
UIScreens - Extracting User Interface Screens from Mobile
Programming Video Tutorials

Mohammad Alahmadi1,2, Ahmad Tayeb1,3, Abdulkarim Khormi1,4, Esteban Parra1, Sonia Haiduc1
1Florida State University, Tallahassee, FL, United States

2University of Jeddah, Jeddah, Saudi Arabia
3King Abdulaziz University, Jeddah, Saudi Arabia

4Jazan University, Jizan, Saudi Arabia
{alahmadi, tayeb, khormi, parrarod, shaiduc}@cs.fsu.edu

ABSTRACT
Mobile apps are one of the most widely used types of software
systems in existence today and more programmers and students
learn how to develop them everyday. One of the most popular
resources for learning mobile programming are videos hosted on
social platforms such as YouTube.While useful, this type of resource
has also its limitations, especially when developers are looking for
user interface (UI) designs for mobile applications, since these are
hard to search for and locate in videos.

We propose UIScreens, a web-based analysis and search engine
that analyzes the visual contents of mobile programming video
tutorials, then identifies and extracts the UI screens displayed in
the videos. Our tool offers features such as searching for UI screens
in videos, displaying an overview of the UI screens identified in a
video under each search result, and navigating to the part of a video
where a particular UI screen is being displayed and discussed. In a
user study, participants agreed that UIScreens is usable and useful
to quickly skim through videos, while the UI screens it extracts
can help developers further determine the relevance of videos to a
search topic.

CCS CONCEPTS
• Software and its engineering→ Documentation; • Computer
vision→ Image recognition; • Computer systems organization
→ Neural networks;

KEYWORDS
Programming video tutorials, Android, iOS, Software documenta-
tion, Deep learning, Video mining
ACM Reference Format:
Mohammad Alahmadi1 ,2, Ahmad Tayeb1 ,3, Abdulkarim Khormi1 ,4, Es-
teban Parra1, Sonia Haiduc1. 2020. UIScreens - Extracting User Interface
Screens from Mobile Programming Video Tutorials. In Proceedings of The
28th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2020).ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Typically, the process of creating a mobile app is composed of (i)
designing a set of user interface (UI) screens and (ii) implementing
the functionality behind the UI. Designing an effective UI is one
of the most difficult tasks in mobile development [3, 10, 11] and
developers often rely on online resources to aid them in this task.

Recent studies found that videos are increasing in popularity
as a resource for programming knowledge, given their efficient
way to deliver information [6, 8, 9, 13]. YouTube is one of the
most popular video-hosting platforms, as it hosts millions of videos
on various topics, including mobile programming tutorials. Given
the large amount of videos available, it is important to provide
descriptive information about each video to help developers search
and navigate through them. YouTube displays some metadata (i.e.,
title and description, as provided by the video creators) about each
video to make it easier for users to understand what a video is about.
Unfortunately, this information is often insufficient for a developer
to fully understand if a video contains specific information relevant
to a programming task [12–14]. This is true in the case of developers
looking for examples of mobile UI designs, as the only ways to
determine if a video contains the right UI are to watch the videos
entirely, leading to wasted time, or to skim through them, risking to
miss information.While previous work has identified and addressed
the problem of extracting and searching for mobile UI screens in
apps hosted on mobile stores [3, 5], there is no prior work on
assisting developers with this task in video tutorials. An advantage
of searching for UI screens in videos is the fact that they can also
help developers implement the relevant UI screens they identify by
providing step-by-step instructions for their implementation [8].

In this paper we address the challenge of helping developers
easily search and access UI screens in mobile programming video
tutorials. More specifically, we introduce UIScreens, a tool that
leverages Convolutional Neural Networks (CNN), object detection
techniques, and an efficient search engine to detect, extract, and
search for mobile UI screens in videos. In a user study with 16
participants, UIScreens was perceived as an easy to use tool that
is useful for developers to search and explore UI designs in mobile
programming video tutorials. Our tool is freely available to use on-
line1 and our replication package2 contains the scripts, pre-trained
models, and data behind our tool. A demo of our tool can be found
here: http://serenelab.cs.fsu.edu/uiscreens/demo.

1http://serenelab.cs.fsu.edu/uiscreens
2https://zenodo.org/record/3901578

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United StatesMohammad Alahmadi1 , 2 , Ahmad Tayeb1 , 3 , Abdulkarim Khormi1 , 4 , Esteban Parra1 , Sonia Haiduc1

1.1.

Video Crawler and UI Extractor

UIs

Ready to
index

.

.

.

Indexing Jobs

Job
1

.

.

Running Jobs

HTTP
Request

Job
2

Job
n

UIs

Job x YouTube API
(Metadata Crawler)

JSON Parser
(Video Metadata)

Prepare Document for Indexing
(Video Metadata and UIs)

UI and Video Metadata Indexing

Trigger

Worker
1

Worker
2

.

.
Worker

n

Classifier
(OS, Language)

Worker Pool

UIScreens Web Tool

1.

Query
Formulation
(iOS, Android)

YouTube
Crawler

(Recent Top 10)

Keyframes
Extractor
(FFMPEG)

UI Extractor
(Faster R-CNN)

Distinct-UIs
Finder
(SURF)

Figure 1: An overview of UIScreens and its main components

2 ARCHITECTURE
As Figure 1 depicts, UIScreens is composed of three main modules.
The first two work together in the backend to automatically collect
new videos and then extract and index UI layouts. This information
is then used by and displayed in the UIScreens web-based tool
depicted in the third module in Figure 1, which allows developers to
preview and search for UI screens in video tutorials. In the following
subsections we provide more details about each module.

2.1 Video Crawler and UI Extractor
The first module in our tool is responsible for crawling mobile
programming video tutorials from YouTube and then identifying
and extracting UI screens from them. In order to keep our video
collection current and grow it with the latest top videos on various
mobile programming topics without the need for human interven-
tion, we automated the crawling process as follows. We first started
by defining a set of 40 queries for YouTube, which focus on main
topics of interest in Android and iOS programming. The first author
formulated the queries based on his experience of more than 10
years with mobile programming, and the complete list of queries is
available in our replication package. We then wrote a script that
queried YouTube and crawled the top 50 video results for each
of the 40 queries, resulting in approximately 2,000 unique videos
(some of the videos may have appeared in the results of more than
one query). After that, we designed the script such that the same
YouTube queries are re-run every week, adding also a filter such
that only videos that were added to YouTube in the last week are
displayed in the results. We then collect the top returned videos for
each query (up to 10 if available), download them at their highest
quality and add them to our database. The process we followed
ensures that our video collection contains the most relevant videos
for each topic, while also growing with recent videos, rather than
older, potentially obsolete ones. Currently, there are 2,915 videos
hosted by our tool and this number is growing every week.

After a video is added to the UIScreens collection, a set of frames
is extracted from it using FFMPEG3, at the rate of one frame per
second. UIScreens then locates and extracts the mobile UIs embed-
ded in the frames of the video. To determine the precise location of
each UI layout displayed in a frame (in the form of a rectangular
bounding box that surrounds it), we adopt a deep learning object

3https://ffmpeg.org/

detection framework, namely Faster R-CNN [15], with Inception-
Resnet V2 [16]. This extracts image features through the use of
convolutional layers with different filters. To use the Faster R-CNN
object detector, we trained it with data specific to our problem,
namely UI bounding boxes within video frames. Due to space limi-
tations, we refer the reader to our recent technical paper for details
about the training of the model [1]. Our pre-trained model is also
available in our replication package.

The list of frames we extracted from the videos in our collection
are then fed into the pre-trained Faster R-CNN model, which out-
puts a set of bounding boxes for each UI screen that is identified in
the frames. We then crop the UI screens based on their bounding
box location. All cropped UIs are renamed with the second when
they appeared in the video, determined based on the frame rate.
This is important for a later stage in our tool, which enables users
to navigate to the second where a UI appeared in a video (this is
further explained in Section 2.3).

After all UIs are extracted for a video, another script gets trig-
gered to remove duplicate UI screens. The script uses the Speeded
Up Robust Features (SURF) algorithm [2] to extract and compare
the feature vectors of pairs of UI screens using Euclidean distance.
If two UIs are similar beyond a threshold (i.e., 0.80), the first UI is
removed. As extracting features from images is computationally in-
tensive, we efficiently implemented the script to extract the features
only once for each video and save them for further comparisons.
We currently have 20,424 non-duplicate UI screens in our collection.

Lastly, Optical Character Recognition (OCR) is applied on the re-
maining UIs to extract the text appearing in them. We used Gdrive4,
which was recently found to work the best for programming screen-
casts [7]. We use the OCRed text as an additional source of infor-
mation when indexing the videos in the next module of our tool, in
order to allow developers to directly search for elements appearing
in mobile UI screens (e.g., login).

After the last step in this first module is completed, it triggers
the second module in UIScreens, which indexes the videos based
on their metadata and OCRed information. The whole UIScreens
process involving the first two modules is repeated every week in
order to accommodate the new videos being added to the database.

4https://www.google.com/drive/

UIScreens - Extracting User Interface Screens from Mobile Programming Video Tutorials ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

2.2 UI and Video Metadata Indexing
The input for the second module in UIScreens is a set of video
IDs with their extracted UI layouts and OCRed text. This module
is triggered by the first module, which typically passes a large
number of videos that need to be indexed. Processing the entire
video set would be slow and prone to failures since each video
requires several steps and a third-party HTTP request, as shown in
section Running Jobs of Figure 1. To avoid issues, we created a PHP
script that processes subsets of videos through several scheduled
indexing jobs. These indexing jobs are executed by workers that
can work in parallel to perform specific tasks (Job x), as follows.
First, a worker sends an HTTP request to the YouTube API to fetch
the video’s metadata using the video ID associated with the job.
Note that YouTube limits the number of daily API calls that can be
requested; therefore, if the daily limit is reached and YouTube rejects
the request, our server releases the job and reschedules it to run
after 24 hours, since YouTube will reset the API daily limit at that
time. Second, video metadata is parsed through a JSON parser that
extracts the video’s title, description, published date, channel title,
channel ID, audio language, tags, and duration. Third, we created
a custom classifier that detects the mobile OS discussed in the
video (Android, iOS, or cross-platform) from the title, description,
and tags of the video. For this task, we manually created a list of
common keywords describing each mobile platform (e.g., Android
keywords: Android, Java, etc.; iOS keywords: SWIFT, Xcode, etc.;
cross-platform keywords: Xamrin, Flutter, etc.) and used string
matching to count the number of matching terms corresponding to
each platform in a video’s title, description, and tags. The platform
having the maximum match count is assumed to be the platform
discussed in the video. The complete list of keywords we used for
each platform is available in our replication package.

We also created another classifier for detecting the spoken lan-
guage in the video. Our collection includes various videos in dif-
ferent languages and we want to offer developers a way to filter
videos based on the language. While YouTube allows video creators
to manually enter the audio language of the video, they often do
not enter one, and English is assigned by default. Therefore, if the
audio language of a video is not English, we assume the creator
entered it and it is correct. If, however, the language is indicated
as English, we want to ensure it was not incorrectly assigned by
default, and we feed the title and description to an off-the-shelf
language detection package5 that can detect up to 112 languages.

We then use Apache Solr6 to index the metadata information,
OCRed UI text, and the extracted UI screens of each video. We used
DisMax as the query parser and assigned the following weights to
the metadata: title - 3, description - 2, tags - 1, and OCRed text - 1.

2.3 UIScreens Web Tool
UIScreens7 has a web frontend implemented using PHP with the
Laravel framework. We explain the main features of UIScreens
shown in Figure 2 as follows.
A. Dynamic Search: Users can formulate their query and as they
type in the search bar, our search engine suggests a list of topics

5https://github.com/patrickschur/language-detection
6https://lucene.apache.org/solr/
7http://serenelab.cs.fsu.edu/uiscreens/

A

B C

Figure 2: UIScreens: web frontend

based on the titles of videos stored in our database.
B. Search Filters:We defined five search filters as follows: (i) "Dis-
play UI in search results", which allows users to see the extracted
UIs below each video in the search results, (ii) "Search only videos
that contain UI", so users can limit their search to only videos that
contain a UI design, (iii) "Language", where users can select one
of the languages detected by our classifier, (iv) "OS", so users can
focus their search on their choice of three mobile OS platforms (iOS,
Android, and cross-platform), and (v) "Duration:", where users can
limit their search to videos of a certain duration.
C. Video Details: This page appears after a user clicks on a video
of interest. The title of the video is shown on the top along with
other metadata such as the video author. The video is then dis-
played, along with the list of extracted UI screens Users can click
on a specific UI screen to navigate directly to the part of the video
where the UI appears in the video.

3 EVALUATION
In this section, we describe the design and results of a user study
with developers evaluating UIScreens based on its usefulness, accu-
racy, and usability.
Study Design: The study was conducted via an anonymous on-
line survey (available in our replication package8). having five
sections: (i) Background, (ii) Usefulness, (iii) Accuracy, (iv) Us-
ability, and (v) Overall Feedback. The first section of the survey
collects background demographic information about the occupation
of the participants and their mobile development experience. Par-
ticipants had to have Android or iOS programming experience to
8https://zenodo.org/record/3901578

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United StatesMohammad Alahmadi1 , 2 , Ahmad Tayeb1 , 3 , Abdulkarim Khormi1 , 4 , Esteban Parra1 , Sonia Haiduc1

be qualified to take the survey and move to the next section. In the
remaining sections, the participants could express their assessment
of particular aspects of UIScreens based on a 5 point Likert scale.
Section 2 of the study first focused on getting participants familiar
with UIScreens, by having them run several queries, observing the
results, and trying out the different features it offers. It then asked
participants to evaluate the usefulness of each of the features in
UIScreens, i.e., displaying the UI screens alongside videos in the
search results and detailed view of a video, filtering results based
on the spoken language, the presence of UI screens, the OS, or
the duration of a video, and being able to navigate to where a UI
screen appears in a video by clicking on it. The section also asked
participants if they believed that extracting and displaying the UI
screens below a video can help them decide if it is relevant to a
search. Section 3 of the survey evaluated the accuracy of the UI
identification, extraction, and duplicate removal. It first provided
participants with a randomly selected short video to watch (<5 min)
containing UI screens and asked them if the extracted screens were
sufficient to understand the main UI design elements discussed in
the video, and if the list of UI screens contained duplicates. It then
provided participants with another short video, this time randomly
selected from the set of videos for which our tool did not identify
any UI screens to extract. The participants were asked to watch the
video entirely and then indicate if they found any UI screens that
our tool failed to identify. Section 4 evaluates the usability of UIS-
creens by asking participants their agreement with six statements
(three positive and three negative) based on the SUS usability scale
by Brooke [4]. The positive statements were: I would like to use
UIScreens to identify potential UI screens useful to my tasks", "I found
the various features in UIScreens well-integrated", and "I imagine that
most people would learn how to use UIScreens quickly". The negative
statements were: "UIScreens is unnecessarily complex", "UIScreens is
very cumbersome to use", and "I needed to learn a lot of new things
to use UIScreens". These statements are similar to those used to
evaluate usability in previous work [3]. Section 5 collects feedback
from the participants, asking them about their overall impression
of UIScreens and any features they would like to see integrated.
Results:We received 16 valid answers to our survey (we eliminated
answers where participants only spent a few minutes on the survey,
which otherwise took at least 20 min to answer). We present the
results of our user study below, divided by section. The complete
results are available in our replication package.
• Background: All participants in our study had experience with
Android development, and eight participants also had experience
with iOS programming. The level of experience of our partici-
pants with mobile programming ranged between a few months
and a few years. The participants included nine undergraduate
students, one Masters’ student, three Ph.D. students, one profes-
sional developer, one field operator, and one faculty member.

• Usefulness: In general, participants agreed that the vast major-
ity of the features in UIScreens were useful. On a Likert scale
of 1 to 5, where 5 indicates strong agreement that a feature is
useful and 1 indicates strong disagreement, the main functional-
ities of UIScreens received the following scores on average (in
descending order): navigating to where a UI screen is displayed
in a video (4.63), filtering search results based on the presence
of UI screens (4.44), displaying UIs below a video in the list of

search results (4.38), filtering results based on the OS (4.38), dis-
playing UIs below a video in its detailed view (4.31), filtering
search results based on the spoken language (4.06), and filtering
search results based on the video duration (3.5). Participants also
indicated a very strong agreement (4.88 score on average) with
the statement that extracting and displaying the UI screens below
a video can help them decide if a video is relevant to a search.

• Accuracy:When asked about the sufficiency of the extracted UI
screens to understand the main UI design elements discussed in
the video, the participants assigned on average a score of 3.31,
which is slightly positive, between "Neither agree nor disagree"
(3) and "Agree" (4). However, when analyzing the results in more
detail, we noticed that half of the participants either agreed or
strongly agreed that the extracted UI screens were sufficient, 25%
of the participants had a neutral opinion, and only 25% found
the extracted UI screens insufficient. In regards to a statement
about no duplicate UI screens being extracted, the average score
was also 3.31 on average, indicating that the participants slightly
agreed that the list of UI screens does not contain duplicate in-
formation. Half the participants considered that the extracted UI
screens did not present duplicate information (i.e., all UI screens
presented are distinct), whereas 31% of them disagreed and the
remaining 19% had a neutral view. 14 of the 16 participants fur-
ther answered that they did not find any UIs in the video for
which UIScreens had not detected any UI screens. The remaining
two participants indicated "not sure" about the video containing
UIs. These results indicate that, while UIScreens did not miss any
UIs in a video, there is a room for improving the UI duplicate
removal to select only sufficient and distinct UIs. We also believe
that extracting more specific UI design components from the
screens in the future could help developers better understand the
UI design elements discussed in the video.

• Usability: Participants generally agreed with the positive state-
ments about UIScreens’ usability (scores of 4.38, 4.19, and 4.44 on
average), while at the same time they generally disagreed with
the negative statements (scores of 2.13, 1.88, and 1.75 on average).
The results indicate that UIScreens is intuitive and easy to use.

• Overall Feedback: The score for the overall participants’ impres-
sion about UIScreens was 4.44 out of 5 on average, indicating an
overwhelmingly positive opinion. Some of features the partici-
pants would like to see integrated include automatically recog-
nizing different types of UI components in the screens, ability to
expand the UI screens for a more detailed view, and being able to
toggle on and off the view of the UI screens for particular videos.
We plan to address these suggestions in our future work.

4 CONCLUSION
We introduced UIScreens, a web-based tool that extracts, indexes,
displays, and searches mobile UI layouts embedded in video pro-
gramming tutorials. UIScreens provides an intuitive user experience
and several search and navigation features that were found useful
by participants in a user study.

5 ACKNOWLEDGMENTS
This workwas supported in part by the National Science Foundation
grants CCF-1846142 and CCF-1644285.

UIScreens - Extracting User Interface Screens from Mobile Programming Video Tutorials ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

REFERENCES
[1] Mohammad Alahmadi, Abdulkarim Khormi, and Sonia Haiduc. 2020. UI screens

identification and extraction from mobile programming screencasts. In Proceed-
ings of the 28th Conference on Program Comprehension. ACM, 222–232.

[2] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. SURF: Speeded up robust
features. In European conference on computer vision. Springer, 404–417.

[3] Carlos Bernal-Cardenas, Kevin Moran, Michele Tufano, Zichang Liu, Linyong
Nan, Zhehan Shi, and Denys Poshyvanyk. 2019. Guigle: A GUI search engine for
Android apps. arXiv preprint arXiv:1901.00891 (2019).

[4] John Brooke. 1996. SUS - A quick and dirty usability scale. Usability Evaluation
In Industry (1996), 7.

[5] Chunyang Chen, Sidong Feng, Zhenchang Xing, Linda Liu, Shengdong Zhao,
and Jinshui Wang. 2019. Gallery DC: Design Search and Knowledge Discovery
through Auto-created GUI Component Gallery. Proceedings of the ACM on
Human-Computer Interaction 3, CSCW (2019), 1–22.

[6] Javier Escobar-Avila, Deborah Venuti, Massimiliano Di Penta, and Sonia Haiduc.
2019. A survey on online learning preferences for computer science and program-
ming. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET). IEEE, 170–181.

[7] Abdulkarim Khormi, Mohammad Alahmadi, and Sonia Haiduc. 2020. A Study on
the Accuracy of OCR Engines for Source Code Transcription from Programming
Screencasts. In Proceedings of the 17th IEEE/ACM Working Conference on Mining
Software Repositories. 376–386.

[8] Laura MacLeod, Andreas Bergen, and Margaret-Anne Storey. 2017. Documenting
and sharing software knowledge using screencasts. Empirical Software Engineer-
ing 22, 3 (June 2017), 1478–1507. https://doi.org/10.1007/s10664-017-9501-9

[9] Laura MacLeod, Margaret-Anne Storey, and Andreas Bergen. 2015. Code, camera,
action: How software developers document and share program knowledge using

YouTube. In Proceedings of the 23rd IEEE International Conference on Program
Comprehension (ICPC’15). Florence, Italy, 104–114.

[10] Kevin Moran, Boyang Li, Carlos Bernal-Cárdenas, Dan Jelf, and Denys Poshy-
vanyk. 2018. Automated reporting of GUI design violations for mobile apps.
arXiv preprint arXiv:1802.04732 (2018).

[11] Tuan Anh Nguyen and Christoph Csallner. 2015. Reverse engineering mobile
application user interfaces with remaui (t). In Automated Software Engineering
(ASE), 2015 30th IEEE/ACM International Conference on. IEEE, 248–259.

[12] Esteban Parra, Javier Escobar-Avila, and Sonia Haiduc. 2018. Automatic tag
recommendation for software development video tutorials. In Proceedings of the
26th Conference on Program Comprehension. ACM, 222–232.

[13] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, Rocco
Oliveto, Barbara Russo, Sonia Haiduc, and Michele Lanza. 2016. CodeTube:
Extracting relevant fragments from software development video tutorials. In
Proceedings of the 38th ACM/IEEE International Conference on Software Engineering
(ICSE’16). ACM, Austin, TX, 645–648.

[14] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Rocco Oliveto, Massimiliano
Di Penta, Sonia Cristina Haiduc, Barbara Russo, and Michele Lanza. 2019. Au-
tomatic identification and classification of software development video tuto-
rial fragments. IEEE Transactions on Software Engineering (2019). https:
//doi.org/10.1109/TSE.2017.2779479

[15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: To-
wards real-time object detection with region proposal networks. arXiv:1506.01497
[cs] (June 2015). http://arxiv.org/abs/1506.01497 arXiv: 1506.01497.

[16] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. 2016.
Inception-v4, Inception-ResNet and the impact of residual connections on learn-
ing. arXiv:1602.07261 [cs] (Feb. 2016). http://arxiv.org/abs/1602.07261 arXiv:
1602.07261.

https://doi.org/10.1007/s10664-017-9501-9
https://doi.org/10.1109/TSE.2017.2779479
https://doi.org/10.1109/TSE.2017.2779479
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1602.07261

	Abstract
	1 Introduction
	2 Architecture
	2.1 Video Crawler and UI Extractor
	2.2 UI and Video Metadata Indexing
	2.3 UIScreens Web Tool

	3 Evaluation
	4 Conclusion
	5 Acknowledgments
	References

