
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Experiences Building an Answer Bot for Gitter
Ricardo Romero
rromero@cs.fsu.edu

Florida State University
Tallahassee, Florida

Esteban Parra
parrarod@cs.fsu.edu

Florida State University
Tallahassee, Florida

Sonia Haiduc
shaiduc@cs.fsu.edu

Florida State University
Tallahassee, Florida

Abstract
Software developers use modern chat platforms to communicate
about the status of a project and to coordinate development and
release efforts, among other things. Developers also use chat plat-
forms to ask technical questions to other developers. While some
questions are project-specific and require an experienced developer
familiar with the system to answer, many questions are rather gen-
eral and may have been already answered by other developers on
platforms such as the Q&A site StackOverflow.

In this paper, we present GitterAns, a bot that can automatically
detect when a developer asks a technical question in a chat and
leverages the information present in Q&A forums to provide the
developer with possible answers to their question. The results of
a preliminary study indicate promising results, with GitterAns
achieving an accuracy of 0.78 in identifying technical questions.

CCS Concepts
• Software and its engineering→ Collaboration in software
development; Documentation;

Keywords
communication, chat, social media, team communication platforms,
bot, Q&A, recommendation
ACM Reference Format:
Ricardo Romero, Esteban Parra, and Sonia Haiduc. 2020. Experiences Build-
ing an Answer Bot for Gitter. In IEEE/ACM 42nd International Conference
on Software Engineering Workshops (ICSEW’20), May 23–29, 2020, Seoul, Re-
public of Korea. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3387940.3391505

1 Introduction
Developing complex software systems requires large teams of de-
velopers to collaborate, communicate, and coordinate their efforts.
Recently, modern messaging and collaboration platforms such as
Gitter1 and Slack2 have revolutionized team communications and
project coordination by providing a user-friendly way of managing
and organizing conversations, facilitating knowledge sharing, and
1https://gitter.im/
2https://slack.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3391505

by integrating with external software development tools such as
GitHub, Travis CI, and Jira[11, 14, 23, 25]. Developers are nowadays
preferring these messaging platforms, which allow them to receive
real-time responses from other developers, as opposed to more
traditional, asynchronous communication like mailing lists [25].

Developers often use modern messaging platforms to ask tech-
nical questions to other developers[10]. A recent study of the mes-
sages exchanged in the instant messaging platform used by one
large software development company found that about half of the
messages were related to problem-solving (i.e., questions and an-
swers) [25]. Although some of these questions can be very specific
and require a wealth of experience and knowledge of a system to
answer, other questions, which are generally asked by beginners,
may have been already answered on other platforms, such as Q&A
forums. In Q&A forums like StackOverflow, developers interact by
posting questions and answers related to different programming
languages, technologies, and software development topics [3, 16].
Therefore, given that there are already millions of technical ques-
tions answered on StackOverflow, there are high chances that at
least some of the troubleshooting questions asked by developers
on chat platforms have already been answered on StackOverflow.

In this paper, we introduce GitterAns, a bot that automatically
detects when a troubleshooting question is asked in an online Gitter
chat and then provides the user with possible answers, based on
querying StackOverflow for posts similar to the question. Automat-
ically answering these questions could lead to a decrease in the
response time, as well as the effort that developers in an online
community have to put into answering these questions. A prelim-
inary evaluation shows that GitterAns is currently able to detect
troubleshooting questions with 78% accuracy. When answering the
questions, however, we found that, in its current implementation,
GitterAns is able to find the correct answers only in about half of the
cases. Our future work will focus on improving both the question
identification and question answering components of GitterAns, as
well as on performing a large-scale evaluation.

2 The GitterAns Framework
In this section, we present an overview of GitterAns and its main
components, shown in Figure 1. GitterAns has three main parts:
question detection, searching for answers on StackOverflow, and
answer processing.

2.1 Question Detection
To detect a troubleshooting question, GitterAns performs the fol-
lowing steps for any incoming message to the chat room: 1) read
the incoming message, 2) pass the message through a preprocessing
and feature extraction procedure (described below) and 3) based
on the extracted features, predict whether the message is a trou-
bleshooting question or not using a machine learning classifier.

1

https://doi.org/10.1145/3387940.3391505
https://doi.org/10.1145/3387940.3391505
https://doi.org/10.1145/3387940.3391505

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Ricardo Romero, Esteban Parra, and Sonia Haiduc

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

If the message is determined to be a troubleshooting question, it
is then passed on to the Search for Answers step. Otherwise, the
message is ignored.

Figure 1: Overview of GitterAns

2.1.1 Read IncomingMessages Using a Gitter room’s URI, (e.g.,
nodejs/node), a curl request using pycurl3 is performed to obtain
the room’s unique ID. Once the room ID is obtained, a message
stream to obtain the messages posted is initialized using the Python
Requests library and the Streaming API from Gitter. Then, any
incoming message can be read by the approach.

2.1.2 Preprocessing and Feature Extraction In order to repre-
sent messages in a format that is appropriate for the next steps in
our approach, we first preprocess them by using lemmatization and
stop words removal and then extract their representative lexical
features using tf-idf.

Lemmatization is the process of transforming words into their
root based on their part-of-speech tag within a sentence. We use the
NLTK4 pos_tag function for determining a word’s part of speech.
Each word in a sentence then becomes a tuple of the form <word,
postag> which is passed to the NLTK function WordNetLemma-
tizer to correctly produce the lemmatized word. The entire text of
the message is processed this way, resulting in a tokenized list of
lemmatized words.

Next, stop words (English common words and programming key-
words that have been lemmatized) are removed from the message.
We then use Scikit-learn5 to represent the remaining words using
a Term Frequency-Inverse Document Frequency(tf-Idf) vector.

2.1.3 Classification After a message has been preprocessed and
its features extracted, GitterAns uses a machine learning classifier
trained on a set of previously labeled messages in order to predict
whether the text is a troubleshooting question or not. Any machine
learning classifier can be used for this step. In our preliminary
study, described in Section 3, we evaluated three machine learning
algorithms, namely Naïve Bayes, Random Forrest, and Stochastic
Gradient Descent. In that same section we also describe the data
and the procedure we used in our preliminary study to train and
test these classifiers.

If themessage is determined to be a troubleshooting question, it is
then passed on to the Search for Answers step or ignored otherwise.

2.2 Search For Answers
To search for potential answers to a detected troubleshooting ques-
tion, we use the Google CustomSearch API6 to search StackOver-
flow for semantically similar posts to the question. More specifically,
3http://pycurl.io/
4https://www.nltk.org/
5https://scikit-learn.org/stable/
6https://developers.google.com/custom-search/v1/overview

we use the troubleshooting question as a query and then use it to
run a custom Google search, restricting the scope to only include
pages hosted on StackOverflow.com. This allows us to search Stack-
Overflow, while also leveraging the power of the Google search
engine, which is known to perform much better than the native
StackOverflow search engine. If the query returns search results,
they are saved as a JSON object.

2.3 Answer Processing
The JSON object with the potential answers retrieved in the pre-
vious step is parsed and reduced to a dictionary of links and post
titles. Afterwards, the top 3 results are posted to the Gitter channel
in response to the developer’s question.

3 Preliminary Study
To evaluate the performance of GitterAns, we performed a prelimi-
nary study on the nodejs/node Gitter chat room. In this preliminary
study, we evaluated the ability of GitterAns to correctly identify
troubleshooting questions in the nodejs/node Gitter channel in
terms of classification accuracy, as well as its ability to recommend
answers to troubleshooting questions.

3.1 Nodejs Gitter Data
Gitter provides access to its data through a REST API7. Using the
Gitter API we extracted all of the messages from the nodejs/node
chat room8 and stored them as a JSON file. The resulting dataset
contains 109,189 messages.

Since the messages obtained from Gitter do not contain infor-
mation about whether they are troubleshooting questions or not,
manual labeling is needed in order to determine the ground truth
for our classification step. First, one of the authors manually la-
beled 1,700 randomly selected Gitter messages from the dataset. As
a result of this initial manual classification, only 54 messages were
labeled as troubleshooting questions. This revealed a large imbal-
ance in our data, which could hinder the training of the machine
learning component in GitterAns. Therefore, we needed a differ-
ent approach in order to ensure we obtain more troubleshooting
questions for the classifier to learn from.

When inspecting more closely the 1,700 manually labeled mes-
sages, we identified a set of unigrams, bigrams, and trigrams that
were mostly common in the identified troubleshooting questions:
"Is it possible", "Can someone help", "I need help", "I don’t under-
stand", "Can someone explain", "How do you", "Question:", "Error",
"Error:", "How can I", "Is there any way", "Does anyone know", "How
do I", and "?". Therefore, in order to increase our chances of identi-
fying more troubleshooting questions, we filtered the remaining
unclassified messages into a smaller subset of possible troubleshoot-
ing questions by eliminating all the messages that did not contain
any of the previously mentioned substrings. By applying this filter,
we reduced the remaining set of messages to 6,437 potential trou-
bleshooting question messages. Afterwards, we randomly sampled
1,000 of these messages, which the first author then manually classi-
fied. This round of manual labeling resulted in 641 of the messages

7https://developer.gitter.im
8https://gitter.im/nodejs/node

2

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Experiences Building an Answer Bot for Gitter ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

being classified as non-technical text and 359 messages being clas-
sified as troubleshooting questions. We used this last set of 1,000
manually labeled messages for training and testing the machine
learning classifier in GitterAns.

3.2 Classifier
In this preliminary study, we explore three machine learning classi-
fiers for classifying messages as troubleshooting questions or not:
Multinomial Naïve Bayes (NB)[17], Random Forest (RF)[6], and
Stochastic Gradient Descent (SGD)[5]. We also performed hyperpa-
rameter tuning for these classifiers.

3.2.1 Naïve Bayes (NB) is an efficient linear probabilistic classi-
fier that uses Bayes’ theorem to identify strong (naive) assumptions
between features. NB assumes that all of the features in a given
class are conditionally independent of each other [22]. The multi-
nomial Naïve Bayes model captures word frequency information in
the documents using a unigram language model with integer word
counts. Each document is then typically represented as a vector of
integer or real number attributes, which indicate the importance of
words in the document[17].

3.2.2 Random Forest (RF) is a combination of multiple indepen-
dent decision trees, where each tree is built from a sample drawn
with replacement from the training set. As a result of this random-
ness, the bias of the forest usually slightly increases (with respect
to the bias of a single non-random tree). However, due to averaging,
its variance also decreases. The amount decreased is usually more
than enough to compensate for the increase in bias, hence yielding
an overall better model[6].

3.2.3 Stochastic Gradient Descent (SGD) is a simple yet very
efficient approach to discriminative learning of linear classifiers
under convex loss functions such as (linear) Support Vector Ma-
chines and Logistic Regression. Even though SGD has been around
in the machine learning community for a long time, it has received
a considerable amount of attention in the context of large-scale
learning as it has shown to have high performance for large-scale
problems and sparse data[5].

3.2.4 Hyperparameter Tuning was performed in two stages.
First, we created a list of dictionaries that hold the different param-
eters for each classifier, namely a parameter grid. Second, this list
of dictionaries was then passed into a grid search that iterates over
every possible combination of parameters in the parameter grid
and runs a stratified 10-fold cross-validation on each combination
of parameters and returns the best performing parameters for the
given data.

We used Scikit-learn to perform the hyperparameter tuning. For
the NB model, a total of 96 parameter combinations were created.
The RF classifier had 288 parameter combinations. SGD had a total
of 4,608 parameter combinations. The parameters we found to work
the best for NB were: alpha = 1.0, fit prior = false, max df = 0.4,
n-gram range = 1,1. The parameters we found to work the best for
RF were: max depth = 2, n estimators = 25, max df = 0.7, n-gram
range = 1,2. The parameters we found to work the best for SGD
were: alpha = .001, l1 ratio = 0.6, loss = hinge, max iterations = 50,

penalty = l2, shuffle = true, tol = 0.1, max df = 0.7, n-gram range =
1,3.

3.3 Answering Questions
In order to determine whether GitterAns is able to find the answers
to troubleshooting questions, we implemented a prototype (see
Figure 2) and used it to retrieve and post the top 3 potential answers
for a random sample of 20 troubleshooting questions extracted from
the 359 troubleshooting questions we identified during our final
manual labeling process (see Section 3.1). We created a new Gitter
channel which we used for testing our bot GitterAns. We then
manually posted each of the 20 troubleshooting questions in the
testing channel and inspected the answers provided by GitterAns,
determining if they actually answered the question or not.

3.4 Results
First, we present the results of the individual machine learning
models after hyperparameter tuning and 10-fold cross-validation in
terms of classification accuracy. RF showed the poorest performance
with an accuracy of 0.64, followed by NB with an accuracy of 0.71,
while the SGD model performed the best with an accuracy of 0.78.
However, one disadvantage of SGD is the fact that hyperparameter
tuning for this model took over 24 hours.

The results of the preliminary study on the potential answers
identified by GitterAns for a random sample of troubleshooting
questions showed mixed results. On the one hand, for 11 of the
20 technical questions, GitterAns did not provide a StackOverflow
post that properly answered the question. On the other hand, for
the remaining nine questions, GitterAns was able to recommend a
StackOverflow post answering the question as the first recommen-
dation.

Previous work has shown the importance of query choice for
information retrieval applications on software engineering data
[18] and has unveiled the fact that noise can negatively impact the
performance of these approaches [19]. We therefore hypothesize
that using the whole troubleshooting question as a query may inject
too much noise in the search, leading to GitterAns not being able
to return proper answers for half of the questions. For example,
the following is one of the messages containing a troubleshooting
question posted to the nodejs/node Gitter channel: "@analog-nico I
have followed your blog post steps and am able to install all my npm
packages for iojs; however when I run the application it throws "Module
did not self-register on bcrypt module". A little google search reveals
this could be because it can detect multiple node installations. Any
suggestions.". When using the whole text of the message as a query,
GitterAns is not able to produce any relevant results. However,
we can easily tell that most of the text included in the message
(e.g., "I have followed your blog post steps and am able to install
all my npm packages for iojs; however when I run the application
it throws", "A little google search reveals this could be because",
"Any suggestions"), while useful to give context to a reader, it is not
necessarily relevant to a search for potential answers. To see if our
hypothesis regarding noise in the query holds in this case, we tried
removing all the noise and using only the error message the user
encountered ("Module did not self-register on bcrypt module") as a
query. The results in response to this trimmed query showed that

3

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Ricardo Romero, Esteban Parra, and Sonia Haiduc

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

GitterAns is able to retrieve a valid StackOverflow post addressing
the question as the first recommendation. Given this insight, our
future work will therefore focus on ways to reduce query noise.

Figure 2: GitterAns in action

4 Related Work
We divide the related work into two subsections. First, we introduce
work on the analysis of instant messaging communication tools
such as Gitter and Slack in software engineering. Second, we present
an overview of work related to bots used by developers.

4.1 Modern Chat Platforms in Software
Engineering

With the rise of modern chat platforms such as Slack and Gitter,
recent work focused on exploring the developer communities using
these tools [1, 2, 4, 10, 15, 20, 21, 24].

Studies with developers have found that developers self-reported
using Slack formultiple purposes and to support various activities[15].
Moreover, a study on the communication tools used in 400 open-
source software GitHub repositories found that GitHub Issues, per-
sonal e-mail, Gitter, Twitter, and mailing lists are the five most
popular communication channels currently used in open source
development. Slack was found to be eighth in terms of popularity
among all the communication means observed [14].

Alkadhi et al. [2] presents an exploratory study on the presence of
rationale messages that contain information justifying the decisions
made throughout the software life cycle (i.e., Rationale messages) in
the chat messages of three development teams made up of students
working on a multi-project capstone course. Their findings show
the presence of rationale, as well as the usefulness of SVM and
Naïve Bayes towards the automatic identification of such messages.

Recent work by Stray et al. [25] studied a group of 30 developers
and their communication through Slack channels at a large software

development company. The analysis identified that the messages
exchanged were related to the following purposes: general infor-
mation/coordination, general discussions, problem-focused com-
munication, technical communication, and socializing. Moreover,
their results show that in this company, about half of the messages
are related to problem-solving (i.e., questions and answers), with
very little social talk among the team members.

4.2 Bots in Software Engineering
Developers use bots for several purposes and research efforts have
been made toward automating a variety of tasks and improving the
efficiency and effectiveness of developers by using bots. We present
some examples of bots in software engineering below. For a more
detailed overview of this topic, we refer the reader to [12].

Bots like Wunderlist9 are used for team and task management,
distributing tasks among team members, and setting reminders
[15]. Other bots are integrated with modern chat and social me-
dia platforms, allowing communication between developers and
stakeholders. Software bots also integrate with GitHub or assist
developers to perform customer support by capturing customer
feedback and providing answers to clients [15].

Other recent bots to support software development include: tool-
recommender-bot [7], a bot designed to recommend software engi-
neering tools to developers on GitHub, as well as a bot to recom-
mend experts that can potentially answer developers’ questions in
StackOverflow and Discord [9, 13]. AnswerBot [8, 26] is a similar
approach to our work and is a web-based bot that uses Information
Retrieval and StackOverflow to generate a set of paragraphs as an
answer summary for a given technical problem. Unlike GitterAns,
AnswerBot is a stand-alone search engine website and it expects to
receive a technical problem formulated as a query.

5 Acknowledgments
Sonia Haiduc and Esteban Parra were supported in part by the
National Science Foundation grants CCF-1846142 and CCF-1644285.

6 Conclusion and Future Work
We introduced a new bot called GitterAns, which automatically
classifies newmessages in Gitter as being troubleshooting questions
or not. Then, for each detected troubleshooting question, GitterAns
automatically provides potential answers by querying for Stack-
Overflow posts that are semantically similar to the question. We
performed a preliminary study on a set of 1,000 messages from a
Gitter channel. Our results show promise, as GitterAns is able to
classify messages with an accuracy of 0.78. However, when pro-
viding answers to the troubleshooting questions, we found that
GitterAns was able to suggest correct answers for only 9 of 20 ran-
domly selected questions. We hypothesize this is due to the large
amount of noise present in the messages that were used as queries.

Our future work will focus on ways to remove the noise from
messages containing troubleshooting questions, as well as on fur-
ther improving the classification of messages. We also aim to per-
form a large-scale evaluation of GitterAns and plan to involve real
developers in the evaluation.

9https://www.wunderlist.com/
4

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

Experiences Building an Answer Bot for Gitter ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

References
[1] Rana Alkadhi, Jan Ole Johanssen, Emitza Guzman, and Bernd Bruegge. 2017.

REACT: An Approach for Capturing Rationale in Chat Messages. In Proceedings
of the 11th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM’17). IEEE, Toronto, ON, Canada, 175–180.

[2] R. Alkadhi, T. Lata, E. Guzmany, and B. Bruegge. 2017. Rationale in Development
Chat Messages: An Exploratory Study. In Proceedings of the 14th IEEE/ACM
International Conference on Mining Software Repositories (MSR’17). 436–446.

[3] Miltiadis Allamanis and Charles Sutton. 2013. Why, When, and What: Analyzing
Stack Overflow Questions by Topic, Type, and Code. In Proceedings of the 10th
IEEE Working Conference on Mining Software Repositories (MSR’13). IEEE, San
Francisco, CA, USA, 53–56.

[4] Abram Anders. 2016. Team Communication Platforms and Emergent Social
Collaboration Practices. International Journal of Business Communication 53, 2
(April 2016), 224–261.

[5] Léon Bottou. 2010. Large-Scale Machine Learning with Stochastic Gradient
Descent. In Proceedings of the 19th International Conference on Computational
Statistics (COMPSTAT’10), Yves Lechevallier and Gilbert Saporta (Eds.). Physica-
Verlag HD, 177–186.

[6] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (Oct. 2001), 5–32.
[7] Chris Brown and Chris Parnin. 2019. Sorry to Bother You: Designing Bots for

Effective Recommendations. In Proceedings of the 1st IEEE/ACM International
Workshop on Bots in Software Engineering (BotSE). IEEE, Montreal, QC, Canada,
54–58. https://doi.org/10.1109/BotSE.2019.00021

[8] Liang Cai, Haoye Wang, Bowen Xu, Qiao Huang, Xin Xia, David Lo, and Zhen-
chang Xing. 2019. AnswerBot: An Answer Summary Generation Tool Based
on Stack Overflow. In Proceedings of the 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE’19). Association for Computing Machinery, New York,
NY, USA, 1134–1138. https://doi.org/10.1145/3338906.3341186

[9] Jhonny Cerezo, Juraj Kubelka, Romain Robbes, and Alexandre Bergel. 2019.
Building an Expert Recommender Chatbot. In Proceedings of the 1st IEEE/ACM
International Workshop on Bots in Software Engineering (BotSE). IEEE, Montreal,
QC, Canada, 59–63. https://doi.org/10.1109/BotSE.2019.00022

[10] Preetha Chatterjee, Kostadin Damevski, Lori Pollock, Vinay Augustine, and
Nicholas A Kraft. 2019. Exploratory Study of Slack Q&AChats as a Mining Source
for Software Engineering Tools. In Proceedings of the 16th IEEE International
Conference on Mining Software Repositories (MSR’19). IEEE, Montreal, Canada,
490–501.

[11] Shaiful Alam Chowdhury and Abram Hindle. 2015. Mining StackOverflow to
Filter out Off-topic IRC Discussion. In Proceedings of the 12th IEEE Working
Conference on Mining Software Repositories (MSR’15). IEEE, Florence, Italy, 422–
425.

[12] Linda Erlenhov, Francisco Gomes de Oliveira Neto, Riccardo Scandariato, and
Philipp Leitner. 2019. Current and Future Bots in Software Development. In
Proceedings of the 1st IEEE/ACM International Workshop on Bots in Software En-
gineering (BotSE). IEEE, Montreal, QC, Canada, 7–11. https://doi.org/10.1109/
BotSE.2019.00009

[13] Katsunori Fukui, Tomoki Miyazaki, and Masao Ohira. 2019. A Bot for Suggesting
Questions That Match Each User’s Expertise. In Proceedings of the 1st IEEE/ACM
International Workshop on Bots in Software Engineering (BotSE). IEEE, Montreal,
QC, Canada, 18–19. https://doi.org/10.1109/BotSE.2019.00012

[14] Verena Käfer, Daniel Graziotin, Ivan Bogicevic, Stefan Wagner, and Jasmin Ra-
madani. 2018. Communication in Open-Source Projects-End of the E-mail Era?.
In Proceedings of the 40th IEEE/ACM International Conference on Software Engi-
neering(ICSE’18). IEEE, Gothenburg, Sweden, 242–243.

[15] Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik.
2016. Why Developers Are Slacking Off: Understanding How Software Teams
Use Slack. In Proceedings of the 19th ACM Conference on Computer Supported
Cooperative Work and Social Computing (CSCW’16). ACM, 333–336.

[16] Mario Linares-Vasquez, Bogdan Dit, and Denys Poshyvanyk. 2013. An Ex-
ploratory Analysis of Mobile Development Issues Using Stack Overflow. In Pro-
ceedings of the 10th IEEE Working Conference on Mining Software Repositories
(MSR’13). IEEE, San Francisco, CA, USA, 93–96.

[17] Andrew McCallum and Kamal Nigam. 1998. A Comparison of Event Models
for Naïve Bayes Text Classification. In Proceedings of the 1st AAAI Workshop
on Learning for Text Categorization (ICML/AAAI’98). AAAI, Madison, WI, USA,
41–48.

[18] Chris Mills, Gabriele Bavota, Sonia Haiduc, Rocco Oliveto, Andrian Marcus,
and Andrea De Lucia. 2017. Predicting Query Quality for Applications of Text
Retrieval to Software Engineering Tasks. ACM Trans. Softw. Eng. Methodol. 26, 1
(2017), 3:1–3:45. https://doi.org/10.1145/3078841

[19] C. Mills, J. Pantiuchina, E. Parra, G. Bavota, and S. Haiduc. 2018. Are Bug Reports
Enough for Text Retrieval-Based Bug Localization?. In Proceedings of the 34th
IEEE International Conference on Software Maintenance and Evolution (ICSME’18).
381–392. https://doi.org/10.1109/ICSME.2018.00046

[20] Alessandro Murgia, Daan Janssens, Serge Demeyer, and Bogdan Vasilescu. 2016.
Among the Machines: Human-Bot Interaction on Social Q&A Websites. In Pro-
ceedings of the 2016 Conference Extended Abstracts on Human Factors in Computing
Systems (CHI/EA’16). ACM, San Jose, CA, USA, 1272–1279.

[21] Elahe Paikari and André van der Hoek. 2018. A Framework for Understanding
Chatbots and Their Future. In Proceedings of the 11th International Workshop
on Cooperative and Human Aspects of Software Engineering (CHASE’18). ACM,
Gothenburg, Sweden, 13–16.

[22] Stuart Jonathan Russell and Peter Norvig. 1995. Artificial Intelligence: A Modern
Approach. Prentice-Hall.

[23] M. Storey, A. Zagalsky, F. F. Filho, L. Singer, and D. M. German. 2017. How Social
and Communication Channels Shape and Challenge a Participatory Culture in
Software Development. IEEE Transactions on Software Engineering 43, 2 (Feb.
2017), 185–204.

[24] Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting Developer Produc-
tivity One Bot at a Time. In Proceedings of the 24th ACM/SIGSOFT International
Symposium on Foundations of Software Engineering (FSE’16). ACM, Seattle, WA,
USA, 928–931.

[25] Viktoria Stray, Nils Brede Moe, and Mehdi Noroozi. 2019. Slack Me if You Can!:
Using Enterprise Social Networking Tools in Virtual Agile Teams. In Proceedings
of the 14th International Conference on Global Software Engineering (ICGSE’19).
IEEE, Montreal, Quebec, Canada, 101–111.

[26] B. Xu, Z. Xing, X. Xia, and D. Lo. 2017. AnswerBot: Automated generation of
answer summary to developers’ technical questions. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). 706–716.
https://doi.org/10.1109/ASE.2017.8115681

5

https://doi.org/10.1109/BotSE.2019.00021
https://doi.org/10.1145/3338906.3341186
https://doi.org/10.1109/BotSE.2019.00022
https://doi.org/10.1109/BotSE.2019.00009
https://doi.org/10.1109/BotSE.2019.00009
https://doi.org/10.1109/BotSE.2019.00012
https://doi.org/10.1145/3078841
https://doi.org/10.1109/ICSME.2018.00046
https://doi.org/10.1109/ASE.2017.8115681

	Abstract
	1 Introduction
	2 The GitterAns Framework
	2.1 Question Detection
	2.2 Search For Answers
	2.3 Answer Processing

	3 Preliminary Study
	3.1 Nodejs Gitter Data
	3.2 Classifier
	3.3 Answering Questions
	3.4 Results

	4 Related Work
	4.1 Modern Chat Platforms in Software Engineering
	4.2 Bots in Software Engineering

	5 Acknowledgments
	6 Conclusion and Future Work
	References

