answer RQ5, we take the vocabulary of unique terms in the golden set of
each bug report and compute the proportion of terms in the initial query that
belong to that vocabulary and compare it to the proportion of those terms in
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the optimized query. This provides insight into how much the direct overlap of
terms with relevant documents impacts query optimization, but also illustrates
the amount of noise left in the query even after optimization. Developing
heuristics for identifying which words are harmful to query performance could
also lead to a better understanding of how to optimize queries without access
to the ground truth.

To answer RQ6, we perform a similar process as for RQ4. First, we applied
DEMIBUD-R (Chaparro et al., 2017b) to automatically identify the bug reports
for which EB, OB, or S2R information is present. Afterwards, for all the bugs
reported by DEMIBUD-R as containing EB, OB, or S2R information, we
manually classified the terms into all combinations of term sets based on EB,
OB, and S2R. We then compute the proportion of terms from each set in the
initial and optimized queries and finally compare them to see how the process
of optimization affects those proportions. More than just a field-level analysis of
bug report terms, which has been previously exploited by more advanced TR-
approaches such as Okapi BM-25 (Saha et al., 2013), we provide a functional
analysis of different categorizations of technical information present in bug
reports outside of explicit localization hints. This highlights the categories of
information contributing the most to a near-optimal query.

Note that for these final three research questions, each of the sets that terms
can be categorized into are non-mutually exclusive. That is, a term can appear
in one or all of the categories at once. Further, in the context of these research
questions, our statistical analysis includes a series of single-tailed t-tests to
show the statistical significance between the proportion of terms in optimal
queries from a set of possible locations (e.g., a bug report’s title or description).
We also pair this hypothesis testing with power analysis and provide effect
sizes for each statistically significant result.

4 Results

4.1 Effectiveness of TR-based Bug Localization

4.1.1 RQ1: Localization Hints and Queries from Bug Reports

Table 3 shows all evaluation metrics for each project in the dataset when using
the complete bug report as query, both including (Qa) and excluding (QnH)
localization hints. For each metric calculated for each project, a pair of bold
values indicates statistically significant impact of the localization hints at 95%
confidence with at least a small effect size. Asterisks indicate medium effect sizes.
We observed that the impact of localization hints is not statistically significant
across all data; however, there are instances where localization hints are seen to
substantially boost TR performance. Overall, looking at the last row in Table 3,
it is clear that while localization hints definitely help IR-based bug localization,
the difference in performance between Qa and QnH is not as strong as observed
in previous studies (Kochhar et al., 2014; Wang et al., 2015). Indeed, (Wang
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Table 3 RQ1: Comparison of queries Qa and QnH . A pair of bold values indicates statistical
significance between them at 95% confidence with at least a small effect size and * indicates
medium effect sizes.

Median Eff. HITS@1 HITS@5 HITS@10 MAP MRR
Project Qa QnH Qa QnH Qa QnH Qa QnH Qa QnH Qa QnH

AspectJ 33 36 0.04 0.06 0.17 0.18 0.28 0.26 0.09 0.10 0.12 0.13
Birt 58 56 0.02 0.02 0.08 0.05 0.15 0.14 0.07 0.06 0.10 0.09
BookKeeper 2 3 0.29 0.21 0.79 0.67 0.83 0.75 0.38 0.33 0.51 0.41
Derby 15 26 0.16 0.12 0.39 0.31 0.43 0.39 0.17 0.16 0.25 0.21
JodaTime 2* 13* 0.14 0.14 0.57 0.14 0.57 0.29 0.38 0.21 0.38 0.21
Lucene 2.5* 11* 0.31 0.20 0.69 0.33 0.78 0.47 0.38 0.25 0.47 0.28
Mahout 5* 25* 0.36 0.12 0.64 0.32 0.80 0.40 0.46* 0.18* 0.46* 0.19*
OpenJpa 5.5 18.5 0.19 0.13 0.50* 0.25* 0.56 0.31 0.32 0.15 0.35 0.22
Pig 9 10.5 0.25 0.19 0.44 0.39 0.53 0.50 0.30 0.28 0.35 0.30
Solr 2 7 0.33 0.18 0.67 0.42 0.76 0.56 0.42 0.26 0.49 0.30
SWT 3 5 0.35 0.31 0.61 0.53 0.78 0.69 0.43 0.37 0.48 0.43
Tika 2* 16* 0.43* 0.10* 0.62 0.29 0.81 0.38 0.38* 0.16* 0.53* 0.21*
Tomcat 2 12.5 0.40 0.23 0.67 0.37 0.74 0.41 0.55 0.31 0.59 0.34
ZooKeeper 2 5 0.41* 0.17* 0.73 0.52 0.79 0.64 0.49 0.28 0.55 0.32
ZXing 2 6 0.36 0.31 0.57 0.46 0.64 0.54 0.45 0.36 0.49 0.40
Total 9.6 16.7 0.27 0.17 0.54 0.36 0.63 0.45 0.35 0.23 0.41 0.27

et al., 2015) and (Kochhar et al., 2014) found a statistically significant difference
in performance when using queries containing/not containing localization hints,
accompanied by a large effect size.

These differences in findings might be due to several reasons. First, it is
worth noting that the dataset used in our experiment is different from those used
in (Kochhar et al., 2014; Wang et al., 2015). Second, as explained previously,
we adopt a different experimental design. More specifically, we use the same
set of bug reports to derive Qa and QnH : the latter is a “worst case scenario"
in which all terms matching code components have been manually redacted
from the bug report (i.e., from Qa). This allows us to review the performance
of TR-based localization in the presence of a potentially elevated vocabulary
mismatch (since matching terms between the code identifiers and the bug
report have been removed from the latter) and directly compare the same
bug report with and without localization hints. Alternatively, previous studies
classify the set of bug reports on the basis of the degree of bug localization
they contain (e.g., bug is fully localized in the report, partially localized, or
not localized) and compare the performance of TR-based bug localization on
these (disjoint) sets of bugs. These methodological differences make a direct
comparison of the results achieved in our study versus previous studies difficult.
At minimum, these results underscore the fact that the impact of localization
hints on performance is inextricably linked to the specific project under study
and the set of bug reports considered from that project.

Finally, it is worth commenting on the overall performance achieved by
using the whole textual content of the bug report as a query, especially when
localization hints are not present (i.e., QnH , the scenario in which TR-based bug
localization is needed the most). The median effectiveness across all projects is
13, meaning that for half of the queries, the first relevant document is retrieved
after position 13 in the ranked list. Considering that our study is run at file
level (i.e., each document in the ranked list represents a Java file), the effort
required to analyze false positives in the ranked list would likely be too high
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to be considered acceptable by developers. Also, QnH was able to retrieve a
buggy file in the top five positions (HITS@5) for only 36% of queries and in
the top ten positions (HITS@10) for 46% of queries on average. This, of course,
translates to poor performance also across the rest of the metrics we consider.

The achieved results support doubts raised in previous work about the
actual usefulness of TR-based bug localization when hints are not provided.
However, there is an important detail to remember: as done in previous work,
we are using the whole textual content of the bug report as a query, which, as
previous studies showed (Chaparro and Marcus, 2016), can contain noise that
hinders TR performance. In the next research question we investigate what
the potential effectiveness of IR-based bug localization is given the ability to
formulate a near-optimal query instead of using this default one.

RQ1: The presence of localization hints can significantly boost the results
of IR-based bug localization at the project-level, but not necessarily for all
bug reports and/or in all projects. We also observed that the performance of
IR-based bug localization is actually poor in the scenario it is needed the most,
with less than 50% of queries able to retrieve a relevant result in the top 10
positions of the ranked list without the aid of localization hints.

4.1.2 RQ2.1: Optimizing Bug Report Queries to Retrieve a Single Relevant
Document

Table 4 shows all evaluation metrics for each project in the dataset when using a
near-optimal query generated by our GA (using effectiveness as fitness function)
based on the bug report vocabulary with and without localization hints. The
improvements made by selectively formulating a query rather than using the
complete bug report vocabulary are immediately noticeable. Beginning with
median effectiveness, we now see that for at least half of the queries a user
will arrive at a buggy file after inspecting only the first item in the result set.
Note that this holds both when localization hints are present in the bug report
(QGAa) and when they are not (QGAnH). This finding is further supported
by the average HITS@1 score over the entire dataset, which shows that overall
73% and 64% of the queries with and without localization hints respectively,
are able to return a relevant file in the first position in the search results. This
is a more than three-fold improvement over the full text queries, which are
generally the ones used in the evaluation of TR techniques. Moreover, the
MAP of each dataset also improves dramatically, indicating that not only is
one relevant file being pushed to the top of the results, but many of the other
relevant files are moving up the list as well.

For this research question we performed the same statistical tests between
queries that contain localization hints and those that do not. We found that
in the case of queries formulated by the GA, the difference in values other
than median effectiveness are statistically significant only for Mahout, but
even then only with a negligible effect size. Otherwise, near-optimal queries
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manage to mitigate the lack of localization hints every time. In addition, we
calculated the same statistical tests to measure differences between the queries
composed by using the whole text in the bug report (i.e., those used in RQ1)
and the near-optimal queries formulated by the GA, finding a statistically sig-
nificant difference with medium or large effect sizes in every case. Summarizing
these findings, the achieved results show that the vocabulary of the
bug report is all we need to formulate a good query and make the
application of IR-based bug localization successful in most cases.

It is also worth noting that these results have been achieved by using
a simple VSM as the TR engine, configured with default parameters and
publicly available in an open source library (i.e., lucene). While our goal in
this study was to determine the best results we can get by only manipulating
the query, given a more robust TR engine capable of better handling issues
such as vocabulary mismatch, it is reasonable to hypothesize that even better
performance could be obtained. Further, these results show that even though
there are numerous studies which have itemized and dissected the limitations
of applying TR to source code, specifically for bug localization, the query itself
is a tremendously important aspect of optimizing IR, potentially more than
internal parameters or even the choice of TR engine.

The results we achieved in RQ2 are very promising for researchers working on
TR-based bug localization and its many derivatives, as well as for practitioners
that have implemented or are interested in implementing these systems to
improve their development process. However, these findings also come with
some practical implications that need to be addressed in the evaluation of
future TR approaches. Mainly, evaluating TR techniques using the standard
approach of building queries by concatenating the contents of the bug report
title and description is an additional factor that could introduce bias in an
TR experiment’s results. Indeed, our data suggests that the particular query
formulated starting from a given bug report is a major factor in the performance
of TR approaches. Therefore, great care should be taken when formulating
queries from bug reports for evaluation to not only address potential biases
such as the presence of localization hints and bloated ground truths, but also
biases imposed by the query itself. For example, it has been suggested that
queries containing a large volume of text are also likely to contain a lot of
noise (Chaparro and Marcus, 2016), which innately lowers performance. This
is supported by the results of our study, where the GA queries obtain better
results and are also shorter (see Table 5).

Clearly, it is often a non-trivial task to read a bug report and convert its
text into a meaningful query that TR approaches can use to locate buggy files.
In fact, previous work on iterative query refinement through user feedback
(Gay et al., 2009) found that developers were often unable to reach a good
query given a sufficiently bad starting point. Because the quality of a query
is not always readily apparent, one can imagine situations in which studies
have an imbalance of queries with various degrees of quality. It is then entirely
possible that this balance, whether in favor of poor or high quality queries,
injects bias into evaluation results.
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Table 4 RQ2.1: Performance of near-optimal queries QGAa and QGAnH (using Lucene
2.9.4)

Median Eff. HITS@1 HITS@5 HITS@10 MAP MRR
Project QGAa QGAnH QGAa QGAnH QGAa QGAnH QGAa QGAnH QGAa QGAnH QGAa QGAnH

AspectJ 1 1 0.46 0.60 0.72 0.79 0.78 0.86 0.41 0.49 0.58 0.68
BookKeeper 1 1 0.88 0.75 1.00 0.96 1.00 0.96 0.56 0.48 0.92 0.85
Birt 1 1 0.34 0.35 0.50 0.51 0.55 0.57 0.43 0.43 0.61 0.64
Derby 1 1 0.55 0.53 0.67 0.65 0.67 0.73 0.40 0.40 0.61 0.60
JodaTime 1 1 0.57 0.57 1.00 0.86 1.00 0.86 0.79 0.73 0.79 0.73
Lucene 1 1 0.80 0.63 0.93 0.80 0.97 0.80 0.63 0.49 0.85 0.72
Mahout 1 1 0.88 0.56 0.96 0.72 1.00 0.76 0.84 0.52 0.91 0.63
OpenJpa 1 1 0.75 0.75 0.88 0.94 0.94 1.00 0.63 0.61 0.82 0.83
Pig 1 1 0.69 0.64 0.86 0.81 0.89 0.86 0.65 0.61 0.77 0.71
Solr 1 1 0.84 0.71 0.91 0.84 0.93 0.89 0.68 0.57 0.88 0.77
SWT 1 1 0.79 0.76 0.89 0.91 0.94 0.93 0.69 0.67 0.85 0.83
Tika 1 1 0.90 0.71 0.90 0.86 0.90 0.86 0.59 0.42 0.91 0.78
Tomcat 1 1 0.77 0.49 0.89 0.68 0.91 0.75 0.85 0.59 0.95 0.70
ZooKeeper 1 1 0.81 0.74 0.95 0.88 0.96 0.94 0.74 0.70 0.86 0.80
ZXing 1 1 0.93 0.85 1.00 0.92 1.00 1.00 0.91 0.86 0.95 0.90
Total 1 1 0.73 0.64 0.81 0.81 0.9 0.85 0.57 0.57 0.82 0.74

Given that initial query formulation is so important to the outcome of an
TR approach, it is natural to ask questions about how the research community
can best support query formulation given a bug report vocabulary without a
priori knowledge of the ground truth. As mentioned in Section 2.2, previous
work has focused on how to reformulate a query from an initial query. We see
the set of near-optimal queries extracted to answer RQ2 as a precious source
that can represent a starting point for further research on this topic, such as
studying what the characteristics of high-performing queries are. As a hint on
how much different the near-optimal queries formulated by our GA are with
respect to the queries including the whole textual content of the bug report,
Table 5 shows the average size of Qa and QnH before and after the application
of the GA. We report the size in terms of unique and non-unique terms. In a
vast majority of cases, the GA reduces the terms used in the original query
by more than 50%, and in each case it results in a higher ratio of unique
to non-unique terms. This further supports the idea that there are words in
the original queries in both Qa and QnH whose relevance is diminished by
other noisy terms in these queries, such that the TR approach is not able to
appropriately leverage the information represented by meaningful terms.

Table 6 shows some examples from our dataset of queries before and after
the GA application. In the following paragraphs, we discuss these queries to
exemplify some interesting properties. From this data, we can see extreme
cases in which the GA significantly reduces the number of terms in the query,
by one order of magnitude. Finding the right query in these cases could prove
challenging for a human, given so many term combinations, therefore stressing
the need for automatic techniques to help with this task.

Specifically, for bug 40257 in AspectJ, the GA is able to derive a two-word
query from an original eleven-word query which boosts the effectiveness from
124 to 9. Similarly, the large 44-term query for bug 54178 in Tomcat is reduced
to a smaller 18-term query, boosting the effectiveness from 44 to 1.

For the bug Lucene-4469, the algorithm is able to derive a query with
maximum effectiveness from the original query with an effectiveness of 249 by
reducing the 31-word query to a seven-word one. Each of these cases illustrate
the amount of information buried in bug reports that could potentially be
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Table 5 Average query sizes in number of words before and after applying the GA
Qa QnH

Before GA After GA Before GA After GA
project Non-Unique Unique Non-Unique Unique Non-Unique Unique Non-Unique Unique
AspectJ 224.35 61.10 104.63 39.34 49.10 29.89 20.83 14.95
BookKeeper 83.63 35.83 40.25 22.75 24.83 17.92 11.13 9.29
Birt 119.16 50.39 53.20 28.33 58.82 35.58 24.16 17.77
Derby 190.41 53.29 89.94 35.33 44.14 26.65 19.43 14.43
JodaTime 126.57 44.00 59.86 27.00 46.14 29.43 19.43 15.43
Lucene 232.90 98.00 114.27 57.53 27.43 21.63 11.53 10.17
Mahout 97.72 45.72 47.28 28.36 34.24 24.96 13.96 11.60
OpenJpa 166.06 61.00 77.69 39.63 41.06 29.94 17.50 15.19
Pig 117.44 46.25 53.28 28.61 25.00 19.11 10.50 8.72
Solr 87.80 41.09 41.51 25.00 42.93 29.13 19.16 15.22
SWT 100.56 41.01 47.80 25.13 42.80 27.84 19.31 14.91
Tika 74.33 34.76 35.05 20.57 26.00 19.48 10.90 9.57
Tomcat 130.87 54.98 63.78 34.54 44.91 28.70 19.64 14.95
ZooKeeper 106.09 43.36 52.18 27.65 38.14 25.58 17.92 14.35
ZXing 123.31 72.92 58.62 40.54 73.23 54.92 33.23 27.92
Total (Avg.) 132.08 52.25 62.62 32.02 41.25 28.05 17.91 14.30

uncovered by automated formulation techniques, thus dramatically increasing
the performance of TR-based bug localization techniques.

It is also interesting to note that given a query that already retrieves a
relevant document in position one, the GA is still able to reduce the number
of words in the query while maintaining the same, perfect effectiveness. For
example, bug pig-3327 results in an original query of 21 words having perfect
effectiveness. The GA is able to derive from it a query still exhibiting perfect
effectiveness but using as few as seven words. This indicates that not all noisy
words in a query are equivalent. There are some sources of benign noise that do
not affect the overall effectiveness of the query and are just ancillary words not
really required to represent the information sought in the document corpus.

Finally, we note that there is often not a single and unique near-optimal
query derived by the GA. In fact, for bug 37576 in AspectJ (see Table 6), the
algorithm is able to derive ten distinct queries (i.e., one for each iteration),
with lengths ranging from three to ten words, all having perfect effectiveness.
This suggests that automatic formulation techniques should not always look
for one single, ideal query. Rather, many alternative queries built from the text
in the bug report could all lead to exceptional retrieval results.

RQ2.1: We find strong evidence that a near-optimal query extracted from
the bug report vocabulary significantly improves the performance of TR-
based bug localization compared to the default query. This indicates the
potential usefulness of TR bug localization, even in cases where the bug
report does not contain any localization hint, which has been shown to be
an especially problematic situation for developers (Bettenburg et al., 2008).
We strongly believe that the design and construction of techniques supporting
the formulation of an optimal query should be the main research direction to
investigate in IR-based bug localization.
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Table 6 Selected examples of queries and their effectiveness before and after GA reformula-
tion

BugId Initial Eff Initial Query GA Eff GA Query

AspectJ-40257 124 pars path lst file broken rel path
longer parser properli ajd

9 lst ajd

Tika-1083 208 add link uti valu tika metadata xml
tika 1012 ad tika link tika uti patch
fill valu

24 add xml

Lucene-4469 249 test appear useless reason guess debug
explicitli disabl mdw call dont check
valu test current fail wouldnt rememb
right catch throwabl record insid statu
test chang let mdw run search test

1 appear disabl
check valu test
wouldnt rememb

Pig-3327 1 pig hit oom fetch task report gc over-
head limit exceed hit 23 script launch
job ha 80k map arrai caus oom

1 oom task report
map arrai caus
oom

AspectJ-37576 4 ant task switch boot classpath entiti
rc2 ajc task iajc task take nest boot-
classpath entiti classpath vice versa

1 ant rc2 ajc iajc
take entiti versa

AspectJ-37576 4 ant task switch boot classpath entiti
rc2 ajc task iajc task take nest boot-
classpath entiti classpath vice versa

1 ant switch rc2
iajc bootclasspath
entiti classpath

AspectJ-37576 4 ant task switch boot classpath entiti
rc2 ajc task iajc task take nest boot-
classpath entiti classpath vice versa

1 ant switch iajc
nest entiti class-
path versa

AspectJ-37576 4 ant task switch boot classpath entiti
rc2 ajc task iajc task take nest boot-
classpath entiti classpath vice versa

1 ant classpath en-
titi rc2 iajc take
bootclasspath
entiti vice versa

Tomcat-54178 44 bug 54178 cve 2013 2071 make recycl
orgin report messag post tomcat call
one http request use post method tom-
cat call strage test 7 0 23 7 0 32 7 0
32 7 0 32 more reproduc 7 0 23 strang
issu tomcat ha releas t didn t eye at-
tach imag

1 cve 2013 recycl or-
gin call one http re-
quest method 7 7
0 reproduc 7 strang
ha releas t didn t
eye

AspectJ-37576 4 ant task switch boot classpath entiti
rc2 ajc task iajc task take nest boot-
classpath entiti classpath vice versa

1 ant switch rc2
iajc take nest
bootclasspath
versa

AspectJ-37576 4 ant task switch boot classpath entiti
rc2 ajc task iajc task take nest boot-
classpath entiti classpath vice versa

1 ant switch rc2
iajc take nest
bootclasspath
versa

AspectJ-37576 4 ant task switch boot classpath entiti
rc2 ajc task iajc task take nest boot-
classpath entiti classpath vice versa

1 classpath iajc take

AspectJ-37576 4 ant task switch boot classpath entiti
rc2 ajc task iajc task take nest boot-
classpath entiti classpath vice versa

1 ant switch boot
classpath ajc iajc
nest entiti versa

AspectJ-37576 4 ant task switch boot classpath entiti
rc2 ajc task iajc task take nest boot-
classpath entiti classpath vice versa

1 ant switch class-
path iajc

AspectJ-37576 4 ant task switch boot classpath entiti
rc2 ajc task iajc task take nest boot-
classpath entiti classpath vice versa

1 rc2 ajc iajc take
classpath vice
versa

AspectJ-37576 4 ant task switch boot classpath entiti
rc2 ajc task iajc task take nest boot-
classpath entiti classpath vice versa

1 ant switch boot
classpath ajc iajc
take nest entiti

4.1.3 RQ2.2: Optimizing Bug Report Queries to Retrieve Multiple Relevant
Documents

To answer RQ2.1 we employed a GA using effectiveness as a fitness function.
At each iteration, the GA minimized the rank of the first relevant document
in the result list (i.e., pushing it upward toward the first position in the list).
However, this is only one query metric that could be used as a fitness function.
An alternative goal of optimization could be to retrieve all (or at least the largest
possible subset) of relevant classes for each bug. This is particularly useful for
more general software engineering tasks. As an example, when establishing
links between high- and low-level system requirements, there are no explicit
dependencies that can be navigated like those available between relevant pieces
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Table 7 Performance of effectiveness-based and AP-based near-optimal queries with no
localization hints. A pair of bold values indicates statistical significance between them at
95% confidence with at least a small effect size and * indicates medium effect sizes.

Median Eff. HITS@1 HITS@5 HITS@10 MAP MRR
Project QGAEff QGAAP QGAEff QGAAP QGAEff QGAAP QGAEff QGAAP QGAEff QGAAP QGAEff QGAAP

AspectJ 1 1 0.60 0.57 0.79 0.76 0.86 0.84 0.49* 0.57* 0.68 0.66
BookKeeper 1 1 0.75 0.78 0.96 0.96 0.96 0.96 0.48* 0.64* 0.85 0.85
Birt 1 1 0.35 0.38 0.51 0.52 0.57 0.57 0.43 0.49 0.64 0.61
Derby 1 1 0.53 0.56 0.65 0.66 0.73 0.75 0.40 0.48 0.60 0.61
JodaTime 1 1 0.57 0.64 0.86 0.84 0.86 0.86 0.73 0.74 0.73 0.74
Lucene 1 1 0.63 0.58 0.80 0.80 0.80 0.80 0.49* 0.55* 0.72 0.68
Mahout 1 1 0.56 0.52 0.72 0.69 0.76 0.73 0.52 0.54 0.63 0.58
OpenJpa 1 1 0.75* 0.69* 0.94* 0.84* 1.00 0.92 0.61 0.59 0.83 0.77
Pig 1 1 0.64 0.65 0.81 0.81 0.86 0.86 0.61 0.65 0.71 0.72
Solr 1 1 0.71 0.68 0.84 0.83 0.89 0.88 0.57* 0.63* 0.77 0.75
SWT 1 1 0.76 0.79 0.91 0.91 0.93 0.93 0.67* 0.78* 0.83 0.85
Tika 1 1 0.71 0.71 0.86 0.82 0.86 0.82 0.42* 0.65* 0.78 0.77
Tomcat 1 1 0.49 0.40 0.68 0.69 0.75 0.75 0.59 0.61 0.70 0.69
ZooKeeper 1 1 0.74 0.68 0.88 0.84 0.94 0.90 0.70 0.71 0.80 0.76
ZXing 1 1 0.85* 0.91* 0.92 0.94 1.00 1.00 0.86 0.91 0.90 0.94
Total 1 1 0.62 0.61 0.80 0.79 0.85 0.84 0.61 0.64 0.74 0.73

Table 8 Performance of effectiveness-based and recall-based near-optimal queries with no
localization hints. There was no statistical significance between the results for the two sets
of queries.

Median Eff. HITS@1 HITS@5 HITS@10 MAP MRR
Project QGAEff QGARec QGAEff QGARec QGAEff QGARec QGAEff QGARec QGAEff QGARec QGAEff QGARec

AspectJ 1 6 0.60 0.38 0.79 0.49 0.86 0.52 0.49 0.38 0.68 0.44
BookKeeper 1 2 0.75 0.46 0.96 0.83 0.96 0.83 0.48 0.51 0.85 0.60
Birt 1 9 0.35 0.22 0.51 0.31 0.57 0.36 0.43 0.39 0.64 0.52
Derby 1 4 0.53 0.36 0.65 0.55 0.73 0.57 0.40 0.39 0.60 0.43
JodaTime 1 1.4 0.57 0.65 0.86 0.68 0.86 0.73 0.73 0.67 0.73 0.67
Lucene 1 1.67 0.63 0.49 0.80 0.74 0.80 0.76 0.49 0.53 0.72 0.60
Mahout 1 1.33 0.56 0.52 0.72 0.60 0.76 0.61 0.52 0.54 0.63 0.56
OpenJpa 1 2.33 0.75 0.35 0.94 0.63 1.00 0.65 0.61 0.40 0.83 0.47
Pig 1 1 0.64 0.56 0.81 0.66 0.86 0.67 0.61 0.58 0.71 0.61
Solr 1 1.67 0.71 0.49 0.84 0.74 0.89 0.78 0.57 0.54 0.77 0.61
SWT 1 1 0.76 0.65 0.91 0.78 0.93 0.80 0.67 0.67 0.83 0.72
Tika 1 1.33 0.71 0.54 0.86 0.81 0.86 0.81 0.42 0.57 0.78 0.65
Tomcat 1 3 0.49 0.28 0.68 0.34 0.75 0.41 0.59 0.55 0.70 0.66
ZooKeeper 1 1 0.74 0.72 0.88 0.83 0.94 0.86 0.70 0.73 0.80 0.77
ZXing 1 1 0.85 0.75 0.92 0.76 1.00 0.78 0.86 0.73 0.90 0.76
Total 1 2.52 0.64 0.49 0.81 0.65 0.85 0.68 0.57 0.55 0.74 0.60

of source code that are likely to share an edge in a call graph. Therefore, rather
than finding a single relevant requirement near the top of the results, a truly
near-optimal query for this purpose would find all of the relevant requirements
there. Tables 7 and 8 show the results of generating near-optimal queries
using average precision (QGAAP ) and recall (QGARec) as the fitness function,
respectively, compared to the query obtained by the GA when optimizing
effectiveness (QGAEff ). Note that average precision and recall were explicitly
chosen for evaluation as they both measure a query’s ability to cluster all of the
relevant documents near the top of the ranked results list. Note also that when
implementing the fitness functions, the GA is set to minimize the reciprocal of
either average precision or recall to be consistent with the previous experiment
which minimized effectiveness. This is because a near-optimal query should
have a low effectiveness score, but high average precision and recall scores.

When using AP as the fitness function, the performance for finding a single
relevant document near the top of the result list is largely unchanged from using
the effectiveness. However, the largest difference in average performance across
all systems is in MAP, which is the average of all AP scores within a dataset.
While the queries are not able to achieve perfect MAP (i.e., 1.00 for grouping all
k relevant documents as the top k results), we do see a statistically significant
increase in MAP compared to using effectiveness in almost all cases. Therefore,
these findings suggest that it is possible to generate queries that are optimized
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for retrieving multiple relevant documents. Interestingly, while QGAAP queries
outperform those in QGAEff in terms of MAP substantially, they perform
similarly for most of the other metrics, and in the case of some metrics for
OpenJpa and ZXing are statistically significantly worse. This is consistent with
previous findings that indicate many aspects of software engineering are highly
dependent on the project under study. Therefore, while it appears queries can
be optimized to increase MAP for some systems, this is not true for all of them.

Also interestingly, using recall as a fitness function produces queries that
are statistically significantly worse than either effectiveness or AP. This is most
apparent in the QGARec results for median effectiveness, which in the case of
AspectJ are six times worse than the other two fitness functions. Indeed the
QGARec queries barely outperform QGAEff queries even measured by MAP,
which is closely conceptually related to recall. However, there is no statistical
significance between the MAP results for those sets of queries. Further, in cases
where QGAEff queries outperform QGARec queries, they do so substantially
and statistically significantly.

Finally, note that for bugs which only have a single class in the golden set,
the process of optimizing for AP or recall is irrelevant, as in this case finding the
first relevant document is equivalent to finding all relevant documents. Table 9
shows the improvement in MAP achieved by either AP or recall for bugs that
required changes in multiple classes to resolve. In these cases, MAP for the
original queries constructed from the full bug report minus localization hints
are very low with an average of only 0.20. Both the GA with AP and recall as
a fitness function more than double the MAP to 0.57 and 0.47, respectively.
Therefore, we see that not only is it possible to improve the MAP for a mixed
set of queries containing documents with only a single relevant document in
the search space, but improvements in MAP for the case that matters most
(i.e., where there are multiple relevant documents in the search space) are
substantial. These findings paired with the results of the AP fitness function
experiment indicate that while it is possible to optimize queries to retrieve
multiple relevant files, this is much harder than optimizing a query to find a
single relevant document.

RQ2.2: While it is possible to optimize a query to find all relevant documents
near the top of the result list for some systems, our data suggests that it is
much more difficult to do and might not be possible for all systems. However,
for bugs with multiple classes in their golden set, MAP improvement by using
AP as a fitness function is substantial.

4.1.4 RQ3: Optimizing Bug Report Queries with Lucene 8.2.0

As discussed in Section 3.3.1, we are also interested in the impact that changing
the implementation of Lucene has on the GA’s ability to optimize queries
comprised of a bug report title and description. Table 10 shows the baseline
performance of such queries with and without hints prior to applying GA
optimization based on effectiveness. This table should be compared with Table 3,



28 Chris Mills et al.

Table 9 MAP comparison of QBR, QAP , and QRecall for bugs that required changes to
multiple classes

Project QBR QAP QRecall

AspectJ 0.10 0.46 0.32
BookKeeper 0.19 0.50 0.33
Birt 0.07 0.28 0.24
Derby 0.16 0.45 0.30
Lucene 0.12 0.48 0.34
Mahout 0.29 0.78 0.70
OpenJpa 0.15 0.48 0.33
Pig 0.13 0.40 0.34
Solr 0.14 0.46 0.33
SWT 0.27 0.70 0.53
Tika 0.20 0.65 0.58
Tomcat 0.31 0.54 0.40
ZooKeeper 0.19 0.53 0.52
ZXing 0.51 1.00 1.00
Average 0.20 0.57 0.47

in which the baseline performance using Lucene 2.9.4 is reported. Through
that comparison, we see the same average trends across the entire dataset.
However, for several specific systems the performance of queries without hints
is significantly improved when using the newer version of Lucene. Namely, for
both Derby and JodaTime, the HITS@10 ratios are identical with and without
hints, whereas there was substantial performance degradation when hints were
removed using Lucene 2.9.4. Further, there is a noticeable degradation in
effectiveness both with and without hints when using version 8.2.0 compared
to 2.9.4, but this is more pronounced for some systems than others. Likewise,
there is a marginal increase in the HITS@K ratios with 8.2.0, the magnitude
of which varies across systems.

Table 11 and Table 4 show comparative performance data with and without
hints for near-optimal queries derived by Lucene 8.2.0 and 2.9.4 respectively.
There are two primary takeaways from this data. First, Lucene 8.2.0 has
reduced performance as measured by our chosen metrics when compared to
Lucene 2.9.4. In many cases, the degradation is ∼10%, indicating that for bug
localization, at least for these systems, the tf-idf similarity is superior to the
BM25 similarity. Second, we still observe that the delta between optimized
queries with and without hints is relatively small. Therefore, even though there
appears to be an aggregate reduction in overall performance related to the
change in TR implementation, optimized queries are still able to achieve high
performance even in the absence of localization hints. Ultimately, this data
suggests that optimization is not bound to a single TR-engine implementation or
similarity metric. For any two implementations, there will likely be differences
in performance, as well as in the amount of optimization that takes place.
However, for the two implementations considered here, the implementation
with the lower performance still provides drastic improvement when comparing
the original and optimized queries.
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Table 10 RQ3: Comparison of queries Qa and QnH using Lucene 8.2.0. A pair of bold
values indicates statistical significance between them at 95% confidence with at least a small
effect size and * indicates medium effect sizes.

Median Eff. HITS@1 HITS@5 HITS@10 MAP MRR
Project Qa QnH Qa QnH Qa QnH Qa QnH Qa QnH Qa QnH

AspectJ 40 55.5 0.03 0.02 0.22 0.10 0.22 0.17 0.10 0.08 0.12 0.09
Birt 67.5 92 0.02 0.01 0.10 0.05 0.14 0.11 0.07 0.05 0.09 0.08
BookKeeper 3 2.5 0.22 0.21 0.46 0.41 0.59 0.49 0.39 0.35 0.53 0.46
Derby 14 15 0.16 0.08 0.23 0.19 0.29 0.29 0.23 0.16 0.32 0.23
JodaTime 7 10 0.29 0.29 0.43 0.29 0.57 0.57 0.40 0.34 0.40 0.34
Lucene 4 17 0.29 0.19 0.54 0.25 0.67 0.31 0.42 0.24 0.46 0.26
Mahout 5 43 0.30 0.02 0.40 0.14 0.65 0.27 0.39 0.09 0.45 0.15
OpenJpa 18 20 0.18* 0.00* 0.36* 0.11* 0.42 0.23 0.28 0.08 0.33 0.12
Pig 5.5 19.5 0.24 0.16 0.41 0.35 0.53 0.41 0.35 0.26 0.40 0.28
Solr 3 9.5 0.29 0.14 0.53 0.28 0.63 0.44 0.43 0.24 0.48 0.27
SWT 2 5 0.30 0.20 0.59 0.40 0.68 0.57 0.45 0.33 0.50 0.38
Tika 2 13 0.28 0.08 0.59 0.19 0.64* 0.28* 0.49 0.18 0.58 0.27
Tomcat 3 28 0.35 0.19 0.56 0.30 0.65 0.34 0.47 0.26 0.51 0.28
ZooKeeper 2 6.5 0.35 0.16 0.59 0.41 0.65 0.52 0.48 0.29 0.40 0.32
ZXing 1 6 0.50 0.32 0.68 0.44 0.68 0.56 0.59 0.37 0.62 0.40
Total 16 24 0.25 0.14 0.45 0.27 0.53 0.37 0.37 0.22 0.41 0.26

We also analyzed whether our main finding (i.e., the improvement in
effectiveness achieved when using the GA queries) was influenced by the choice
of the IR engine (Lucene 8.2.0, based on BM25 and Lucene 2.9.4, based on
tf-idf). In particular, we applied the same statistical procedure previously
explained for RQ1 (i.e., coin test and Cliff’s delta) to study the differences
between:

– The effectiveness of the original queries (both when using all terms, as well
as when removing localization hints) when run using the two IR engines;

– The effectiveness of the GA queries (with/without localization hints) when
run using the two IR engines;

– The gain in effectiveness between the GA queries and the original queries
obtained using the two IR engines (with/without localization hints).

We found a statistically significant difference in all comparisons (all p-values
< 0.01), indicating that the compared distributions are independent. However,
the effect size in all comparisons is negligible (all d < 0.07), showing that
the magnitude of the differences between the distributions is of no practical
relevance. In other words, the IR-engine choice has no noticeable influence on
our main finding (e.g., the gain in effectiveness obtained by the GA queries).

RQ3:While we see some aggregate performance reduction with 8.2.0 in the con-
text of bug localization for the specific systems under study, we also observe that
query optimization provides queries that negate the need for localization hints
to retrieve relevant documents for either version. For any two implementations
we expect there will be differences in both raw performance and optimization
potential. However, the data suggests that query optimization has the potential
to significantly improve results irrespective of the TR implementation.
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Table 11 RQ3: Performance by system of near-optimal queries QGAa and QGAnH with
Lucene 8.2.0

Median Eff. HITS@1 HITS@5 HITS@10 MAP MRR
Project Qa QnH Qa QnH Qa QnH Qa QnH Qa QnH Qa QnH

AspectJ 1 1 0.37 0.37 0.54 0.53 0.60 0.57 0.47 0.45 0.61 0.58
Birt 1 2 0.35 0.30 0.50 0.45 0.54 0.51 0.43 0.38 0.60 0.56
BookKeeper 1 1 0.47 0.43 0.65 0.58 0.74 0.65 0.63 0.55 0.95 0.88
Derby 1 1 0.37 0.37 0.44 0.53 0.48 0.58 0.44 0.47 0.64 0.66
JodaTime 1 1 0.80 0.71 0.86 0.71 0.87 0.93 0.84 0.75 0.84 0.75
Lucene 1 2 0.77 0.35 0.69 0.55 0.80 0.57 0.76 0.47 0.91 0.61
Mahout 1 1 0.66 0.36 0.79 0.53 0.81 0.60 0.73 0.45 0.93 0.60
OpenJpa 1 1 0.52 0.46 0.68 0.63 0.74 0.65 0.61 0.55 0.78 0.78
Pig 1 1 0.45 0.51 0.69 0.62 0.76 0.64 0.60 0.57 0.71 0.67
Solr 1 1 0.60 0.50 0.65 0.59 0.68 0.64 0.67 0.57 0.84 0.73
SWT 1 1 0.68 0.62 0.76 0.72 0.81 0.77 0.76 0.69 0.88 0.83
Tika 1 1 0.55 0.40 0.68 0.46 0.74 0.59 0.68 0.49 0.91 0.75
Tomcat 1 1 0.69 0.40 0.76 0.55 0.78 0.61 0.74 0.48 0.83 0.57
ZooKeeper 1 1 0.63 0.56 0.78 0.74 0.84 0.78 0.73 0.67 0.85 0.78
ZXing 1 1 0.82 0.62 0.97 0.68 0.97 0.74 0.89 0.66 0.92 0.68
Total 1 1 0.58 0.46 0.70 0.59 0.72 0.66 0.67 0.55 0.81 0.70

4.2 Provenance of Terms in Near-Optimal Queries

4.2.1 RQ4: Effective Near-Optimal Query Terms from a Bug Report

Table 12 shows the average composition of a query in each system based
on term membership in either a bug report’s title, description, or both for
unoptimized (i.e., QnH) and near-optimal (i.e., QGAEff ) queries along with
the average effectiveness score. Interestingly, overall there are no large shifts
between the three term sets, with no statistical significant differences between
the composition of queries before and after optimization. While there has been
some previous work on TR approaches such as Okapi BM-25F (Saha et al.,
2013) that are specifically intended to improve performance by varying term
weights based on document fields, this data suggests that the benefit of doing
so is extremely project-dependent. Moreover, depending on the project, those
techniques may not provide sufficient performance improvement to justify the
necessary effort required for tuning those weights compared to VSM. Further,
while common intuition is that terms specifically from the title would provide
the most important information to locate a bug, near-optimal queries for more
than half of the datasets under study have the same or smaller proportion of
words from the title compared to the associated QnH query. However, by the
same token, terms that appear in both the title and the description do represent
a larger proportion of terms present near-optimal queries in the vast majority of
the datasets, but that increase is more than five percentage points in only three
of the datasets, with no statistical significance. Moreover, despite the specificity
of terms in the bug report title or in both the title and description, terms from
only the description make up more than two-thirds of near-optimal queries on
average for all of the systems. Therefore, while intuition might suggest terms
from the title or title and description are the most optimal query terms, and
optimization would remove a larger portion of terms that solely appear in the
bug description, our data suggests this is not the case.
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Table 12 Provenance of terms and effectiveness of queries before and after GA optimization

Unoptimized Near-Optimal
System Title Desc Both Eff Title Desc Both Eff
AspectJ 0.09 0.78 0.13 92 0.09 0.74 0.17 12
Birt 0.10 0.72 0.17 599 0.10 0.66 0.24 93
BookKeeper 0.16 0.67 0.17 13 0.16 0.62 0.22 2
Derby 0.10 0.71 0.19 169 0.10 0.67 0.22 31
JodaTime 0.10 0.86 0.04 30 0.11 0.83 0.06 3
Lucene 0.13 0.76 0.11 73 0.13 0.74 0.12 15
Mahout 0.07 0.71 0.20 234 0.06 0.69 0.24 15
OpenJpa 0.06 0.79 0.14 39 0.06 0.76 0.17 2
Pig 0.15 0.68 0.17 110 0.13 0.68 0.18 49
Solr 0.07 0.76 0.16 173 0.04 0.74 0.21 17
SWT 0.12 0.80 0.08 28 0.12 0.77 0.11 5
Tika 0.11 0.73 0.15 47 0.15 0.66 0.19 7
Tomcat 0.17 0.70 0.13 94 0.14 0.67 0.18 18
ZooKeeper 0.09 0.74 0.17 22 0.07 0.71 0.21 4
ZXing 0.02 0.93 0.05 20 0.02 0.90 0.08 2

Table 13 shows the percent change in each set as a query evolves from the
original bug report query to a near-optimal query. As expected based on the
previous, anecdotal analysis of the near-optimal queries, the average query size
for each system decreases by more than half in all but four of the systems.
Interestingly, the percent change in title terms is at least 50% in eight of the
systems, and the percent change for terms in both the title and description
is at least 50% in four of the systems. On average, about half of the terms
from the description are removed for all systems. This indicates that while
there is substantial noise in bug descriptions used as TR queries, the same is
true for titles which are expected to be far more terse and rich in information.
Ultimately, this reinforces the fact that simply prioritizing title terms over
those in the description is insufficient to identify near-optimal query terms. We
have shown that sufficient information exists for a GA to extract a near-optimal
query with high performance; however, the terms in that query are not easily
categorized into a single field of the original bug report.
RQ4: Although intuition suggests that terms in the title or title and description
of a bug report represent those with the most specific information, less than
a third of near-optimal queries consist of those terms for the majority of the
systems under study. Moreover, during the evolution of a query to its near-
optimal formulation, approximately half of the terms in the original query are
removed and those terms come from all three sets of terms. Therefore, there is
no single component of a bug report that contains particularly optimal query
terms in general.

4.2.2 RQ5: Near-Optimal Query Terms from the Golden Set

Although the queries in this part of the study have had all of the localization
hints removed, there are still domain-specific terms that appear in the bug
report that can also appear in source code identifiers. These terms represent
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Table 13 Percentage of change in query size, term provenance, and effectiveness between
original queries and optimal queries

System Size Title Desc Both Eff
AspectJ -0.54 -0.43 -0.56 -0.37 -0.83
Birt -0.53 -0.57 -0.56 -0.33 -0.88
BookKeeper -0.47 -0.48 -0.53 -0.25 -0.57
Derby -0.48 -0.33 -0.48 -0.34 -0.71
JodaTime -0.42 -0.29 -0.43 -0.14 -0.65
Lucene -0.50 -0.35 -0.51 -0.28 -0.64
Mahout -0.53 -0.50 -0.54 -0.34 -0.74
OpenJpa -0.49 -0.41 -0.51 -0.40 -0.75
Pig -0.54 -0.54 -0.55 -0.44 -0.64
Solr -0.50 -0.44 -0.49 -0.31 -0.65
SWT -0.53 -0.34 -0.56 -0.20 -0.68
Tika -0.50 -0.36 -0.55 -0.33 -0.74
Tomcat -0.52 -0.59 -0.53 -0.26 -0.60
ZooKeeper -0.45 -0.37 -0.47 -0.24 -0.63
ZXing -0.50 -0.44 -0.51 -0.19 -0.59

specific pieces of information that link the natural language representation of
bugs to source code implementations, but do not provide the exact location of
buggy code. Therefore, intuition would dictate that near optimal queries would
maximize the presence of these terms to boost performance in the absence
of localization hints. Table 14 shows the effectiveness and overlap of terms in
both unoptimized and near optimal queries and classes that were modified to
fix the bug.

As with the other results of this study, we see that near optimal queries have
vastly improved performance, with all but one of the datasets seeing an average
percent change of more than 70% in terms of effectiveness measure. However,
while the overlap of terms between the query and files in the golden set grows in
most cases and the change in proportion is statistically significant with at least
medium effect sizes in each case, the magnitude of the change is not as large
as one might expect. Of particular note are OpenJpa and ZooKeeper, both of
which actually have a decrease in the number of shared terms when comparing
the near-optimal query to the original. It is important to note that throughout
this study we use a näive TR approach, VSM with tf-idf term weighting, that
uses a term-by-document matrix as an internal representation. These findings
are surprising as they suggest that not only are some near-optimal queries
formulated by eliminating some terms from the query that have no overlap
with relevant documents, but also some terms that appear in both the query
and relevant documents. Further, while there is an increase in overlap with
relevant documents for most near-optimal queries, this increase is less than
ten percentage points in every case and less than five percent for five of the
systems. Additionally, for 12 of the 15 datasets, query terms overlapping with
those in files from the golden set account for less than half of the near-optimal
query terms. At minimum, this provides further support for the existence of
“degrees of noise". That is, while some terms are removed from the query in the
50% term reduction shown in RQ4, other terms that are not in the relevant



Title Suppressed Due to Excessive Length 33

Table 14 Average effectiveness and term overlap between golden set files and queries for
the original and near-optimal queries per system. A pair of bold values indicates statistical
significance between them at 95% confidence with at least a small effect size and * indicates
medium effect sizes.

Unoptimized Near-Optimal
System Eff Overlap Eff Overlap Eff %Change
AspectJ 71 25.56* 10 32.18* -0.81
Birt 233 23.88 10 32.58 -0.80
BookKeeper 17 33.40* 2 39.75* -0.62
Derby 170 38.33* 31 42.60* -0.71
JodaTime 31 30.54* 3 34.15* -0.65
Lucene 74 40.99* 15 45.59* -0.64
Mahout 93 22.21* 5 29.71* -0.81
OpenJpa 37 44.74* 2 42.15* -0.76
Pig 111 38.01. 49 38.10 -0.64
Solr 173 40.37* 17 41.51* -0.65
SWT 27 32.77* 5 41.59* -0.73
Tika 34 35.98* 5 45.73* -0.73
Tomcat 68 36.69 15 49.07 -0.59
ZooKeeper 23 38.84 4 37.15 -0.63
ZXing 16 17.17* 1 22.24* -0.44

files are left in the query even after optimization is complete. Further, in most
cases the optimized query has an effectiveness ≤ 2. Therefore, any further
optimization of query terms would not materially impact the performance of
TR. As such, techniques for predicting the material impact of each term on a
query’s performance or developing specialized stopword lists for a system or
even individual components of a system could provide substantial performance
improvements for TR-approaches to bug localization.

RQ5: Despite a substantial increase in performance, near-optimal queries have
at maximum a ten percentage point increase in terms that overlap with terms
found in files in the golden set. Further, there are some cases in which the
percent overlap between near-optimal queries and golden set files decreases
compared to the original queries, and in both cases a large percentage of
non-overlapping terms remain in the optimized query. This indicates that query
reduction performed by the GA is able to identify those noisy query terms
that are harmful to performance and remove them rather than solely boosting
terms found in the golden set. This finding opens the door for future work to
automatically rank query terms by their “noisiness."

4.2.3 RQ6: Near-Optimal Query Terms from EB, OB, and S2R

Table 15 shows the composition of query terms that belong to each of three
previously documented types of technical information: observable behavior
(OB i.e., the errant behavior that defines the bug), expected behavior (EB
i.e., the behavior that should replace the errant behavior to remove the bug),
and steps-to-reproduce (S2R i.e., specific actions that once taken result in the
observed, errant behavior). First, note that while EB and OB are found in
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Table 15 Composition of original and near-optimal queries with respect to OB, EB, and
S2R without localization hints by system

Unoptimized Near-Optimal
system OB EB S2R Eff OB EB S2R Eff
AspectJ 52.58 12.82 14.11 92 51.53 12.32 14.49 12
Birt 32.51 13.56 45.36 599 37.13 15.31 47.56 93
Bookkeeper 43.56 30.09 0.00 13 43.64 32.85 0.00 2
Derby 41.47 25.24 23.08 169 42.83 29.32 22.42 31
JodaTime 34.92 12.56 8.53 30 35.81 11.74 9.57 3
Lucene 56.54 30.09 2.85 73 58.81 25.51 2.19 15
Mahout 51.92 25.24 0.00 234 58.85 17.61 0.00 15
OpenJpa 65.59 12.56 7.74 39 73.36 15.41 9.23 2
Pig 68.83 13.58 11.73 110 77.77 16.10 9.76 49
Solr 54.04 14.48 9.38 173 57.39 15.95 9.52 17
SWT 59.06 19.32 28.23 28 58.50 22.50 27.45 5
Tika 26.28 58.68 0.00 47 29.73 53.09 0.00 7
Tomcat 50.19 16.21 13.55 94 55.19 16.82 13.47 18
ZooKeeper 54.90 23.30 10.67 22 58.87 24.51 10.89 4
ZXing 16.43 8.07 24.44 20 18.22 9.26 25.53 2

each of the datasets, S2R is only found in some of the datasets, and entirely
missing in three of them: BookKeeper, Tika, and Mahout. Second, note that the
proportion of terms in OB is much higher than that in EB in all cases except
one. Therefore, while many of the bugs in this study have some discussion of
the problem, much less discussion of the expectation is available. This is an
important distinction, as without expectations the bug might be difficult to
resolve satisfactorily even if it can be located. Finally, note that this second
trend is mirrored in the composition of optimized queries and that the percent
change between original and optimized queries in terms of these behaviors is
even smaller than that seen in RQ3.

It is also interesting to note that even with limited S2R information avail-
able, near optimal queries can still be derived. That is, even if the bug report
does not direct a developer to the errant behavior in natural language, there
is still sufficient textual data to derive a query that allows TR to return a
relevant result near the top of the list. Further, we note that while there are
some changes in composition of the query based on these three classifications
of terms through optimization, these changes are not statistically significant.
That is, all modifications in composition could be due to chance. Therefore,
there is no clear conclusion that can be drawn between these types of infor-
mation and their impact on near-optimal queries based on the results of this
study. Paired with the previous two research questions (RQ4 and RQ5), this
finding highlights the GA’s unique ability to exploit highly nuanced statistical
relationships to derive a high-performance query that may or may not be
grounded in human intuition. This is consistent with anecdotal findings in
the data that show cases in which nonsensical, two word queries drastically
outperform more verbose formulations. Further, the overall findings represented
by the results to RQ4, RQ5, and RQ6 mirror findings in previous work (Lawrie
and Binkley, 2018) that attempted to use automatic summarization with less
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than ideal results. The results of that study indicate that insufficient training
data exists to instruct a model on how to derive near-optimal queries without
use of the golden set. Going forward, more granular data on the evolution
of near-optimal queries should be gathered. Such data can support a large-
scale analysis of the step-by-step optimizations that are performed by the
GA that might be sufficient to build an automatic model as well as explain
the macro-optimizations captured in this study in human understandable terms.

RQ5: Although EB, OB, and S2R have been shown to improve bug localization
based on bug reports in the past, our results suggest that S2R are not required by
the GA to optimize a query and neither EB nor OB have a significant percentage
increase between the original and optimized queries. Therefore, while this type
of information might help human operators in better understanding the nature
of the bugs, they do not directly translate to better queries for use in TR-based
bug localization.

5 Threats to Validity

Internal validity: Threats to internal validity refer to the extent to which
results can support the conclusions in the context of TR-based bug localization.
We reduced these threats by considering bug reports used in previous studies
(Wang et al., 2015; Chaparro and Marcus, 2016). Also, we performed a manual
verification and cleaning process, which resulted in slightly less data for ad-
dressing external validity, but provides more confidence in the correctness of
our data.

To lessen the likelihood of errors in the manual cleaning process, the two
authors in charge of (i) labeling files changed in bug-fixing commits as true or
false positive and (ii) removing localization hints from the text of the bug report,
followed an agreed upon definition of localization hints and of the distinction
between relevant and irrelevant code changes, as described in the study design.
Moreover, a third author verified the correctness of the labeling, identifying
cases in which additional screening or discussion was required. Another threat
to the study is introduced by the randomness of the genetic algorithm. Due to
the nature of the genetic algorithm, two independent executions of the genetic
algorithm can lead to different results on the same input. To mitigate this
threat, we performed ten trials for each application of the genetic algorithm,
averaging across the resulting metrics. For 80% of the Qa queries and 95% of
the QnH queries there was no change in effectiveness between trials. Also, note
that the genetic algorithm, being a metaheuristic search method, could converge
towards a local optimum rather than to the desired global optimum. However,
as shown in a recent study by Lawrie and Binkley (Lawrie and Binkley, 2018),
our GA “does an excellent job of selecting high-scoring queries assuming words
must be drawn from the vocabulary found in the bug reports” (Lawrie and
Binkley, 2018). Indeed, the authors used Information Need Analysis (INA) to
generate a distribution of scores over a random-query set. Considering the INA
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distributions, they found that “the GA’s queries average the 97th percentile
with 422 of the 613 appearing in the 100th percentile” (Lawrie and Binkley,
2018). This supports the ability of our GA in identifying near-optimal queries.

To reduce the likelihood of errors when identifying expected behavior
information, we used a two step approach. First, we applied DEMIBUD-R
presented by (Chaparro et al., 2017b) to gauge whether EB and S2R information
was present in the bug reports in our dataset. Second, we performed a manual
annotation process where one of the authors labeled the sentences and the
type of information they convey (i.e., observed behavior, expected behavior,
steps-to-reproduce) while another author independently verified the correctness
of the annotations.

External validity: Threats to the external validity of our study refer to
how our results may not be generalizable to all software systems. We mitigated
this threat and increase the extent to which the results may be generalizable by
including a varied set of software systems from different domains which have
been previously used in bug localization research in our study. Moreover, the
collected bug reports cover different types of bugs (e.g., crashes, functional).

We use only Java open source projects in our study. Thus, results may not
generalize to commercial systems or those written in other languages. Moreover,
our results focus on file-level bug localization and may not hold when working
at different granularity levels (i.e., method-level).

Construct validity: Threats to construct validity refer to how we mea-
sured the performance of the queries. We mitigated these threats by employing
four different metrics widely used to measure the performance of TR-based bug
localization techniques (Kochhar et al., 2014). Moreover, we used the Asymp-
totic General Independence test to determine the statistical significance of our
results because, when looking at the effectiveness of individual queries within a
system, we are comparing non-normal distributions with a high percentage of
ties. For continuity and comparability of results, we use the same generalized
test for all data analysis, as the statistical assumptions of the Asymptotic
General Independence test hold for data with lower instances of ties (Devore
and Farnum, 1999). Moreover, we applied the same statistical procedure when
determining if the improvement of the effectiveness achieved by the GA queries
was influenced by the IR engine used.

6 Conclusion and Future Work

In this paper, we refute the idea that TR-based approaches to bug localization
have come into popularity based on improper evaluations and artificially inflated
performance. Further, we show that more important than miss-classified bugs,
bloated ground truths, and localization hints, evaluations should use a more
careful process for formulating queries than merely using the bug report title,
description, or a concatenation of the two. We show that TR-based approaches
to bug localization exhibit poor performance when using the full text in a bug
report as query, particularly in the case when localization hints are not present.



Title Suppressed Due to Excessive Length 37

However, a near-optimal query with high performance can still be extracted
from the bug report text even after hints have been removed. Additionally, we
provide an analysis on the provenance of the terms that make up a near-optimal
query and shows that while there are some intuitive ways humans might look
for terms to retain to in a near-optimal query, the optimization performed by
our GA makes drastically different choices.

Our results on the effect that the presence of localization hints have on TR
results are consistent with previous work (Kochhar et al., 2014; Wang et al.,
2015). However, more importantly, we show that given only the vocabulary of
a bug report, there exists a near-optimal query capable of drastically improved
performance compared to a query containing the entire bug vocabulary in a
majority of cases. This holds even in the absence of localization hints and when
using a rudimentary TR implementation. As a result, we show the potential
of TR-based bug localization in the presence of a near-optimal query and the
importance of research seeking to formulate a good initial query given only a
bug report vocabulary. Further, we show that queries can also be optimized to
retrieve multiple relevant documents near the top of the result set; however,
MAP is a much better fitness function than Recall to do so.

For provenance, we see that while intuition might suggest terms taken from
the title or title and description of the bug report will have higher information
density, the majority of near optimal queries come from bug report descriptions.
Further, our results on the overlap of terms in near-optimal queries and terms
in golden set files show that there is an innocuous type of noise that the GA
allows to remain in the query despite those terms inability to contribute to
the similarity score between a relevant document and the query. Finally, our
results suggest that steps-to-reproduce information is not required in order to
obtain an optimized query and neither EB nor OB have a significant percent
increase between the original and optimized queries. Therefore, while this
type of information might inform human operators on how to formulate more
informative bug reports, they do not directly translate to better queries for
use in TR-based bug localization.

There are two primary future directions for this research. The first is to
extend the analysis to a larger set of bugs, particularly from more modern
systems. Additionally, we should consider method-level golden sets. Indeed,
other research (Wang et al., 2015) suggests that a significant amount of effort
in bug fixing is expended after the buggy file is located, as the user must
still locate the bug in the file that must be changed. By working at method
level, the amount of code that a developer must inspect is reduced, which in
turn results in diminished effort required to find the precise bug location. The
second research direction is to find a way of generating sufficient training data
to attempt the construction of automatic models for formulating near-optimal
queries. The most intuitive way to do so is to log query metrics for each step
in the evolution of a query from an initial vocabulary to a near-optimal query.
Doing so allows for the use of machine learning techniques such as anomaly
detection to exploit the severe imbalance between poor- and high- quality
queries in general. Further, by expanding our data collection to a larger number
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of systems and bugs, more pairs of poor- and high- quality queries will be
produced, which could be used with techniques such as machine translation to
convert a poor-quality query into a high-quality one.
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