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Abstract
Software developers use modern chat platforms to communicate
about the status of a project and to coordinate development and
release efforts, among other things. Developers also use chat plat-
forms to ask technical questions to other developers. While some
questions are project-specific and require an experienced developer
familiar with the system to answer, many questions are rather gen-
eral and may have been already answered by other developers on
platforms such as the Q&A site StackOverflow.

In this paper, we present GitterAns, a bot that can automatically
detect when a developer asks a technical question in a chat and
leverages the information present in Q&A forums to provide the
developer with possible answers to their question. The results of
a preliminary study indicate promising results, with GitterAns
achieving an accuracy of 0.78 in identifying technical questions.

CCS Concepts
• Software and its engineering→ Collaboration in software
development; Documentation;

Keywords
communication, chat, social media, team communication platforms,
bot, Q&A, recommendation
ACM Reference Format:
Ricardo Romero, Esteban Parra, and Sonia Haiduc. 2020. Experiences Build-
ing an Answer Bot for Gitter. In IEEE/ACM 42nd International Conference
on Software Engineering Workshops (ICSEW’20), May 23–29, 2020, Seoul, Re-
public of Korea. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3387940.3391505

1 Introduction
Developing complex software systems requires large teams of de-
velopers to collaborate, communicate, and coordinate their efforts.
Recently, modern messaging and collaboration platforms such as
Gitter1 and Slack2 have revolutionized team communications and
project coordination by providing a user-friendly way of managing
and organizing conversations, facilitating knowledge sharing, and
1https://gitter.im/
2https://slack.com/
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by integrating with external software development tools such as
GitHub, Travis CI, and Jira[11, 14, 23, 25]. Developers are nowadays
preferring these messaging platforms, which allow them to receive
real-time responses from other developers, as opposed to more
traditional, asynchronous communication like mailing lists [25].

Developers often use modern messaging platforms to ask tech-
nical questions to other developers[10]. A recent study of the mes-
sages exchanged in the instant messaging platform used by one
large software development company found that about half of the
messages were related to problem-solving (i.e., questions and an-
swers) [25]. Although some of these questions can be very specific
and require a wealth of experience and knowledge of a system to
answer, other questions, which are generally asked by beginners,
may have been already answered on other platforms, such as Q&A
forums. In Q&A forums like StackOverflow, developers interact by
posting questions and answers related to different programming
languages, technologies, and software development topics [3, 16].
Therefore, given that there are already millions of technical ques-
tions answered on StackOverflow, there are high chances that at
least some of the troubleshooting questions asked by developers
on chat platforms have already been answered on StackOverflow.

In this paper, we introduce GitterAns, a bot that automatically
detects when a troubleshooting question is asked in an online Gitter
chat and then provides the user with possible answers, based on
querying StackOverflow for posts similar to the question. Automat-
ically answering these questions could lead to a decrease in the
response time, as well as the effort that developers in an online
community have to put into answering these questions. A prelim-
inary evaluation shows that GitterAns is currently able to detect
troubleshooting questions with 78% accuracy. When answering the
questions, however, we found that, in its current implementation,
GitterAns is able to find the correct answers only in about half of the
cases. Our future work will focus on improving both the question
identification and question answering components of GitterAns, as
well as on performing a large-scale evaluation.

2 The GitterAns Framework
In this section, we present an overview of GitterAns and its main
components, shown in Figure 1. GitterAns has three main parts:
question detection, searching for answers on StackOverflow, and
answer processing.

2.1 Question Detection
To detect a troubleshooting question, GitterAns performs the fol-
lowing steps for any incoming message to the chat room: 1) read
the incoming message, 2) pass the message through a preprocessing
and feature extraction procedure (described below) and 3) based
on the extracted features, predict whether the message is a trou-
bleshooting question or not using a machine learning classifier.

1
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If the message is determined to be a troubleshooting question, it
is then passed on to the Search for Answers step. Otherwise, the
message is ignored.

Figure 1: Overview of GitterAns

2.1.1 Read IncomingMessages Using a Gitter room’s URI, (e.g.,
nodejs/node), a curl request using pycurl3 is performed to obtain
the room’s unique ID. Once the room ID is obtained, a message
stream to obtain the messages posted is initialized using the Python
Requests library and the Streaming API from Gitter. Then, any
incoming message can be read by the approach.

2.1.2 Preprocessing and Feature Extraction In order to repre-
sent messages in a format that is appropriate for the next steps in
our approach, we first preprocess them by using lemmatization and
stop words removal and then extract their representative lexical
features using tf-idf.

Lemmatization is the process of transforming words into their
root based on their part-of-speech tag within a sentence. We use the
NLTK4 pos_tag function for determining a word’s part of speech.
Each word in a sentence then becomes a tuple of the form <word,
postag> which is passed to the NLTK function WordNetLemma-
tizer to correctly produce the lemmatized word. The entire text of
the message is processed this way, resulting in a tokenized list of
lemmatized words.

Next, stop words (English common words and programming key-
words that have been lemmatized) are removed from the message.
We then use Scikit-learn5 to represent the remaining words using
a Term Frequency-Inverse Document Frequency(tf-Idf) vector.

2.1.3 Classification After a message has been preprocessed and
its features extracted, GitterAns uses a machine learning classifier
trained on a set of previously labeled messages in order to predict
whether the text is a troubleshooting question or not. Any machine
learning classifier can be used for this step. In our preliminary
study, described in Section 3, we evaluated three machine learning
algorithms, namely Naïve Bayes, Random Forrest, and Stochastic
Gradient Descent. In that same section we also describe the data
and the procedure we used in our preliminary study to train and
test these classifiers.

If themessage is determined to be a troubleshooting question, it is
then passed on to the Search for Answers step or ignored otherwise.

2.2 Search For Answers
To search for potential answers to a detected troubleshooting ques-
tion, we use the Google CustomSearch API6 to search StackOver-
flow for semantically similar posts to the question. More specifically,
3http://pycurl.io/
4https://www.nltk.org/
5https://scikit-learn.org/stable/
6https://developers.google.com/custom-search/v1/overview

we use the troubleshooting question as a query and then use it to
run a custom Google search, restricting the scope to only include
pages hosted on StackOverflow.com. This allows us to search Stack-
Overflow, while also leveraging the power of the Google search
engine, which is known to perform much better than the native
StackOverflow search engine. If the query returns search results,
they are saved as a JSON object.

2.3 Answer Processing
The JSON object with the potential answers retrieved in the pre-
vious step is parsed and reduced to a dictionary of links and post
titles. Afterwards, the top 3 results are posted to the Gitter channel
in response to the developer’s question.

3 Preliminary Study
To evaluate the performance of GitterAns, we performed a prelimi-
nary study on the nodejs/node Gitter chat room. In this preliminary
study, we evaluated the ability of GitterAns to correctly identify
troubleshooting questions in the nodejs/node Gitter channel in
terms of classification accuracy, as well as its ability to recommend
answers to troubleshooting questions.

3.1 Nodejs Gitter Data
Gitter provides access to its data through a REST API7. Using the
Gitter API we extracted all of the messages from the nodejs/node
chat room8 and stored them as a JSON file. The resulting dataset
contains 109,189 messages.

Since the messages obtained from Gitter do not contain infor-
mation about whether they are troubleshooting questions or not,
manual labeling is needed in order to determine the ground truth
for our classification step. First, one of the authors manually la-
beled 1,700 randomly selected Gitter messages from the dataset. As
a result of this initial manual classification, only 54 messages were
labeled as troubleshooting questions. This revealed a large imbal-
ance in our data, which could hinder the training of the machine
learning component in GitterAns. Therefore, we needed a differ-
ent approach in order to ensure we obtain more troubleshooting
questions for the classifier to learn from.

When inspecting more closely the 1,700 manually labeled mes-
sages, we identified a set of unigrams, bigrams, and trigrams that
were mostly common in the identified troubleshooting questions:
"Is it possible", "Can someone help", "I need help", "I don’t under-
stand", "Can someone explain", "How do you", "Question:", "Error",
"Error:", "How can I", "Is there any way", "Does anyone know", "How
do I", and "?". Therefore, in order to increase our chances of identi-
fying more troubleshooting questions, we filtered the remaining
unclassified messages into a smaller subset of possible troubleshoot-
ing questions by eliminating all the messages that did not contain
any of the previously mentioned substrings. By applying this filter,
we reduced the remaining set of messages to 6,437 potential trou-
bleshooting question messages. Afterwards, we randomly sampled
1,000 of these messages, which the first author then manually classi-
fied. This round of manual labeling resulted in 641 of the messages

7https://developer.gitter.im
8https://gitter.im/nodejs/node

2
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being classified as non-technical text and 359 messages being clas-
sified as troubleshooting questions. We used this last set of 1,000
manually labeled messages for training and testing the machine
learning classifier in GitterAns.

3.2 Classifier
In this preliminary study, we explore three machine learning classi-
fiers for classifying messages as troubleshooting questions or not:
Multinomial Naïve Bayes (NB)[17], Random Forest (RF)[6], and
Stochastic Gradient Descent (SGD)[5]. We also performed hyperpa-
rameter tuning for these classifiers.

3.2.1 Naïve Bayes (NB) is an efficient linear probabilistic classi-
fier that uses Bayes’ theorem to identify strong (naive) assumptions
between features. NB assumes that all of the features in a given
class are conditionally independent of each other [22]. The multi-
nomial Naïve Bayes model captures word frequency information in
the documents using a unigram language model with integer word
counts. Each document is then typically represented as a vector of
integer or real number attributes, which indicate the importance of
words in the document[17].

3.2.2 Random Forest (RF) is a combination of multiple indepen-
dent decision trees, where each tree is built from a sample drawn
with replacement from the training set. As a result of this random-
ness, the bias of the forest usually slightly increases (with respect
to the bias of a single non-random tree). However, due to averaging,
its variance also decreases. The amount decreased is usually more
than enough to compensate for the increase in bias, hence yielding
an overall better model[6].

3.2.3 Stochastic Gradient Descent (SGD) is a simple yet very
efficient approach to discriminative learning of linear classifiers
under convex loss functions such as (linear) Support Vector Ma-
chines and Logistic Regression. Even though SGD has been around
in the machine learning community for a long time, it has received
a considerable amount of attention in the context of large-scale
learning as it has shown to have high performance for large-scale
problems and sparse data[5].

3.2.4 Hyperparameter Tuning was performed in two stages.
First, we created a list of dictionaries that hold the different param-
eters for each classifier, namely a parameter grid. Second, this list
of dictionaries was then passed into a grid search that iterates over
every possible combination of parameters in the parameter grid
and runs a stratified 10-fold cross-validation on each combination
of parameters and returns the best performing parameters for the
given data.

We used Scikit-learn to perform the hyperparameter tuning. For
the NB model, a total of 96 parameter combinations were created.
The RF classifier had 288 parameter combinations. SGD had a total
of 4,608 parameter combinations. The parameters we found to work
the best for NB were: alpha = 1.0, fit prior = false, max df = 0.4,
n-gram range = 1,1. The parameters we found to work the best for
RF were: max depth = 2, n estimators = 25, max df = 0.7, n-gram
range = 1,2. The parameters we found to work the best for SGD
were: alpha = .001, l1 ratio = 0.6, loss = hinge, max iterations = 50,

penalty = l2, shuffle = true, tol = 0.1, max df = 0.7, n-gram range =
1,3.

3.3 Answering Questions
In order to determine whether GitterAns is able to find the answers
to troubleshooting questions, we implemented a prototype (see
Figure 2) and used it to retrieve and post the top 3 potential answers
for a random sample of 20 troubleshooting questions extracted from
the 359 troubleshooting questions we identified during our final
manual labeling process (see Section 3.1). We created a new Gitter
channel which we used for testing our bot GitterAns. We then
manually posted each of the 20 troubleshooting questions in the
testing channel and inspected the answers provided by GitterAns,
determining if they actually answered the question or not.

3.4 Results
First, we present the results of the individual machine learning
models after hyperparameter tuning and 10-fold cross-validation in
terms of classification accuracy. RF showed the poorest performance
with an accuracy of 0.64, followed by NB with an accuracy of 0.71,
while the SGD model performed the best with an accuracy of 0.78.
However, one disadvantage of SGD is the fact that hyperparameter
tuning for this model took over 24 hours.

The results of the preliminary study on the potential answers
identified by GitterAns for a random sample of troubleshooting
questions showed mixed results. On the one hand, for 11 of the
20 technical questions, GitterAns did not provide a StackOverflow
post that properly answered the question. On the other hand, for
the remaining nine questions, GitterAns was able to recommend a
StackOverflow post answering the question as the first recommen-
dation.

Previous work has shown the importance of query choice for
information retrieval applications on software engineering data
[18] and has unveiled the fact that noise can negatively impact the
performance of these approaches [19]. We therefore hypothesize
that using the whole troubleshooting question as a query may inject
too much noise in the search, leading to GitterAns not being able
to return proper answers for half of the questions. For example,
the following is one of the messages containing a troubleshooting
question posted to the nodejs/node Gitter channel: "@analog-nico I
have followed your blog post steps and am able to install all my npm
packages for iojs; however when I run the application it throws "Module
did not self-register on bcrypt module". A little google search reveals
this could be because it can detect multiple node installations. Any
suggestions.". When using the whole text of the message as a query,
GitterAns is not able to produce any relevant results. However,
we can easily tell that most of the text included in the message
(e.g., "I have followed your blog post steps and am able to install
all my npm packages for iojs; however when I run the application
it throws", "A little google search reveals this could be because",
"Any suggestions"), while useful to give context to a reader, it is not
necessarily relevant to a search for potential answers. To see if our
hypothesis regarding noise in the query holds in this case, we tried
removing all the noise and using only the error message the user
encountered ("Module did not self-register on bcrypt module") as a
query. The results in response to this trimmed query showed that

3
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GitterAns is able to retrieve a valid StackOverflow post addressing
the question as the first recommendation. Given this insight, our
future work will therefore focus on ways to reduce query noise.

Figure 2: GitterAns in action

4 Related Work
We divide the related work into two subsections. First, we introduce
work on the analysis of instant messaging communication tools
such as Gitter and Slack in software engineering. Second, we present
an overview of work related to bots used by developers.

4.1 Modern Chat Platforms in Software
Engineering

With the rise of modern chat platforms such as Slack and Gitter,
recent work focused on exploring the developer communities using
these tools [1, 2, 4, 10, 15, 20, 21, 24].

Studies with developers have found that developers self-reported
using Slack formultiple purposes and to support various activities[15].
Moreover, a study on the communication tools used in 400 open-
source software GitHub repositories found that GitHub Issues, per-
sonal e-mail, Gitter, Twitter, and mailing lists are the five most
popular communication channels currently used in open source
development. Slack was found to be eighth in terms of popularity
among all the communication means observed [14].

Alkadhi et al. [2] presents an exploratory study on the presence of
rationale messages that contain information justifying the decisions
made throughout the software life cycle (i.e., Rationale messages) in
the chat messages of three development teams made up of students
working on a multi-project capstone course. Their findings show
the presence of rationale, as well as the usefulness of SVM and
Naïve Bayes towards the automatic identification of such messages.

Recent work by Stray et al. [25] studied a group of 30 developers
and their communication through Slack channels at a large software

development company. The analysis identified that the messages
exchanged were related to the following purposes: general infor-
mation/coordination, general discussions, problem-focused com-
munication, technical communication, and socializing. Moreover,
their results show that in this company, about half of the messages
are related to problem-solving (i.e., questions and answers), with
very little social talk among the team members.

4.2 Bots in Software Engineering
Developers use bots for several purposes and research efforts have
been made toward automating a variety of tasks and improving the
efficiency and effectiveness of developers by using bots. We present
some examples of bots in software engineering below. For a more
detailed overview of this topic, we refer the reader to [12].

Bots like Wunderlist9 are used for team and task management,
distributing tasks among team members, and setting reminders
[15]. Other bots are integrated with modern chat and social me-
dia platforms, allowing communication between developers and
stakeholders. Software bots also integrate with GitHub or assist
developers to perform customer support by capturing customer
feedback and providing answers to clients [15].

Other recent bots to support software development include: tool-
recommender-bot [7], a bot designed to recommend software engi-
neering tools to developers on GitHub, as well as a bot to recom-
mend experts that can potentially answer developers’ questions in
StackOverflow and Discord [9, 13]. AnswerBot [8, 26] is a similar
approach to our work and is a web-based bot that uses Information
Retrieval and StackOverflow to generate a set of paragraphs as an
answer summary for a given technical problem. Unlike GitterAns,
AnswerBot is a stand-alone search engine website and it expects to
receive a technical problem formulated as a query.

5 Acknowledgments
Sonia Haiduc and Esteban Parra were supported in part by the
National Science Foundation grants CCF-1846142 and CCF-1644285.

6 Conclusion and Future Work
We introduced a new bot called GitterAns, which automatically
classifies newmessages in Gitter as being troubleshooting questions
or not. Then, for each detected troubleshooting question, GitterAns
automatically provides potential answers by querying for Stack-
Overflow posts that are semantically similar to the question. We
performed a preliminary study on a set of 1,000 messages from a
Gitter channel. Our results show promise, as GitterAns is able to
classify messages with an accuracy of 0.78. However, when pro-
viding answers to the troubleshooting questions, we found that
GitterAns was able to suggest correct answers for only 9 of 20 ran-
domly selected questions. We hypothesize this is due to the large
amount of noise present in the messages that were used as queries.

Our future work will focus on ways to remove the noise from
messages containing troubleshooting questions, as well as on fur-
ther improving the classification of messages. We also aim to per-
form a large-scale evaluation of GitterAns and plan to involve real
developers in the evaluation.

9https://www.wunderlist.com/
4
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