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Abstract

The goal of this paper is to solve a class of stochastic optimal control problems numerically,
in which the state process is governed by an It6 type stochastic differential equation with
control process entering both in the drift and the diffusion, and is observed partially. The
optimal control of feedback form is determined based on the available observational data.
We call this type of control problems the data driven feedback control. The computational
framework that we introduce to solve such type of problems aims to find the best estimate
for the optimal control as a conditional expectation given the observational information. To
make our method feasible in providing timely feedback to the controlled system from data,
we develop an efficient stochastic optimization algorithm to implement our computational
framework.

Keywords Stochastic optimal control - Nonlinear filtering - Data driven - Maximum
principle - Stochastic optimization

Mathematics Subject Classification 93E11 - 60G35 - 65K10

1 Introduction

Stochastic optimal control is an important research subject that attracts scientists and engi-
neers in various fields from theoretical scientific research to practical industrial production.
The control process (also called control policy), which controls a stochastic dynamical sys-
tem whose solution called state process, is designed to meet some optimality conditions. For
the classic stochastic optimal control problem with full observation of the state, both theo-
retical results and numerical methods are extensively studied. However, in practice the full
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observation of the state process is often not available. Instead, we have detectors/observation
facilities to collect partial observational data, which provide indirect information about the
state process. The theoretical formulation for partially observable stochastic optimal con-
trol is derived analytically [14,20,26,30,40,42], and the corresponding optimal control is a
stochastic process adapted to the observational information. Since the controlled state needs
to be inferred from observations, the procedure of finding the optimal control requires data
analysis for observational data, and the control actions are driven by information contained
in data. To highlight the influence of data in designing control policies, we call the stochastic
optimal control with partially observed controlled processes the data driven feedback control.

The key to solving a data driven feedback control problem is the effective combination of
data analysis techniques and stochastic optimal control methods. One of the most widely used
methods to combine data with control is the “separation principle” [31,43]. The main theme
of separation principle is that the data driven feedback control problem can be separated
into a state estimation problem, and a standard stochastic optimal control problem, in which
the state of controlled process is provided by the state estimation. Despite of its significant
success in practical applications, the separation principle only works for time-invariant linear
controlled systems with linear observations. Although several efforts have been made to
extend the applicability of the separation principle by linearizing the nonlinear models [14,
33,37], computational methods for general nonlinear problems are still needed.

The goal of this paper is to introduce an effective computational framework that incorpo-
rates observational information into stochastic optimal control problems and we shall also
design an efficient algorithm to implement our computational framework through stochastic
optimization. Since the data driven feedback control is adapted to observational information,
we use the conditional expectation for the control process as its “best” approximation given
observations. In this way, our computational framework is composed by two components: (I)
numerical schemes to obtain conditional distribution of the controlled process given obser-
vations; (II) computational methods for stochastic optimal control problems. Component (II)
provides the overarching algorithmic structure to find the optimal control, and the condi-
tional distribution obtained in component (I) is used to calculate conditional expectations for
the optimal control solver. In this paper, we apply optimal filtering methods, which could
find the conditional distribution of a dynamical system based on indirect observations [9], to
accomplish component (I) in our computational framework. When solving nonlinear opti-
mal filtering problems, Zakai filter and particle filter are two well-known approaches. The
methodology of the Zakai filter is to solve for the conditional probability density function
(pdf) for the target dynamical system through a parabolic type stochastic partial differen-
tial equation (called Zakai equation) [45]; and the particle filter, also known as a sequential
Monte Carlo method, describes the desired conditional pdf by using empirical distribution
of a set of random samples (particles) [22,27]. Although the Zakai filter could provide more
accurate approximation for conditional distributions theoretcally, the particle filter is more
popular in solving practical problems due to the high efficiency of Monte Carlo method in
approximating high dimensional distributions [35]. Therefore, in our approach we use the
particle filter to approximate the conditional distribution of the controlled process. On the
other hand, computational methods for solving the stochastic optimal control problem in
component (II) are developed under two general frameworks—dynamic programming prin-
ciple and maximum principle [18,21,39,44]. In this work, we adopt the maximum principle
framework to solve the optimal control problem due to its multiple advantages over dynamic
programming principle. For example, it has less restrictions on dimension of the problem and
it could solve problems with state constraints—especially with finite dimensional terminal
state constraints, and it also allows to have random coefficients in the controlled state equa-

@ Springer



Journal of Scientific Computing (2020) 85:51 Page3of27 51

tion and/or in the performance cost functional. In maximum principle, we have a stochastic
Hamiltonian system that consists of a system of forward backward stochastic differential
equations (FBSDEs), which meet certain optimality condition with respect to the optimal
control [36,41]. Therefore, solving the stochastic optimal control problem through maximum
principle involves solving the FBSDEs system (usually carried out by numerical methods)
and an optimization procedure, which is typically achieved by gradient descent iterations.
There are several successful numerical methods for solving FBSDEs, which can be cate-
gorized by two types of approaches: the first type of approach solves an FBSDEs system
through numerical schemes for its equivalent parabolic partial differential equation [32,34];
the second approach solves FBSDESs as a system of stochastic differential equations and solu-
tions of FBSDEs are approximated by their conditional expectations [2,3,5-7,13,16,17,46].
While both approaches effectively solve FBSDEs, implementing numerical algorithms to
solve FBSDE: is still a challenging task—even with some advanced high efficiency meth-
ods [24], and the computational cost for solving FBSDEs increases dramatically when the
dimension of the problem becomes higher. In our approach, we choose the second approach
to solve FBSDEs due to the efficiency and flexibility of stochastic computing methods.

From the above discussion, we can see that the implementation of our data driven feedback
control framework includes particle filtering for conditional pdf of the controlled precess and
numerical optimization for control process which involves numerical solutions for FBSDE:s.
Since the purpose of data driven feedback control is to give timely feedback to the controlled
system based on observational data, efficiency of a numerical method is essential. To provide
a highly efficient algorithm to implement our computational framework, we introduce a
stochastic optimization algorithm that combines the particle filter with stochastic gradient
descent in the optimization procedure for the data driven optimal control. The motivation
of applying stochastic optimization is the fact that our computational framework consists
multiple conditional expectations and stochastic gradient descent is a very efficient method to
treat expectations in the gradient descent type optimization. In this connection, we consider all
the random samples, including particles obtained from the particle filter, to be the “data” which
we use to calculate conditional expectations. Then, in each gradient descent iteration step, we
pick one random sample in the sample space, as well as one particle in the particle cloud, and
represent conditional expectations by the realization of stochastic process generated by our
picked sample/particle. In this way, the gradient decent becomes its stochastic counterpart and
we transfer the computational cost of fully calculating conditional expectations (by averaging
all samples/particles) to more iteration steps with one-sample simulation of stochastic process
in each step. The justification of stochastic gradient descent is well studied theoretically
[29,38] and the efficiency is verified in many application scenarios. The only potential issue
for our application of stochastic optimization is that the single-realization representation of
conditional expectations could not solve FBSDEs accurately. Indeed, the usage of only one
realization of random sample is not sufficient to provide full characterization for solutions of
FBSDEs. However, the purpose of solving the FBSDESs system in maximum principle is to
formulate a stochastic Hamiltonian system, which is used to describe the gradient process with
respect to the control process. Therefore solving FBSDEs is not the goal of our computational
framework. Actually, the conditional expectations that we use to approximate solutions of
FBSDEs are eventually used to describe the gradient process, and similar justifications for
stochastic gradient descent would also apply to FBSDEs in our approach. Moreover, by using
the single-realization representation of expectation, we can avoid unnecessary calculations
for obtaining fully calculated solutions of FBSDEs, which is the primary computational cost
of maximum principle approach for stochastic optimal control problems.
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The rest of this paper is organized as following. In Sect. 2, we briefly discuss the theoret-
ical background for the data driven feedback control problem and introduce an optimization
framework for finding the optimal control, which will be used to design our numerical
algorithms. The computational framework with our efficient stochastic optimization imple-
mentation will be introduced in Sect. 3. In Sect. 4, we demonstrate the effectiveness and
efficiency of our numerical algorithms by solving both classic benchmark problems and
practical feedback control problems. Some concluding remarks and the plan of our future
work are given in Sect. 5

2 Data Driven Feedback Control Problem
2.1 Problem Statement

Let (2, F, F¥, P) be acomplete filtered probability space on which a d-dimensional standard
Brownian motion W := {W,}>¢ is defined with F" = {FW};-( being its natural filtration
augmented by all the P-null sets in F. Consider the following stochastic differential equation
(SDE) over a deterministic time interval [0, T]

dX,:b(t,X[,u,)dt—i-o(t,X,,u,)dW,, IE[O, T]v onsv (l)

where X is the (controlled) state process valued in R?, u is the control process valued in
someset U CR™ b :[0,T] xRIx U — Rfando : [0,7T] x RY x U — R¥*4 gre
suitable maps, and £ is a random variable independent of W following a distribution pg. We
call the terms b and o the drift and the diffusion, respectively. Let

U, T1={u:[0,T1 x Q— U |uis FY -progressively measurable }.

Under some mild conditions, for every square integrable initial variable £ and control u €
U[0, T1, Eq. (1) admits a unique solution X. To measure the performance of the control ,
we introduce the following cost functional

T
J(u):E[f f(t»leut)dt‘l‘h(XT)]- (@)
0

Then classical optimal control problem can be stated as

Problem (C). For any given initial condition Xo = &, find a iz € U[0, T] such that
Jw)= inf J(u). 3
(u) vl 1 (u) 3)
Any u € U[0, T] satisfying the above is called an optimal control. Under proper conditions,
if the optimal control & exists, it should be a function of the corresponding state process X,
in some sense. However, in reality, we may not be able to observe the true state X. Instead,
we introduce the following equation

dM; = g(X;)dt +dB;, My =0, “4)

where g : R — Rf and B is an ¢-dimensional standard Brownian motion independent
of W. We call the above an observation equation and M is called the observation process,
which provides partial (noisy) observations for X. We may put (1) and (4) together to get the
following augmented system on time interval [0, 7]

X\ _ (b, Xi up) o(t, Xe,u) 0 W, Xo=4§
1) = (e (T ) e () (R25) o
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Let F® = {FP},~( be the filtration of B augmented by all the P-null sets in F, and FV-8 =
{f,W’B}tzo be the filtration generated by W and B (augmented by P-null sets in F). Under
mild conditions, for any square integrable random variable & independent of W and B, and
any FW-B_progressively measurable process u (valued in U), (5) admits a unique solution
(X, M) which is FW-B-adapted. Next, we let F¥ = {FM},. be the filtration generated by
M (augmented by all the P-null sets in F). Clearly, F¥ c FY-8 and FM £ FW FM £ FB,
in general. We introduce the set of admissible controls as

Uaal0, T1 = {u : [0, T] x @ — U | u is F¥-progressively measurable}.

To emphasis the FM -adaptedness, for a control in the admissible control set 4,4[0, T'], we
denote it by u™ . Replacing u in (5) by u™ , we still have the unique solution (X, M), which
is FW-B_adapted. The cost functional should now be modified as

T
T* M) :]E[[ f(z,x,,uﬁw)errh(xT)]. 6)
0

Then we pose the following optimal control problem.

Problem (C*). For any given square integrable random variable &, find a u* € U,4[0, T']
such that

J*w* = inf  J*wM) = Vv*@, 6). 7
uMeld,y[0,T]

It is worthy of mentioning that under the induced probability measure P with Girsanov
transformation d PM = @tTdP, where @,T = exp[ — ftT g(X5)dBs — ftT %Ig(XS)Izds],
the observation process M is a standard Brownian motion. Discussions on the above indirect
observations based stochastic optimal control can be traced back to the work of Fleming
in 1960s [19], followed by Kwakernaak [28], Fleming—Pardoux [20], Haussmann [25,26],
Bensoussan [11,12], Baras—Elliott—Kohlmann [10], Li-Tang [30], Tang [40], and Wang—
Wu—Xiong [42], and so on. Since the optimal control u* defined in (7) implements feedback
control actions based on the observational data, we name the optimal control problem (C*)
with its corresponding stochastic system (5) “data driven feedback control problem”.

2.2 Optimization for Optimal Control

In this work, we solve the data driven feedback control problem through an optimization
procedure, which is derived by stochastic maximum principle. In the case that the optimal
control ©* is in the interior of U4, one can deduce by using the Géteaux derivative of u*
and maximum principle that the gradient process of the cost functional J* with respect to
the control process on time interval ¢ € [0, T] has the following form (see “Appendix” for
details)

N, W) =E[by(t, X;, u) Y, +0u(t, XFou)) T Zo + fult, X uD)T | FM] ®)

where we use subscripts to denote partial derivatives of functions throughout of this paper,
and stochastic processes Y and Z are solutions of the following forward backward stochastic
differential equations (FBSDEs) system

dXF = b(t, X} ub)dt +o(t, X3, u)dW,, Xo=¢ (SDE)

AM? = g(X¥)dt + dB;, My=0 (SDE)

dYt = (_ bx(t» Xt*v M?)TYt - Ux(tv X;kﬁ M?)TZI - fX(t’ X;k’ M?)T)dt
+ZidW; + §dBy, Y7 =ho(X5)T, (BSDE)
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where Z is the martingale representation of ¥ with respect to W and ¢ is the martingale
representation of ¥ with respect to B. Due to the backward propagation direction, we call the
third equation in (9) the backward stochastic differential equation (BSDE), which is derived
as the adjoint equation of the controlled state equation.

The main theme of our approach is to solve for the data driven feedback optimal control u™*
through gradient descent type optimization and the gradient process (J*)), is defined in (8).
Specifically, for a pre-chosen FM -adapted process u% (as our initial guess), we introduce
the following gradient descent iteration to find the optimal control u} at any time instant
tel0,T]

Wl M= My WMy, =01, (10)

where p is the step-size for the gradient, and we use (J*)/,(«) to denote the gradient process
corresponding to a control process u. The primary challenge in applying the gradient descent
optimization (10) to solve for the data driven optimal control z* is to obtain the gradient
process {(J*)), (ui’M)}OE,ET, which is described by solutions Y; and Z; of the FBSDEs
system (9) corresponding to the ftM adapted estimated optimal control ui’M. However, the
observational information F is gradually increased as we collect more and more data over
time. At a certain time instant 7, the information ]:SM for s € [t, T] is not available to
solve for {(Ys, Zs)}i<s<T, and the estimated feedback control {ué’M},SET should not be
driven by information {FM},~;<7. Therefore, we target on finding the optimal control u}
at the current time ¢ with accessible information ]—',M . Since the evaluation for (J*)), (ui’M)
requires trajectories {(Yy, Zs)}:<s<7 as Y; and Z; are solved backwards from T to ¢, we take
conditional expectation E[ - |ftM ] to the gradient process {(J*),, (ué’M)},S s<T,1.e.

EL, @ DI = E[bu(s, Xouh™) T,
an
 ouls, Xy ulb™)TZy + fuls, X ulbT | FM] s 0,7,

where X, Y; and Z; are corresponding to the estimated control ué’M. Similarly, for the
gradient descent iteration (10) on the time interval [#, T], by taking conditional expectation
E[ - |FM], we obtain

Eful ™M EM) = Bl M| FM - pE[ (7)), @) FM], 1=0,1,..., se[r,T]. (12)

When s = t, the conditional expectation E[u on the left hand side of (12) gives us

Wl M = B M) FMY due to the FM adaptedness of ul ™™ | In this work, we shall derive

numerical methods to calculate the conditional estimated control process IE[u§+1’M|ftM ]

for s € [t, T], where t gradually increases according to data reception. The procedure of
calculating {E[ué‘“’M |}'tM 1}t<s<r would give us an estimate for utH’M, which is what we
need in the gradient descent scheme (10) to obtain u;. However, in the conditional gradient
descent iteration (12), the gradient (J*),, on the right hand side is corresponding to ug’M,
which is M -adapted. Since the observational information {F¥}, ;<7 is not available at time

t, to make the iteration (12) implementable, we use conditional expectation E[ui+l’M|ftM ]

to replace ué’M since it provides the best approximation for uiH’M given ftM . In this way,

we denote

I+1,.M
ug M FEM

ugM | = Blug MM
and carry out the following gradient descent iteration

wgt M = M — pE[(T), M DI FM ] 1=0.1,... s e[t T, (13)

@ Springer



Journal of Scientific Computing (2020) 85:51 Page70f27 51

to derive u1+1

as desired. From Eq. (13), we can see that the conditional gradient process
[(J )., (uls M l1) |.7-",M ] is the key component and the effort to obtain such a term is composed

by the following two tasks: (i) obtaining solutions Y and Z of the following FBSDEs system

dXs = b(s, Xy, ub™|)ds + o (s, Xy, ub™|)d W, seltT]
dYs = (= ba(s, X, uf™|) Yy — o (s, X, ub™ 1) 7 Z (14)
— fe(s, X, kM) TYds + ZydWy + ¢d B, Yr = h] (X7)

where the controlled process X is corresponding to the estimated control ué’M| ¢» and (ii)
obtaining effective evaluations for the conditional expectation E[v(s) |}'tM ] fora ]-'YX \% ftM
adapted stochastic process 1 (s). In most situations, the FBSDEs system (14) is not explicitly
solvable. Therefore, we use numerical algorithms to approximate solutions X, Y and Z in this
work. The reason that we did not include the observation equation d My = g(X;)ds + d By
in the FBSDEs system (14) is that M is not contained in the expressmn (11) for the gradient
process. Moreover, when the control process is chosen to be u3 It, the adjoint BSDE in
(14) is no longer driven by observational information beyond time ¢. In fact, M is the data
collected by observation equipments and the observational data { M}~ is not available at
time ¢, and therefore the observation dynamics should not be incorporated into the FBSDEs
system.

On the other hand, when the controlled dynamics and the observation function g are
nonlinear, obtaining the conditional expectation E[v/ (s) |]-',M ] (in task (ii)) is not trivial either.
In this paper, we introduce an optimal filtering framework to achieve this goal. The standard
formulation for an optimal filtering problem is given by the following state-space model,

dS; = B(t, Sp)dt + y (¢, S)dW;

15)
dM; = g(S;)dt + dBy,
where the drift term 8 : R x R? — R¢ describes some dynamical model, and y : R x R? —
R is the diffusion coefficient that drives the Brownian motion W € R/ perturbing the
model. The stochastic process S; is usually called the state process, and M; provides partial
noisy observations for S; in the same manner of the “measurement process” introduced
in (4). The goal of the optimal filtering problem is to obtain the best estimate for W (S;)
given the observational information FM, where W is a test function. Mathematically, we aim
to find the optimal filter U, defined by the conditional expectation \fJ, = IE[\IJ(S,)|_7-',M 1.
When all the functions §, y and g in the optimal filtering problem are linear, the desired
conditional expectation can be derived analytically by the well-known Kalman filter method.
However, in most practical applications where the optimal filtering problems are nonlinear,
numerical methods are used to approximate the conditional probability density function
(pdf) for the state, i.e. p(S;|F; M) which can be used to calculate the optimal filter through
integral U, = fRd Y(x) - plx |}' M) dx. Well known nonlinear filtering methods include the
Zakai filter, in which the desired filtering density is formulated as solution of a parabolic
type stochastic PDE (Zakai equation), and the particle filter, which provides an empirical
distribution to describe p(S,|FM).
In our data driven feedback control problem, we let the controlled process X, be the
target state process S; in the optimal filtering problem and generalize the test function W as
a stochastic process defined by

(s, Xy, ubM ) = by (s, Xy, ulb™ )T Yy 4 04 (s, X, ulb™ |0 T Zg 4 fuls, X, ubM )T
(16)
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for s € [¢, T]. With the conditional pdf p(X; |ftM ) that we obtain through optimal filtering
methods and the fact that W (s, X, uﬁfM |;) is a stochastic process depending on the state of
random variable X/, the conditional gradient process IE[(J ), (ué’MII)I}",M ] in (13) can be
obtained by the following integral

E[(J*), @bM])|FM] =de[W(s,Xs,u§’M|,>|Xt =x]- p(x|FMydx, s et TI.
R

a7

In the following section, we derive a computational framework that carries out the gradient

descent optimization (13) to evaluate the data driven feedback control «}, and introduce an

efficient stochastic optimization algorithm to implement our computational framework. In

many practical applications, it is difficult to control the diffusion. Therefore, in this work we
assume that the diffusion coefficient o does not contain the control term.

3 Numerical Approach for Data Driven Feedback Control

The general framework of our data driven feedback control system is designed on a temporal
partition Iy, that reflects the capability of collecting measurement data and implementing
control actions, where Iy, is defined by

Oy, ={th:0=tgo<ti<thp<---<ty<---<ty, =T}, NreN,

and we use the control sequence {u; } ,I:IZT | to represent the control process u*. In this way, the

gradient descent (10) is restricted to discrete time instants Iy, , and the conditional gradient
descent scheme that we use to obtain u; becomes

M = u M, = pE[I, @M )IFN], n=0,1,..., Ny, n<i<Nr, (I8)

where the conditional gradient process on the right hand side of (18) is given by

B M 1)1 F = B b, Xo 1) 7Yy + fu X107 [ 7] (19)

and X, is ftfv \ .7-',1;4 measurable since its corresponding control is ufi’M |1, - In what follows,
we introduce numerical schemes to calculate X;,, Y;, and Z;, corresponding to the estimated
conditional optimal control uﬁi’M |5, in Sect. 3.1, and introduce a particle filter method, which
is one of the most widely accepted methods for solving nonlinear filtering problems, to
approximate the conditional distribution P(Xz,1|-7:[},:/l ) in Sect. 3.2. Then, in Sect. 3.3 we
combine schemes in Sects. 3.1-3.2 to formulate a computational framework for the data
driven feedback control problem with an efficient stochastic optimization implementation,
and we summarize our numerical approach in Sect. 3.4.
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3.1 Numerical Schemes for FBSDEs

We consider the FBSDEs system (14) on time interval [#;, #;4+1], i.e.
tit1 tit1
Xip =Xy, + / b(s, Xs, ubM,,)ds + f o(s, X;)dW;,  (SDE)
ti ti

li+1
Yy =Yy, + / (baCs. X d™ 1) Yy 05, X T Zy + fuls, X ulbM,)T )ds
1

i

li+1 li+1

—/ Z;dW; +/ {sd By (BSDE)
1 t;

(20)

To solve the first equation in (20), which is a standard forward SDE, we use the left-

point formula to approximate both the deterministic and stochastic integrals, and obtain the

following Euler-Maruyama discretized approximation equation for X as
Xy = Xy + b, X ™1, Al + 0 (61, X;) AW, + RYy . 1)

where Ri( ,, is the approximation error for integrals, and we denote At; = t;11 — #; and
AW[,. = WIH—I - Wti'

To derive a discretization scheme for solution Y, we take conditional expectation E;[-] :=
E[-|F;"] on both sides of the BSDE in (20) to get

tit1
Yti = IE:i[Yt,url] + / E; [bx(sv Xs, u{v‘M|tn)TYs + o (s, XS)TZS + fi (s, Xy, ui’Mhn)T]ds’
t

where the stochastic integrals are eliminated and we have used the fact that ¥;, = E;[Y},] due
to the adaptedness of Y. Then, we use the right-point formula to approximate the deterministic
integral in the above equation and obtain

Y, = Ei[Y,, +E [bx (it Xy g 1) Yoy, +0x (it Xoy) ' Zops,
'y ) (22)
+ feltivr, Xoyy oy |r,,)T]Ati + Ry

where R’{ ,, is the approximation error for the integral.
For solution Z, we multiply AW;, and take conditional expectation [E;[-] on both sides of
the BSDE in (20) to get

tiy1 g1 Y, T
B[ [ zawaw ] s awa s [ x0T
ti 1

0005 X T2y fels. X)) AW, Jds,

where we have used the fact E;[Y;, AW, ] = 0 and the independence of Brownian motions W
and B. Then, we use the left-point formula to approximate both deterministic and stochastic
integrals in the above equation and obtain

Z, At = B[y, AW, 1+ Ry, (23)

where the deterministic integral is eliminated due to the FW adaptedness and the fact that we
picked the left-point formula approximation, and R/,  is the term containing approximation
errors for integrals.
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By dropping approximation error terms R’X e R‘y , and Rl Zn in (21), (22) and (23),
respectively, we could provide a numerlcal algorlthm for solving X,Y and Z corresponding
to the gradient process E[(J *)u(”z,- | ,n)|]-'£” ] as introduced in (19):

For a fixed n < Nr — 1 representing the current time #,, and fori = Ny —1,...,n+ 1,n
with initial conditions Yy, and Zy,, we solve the FBSDEs system through the following

schemes

Xi+1 X +b(tl5 Xla utl Itn)Atl +G(tla X )AWt,

Yi =Ei[Yit1] + E; [bx(fi+1, Xit1, Mt,-’ﬂ o) " Yt + 0x (i1, Xi) ' Zig
(24)

l,
+ fr(it1, Xitr, u,ﬂltn)T]Ati
Zi = EilYi 1 AW, ] (A) ™!

where X; 1, ¥; and Z; are numerical approximations for Xy, ,, ¥, and Z;,, respectively. The
numerical analysis for schemes (24) and their extended versions are discussed in [4,47].

Remark 3.1 We notice that the random variable ¢ is not involved in numerical schemes (24)
to calculate approximate solutions X; 1, ¥; and Z;, and it’s not contained in the expression
for (J*),,. Therefore, we do not need an extra scheme to approximate ¢ in our approach.

In order to carry out numerical schemes (24), one needs to evaluate conditional expecta-
tions. There are many well-known methods to approximate expectations, such like (quasi)
Monte Carlo methods and numerical integration methods, etc. In this work, we adopt the
standard Monte Carlo method due to its high effectiveness and efficiency in approximating
expectations—especially in high dimensional spaces. Specifically, we use a set of K € N
random samples to describe AW;, and the expectations are approximated by sample means.
As a result, schemes (24) now become

X5 =X + b, X, upM )AL+ o (6, XV Aol k=1,2...,K,

o Yi, A koo LM Ty
vi=) K Tk Z[bX(ti+1’Xi+l’ut£+1|tn) i+1
k=1 k=1
(25)
.M
+ ox(tit1, ,+1) Z,+1+fx(ti+lv Xf+17uz;+1|tn)—r:|v
K vk
Z, — Z YZH»,/At,a)
Ay K

where {a) 1K i1 is a set of random samples following the standard Gaussian distribution that

we use to describe the randomness of AW,; Y; +1 and Zl 1 denote approximate solutions
Yi+1 and Z; 1 corresponding to the k-th random sample in the Monte Carlo approximation.

3.2 Particle Filter Method for Conditional Distribution

The purpose of our optimal filtering procedure is to obtain the conditional distribution for
the controlled process, which will be used to generate the conditional gradient process
E[(J *);(uil_’Mltnﬂfl{t’I ] with respect to the control process. To proceed, we consider the
controlled process on time interval [#,_1, t,,], i.e.

n n
X, = X1,y +/ b(s, Xy, us)ds +/ o(s, Xs)dWs, (26)
1 Ih—1

1—1
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and the observational data at time instant #, is given by M; = g(X;,) + n,, where 7, is
the observational noise. Well known pioneer work by Zakai showed that the desired filtering
density is equivalent to the solution of a stochastic PDE (the Zakai equation). Although the
Zakai’s approach theoretically solves the nonlinear filtering problem, due to the “curse of
dimensionality” of solving a stochastic PDE in high dimensional space, the Zakai filter is
prohibitive in practically applications. In this work, we adopt the Bayesian filter framework
and introduce a widely accepted Bayesian filter—the particle filter method—to solve for the
filtering density p(X,, |}"t’I:/’ ). The Bayesian filter framework is composed by two stages: pre-
diction stage and update stage. In the prediction stage, assuming that we have the distribution
p(Xy,_, |-7:z1,l,4, ) at time instant #,_1, the prior pdf that predicts the state of controlled process
at time ¢, is given by the following Chapman-Kolmogorov formula

pX, |7 ) = f Py, | FY (X, 1 X, )Xy,

where p(X,,|X;, ,) is the transition probability derived from the state dynamics (26). With
the new observational data M; , the update stage uses the Bayesian inference to update the
prior pdf and get the posterior pdf p(X;, |]-'tﬁ’1 ) as

Xy, |FY ) p(My,1Xs,)

p(X,, | FY) =
’ p(My, |FM )

; 27)

where p(M, |X;,) is the likelihood function that describes the discrepancy between the
predicted state and the observations [15]. In what follows, we introduce the benchmark
particle filter method (bootstrap filter algorithm [22]) to the implement the aforementioned
Bayesian filter framework due to the high effectiveness and efficiency of the particle filter in
solving nonlinear filtering problems. To proceed, assume that at time instant #,_; we have
S particles, denoted by {x,(li)] }SS= |» that follow an empirical distribution 7 (X,,_, |.7-'/y_ 1) =

% Zle (Sxm (X1,_,) as an approximation for p(X;, |ftM ), where 8, is the Dirac delta
n—1 n-
function at x. The prior pdf that we want to find in the prediction stage is approximated as

N
5 1
F(X, |FY ) = 3 D80 (X)), (28)
s=1

where ;z,ﬁ” is sampled from 7 (X;,_, |]—'f:{ P (X4, 1Xy, ). As a result, the sample cloud
{&3”}5_, provides an approximate distribution for the prior p(X,, |7 ). Then, in the update
stage, we update the approximated prior pdf to get the posterior pdf by replacing p(X;, |f£’{ )

with 7 (X, |_7-",1)‘1’{ ,) in the Bayesian inference (27) as following

~(s) S
35 80 (Xy) p(My, |53))
7 (X, | M) = T o = > w80 (X,,). (29)
Do P(My %) —l "

In this way, we obtain a weighted empirical distribution 77 (X, |.7-',’:” ) that approximates the

posterior pdf p(X;, |FM) with the importance density weight w o p(M,,|5). In prac-
tice, importance weights {w,(,s) }le tend to concentrate on a few samples after several time
steps, which dramatically reduces the effective particle size in the algorithm. To avoid such
degeneracy problem, we resample the particles {if,s)}le by replacing particles with low
density weights with copies of particles with high weights. In the bootstrap particle filter,
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we use importance sampling method to generate equally weighted samples {x,(,s) }le from

7 (Xy, |_7-',{t’[ ) to formulate our empirical distribution 7 (X, |f£” ) that describes the conditional
pdf for the controlled process p(Xj, |ft[;t/1 ) [22], i.e.

S
1
(X, 170 = 5 > 8,0 (Xs,). (30)
s=1

3.3 Stochastic Optimization for Control Process

The procedure that aims to determine the data driven optimal control is the gradient descent
iteration. In this subsection, we combine the numerical schemes for the adjoint FBSDEs
system (14) (introduced in Sect. 3.1) and the particle filter algorithm (introduced in Sect. 3.2)
to formulate an efficient stochastic optimization algorithm to solve for the optimal control
process u*.

The framework that we adopt to design our algorithm is the conditional gradient descent
iteration (18) and the conditional gradient process with respect to the control process, i.e.
E[(J*), (uﬁi’M lt,) |.7-',1"14 ], is calculated by using the integral expression (17). Specifically, on a
time instant ¢, € Iy, , we have

E[(J*), ™ 1)1 FM] = / VB Xy, [X, = 2] pa| YD,
R

where t; > t,, is a time instant after 7, and the test function W in (16) is chosen as
.M LM, \T LM, \T
W(ti, Xysuy ™ 1) = bu(tiy Xeps uy Ne,) Yo + fulli, Xooug ™ )

In our numerical approach, we use approximate solutions (Y;, Z;) of FBSDEs from schemes
(25) to replace (Y;,, Z;;) and the conditional distribution p(Xj, ]—'fr‘l’[ ) is approximated by
the empirical distribution 7 (X, |]—'tAn'1 ) obtained from the particle filter algorithm (28)—(30).
Specifically, for increasing time instants #, € Ily,,n = 0,1,2,..., N7, we solve for the
optimal control u;‘n through the following gradient descent optimization iteration

M = up M, — 0B [, M )], =012, L =1, (31)

where E,, [(J*), ul™|,)] is defined by

N
- 1
B, [ ")) =5 YO E[bute. Xy ui™1,) 7Y,
s=1 (32)

 futtrs X)X, =5,
and samples {x,(f)}f=1 follow distribution 7 (X, IJ:,[:’I ) which describes the conditional pdf
of the controlled process X;, given the observational information .7-",1"14 . Here, we want to
re-emphasize that the purpose of carrying out an optimization procedure for the condi-
tional control process {u};M| ,n}lN:Tn is to find an estimate for the optimal control at time
t,. Since the approximate conditional gradient process on the right hand side of (32) is still
under expectation, Monte Carlo simulation for E[-|X, = x,(,‘v)] is needed in general, and
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Iﬁl,n [(J*),’l (ufi’M I, )] is approximated as following

i

s=] r=1 (33)
A, , .
Ll X M) T | X = 60,

S A
11
By, [, 1)) > Zz[bum,xf**” g™, Ty

n

where A is the number of samples to approximate the expectation E[-|X; = x,(f)], X ,(I.'\’S)

is the A-th realization of controlled process with initial state X, = x, and Yi()‘ ) is the

approximate solution Y; corresponding to X t(iM)' We can see from the above Monte Carlo

approximation that in order to approximate the expectation fE,n [(J ) (uﬁl?M 1, )] in one gradi-
ent descent iteration step, we need to generate altogether S x A samples of controlled process
and evaluate the values of solution Y; corresponding to {X t(x_k’s)} 1,5 as well. This is even more
computationally expensive when the controlled system is a high dimensional process.
Inspired by the application of stochastic gradient descent (SGD) in improving the
efficiency of classic gradient descent optimization, in this work we introduce a stochas-
tic optimization algorithm that combines the particle filter method with the stochastic
gradient descent algorithm to carry out the gradient descent iteration procedure (31) effi-
ciently. When implementing the stochastic gradient descent in the optimization scheme
(31), instead of using the fully calculated Monte Carlo simulation to approximate the
conditional expectation on the right hand side of (32) [as introduced in (33)], we use
only one realization of X, to represent the expectation [1]. Specifically, the expectation

}E[bu(ti, X\ uil_’Mhn)TY + fulti, Xy, uil’Mhn)Tlth = x,s )] is represented by the random

variable b, (t;, X,(il’s) L Ml,n)TY(l 5) + fulti, X,(il’s) uiMhn)T, where X(Z’S) is a randomly

generated realization of the controlled process with initial state X ,(’f’s) x,&s) , and we use the

index { to indicate that the random generation of the controlled process varies among the gra-
dient descent iteration steps in (31). In addition, one should notice that the particles {x,(ls) }f:]
are used to describe the conditional distribution of the controlled process and the Monte
Carlo average in the the approximation scheme (32) also aims to approximate a conditional
expectation. In light of the concept of single-realization representation for expectation, we
extend this concept to the Monte Carlo averaging of the particles in the approximation scheme
(32). Therefore, we use the following expresssion to represent the conditional expectation
By, [, k™ 1,,)] in 31)

B [ M0 ] ~ bt XD M TS 4 o, X3 WM T 0 (34)

where X t(,,l’s) indicates a randomly generated realization of the controlled process with a

randomly selected initial state X t('fy) = x,(,‘e) from the particle cloud {x,(f)}f:]. In this way,
the gradient descent optimization scheme (31) becomes the following SGD optimization
iteration scheme

+LM) LM
ut,’ |fn - t

15 1 0
= o (Bt X0 ™1, Ty

, (35)
+ Fultn X0 M)T), 1=0,120 L iz,
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where Yi(l’s) is the approximate solution ¥; corresponding to the random sample X ,(il’s) indexed

by the sample pair (i ,8), and X ,([l’f) is generated as following

x50 = x5 p b, X5V M) Al o (s, XV AL oY i =0, Np —1 (36)
where Xt(j” = x,(f) € {x,&”}s PN N(0, 1), and {a)fl’&)}fV:Tfl form a sequence of ran-

s=1°"i
dom variables corresponding to the sample indices [ and x,(f). Then, the resulted conditional

optimal control process {u,f M 1, } lN:Tn leads to an estimate for our desired data driven optimal
control at time instant ¢, i.e. 12;; , which is given by
ﬁ;‘n = u,l‘n’M|,n.

As a result, particles in the particle filter method (PF) and random samples in the stochastic
gradient descent method (SGD) are combined into one stochastic optimization iteration (35),
and we use only one-realization to represent two layers of expectations instead of altogether
S x A calculations of X t(’.“) and I/i('\’s). For convenience of presentation, we name this
methodology the “PF-SGD”.

It is important to point out that in order to characterize the dependence of numerical
solution Y; on X ,(’.l’s) as we indicated in (35), one needs to provide approximations for ¥ and
Z corresponding to the random variable X. In practice, people typically derive approximate
solutions Y; and Z; on a set of spatial points that represent X, , and then construct interpolatory
approximations based on discrete solution values on those selected spatial points. This may
also be considered as spatial dimension approximation for numerical solutions of FBSDEs.
Recently, a machine learning based method has been developed, which could solve FBSDEs
in high dimensional space on a set of pre-selected spatial points [24]. However, even with
accurately calculated solutions on a large number of spatial points, characterizing ¥ and Z
with respect to the random variable X is still challenging due to the sparsity of spatial points in
high dimensional space. To address the challenge in spatial dimension approximation, in this
work we take the advantage of SDE nature of FBSDEs and incorporate numerical schemes
for FBSDEs into our PF-SGD framework. Specifically, we further extend the concept of
singel-realization representation of expectation to the numerical schemes (25) for FBSDEs

Nt
Yizn

and use the solution path {X ,(il’s) ;—,, to drive our numerical solution for ¥ and Z as following

Yl.(m) _yH 4 I:bx(ti+lv x5 ul,M|tn)TY'(l,§)

i+1 tiy1 > Tlig i+1
LHNT 0,8 18 1M, \T
oo, XiNTZ0D + fettion x5 ul 1) ]Ar,-, (37

i L5 (@.$ -
Zl( s) :Yl(_t,_i)wl( V)(Ati) 1/2’

where the Monte Carlo type approximations for expectations are replaced by a single sample

path corresponding to X z(,”) Although the schemes (37) does not provide accurate numerical
approximations for solutions of FBSDEs—compared with the conventional fully calculated
schemes, such like the schemes (25) and schemes in [13,32,47], we want to point out that
the conditional expectations in numerical schemes (24) for ¥; and Z; appear in the expres-
sion for the gradient process IEI,n [(J ) (uii’M |,n)] in (31). Therefore, the justification for the
application of SGD in the gradient descent method also applies to (37). In other words, the
purpose of obtaining numerical solutions Y; and Z; for the adjoint FBSDEs system is to carry
out the gradient descent optimization—not to derive accurate approximations for FBSDEs.
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Table 1 PF-SGD algorithm

Algorithm 1: PF-SGD algorithm for data driven feedback control problem

Initialize the particle cloud {If)s) 9, ~ ¢ and the number of iteration L € N

while n=0,1,2,--- , Ny, do

Nt

EURT] . - o.M . P i .
Initialize an estimated control process {u, ™ |, };., and a step-size p;

for SGD iteration steps [ =0,1,2,--- , L,

Simulate one realization of controlled process {Xi(ffl)}I\LTfl through scheme (36) with

X =al? e )i

Calculate so}ution {Yl(i’é)}?:NT of the FBSDEs system (14) corresponding to
{X,(fff}fg;l through schemes (37);

+1,M ‘t }
n

Update the control process to obtain {u;, N7 through scheme (35);

=n
end for

. . Lo . LM
The estimated optimal control is given by i} = u;” [

Propagate particles through the particle filter algorithm (28) - (30) to obtain {xsfll};’ﬂ
by using the estimated optimal control i .

end while

In this way, the PF-SGD schemes (35)—(37) combined together transfer our computational
efforts in solving FBSDES to optimization iterations of finding the optimal control.

3.4 Summary of the Numerical Approach

In Algorithm I (Table 1), we summarize our PF-SGD algorithm for the data driven feedback
control problem (C*).

The methodology of our approach is based on the formulation of a conditional optimization
(13), which provides the “best approximation” for the data driven feedback control u* given
the current observational information. The general computational framework combines (a)
numerical schemes for FBSDEs, which provide numerical approximation for the gradient
process with respect to the optimal control, and (b) the optimal filtering algorithm for the
conditional distribution of the controlled process, which is used to computing the conditional
expectation of the gradient process. Then, we adopt the concept of SGD and use a single-
realization of simulated controlled process to represent expectations in our computational
framework. The contribution of the PF-SGD algorithm is that every realization of particle

based simulated controlled process X ,(I.l’g), as well as its corresponding FBSDEs solution

pair (Yi(l‘s) , Zl.(l’s) ), is effectively used to search for the optimal control, which significantly
saves unnecessary computational cost on solving the optimal control problem in the entire
controlled state space.
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4 Numerical Experiments

In this section, we present three numerical examples to demonstrate the effectiveness and
efficiency of our data driven feedback control algorithm. The processor that we use to run
the numerical experiments is an Intel Core i7 with 2.5 GHz Dual-Core. In the first exam-
ple, we demonstrate the effectiveness of our computational framework by solving a classic
linear-quadratic (LQ) optimal control problem with nonlinear observations. If the real state
of controlled process is given, its corresponding optimal control process can be derived ana-
lytically. Therefore, this example could be a benchmark test that compares the data driven
optimal control calculated from our algorithm with the analytical optimal control process,
and we want to use this example to show that our algorithm could accurately provide the
optimal control process based on indirect observations of the controlled process. In the sec-
ond example, we demonstrate the efficiency of the PF-SGD implementation of our data
driven feedback control framework by solving a nonlinear optimal control problem (with
non-quadratic cost functional), which can not be solved analytically. The benchmark method
that we use in this example implements our data driven feedback control framework with the
classic Zakai filter to calculate the conditional pdf for the controlled state [8] and the gradient
decent optimization with fully calculated FBSDESs to solve the corresponding optimal control
problem [21]. Both the Zakai filter and the gradient descent method are well studied with
rigorous numerical analysis. In example 3, we solve a practical application problem—the
Dubins vehicle problem, in which we control a car-like robot to reach a given target platform
in the designated arrival time [23].

Example 1 Consider the following controlled process
dX, = A()X,dt + BU,dt + CdW;, Xo = xo, (38)

where A(t), B and C are given coefficients, X; is the multi-dimensional controlled process
with the given initial position xo and U; is the multi-dimensional control process and the cost
function J is defined by

J(U) = EB /OT ((th, X)) + (RU,, Ut))dt + %(FXT, XT)]

The optimal control U; for the above stochastic optimal control problem can be derived
analytically as }
U =-R'B"P1)X,, (39)

where P (t) is the unique solution of the following Riccati equation

dP(t)

o~ =—POA® - ATOP® + POBR'BTP@) 0, P(T)=F.

We can see from (39) that the optimal control U depends on the state of the controlled process,
which forms a feedback control problem. In our experiments, we assume that the exact
state of the controlled process X is not known and we use nonlinear indirect observations
M, = sin(X;) + n; to collect measurement data about X;, where 1, is a Gaussian random
noise with covariance I'. Therefore, the data driven feedback control has the cost functional
J*(U)

J*(UM):E[1 /T ((QX X;) + (RUM UM>)dt+1(FXT XT)] (40)
2 0 IX] t t Yt 2 ) )
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Fig.1 Comparison between empirical representation for PDF u and Shepard’s approximation for PDF u

where UM is a data driven feedback control based on observations M and we try to find U*
such that J*(U*) := minyu gy, J*(UM).

In this example, we first solve the problem by choosing the controlled process as a 2D
system with 1D control process. Specifically, let A(t) = (2sin(z), cos(¢))-Io B = (0.5, 0.5)-
I, and C = 0.11, in (38). For the cost functional, we let Q = I, R = 1 and F = I,. We
solve the data driven feedback control problem over the time interval [0, 1] by choosing the
temporal step-size At = 0.02, i.e. Ny = 50, and we let I in the observational noise be
[ = (0.1)21,. The initial state of the controlled process is chosen as xo = (1, —2)7.

In Fig. 1, we demonstrate the effectiveness of our data driven feedback control algorithm
by comparing with the analytical solution, where the analytical optimal control is calculated
from (39) with the exact controlled state and we let the analytical optimal control drive its
corresponding controlled system through Eq. (38) with synthetically generated Brownian
motion W to get the analytical controlled process. The estimated optimal control and its cor-
responding controlled process are calculated by our data driven feedback control Algorithm
1 based on observations M with 500 particles in the particle filter to describe the conditional
pdf and 1000 iteration steps for the SGD optimization for the optimal control, i.e. S = 500,
L = 1000. In Fig. la, we compare our estimated data driven feedback control (blue curve
marked by crosses) with the analytical optimal control (red curve marked by circles); and In
Fig. 1b, we compare the controlled process driven by our estimated feedback control (blue
curve marked by crosses) with the analytical optimal controlled process (red curve marked
by circles). We can see from this figure that our algorithm accurately recovers the analytical
optimal control process based on partial noisy observations for the controlled process, and
the controlled process governed by our data driven feedback control well aligns with the real
state of analytical controlled process. To further examine the performance of our algorithm,
we solve this 2D feedback control problem repeatedly and compare our estimated control
with the analytical control to get the accumulated root mean square errors (RMSEs), i.e.

Mre)t. N
1 Lt
Errrmse = Z Z 1o — U,im)lliz, (41)
MNPZ m=1 n=1

where M,;. is the total number of repeated experiments, a(nm) is our estimated data driven

feedback control at the time instant #, for the m-th repeated experiment and Utim) is the
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Fig.2 Estimation for the control 157
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analytical optimal control corresponding to the m-th realization of the analytical controlled
process at time instant #,. After repeating the above numerical experiments 100 times with
different random samples, i.e. M,.p;, = 100, we obtain that Errgysg = 0.0793, which
is very low noting that Errgysg is the accumulated RMSE combining errors of all time
instants over the time interval [0, 1], and this confirms the accuracy of our PF-SGD algorithm
in solving data driven feedback control problem.

One advantage of our algorithm is that it transfers the computational efforts in solving
dimension-dependent stochastic differential systems to the iterations of SGD. This makes
our method less sensitive to the dimension of the problem, which would address the curse
of dimensionality in solving the data driven optimal control problem. In what follows, we
solve a 4D version of the optimal control problem (38)—(40). Specifically, we let A(t) =
(2sin(?), cos(t), 1,0.5)- 14 B = (0.5,0.5, 1, 1) - I3 and C = 0.114 in the controlled process.
For the cost functional, we let Q = I4, R = I, and F = I4. As a result, the controlled
process is a 4D dynamical system and the control is a 2D process. We also solve the data
driven feedback control problem over the time interval [0, 1] by choosing the temporal step-
size At = 0.02, and we let the initial state of the controlled process be xo = (1, 2, —1, »HT,

Similar to the previous experiment, we compare our estimated data driven feedback control
(blue curve marked by crosses) with the analytical optimal control (red curve marked by
circles) in Fig. 2. To better describe a 4D distribution for the controlled state, we use 1000
particles in the filtering stage of our algorithm and still use 1000 iterations in the SGD
optimization. In Fig. 3, we compare the controlled process driven by our estimated control
process (blue curve marked by crosses) with the analytical optimal controlled process (red
curve marked by circles) in each dimension.

To further examine the performance of our algorithm, we repeat this 4D feedback control
problem 100 times with different random samples, i.e. M., = 100. Then, we calculate
the accumulated RMSEs as defined in (41) and get Errgyse = 0.0649, which combines
errors on all time instants {tn},slo= 1

From the above numerical experiments, we can see that our method could accurately
obtain the desired feedback control in both 2D experiments and 4D experiments. On the
other hand, the average CPU time for solving the 2D problem is 9.24 s and the average
CPU time for solving the 4D problem is 13.51 s, which is not a significant increase although
both the dimension of the controlled process and the control process is doubled. Since the
only difference between the 2D and 4D problems is the dimension—while they maintain the
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Fig.3 Estimation for the controlled process

same matrices structure, this CPU time comparison indicates that our algorithm is not very
sensitive to the number of dimensions.

Example 2 With verified effectiveness of our computational framework through numerical
experiments in Example 1, in this example we focus on the demonstration of the efficiency.
Consider the following 1D nonlinear controlled process

dX[ = arCtan(X[ + u,)dl + UX[dW[, (42)
where u; is the control process, o X; is the coefficient that determines the size of noise

perturbing the controlled system and we let o = 0.05 in this example. The cost functional
we try to minimize is

Ty = E[l /Tsin2 (X: + ul)dr ] 43)
- 2 0 t t )

where the observation process is defined by M; = X, + n, with a Gaussian type observa-
tional noise 1; and we choose the standard deviation for 7; to be 0.05. We can see that the

@ Springer



51 Page20o0f27 Journal of Scientific Computing (2020) 85:51

05 5.2

—— PF-SGD
5 | —A— Coarse mesh
ER: —O— Finer mesh
o .
% 248 —+— Finest mesh
: 2
S5 @ 46
5 3
€ <
<}
(&) ] 44
-2 [ | —A— Coarse mesh
—©— Finer mesh 4.2
—+— Finest mesh ST
25 : : : : ! 4 bgK— : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time Time
(a) Estimated control (b) Controlled process

Fig.4 Estimation for the control process

optimal control problem (42)—(43) is a nonlinear/non-quadratic control problem, which is
not explicitly solvable.

In this example, we demonstrate the efficiency of our PF-SGD algorithm by comparing
with the conventional benchmark numerical implementation of the data driven feedback
control framework (18)-(19), where the conditional pdf for the controlled process, i.e.
p(X;|FM), s obtained by the Zakai filter through numerical solutions of the Zakai equation,
and the gradient process (J*),, is calculated by approximate solutions of the adjoint FBSDEs
system. Both the Zakai equation and the FBSDEs are fully solved in the controlled state
space, hence we call this conventional benchmark approach the full solution method. We
want to use this one-dimensional problem comparison to show that by avoiding to obtain
full solutions of equations in each gradient descent iteration step, the PF-SGD algorithm
could solve the data driven feedback control problem (C*) efficiently. Since this is a one-
dimensional example, advanced high dimensional numerical techniques are not needed and
we use the standard grid mesh based linear interpolation to handle the spatial dimension
approximation. In our numerical experiments, we let 7 = 1 and implement the full solution
method with a coarse mesh calculation by choosing At = 0.1, i.e. Ny = 10, with spatial
partition step-size Ax = 0.1 over the pre-determined spatial interval [3, 6]; we also carry out
a finer mesh calculation by choosing At = 0.05,1.e. Ny = 20, with spatial partition step-size

Ax = ? - 0.1 over [3, 6]; in the finest mesh calculation, we let At = 0.025, i.e. Ny = 40,
with spatial partition step-size Ax = 0.05. In this way, for the fixed control period [0, 1], we
carry out more frequent control actions when choosing finer grid mesh in the full solution
method. On the other hand, the temporal step-size in our PF-SGD algorithm is At = 0.02, ,
i.e. Ny = 50, and we use 500 particles to describe the conditional pdf of X; and choose the

number of iteration to be 1000 in the SGD optimization.

In Fig. 4, we plot the estimated controls (Fig. 4a) and their corresponding controlled
processes (Fig. 4b). Specifically, we use the blue curve marked by “crosses” to represent the
numerical results obtained by our PF-SGD algorithm. The black curve marked by “triangles”
are numerical results obtained by the full solution method with coarse mesh and 10 control
actions. The red curve marked by “circles” are numerical results obtained by the full solution
method with finer mesh and 20 control actions. The green curve marked by “plus signs”
are numerical results obtained by the full solution method with the finest mesh and 40
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Table 2 Efficiency comparison

Method Coarse mesh Finer mesh Finest mesh PF-SGD
Overall cost 0.0481 0.0318 0.0076 0.00095
CPU time (s) 29.78 220.47 1560.15 0.93

control actions. From this figure, we can see that the PF-SGD method could provide more
detailed features for the control process which leads to more flexible actions in the controlled
process; and when we refine both temporal and spatial step-sizes, the full solution method’s
evaluation gets closer and closer to the PF-SGD evaluation. To indicate the performance of
each algorithm, we compare the overall cost J* (as defined in (43)) on time interval [0, 1] as
well as computing time in Table 2.

We can see from the table that with finer temporal and spatial step-size, the full solution
method gets lower cost, which can be explained by the convergence results of the Zakai filter
and numerical solutions for FBSDESs, and the PF-SGD has the lowest cost. However, the full
solution method spends much more CPU time when carried out with finer partition, and the
PF-SGD spends very short time to reach the lowest overall cost in this experiment. The reason
that the full solution method is expensive is that we have to solve both the Zakai equation and
the FBSDESs system on a large domain in the controlled state space to give one update for the
estimated optimal control, and thus the computational cost for each gradient descent iteration
is high. Moreover, the corresponding computational cost would increase significantly as the
dimension of the problem increases, which makes the full solution method prohibitive. On
the other hand, as indicated in Example 1, the computational cost of our PF-SGD method is
not very sensitive to the number of dimension for the state space, which makes our method
even more advantageous in solving high dimensional problems.

To further demonstrate the comparison results, we repeat the above experiment and cal-
culate the average cost f,* (&) (with respect to time) defined by

Mi‘(:‘)t,
1 1t .

f/. sin? (Xg’")—i—ﬁg’"))ds,
Mrepl. e 2 0

JE(@) =

where /i) is the calculated control action for the m-th repeated experiment and X ™ is the
controlled process corresponding to ™).

In Fig. 5, we present the average cost trajectories JAZ* (1) obtained from different numerical
methods through M,.,;. = 50 repeated experiments in solving the feedback control problem
(42)—(43). The blue curve marked by “crosses” is the cost trajectory of our PF-SGD algorithm
over time, the black curve marked by “triangles” is the cost trajectory of the coarse mesh
implementation of the full solution method, the red curve marked by “circles” is the cost
trajectory of finer mesh implementation of the full solution method, and the green curve
marked by “plus signs” is the cost trajectory of the finest mesh implementation of the full
solution method. We can see that when solving the problem with finer mesh and more control
actions, the conventional full solution method would perform better by achieving lower cost.
On the other hand, although the PF-SGD spends much less computing time, the cost trajectory
of PF-SGD is much lower than full solution methods, which outperforms the conventional
methods in both time and cost.
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Fig.5 Comparison of 0.02 1
performance cost over time
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0.01

Cost

0.005 ¢

Example 3 In this example, we solve a Dubins vehicle maneuvering problem. The controlled
process is described by the following nonlinear controlled dynamics

dX; = sin(6;)dt + odWs,
dY; = cos(0y)dt + odW;, (44)
d@t = M[dt +(72dW[,

where the pair (X, Y) gives the position of a car-like robot moving in the 2D plane, 6 is
the steering angle that controls the moving direction of the robot, which is governed by the
control action u;, o is the noise that perturbs the motion and control actions. In our numerical
experiments, we choose o = 0.2. The performance cost functional based on observational
data that we aim to minimize is defined as

ﬁwM)—E[ leMVm+BQX —X)2+a’—Y)ﬁ] (45)
=E[ | 30 r—Xp r=Yp))|

where (X p, Yp) is atarget location for the robot. The goal of this optimal control problem is to
let the robot reach the target location at the given terminal time 7" while trying to minimize the
control actions, and we let § = 10 to give a strong enforcement to emphasize the importance
of arriving at the target location at the terminal time. We also want to mention that the speed
of the robot is an invariant constant, and the robot has to move appropriately so that it arrives
at the target location at the desired time 7. In order to make our experiments more practical,
we assume that we do not have direct observations on the robot. Instead, we use two detectors
located on different observation platforms at (6, 1) and (—1, 4) to collect bearing angles of
the target robot as indirect observations. Specifically, the observation process is defined by

M an (X120 an (1 T+
= | arctan , arctan s
! Y, — 1 Y, — 4 &

where the observational noise 7 is a two dimensional Gaussian random variable with standard
deviation 0.0115.

In our numerical experiments, we let 7 = 1, At = 0.02, i.e. Ny = 50, and we choose
the target terminal location of the robot to be (Xp, Yp) = (5, 3). In this way, we process
observational data and implement control actions 50 times during the feedback control time
period [0, 1]. In the PF-SGD algorithm, we use 1000 particles to describe the conditional
distribution for the controlled process and choose 1000 iteration steps in SGD optimization.
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Fig.6 Controlled trajectories with different initial points

Fig.7 Estimation for the control
process

Distance

Time

In Fig. 6, we present trajectories of the controlled car-like robot driven by observational
data in three repeated experiments with three different random initial positions/steering
angles. The red circle around point (5, 3) is the target at the terminal time; the magenta
diamonds mark different initial positions of the robot; the black curves marked by triangles
give the real positions of the robot; and the blue curves marked by crosses are estimated
positions of the controlled robot from the optimal filter. Due to the high effectiveness of the
particle filter method in solving nonlinear filtering problems, we can see from this figure that
our estimation for the position of the robot is very accurate. As the main measurement for
the performance of data driven optimal control, the maneuvering robot always reaches the
target location at the terminal time and when the initial position is too close to the target, the
robot lingers around to wait for the designated time T .

To provide the robustness of performance of our algorithm in solving this Dubins vehicle
maneuvering problem, we repeat the above experiment 50 times with initial position (1, 1)
for the robot, which is also perturbed by a standard Gaussian noise; and the initial heading
direction is 7 /2, which is also perturbed by a Gaussian noise with standard deviation 0.3.
The average CPU time to carry out our PF-SGD implementation of data driven feedback
control over 50 time steps is 7.47 s, which shows the potential feasibility of our algorithm in
real-time feedback control tasks.

In Fig. 7, we plot the average Euclidean distance between the robot and the target point
(5, 3) by the red curve marked by triangles. We can see from this figure that the robot moves
towards the target platform and is “on target” at the final time with a very small error.
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5 Conclusions and Future Work

In this paper, we have introduced an efficient numerical algorithm to solve the data driven
feedback control problem, in which the optimal control is driven by indirect observations on
the (controlled) state process. The general computational framework is designed by using
the particle filter method to estimate conditional expectations in the maximum principle type
optimal control solver, and the optimization procedure for the control process is carried out
by stochastic optimization. Numerical experiments are presented to demonstrate both the
effectiveness and efficiency of our algorithm. In the future, we plan to carry out numerical
analysis to derive convergence and efficiency theorems of our algorithm. We shall also study
optimization properties, such like the necessity of convexity assumption in optimization, for
the application of SGD in our computational framework. In many practical scenarios, due to
the transportation of data and the computational implementation of algorithms, we also expect
latency between the data generation and control actions. Therefore, we plan to incorporate the
latency into the optimal control and extend the current computational framework to address
delay issues in data driven feedback control problems in the future.
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Appendix: Derivation for the Gradient Process

In this “Appendix”, we give a detailed discussion on the derivation for the gradient process
(8). To proceed, let U be convex and (X*, u™) be any state-control pair which could be an
optimal pair. For any uM € Uyql0, T, we let u®™ = u* + e™ — u*). Then the Gateaux
derivative of u™ — J*u™) at u* is given by the following:

ko &MY _ px( % T
lim iC )8 ) :E[/ (F2ODX, + £F O — w}l)dr —|—hXDXT], (46)
E—> 0

where

t

t
DX, :/ (b;‘;(s)DXs B UM — ujf])ds +/ (a)f(s)DXs o) — ujf])dws,
0 0

with DXo = 0. For convenience of presentation, we denote ¥*(¢) := (¢, X/, u}) and use
subscript to denote partial derivative of a function. Let (Y, Z, ¢) be the adapted solution to
the following adjoint backward stochastic differential equation (BSDE)

Y, = (— bi(s) Yy — o) Z — g;‘(s)T)ds + ZdWs + ¢dBy,  Yr= ()T
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with i} := h,(X7), where Z is the martingale representation of ¥ with respect to W and ¢
is the martingale representation of ¥ with respect to B. Then

W*DX7 = (Y7, DX7) — (Yo, DXo)
- /OT ((-b;;(t)TY, —or) Z — 27, DX,)
+ (Y, bEODX, + b () [ul — ufl)
+ (Zi, 0} (DX, + 0y O’ — uf]) )ds

T
+/ ((Z,,DX;) + (Y, 0 (DX + o (D[uM — u:‘])dW,
0
T
- /0 (&, DX, + o (O[uM — uf1)dB,
T
- / (_ fXODX, + b)Y+ 0 ) Z,, uM — u;‘>)dr
0
T
+ /O (20 DX0) + (Y, 05 ODX) + 0 O} = u1)aW,

T
+/0 (¢ DX; + 0, (O)u" — u1)dB,.

Substituting the above equation into the right hand side of (46), we obtain

o TEEMY — T ()
lim
e—0 &

T
= E[/o (feODX; + fu@lu — ufl)dr + hxDXT]
T
=E[/0 <<b:;(t)TYt+0:([)TZz+f;(l)—r,ufw—u;k>)d[i|
T
= EI:/(; (E[b:(f)TYt + O':(t)TZt + fu*(f)T ’ ]:tM]’ ui\/[ B ll;k)dt:l.

Here, we have used that u™ — u* is FM-measurable. Hence, in the case that u* is in the
t t t
interior of U, one has

UN,w) =E[p:) Y +0i ) Z + £ | FM], telo, T,

as required in (8), where ¥ and Z are solutions of the FBSDE system (9).
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