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Abstract

Forward backward stochastic differential equation (FBSDE) systems were in-
troduced as a probabilistic description for parabolic type partial differential equa-
tions. Although the probabilistic behavior of the FBSDE system makes it a natural
mathematical model in many applications, the stochastic integrals contained in the
system generate uncertainties in the solutions which makes the solution estimation
a challenging task. In this paper, we assume that we could receive partial noisy
observations on the solutions and introduce an optimal filtering method to make
data informed solution estimation for FBSDEs.

1 Introduction

In this work, we study a type of data informed solution estimation method for forward
backward stochastic differential equation (FBSDE) systems. The FBSDE system is
composed by two stochastic differential equations (SDEs) – a forward SDE and a back-
ward SDE (BSDE). It was first introduced as a probabilistic interpretation for a class
of semi-linear parabolic type partial differential equations (PDEs), which have been
extensively studied by scientists and engineers with massive applications in industry
[19]. Since FBSDEs describe the exactly same physics modeled by parabolic PDEs,
they found applications in all the areas that their PDE counterparts are applicable.
On the other hand, as a pure SDE system, the FBSDE system can be solved through
stochastic algorithms which are typically scalable. This would allow numerical methods
for solving FBSDEs to take the advantage of large scale parallel processing techniques
which are the main components of modern supercomputing.

The theoretical foundation of FBSDEs is the Feynman-Kac formula, which is the
bridge that links classic SDEs with parabolic PDEs through conditional expectations,
and the solution of PDEs gives some statistical description for the random samples fol-
lowing the dynamics of SDEs. In an FBSDE system, the forward SDE coincides with
a classic SDE and the BSDE plays the role of the parabolic PDE such that the BSDE
provides the statistical behavior for the forward SDE random samples. Therefore, the
forward SDE describes some stochastic dynamical system and the BSDE gives how the
dynamics are incorporated into the physical model, and thus one FBSDE system con-
tains both SDE side and PDE side of the Feynman-Kac formula. In this way, FBSDEs
could explain stochastic dynamical systems in a more natural way, which would explore
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even broader applications [2, 15, 18]. There are many efforts on solving FBSDEs nu-
merically such like [13, 23, 27, 28] and many more. All of these efforts provide effective
methods to obtain the numerical solution of BSDEs as a function of the random vari-
able that is governed by the forward SDE, which successfully capture the structural
connection between the forward SDE and the BSDE in the FBSDE system. To the
best of our knowledge, most existing numerical methods for solving FBSDEs target
on approximating the function relation between the forward SDE and the BSDE with-
out considering the randomness contained in the forward SDE. However, as a diffusion
process, the forward SDE adopts uncertainties as it propagates in time. Therefore,
conventional numerical methods that just approximate solutions as functions are not
sufficient in many practical applications, and its necessary to design solution estimation
methods that take uncertainties in the forward SDE into consideration. With rapid
development in data collection capability, we are able to gather observational data that
contains information for solutions of FBSDEs. In this connection, we introduce a com-
putational framework that applies data assimilation methods to estimate solutions of
FBSDEs based on observational data.

Data assimilation is a mathematical discipline that aims to find estimations for the
state of some stochastic dynamical system based on noisy partial observations of the
system. The major technique that accomplishes the mission of data assimilation is the
optimal filter which provides the best estimation for the target state as a conditional
expectation conditioned on the observational information. In an optimal filtering prob-
lem, the stochastic dynamical system that we want to estimate is usually named the
state process and the observations are described by an observation process. Except to
the linear case of the problem, which can be solved analytically by the Kalman filter
method, most optimal filtering methods for nonlinear problems try to approximate the
conditional probability density function (pdf) for the state process, which is also called
the filtering density. An important method for the nonlinear filtering problem is the
extended Kalman filter which solves a linearized problem and then apply the Kalman
filter method to the corresponding linear filtering problem [10]. However, due to the
linearity assumption for the classic Kalman filter method, the extended Kalman filter
does not provide reliable results for highly nonlinear problems, which is the case in this
work. One of the most successful methods that solves the nonlinear filtering problem is
the particle filter method, which is also known as the sequential Monte Carlo method
[1, 5, 9, 12, 16, 17]. The central idea of the particle filter method is to approximate
the desired conditional pdf by random samples, which are called “particles”, and then
resample particles to adjust their distribution based on observational data. The parti-
cle filter method is an effective method and could deal with the nonlinearity well. The
main drawbacks of the particle filter method are low accuracy and low stability due to
the Monte Carlo sampling/resampling. In this way, although the particle filter method
could solve nonlinear filtering problems, it’s not suitable to the task of solution estima-
tion for FBSDEs. In this work, on the other hand, we apply a novel optimal filtering
method, named the backward SDE filter, to solve the optimal filtering problem. The
main theme of the backward SDE filter is to solve a forward backward doubly stochas-
tic differential equation (FBDSDE) system whose solution is equivalent to the filtering
density up to a normalization [4, 8]. The backward SDE filter enjoys the advantages
of the particle filter as a stochastic computing algorithm, and it is also more accurate
and more stable than the particle filter since the solution of the FBDSDE system is the
analytical filtering density as desired for the optimal filtering problem.

The computational framework for the solution estimation for FBSDE systems is
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composed by two components: First of all, we solve the target FBSDE system numeri-
cally and obtain approximate solutions without using observational data. Secondly, we
derive an optimal filtering problem that aims to estimate FBSDE solutions and then
solve it with the backward SDE filter to get data informed solution estimations for the
FBSDE system. The rest of this paper is organized as follows. In Section 2, we give a
brief statement for the solutions estimation problem that we try to solve. In Section 3,
we introduce the backward SDE filter approach to achieve the goal of this paper. Sec-
tion 4 discusses numerical implementation of the computational framework and Section
5 shows numerical experiments to demonstrate the performance of our algorithm.

2 Problem statement

In this section, we introduce the general formulation of the problem that we aim to solve.
We start our discussion by introducing the forward backward stochastic differential
equation (FBSDE) system in Section 2.1. Our primary goal in this work is to estimate
solutions of FBSDEs and filter out the uncertainties contained in the solutions caused
by stochastic integrals. Then, in Section 2.2 we propose to apply the optimal filtering
method to make the best estimation for the solutions based on observational data.

2.1 Coupled forward backward stochastic differential equations

We consider the following FBSDE system defined on the probability space (Ω,F ,P )

dXt = b(Xt,yt,zt)dt+σ(Xt,yt,zt)dWt, X0 = ξ

dyt =−f(Xt,yt,zt)dt+ztdWt, yT = Ψ(XT ),
(2.1)

where
b : [0,T ]×Rd×Rm×Rm×l→Rd,

σ : [0,T ]×Rd×Rm×Rm×l→Rd×l,

f : [0,T ]×Rd×Rm×Rm×l→Rm

Ψ :Rd→Rm

are given functions and ξ is a random variable following some given probability distri-
bution. The first equation in the system (2.1) is a stochastic differential equation (SDE)

propagating from time 0 to t, where Wt is a standard Brownian motion in Rd and
∫ t

0
·dWt

is an Itô type stochastic integral; the second equation is a so-called backward stochastic
differential equation (BSDE), which propagates from a future time T (with a given side
condition yT = Ψ) to the current time t. To distinguish the first equation in (2.1) from
the BSDE, we sometimes call it the forward SDE. Denote FW

t :=σ{Ws;0≤s≤ t} to be
the σ-algebra generated by the Brownian motion Wt that contains all the information
generated by Xt. It can be shown [22] that under proper assumptions for functions b,
σ, f and Ψ, there exists a unique solution Vt adapted to FW

t for the above FBSDE
system, where Vt := (Xt,yt,zt) is a triple and zt is the martingale representation for yt.
In addition, yt and zt are functions of Xt, i.e. yt =yt(Xt), zt = zt(Xt), and one can
prove that

yt =∇σ(Xt,yt,zt)zt, (2.2)

which connects the solutions yt and zt.
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The FBSDE system has applications in many areas. One significant application of
FBSDEs is in finance theory. For example, the forward SDE in (2.1) could model the
dynamics of stock prices in the financial market. In this application, the drift term b
is usually interpreted as the stock appreciation rates which constantly determine the
change of stock values and σ is the volatility matrix which reflects uncertainties of stocks
in the market. Therefore, the solution Xt describes the stock values at time t. On the
other hand, a specially designed BSDE could model the option price for the stocks given
a specific exercise price at a future time T and zt gives the investment portfolio which is
the combination of stocks to satisfy the option [11, 18]. In the situation that some agent
holds large portion of option which could influence stock prices, the functions b and σ
would contain the option price yt, and therefore the FBSDE system becomes coupled.
Another remarkable application of the FBSDE system is in stochastic optimal control
theory. If the forward stochastic process Xt in (2.1) is controlled by some control terms,
it is usually named the “controlled process”. Then, we can find a BSDE corresponding to
the adjoint stochastic process of the controlled process. In this connection, the FBSDE
system would result the so-called “stochastic maximum principle” for the stochastic
optimal control problem [14, 24].

In most areas that FBSDEs are applicable, we want to find the solution Vt of (2.1).
Since yt and zt are functions of Xt, for any given point x∈Rd such that Xt =x, the
solution for (2.1) is expressed as Xt =x, yt =yt(x) and zt = zt(x). In this way, tradi-
tional numerical approaches for solving FBSDEs focus on finding approximations for
functions yt(·) and zt(·), and leave Xt as a random variable. However, as a random
variable, Xt contains uncertainties which is generated by the Brownian motion through
the Itô integrals. In practice, we usually don’t have the exact value of Xt as Xt =x,
and the solution pair (yt,zt) of the FBSDE system (2.1) as functions of Xt are also
random variables due to the randomness caused by the uncertainties in Xt. In order to
estimate the solution triple (Xt,yt,zt), in this work we assume that we are able to collect
observational data on Xt and we propose to use optimal filtering methods, which will
be discussed in the following subsection, to filter out the uncertainties in the random
variable Xt and make data informed estimations for solutions of FBSDEs.

2.2 Optimal filtering problem

The optimal filtering problem is usually formulated by the following state-space model
on the probability space (Ω,F ,P ):

dSt =h(St)+γdWt, (State)

dMt =g(St)+dBt, (Observation)
(2.3)

where St and Mt are two stochastic processes which take values in Rd and Rk respec-
tively; h :Rd→Rd and g :Rd→Rk are two functions; Wt and Bt are two independent
Brownian motions that bring uncertainties to St and Mt; and we assume that S0 fol-
lows a initial distribution p0. The stochastic process St is called the “state process” that
describes the state of some stochastic dynamical model, and γ in the state process is
the covariance matrix for the state noise Wt. Mt is usually named by the “observation
process”, which provides noise perturbed measurements for St through the observation
function g(·). The goal of the optimal filtering problem is to find the best estimation for
Φ(St) based on observations, where Φ(·) is a given test function. Mathematically, we
want to find the conditional expectation for Φ(St) given the observational information
Mt :=σ(Ms,0≤s≤ t), i.e. Φ̃(St) :=E[Φ(St)|Mt]. The solution Φ̃(St) of the optimal
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filtering problem is often called the “optimal filter” of Φ and it can be expressed by the
integral of Φ(·) multiplied by a density function pt, i.e.

Φ̃(St) =E[Φ(St)|Mt] =<Φ(x),pt(x)>, (2.4)

where the inner product < ·, ·> indicates the spatial integral with respect to x over
the Rd space and pt =p(Xt|Mt) is the conditional probability density function (pdf) of
the state St given Mt, which is usually called the filtering density. In most practical
approaches for solving the optimal filtering problem, we aim to find the filtering density
pt and use the inner product (2.4) to calculate the solution Φ̃(St).

With the aforementioned optimal filtering framework, in this paper we propose to
gather observations Mt for the solution Xt in the FBSDE system. Actually, in most ap-
plications the forward SDE in (2.1) describes the state of some dynamical model, which
is usually observable. Specifically, we assume that we have the following observation
process

dMt =g(Xt)dt+dBt, (2.5)

where g(·) is the observation function that collects information about Xt. Our goal in
this work is to find the estimate solution V̂t := (X̂t, ŷt, ẑt) as

X̂t =E[Xt|Mt], ŷt =E[yt|Mt], ẑt =E[zt|Mt], (2.6)

where the conditional expectation has incorporated the information contained in obser-
vational data. To calculate X̂t, ŷt and ẑt, we need two components: (i) the solution
(Xt,yt,zt) of the FBSDE system (2.1); and (ii) the conditional pdf of Xt given ob-
servational information, which is the filtering density pt that we need to find in the
optimal filtering problem. When we get the conditional distribution of the forward S-
DE Xt, we could calculate X̂t, ŷt and ẑt by X̂t =<x,pt(x)>, ŷt =<yt(x),pt(x)> and
ẑt =<zt(x),pt(x)>. The procedure to obtain the second component is the standard op-
timal filtering problem and the first component is typically achieved through numerical
methods for solving FBSDEs. While both components are well studied, to the best of
our knowledge, this is the first attempt to introduce a computational framework that
combine these two efforts together to get effective data informed estimations for the
solution of FBSDEs.

Apparently, accurate approximations for pt in the optimal filtering problem is the
key component in calculating X̂t, ŷt and ẑt. Well known optimal filtering methods such
like the ensemble Kalman filter and the particle filter are Monte Carlo based method-
s. Although they are effective optimal filtering techniques in solving many application
problems, due to the fact that both Kalman filters and particle filters solve approximate
problems for the original optimal filtering problem and the low accuracy of these meth-
ods typically occurs in Monte Carlo type approaches, these methods are not suitable for
the task in this work as we need an accurate approximation for the density function to
calculate the inner product < ·, ·>. In order to provide a more accurate approximation
for the conditional pdf, in what follows we introduce a backward SDE filter approach
to solve the optimal filtering problem and thus derive an accurate numerical method to
estimate the data informed solution V̂t for the coupled FBSDE system.

3 Backward SDE filter for FBSDEs

The mathematical foundation of the backward SDE filter is the forward backward doubly
stochastic differential equation (FBDSDE) system. In this section, we first introduce
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the backward SDE filter that solves the general optimal filtering problem (2.3) through
the FBDSDE system. Then, we present formulation of the backward SDE filter for
estimating solutions of coupled FBSDEs. To simplify our presentation, in the rest of
this paper we assume that σ is an invariant constant.

The goal of the backward SDE filter is to find the conditional pdf, i.e. the filtering
density pt, for the state St in the optimal filtering problem. Then the optimal filter
would be obtained by taking the inner product of the test function and the conditional
pdf as indicated in (2.4). However, instead of getting the filtering density in the original
probability space (Ω,F ,P ), we are going to derive the conditional pdf for the target state
in an induced probability space (Ω,F ,P̃ ), where P̃ is defined by the Radon-Nikodym

derivative, i.e. dP̃
dP =Qt

0. The function Qt
s is the Girsanov transformation function

defined by

Qt
s := exp(

∫ t

s

g∗(Sr)dMr−
1

2

∫ t

s

|g(Sr)|2dr) (3.7)

where g∗ is the transpose of g and we denote Qt :=Qt
0. From the Girsanov transfor-

mation theorem, we know that when the observation function g in (2.3) satisfies the
Novikov’s condition, the observation process Mt can be considered as a standard Brow-
nian motion under the induced probability measure P̃ [7, 25]. It’s important to observe
that

E[Φ(St)
∣∣Mt]∝ Ẽ[Φ(St)Q

t
∣∣Mt]. (3.8)

Therefore, the conditional pdf that we obtain in (Ω,F ,P̃ ) is equivalent to the filtering
density in the original probability space up to a normalization factor.

In connection with the optimal filtering problem (2.3), for any given time instant
t>0 we introduce the following FBDSDE system in the probability space (Ω,F ,P̃ ),

dSr =h(Sr)dr+γdWr, S0 =x,

dUr =VrdWr−g(Sr)Urd
←−
Mr, Ut = Φ(St),

(3.9)

where h, g and γ are the same coefficients in the optimal filtering problem, the side
condition Φ is the test function in (2.4), Wt is the Brownian motion in the state pro-
cess and Mt is the observation process which is a Brownian motion under the induced
probability P̃ . We can see that the first equation in (3.9) is a standard SDE, which is
equivalent to the state process in the optimal filtering problem. The second equation
is called a backward doubly stochastic differential equation (BDSDE). It contains two

stochastic integrals
∫
·dWr and

∫
·d
←−
Mr. The second integral, i.e.

∫
·d
←−
Mr, is an Itô

integral integrated backward which is also named “backward Itô integral”. Specifically,
for a quasi-uniform temporal partition s= t0<t1< ·· ·<tN−1<tN = t, the backward Itô
integral for a stochastic process φt is defined by∫ t

s

φrd
←−
Mr := lim

∆→0

N∑
n=0

φtn+1
(Mtn+1

−Mtn),

where ∆ = max
0≤i≤N−1

(tn+1− tn). We can see that the BDSDE has similar structure to

a BSDE except that there’s an extra backward Itô integral involved in the equation.
The solution of the above FBDSDE system is also a triple (St,Ut,Vt), where Vt is the
martingale representation of Ut. It has been shown that under certain assumptions for
h, g and Φ, the FBDSDE system (3.9) has a unique solution [21].
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One important property of the FBDSDE system (3.9) is that the solution U satisfies
the following optimal filtering type Feynman-Kac formula

U0 = Ẽ
[
Φ(St)Q

t
∣∣Mt,S0 =x

]
, (3.10)

where Ẽ is the expectation under the induced probability measure P̃ . The proof of
(3.10) involves applications of Girsanov transformation, martingale representation and
a type of Itô formula for two-sided Itô integrals [20], and we refer to [4] for details
of the proof. Although the equivalent relation (3.10) shows that the solution Ut of
the FBDSDE system (3.9) provides information about the conditional expectation of
Φ(St)Q

t given Mt, the extra condition S0 =x indicates that (3.10) is a conditional
expectation for a given deterministic point at time t= 0, and therefore U0 does not
provide the desired solution of the optimal filtering problem.

In order to obtain the filtering density that leads to the solution, one can prove
that the adjoint process for Ut, denoted by Ỹt, is the conditional pdf for the state pro-
cess. Specifically, on time interval [0,t] we introduce the following stochastic differential
system in the probability space (Ω,F ,P̃ )

d
←−
X r = h(

←−
X r)dr−γd

←−
W r,

←−
X t =x,

dỸr =−
d∑

j=1

∂hj
∂xj

(
←−
X r)Ỹrdr− Z̃rd

←−
W r +g∗(

←−
X r)ỸrdMr, Ỹ0 =p0(X0),

(3.11)

where
∂hj

∂xj
is the partial differential operator with respect to the j-th component of

←−
X t, g

∗ is the transpose of the observation function g, and p0 is the distribution of S0.

We notice that in (3.11) the dW integrals are backward Itô integrals, i.e.
∫
·d
←−
W r, and

the dM integral is now a standard forward Itô integral, i.e.
∫
·dMr. Since the initial

condition for the first equation is given at time t, i.e.
←−
X t =x, it propagates backward in

time from t to 0, which is consistent with the backward Itô integral. Therefore, the first
equation in (3.11) is a standard SDE with inverse time index. On the other hand, the
second equation contains both the standard forward Itô integral and the backward Itô
integral, which follows the structure of BDSDEs except that the propagation direction
is from 0 to t. In this way, the stochastic differential system (3.11) is an FBDSDE
system with inverse time index, and the existence and uniqueness for the solution triple

(
←−
X t,Ỹt,Z̃t) in (3.11) are guaranteed.

Under some regularity assumptions, we can prove that Ut and Ỹt are adjoint stochas-
tic processes, which means the inner product of Ut and Ỹt for any time instant t is a
constant almost everywhere (see [3, 4]), i.e. <U0,Ỹ0>=<Ut,Ỹt>, ∀t>0. Then, from
the side conditions Ut = Φ and Y0 =p0 introduced in (3.9) and (3.11) respectively, we
know that

Ẽ
[
Φ(St)Q

t
∣∣Mt

]
=<U0,p0>=<U0,Ỹ0>=<Ut,Ỹt>=<Φ,Ỹt>,

which leads to
<Φ,Ỹt>= Ẽ

[
Φ(St)Q

t
∣∣Mt

]
∝E

[
Φ(St)

∣∣Mt

]
. (3.12)

Therefore, the inner product of a test function Φ and the solution Ỹt of the time inverse
FBDSDE system (3.11) is proportional to the conditional expectation of Φ, which means
that the solution Ỹt is the unnormalized filtering density as desired in the optimal
filtering problem.
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Now, we shall discuss the backward SDE filter approach to estimate the solution Vt
of coupled FBSDEs. Recall that we have observational data in the form of some obser-
vation process Mt to collect information about Xt. The contribution of the backward
SDE filter in this framework is to derive the conditional pdf of Xt given the observa-
tional information. Since the solutions yt and zt are both functions of Xt, with the
conditional pdf of Xt and choosing yt and zt to be the test function Φ, the optimal
filters ỹt and z̃t ( as defined in (2.4) ) would be our estimations for yt and zt.

To proceed, we first describe the optimal filtering problem based on the FBSDE
system (2.1). Since the stochastic process Xt is the target state, we let the forward
SDE to be the state process and use it to replace St in the optimal filtering problem to
get the following state-space model

dXt =b(Xt,yt,zt)+σdWt, (State)

dMt =g(Xt)+dBt, (Observation)
(3.13)

whereMt is the observation process that provides noisy observations for the state process
Xt. It’s important to mention that the state process in the optimal filtering problem
(3.13) contains solutions yt and zt of the coupled FBSDE system. Therefore, we need
to solve for yt and zt in (2.1) with the side condition yT = Ψ in order to obtain the state
process Xt. In addition, since yt and zt are functions of Xt, the dynamics b in (3.13) is
a combined function i.e. b(·,yt(·),zt(·)), and the dynamics h(·) in the optimal filtering
problem (2.3) is now in the form of h(x) = b(x,yt(x),zt(x)). We also want to recall that
although yt and zt are stochastic processes, the uncertainty of yt and zt is from Xt

as functions yt(Xt) and zt(Xt). As we discussed above, the solution Ỹt of the time
inverse FBDSDE system (3.11) is equivalent to the unnormalized filtering density that
leads to the solution of the optimal filtering problem. It follows from the derivation of
the backward SDE filter through the relation between the FBDSDE system (3.11) and
the optimal filtering problem (2.3) that the FBDSDE system for the optimal filtering
problem (3.13) is

d
←−
X r = b(

←−
X r,
←−y r,
←−z r)dr−σd

←−
W r,

←−
X t =x,

dỸr =−
d∑

j=1

∂bj
∂xj

(
←−
X r,
←−y r,
←−z r)Ỹrdr− Z̃rd

←−
W r +g∗(

←−
X r)ỸrdMr, Ỹ0 =p0(S0),

(3.14)

where p0 is the distribution of ξ, which is the initial condition for X0, the back arrows on

yt and zt indicate that ←−yt and ←−z t are both functions of
←−
X t in (3.14). When we get the

solution Ỹt in the induced probability space (Ω,F ,P̃ ), in order to obtain the estimations
in the original probability space (Ω,F ,P ), we apply the Girsanov transform to Ỹt and
get Yt :=QtỸt/C, where C is a normalization factor. Therefore, the estimation for the
solution of FBSDEs, i.e. V̂t = (X̂t, ŷt, ẑt) defined in (2.6), is given by

X̂t =<Xt,Yt>, ŷt =<yt,Yt>, ẑt =<zt,Yt>. (3.15)

As a result, the aforementioned framework includes two steps: (i) the construc-
tion step for the appropriate optimal filtering problem (3.13) based on the solutions
of FBSDEs; and (ii) the backward SDE filter step to solve the corresponding filtering
problem. Since in most practical problems, it’s very difficult to find analytical solutions
for coupled FBSDEs and optimal filtering problems are not explicitly solvable when the
state-space model is a nonlinear system, in the following section we shall introduce a
numerical approach to implement steps (i)-(ii).
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4 Numerical approach

The numerical implementation of the backward SDE filter approach for estimating so-
lutions of coupled FBSDEs is composed by two computational tasks: (i) numerical
solution for FBSDEs and (ii) numerical solution for FBDSDEs. In this section, we shall
discuss numerical schemes for solving FBSDEs and FBDSDEs separately. Then, we
construct the general computational framework that combines the numerical solutions
of FBSDEs and FBDSDEs to achieve the goal of solution estimation for FBSDEs. For
the convenience of presentation, in this work we introduce our algorithms in the one
dimensional case. The multi-dimensional cases can be obtained in a similar way.

4.1 Numerical solution for FBSDEs

We first derive numerical methods for solving the FBSDE system (2.1). To proceed, we
introduce a temporal partition ΠN (0,T ) :={0 = t0<t1<t2< ·· ·<tN =T} on the time
interval [0,T ], where N is the number of partition steps, T >0 is a given positive time
instant, and we denote ∆tn := tn+1− tn to be the stepsize at the temporal partition
step n and denote ∆Wtn :=Wtn+1

−Wtn . Then, for n= 0,1,2,. ..,N−1, we consider the
FBSDE system on the sub-interval [tn,tn+1] in the integral form as following

Xtn+1 =Xtn +

∫ tn+1

tn

b(Xt,yt,zt)dt+

∫ tn+1

tn

σdWt, (SDE)

ytn =ytn+1
+

∫ tn+1

tn

f(Xt,yt,zt)dt−
∫ tn+1

tn

ztdWt. (BSDE)

(4.16)

To derive a numerical solution for (4.16), we first discuss approximation schemes for the
integrals in the system. Since we aim to describe the general methodology of applying
optimal filtering methods to estimate solutions of FBSDEs, in this work we use classic
numerical integration methods to approximate integrals. Specifically, for the SDE in
(4.16), we apply the left point formula to approximate the deterministic integral and
get

Xtn+1 =Xtn +b(Xtn ,ytn ,ztn)∆tn +σ∆Wtn +Rn
X , (4.17)

where Rn
X :=

∫ tn+1

tn
b(Xt,yt,zt)dt−b(Xtn ,ytn ,ztn)∆tn is the approximation error. It’s

worthy to mention that since we assume that σ is an invariant constant, it’s straight-
forward that σ∆Wtn =

∫ tn+1

tn
σdWt. For the BSDE in the system, we apply the Euler-

Maruyama scheme to approximate the stochastic integral, and apply the right point
formula to approximate the deterministic integral. In this way, we get

ytn =ytn+1
+f(Xtn+1

,ytn+1
,ztn+1

)∆tn−ztn∆Wtn +Rn
Y , (4.18)

where Rn
Y :=

∫ tn+1

tn
f(Xt,yt,zt)dt−f(Xtn+1

,ytn+1
,ztn+1

)∆tn +ztn∆Wtn−
∫ tn+1

tn
ztdWt is

the approximation error.

Based on the discretization formulas (4.17) and (4.18), we derive numerical schemes
for the FBSDE system on the time interval [tn,tn+1]. For the solution Xt, it’s easy
to observe that by dropping the approximation error term Rn

X in (4.17), we obtain an
approximation scheme for Xt directly.

For solutions yt and zt, we derive their approximation schemes from (4.18). Define
En
X [·] :=E[·|Xtn ] as a conditional expectation given the random variable Xtn . Then, we

take the conditional expectation En
X on both sides of (4.18) to get

ytn =En
X [ytn+1 ]+En

X [f(Xtn+1 ,ytn+1 ,ztn+1)]∆tn +En
X [Rn

Y ], (4.19)
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where we have used the facts that En
X [ztn∆Wtn ] = 0 and ytn is FW

tn adapted which leads
to En

X [ytn ] =ytn . From (4.19), we can see that by dropping the conditional expectation
of the error term Rn

Y , i.e. En
X [Rn

Y ], we obtain an approximation for yt. In order to
derive a numerical scheme for zt, we multiply ∆Wtn on both sides of the discretized
equation (4.18). Then, we take the conditional expectation En

X to get

En
X [ytn∆Wtn ] = En

X [ytn+1
∆Wtn ]+En

X [f(Xtn+1
,ytn+1

,ztn+1
)∆Wtn ]∆tn

−En
X [ztn(∆Wtn)2]+En

X [Rn
Y ∆Wtn ].

Since ytn and ztn are independent from ∆Wtn , we have En
X [ytn∆Wtn ] = 0 and

En
X [ztn(∆Wtn)2] = ztn∆tn. Therefore, the above equation can be rewritten as

ztn∆tn = En
X [ytn+1

∆Wtn ]+En
X [f(Xtn+1

,ytn+1
,ztn+1

)∆Wtn ]∆tn

+En
X [Rn

Y ∆Wtn ].
(4.20)

Now we combine (4.17), (4.19) and (4.20), and drop the error terms Rn
X , En

X [Rn
Y ]

and En
X [Rn

Y ∆Wtn ] to get

Xtn+1 ≈ Xtn +b(Xtn ,ytn ,ztn)∆tn +σ∆Wtn ,

ytn ≈ En
X [ytn+1 ]+En

X [f(Xtn+1 ,ytn+1 ,ztn+1)]∆tn,

ztn∆tn≈ En
X [ytn+1∆Wtn ]+En

X [f(Xtn+1 ,ytn+1 ,ztn+1)∆Wtn ]∆tn.

(4.21)

Denote Xn+1 to be our numerical solution for Xt at time instant tn+1, and yn and zn
to be numerical solutions for yt and zt at time instant t= tn, we could obtain numerical
schemes for Xn+1, yn and zn from (4.21). Specifically, for the time level n=N−1,N−
2, ·· · ,2,1,0, let yN =yT , zN = zT and derive zT from Ψ (from the identity (2.2)), we
introduce the numerical schemes to solve the FBSDE system (2.1) recursively on the
time interval [tn,tn+1] as following

Xn+1 = Xn +b(Xn,yn,zn)∆tn +σ∆Wtn ,

yn = En
X [yn+1]+En

X [f(Xn+1,yn+1,zn+1)]∆tn,

zn∆tn = En
X [yn+1∆Wtn ]+En

X [f(Xn+1,yn+1,zn+1)∆Wtn ]∆tn.

(4.22)

In the scheme (4.22) we observe that the approximation for Xn+1 depends on yn and
zn. On the other hand, Xn+1 is also required to get yn and zn. In this way, iteration
is needed when calculating numerical solutions for Xt, yt and zt. To obtain a solvable
scheme for coupled FBSDEs, we introduce the following algorithm: With the initial-
ization yN =yT and zN = zT , and for the recursive step n=N−1,N−2, ·· · ,2,1,0, we
solve for Xn+1, yn and zn iteratively in a loop. Specifically, we let y0

n =yn+1, z0
n = zn+1

at the time step n. For l= 0,1,2, ·· · , the iteration version of schemes (4.22) is given by

X l+1
n+1 = Xn +b(Xn,y

l
n,z

l
n)∆tn +σ∆Wtn ,

yl+1
n = En

X [yn+1]+En
X [f(X l+1

n+1,yn+1,zn+1)]∆tn,

zl+1
n ∆tn = En

X [yn+1∆Wtn ]+En
X [f(X l+1

n+1,yn+1,zn+1)∆Wtn ]∆tn.

(4.23)

When certain criteria, which is typically set to max(‖yl+1
n −yln‖,‖zl+1

n −zln‖)<ε
(or l+1≤L) for some user defined parameter ε>0 (or L∈N), is satisfied, we let
Xn+1 =X l+1

n+1, yn =yl+1
n , and zn = zl+1

n .

Remark: At each recursive step tn+1→ tn, every term in the scheme (4.23) is
FW

tn adapted. Therefore, Xn should be considered as known and some effective spatial
representation for Xtn can be used to construct Xn [8, 26].
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4.2 Numerical solution for FBDSDEs

Next, we derive numerical methods for solving the time inverse FBDSDE system (3.14)
corresponding to the optimal filtering problem (3.13) as the foot stone in our numerical
approach. For the same temporal partition ΠN (0,T ), we consider the following FBDSDE
system on the time interval [tn,tn+1]:

←−
X tn =

←−
X tn+1−

∫ tn+1

tn

b(
←−
X s,
←−y s,
←−z s)ds+

∫ tn+1

tn

σd
←−
W r,

Ỹtn+1
=Ytn−

∫ tn+1

tn

b′(
←−
X s,
←−y s,
←−z s)Ỹsds−

∫ tn+1

tn

Z̃rd
←−
W r +

∫ tn+1

tn

g∗(
←−
X r)ỸrdMr,

(4.24)

where b is the drift term in the state process and b′ denotes the first order spatial

derivative with respect to the
←−
X variable. Similar to the discussion on FBSDEs, we

derive the numerical solution by discretizing the integrals first. For the SDE in the
system (the first equation in (4.24)), we notice that the stochastic integral is a backward
Itô integral that integrates backward in time from tn+1 to tn with a given initial variable
←−
X tn+1

, which is equivalent to a standard SDE except that the propagation direction is
backward. In this way, we use the right point formula to discretize the deterministic

integral to be consistent with the propagation direction, and we have
∫ tn+1

tn
γd
←−
W r =

γ∆Wtn since we assume that γ is an invariant constant in this work. As a result, we
obtain the following discretization equation

←−
X tn =

←−
X tn+1−b(

←−
X tn+1 ,

←−y tn+1 ,
←−z tn+1)∆tn +σ∆Wtn +

←−
Rn

X , (4.25)

where
←−
Rn

X := b(
←−
X tn+1

,←−y tn+1
,←−z tn+1

)∆tn−
∫ tn+1

tn
b(
←−
X s,
←−y s,
←−z s)ds is the approximation

error. For the BDSDE (the second equation in (4.24)), we can see that there are
two stochastic integrals in the equation with different propagation directions, i.e.∫ tn+1

tn
Z̃rd
←−
W r is a backward Itô integral and

∫ tn+1

tn
g∗(
←−
X r)ỸrdMr is a forward Itô in-

tegral where Mt is a standard Brownian motion under the induced probability measure
P̃ . Based on the propagation direction, we use the Euler-Maruyama scheme to approx-
imate the stochastic integrals as∫ tn+1

tn

Z̃rd
←−
W r = Z̃tn+1

∆Wtn +
←−
Rn

W

and ∫ tn+1

tn

g∗(
←−
X r)ỸrdMr =g∗(

←−
X tn)Ỹtn∆Mtn +

←−
Rn

M ,

where we denoted ∆Mtn :=Mtn+1
−Mtn , and

←−
Rn

W =
∫ tn+1

tn
Z̃rd
←−
W r− Z̃tn+1

∆Wtn ,
←−
Rn

M =∫ tn+1

tn
g∗(
←−
X r)ỸrdMr−g∗(

←−
X tn)Ỹtn∆Mtn are approximation errors. Substituting the

above approximations into the second equation in (4.24) and applying the left point
formula to approximate the deterministic integral, we obtain

Ỹtn+1
=Ỹtn−b′(

←−
X tn ,

←−y tn ,
←−z tn)Ỹtn∆tn− Z̃tn+1

∆Wtn +g∗(
←−
X tn)Ỹtn∆Mtn +

←−
Rn

Y ,
(4.26)

where
←−
Rn

Y is the approximation error for integrals in (4.26) with

←−
Rn

Y :=
←−
Rn

M −
←−
Rn

W +b′(
←−
X tn ,

←−y tn ,
←−z tn)Ỹtn∆tn−

∫ tn+1

tn

b′(
←−
X s,
←−y s,
←−z s)Ỹsds.
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In the approximation equation (4.26), we have used the classic Euler-Maruyama scheme
to describe the stochastic integrals and the left point formula to approximate the de-
terministic integral. Higher order methods require more sophisticated mathematical
derivation due to the fact that the stochastic integrals have different propagation direc-
tions and more complicated Itô expansion is needed. We refer to [6] for discussions of
higher order schemes. On the other hand, we want to point out that in this work we
solve the FBDSDE system in the induced probability space (Ω,F ,P̃ ) and then transfer
the solution back to the original probability space to solve the optimal filtering problem.
In this way, the effectiveness of Girsanov transformation has stronger influence to the
accuracy of the backward SDE filter. To derive a numerical solution for Ỹt, we define

Ẽn+1
X [·] := Ẽ[·|

←−
X tn+1

,Mtn+1
] and take the conditional expectation Ẽn+1

X on both sides
of (4.26) to get

Ỹtn+1
=Ẽn+1

X [Ỹtn ]− Ẽn+1
X [b′(

←−
X tn ,,

←−y tn ,
←−z tn)Ỹtn ]∆tn

+ Ẽn+1
X [g∗(

←−
X tn)Ỹtn ]∆Mtn + Ẽn+1

X [
←−
Rn

Ỹ
],

(4.27)

where we have used that fact that Ỹtn+1 = Ẽn+1
X [Ỹtn+1 ] and Ẽn+1

X [Ztn+1∆Wtn ] =

Ztn+1 Ẽ
n+1
X [∆Wtn ] = 0 since

←−
X t propagates backward.

Combining (4.25) and (4.27), and dropping the error terms
←−
Rn

X and Ẽn+1
X [
←−
Rn

Ỹ
], we

obtain the following approximations for
←−
X tn and Ỹtn+1

←−
X tn ≈

←−
X tn+1−b(

←−
X tn+1 ,

←−y tn+1 ,
←−z tn+1)∆tn +σ∆Wtn ,

Ỹtn+1
≈ Ẽn+1

X [Ỹtn ]− Ẽn+1
X [b′(

←−
X tn ,

←−y tn ,
←−z tn)Ỹtn ]∆tn + Ẽn+1

X [g∗(
←−
X tn)Ỹtn ]∆Mtn .

(4.28)

From the formulation of the backward SDE filter, we observe that only the solution Ỹt
appears in the inner product (3.12) that provides the conditional pdf for the state, and
Z̃t is not needed to estimate the conditional expectation for a test function Φ. At the
same time, we also notice that an approximation for Z̃t is not necessary to approximate

Ỹt from (4.28). Therefore, obtaining numerical approximations for
←−
X tn and Ỹtn+1

is
sufficient.

For the time level n= 0,1,2, ·· · ,N−1, we introduce the recursive numerical schemes
for the FBDSDE system (3.11) as follows.

←−
Xn =

←−
Xn+1−b

(←−
Xn+1,yn+1(

←−
Xn+1),zn+1(

←−
Xn+1)

)
∆tn +σ∆Wtn ,

Ỹn+1 = Ẽn+1
X [Ỹn]− Ẽn+1

X

[
b′
(←−
Xn,yn(

←−
Xn),zn(

←−
Xn

))
Ỹn

]
∆tn + Ẽn+1

X [g∗(
←−
Xn)Ỹn]∆Mtn .

(4.29)

where
←−
Xn is our numerical solution for

←−
X t at time tn and Ỹn+1 is the numerical solution

for Ỹt at tn+1 as desired in the backward SDE filter. Also, in the above scheme we have
used approximations for solutions ytn , ztn of FBSDEs, i.e. yn, zn that we obtained by
solving (2.1) through the scheme (4.23).

4.3 Computational framework

With the numerical schemes (4.23) and (4.29), we now introduce our computational
framework that estimates solutions of FBSDEs by using the backward SDE filter. Recall
that we aim to estimate V̂t = (X̂t, ŷt, ẑt) based on the observational informationMt, i.e.



Bao, Cao, & Yong 13

X̂t =E[Xt|Mt], ŷt =E[yt|Mt], ẑt =E[zt|Mt]. The optimal filtering problem that
finds V̂t is described by a state process

dXt = b(Xt,yt,zt)+σdWt,

which coincides with the forward SDE in FBSDE (2.1); and an observation process

dMt =g(Xt)+dBt,

which provides observational informationMt about Xt. From the discussions in Section
3, we know that the FBDSDE system corresponding to the above optimal filtering
problem is

d
←−
X r = b(

←−
X r,
←−y r,
←−z r)dr−σd

←−
W r,

←−
X t =x,

dỸr =−b′(
←−
X r,
←−y r,
←−z r)Ỹrdr− Z̃rd

←−
W r +g∗(

←−
X r)ỸrdMr, Ỹ0 =p0(X0),

(4.30)

where the solution Ỹt of the FBDSDE system (4.30) is the un-normalized filtering density
for the state Xt.

The computational framework in this work follows the methodology of the back-
ward SDE filter. We first solve the FBSDE system (2.1) through scheme (4.23) to
obtain approximate solutions for yt and zt so that we have the complete formulation
of the optimal filtering problem. Then we solve the FBDSDE system (4.30) to obtain
the approximate solution for Ỹt by using the scheme (4.29). Since we solve the FBDS-
DE system under the induced probability P̃ , finally we transfer the solution Ỹt to the
original probability space by using the Girsanov transformation. Specifically, with the
approximate solution Ỹn+1 at time instant tn+1, we let Yn+1 :=Q

tn+1

tn Ỹn+1/C be the
approximate filtering density as desired, where C is a normalization factor.

In what follows, we describe our computational framework and summarize the entire
algorithm.

Initialization: Generate a temporal partition ΠN (0,T ). Initialize Y0 by setting Y0 =p0,
and initialize yN and zN by using the side condition given in (2.1). Define a positive
constant ε>0 (or L∈N) as the stopping criteria for iteration.

Numerical solution for the FBSDE system: For n=N−1,N−2, ·· · ,1,0, solve
the FBSDE system by using the iteration scheme (4.23) to get {yn}N−1

n=0 and {zn}N−1
n=0 .

Implement the backward SDE filter: For n= 0,1,2, ·· · ,N−2,N−1,

- Numerical solution for the FBDSDE system: Solve the FBDSDE system corre-
sponding to the optimal filtering problem (3.13) by using the scheme (4.29) to
get Yn+1.

- Girsanov transformation: Apply the Girsanov transform to obtain the filtering
density Yn+1(=Q

tn+1

tn Ỹn+1/C) under the original probability space (Ω,F ,P ).

- Solution estimation: Calculate X̂n+1 =<x,Yn+1>, ŷn+1 =<yn+1,Yn+1>,
z̃n+1 =<zn+1,Yn+1>.

In order to implement the above algorithm, we need a set of spatial points to describe

the random variables Xt and
←−
X t, which can be considered as the spatial approximation

for our algorithm. There are many effective methods to achieve this goal, such like
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the uniform tensor product mesh, sparse grid/adaptive sparse grid mesh [26], quasi-
Monte Carlo based meshfree points [6], and adaptive meshfree points based on sequential
Monte Carlo methods [8]. In addition, approximation methods to simulate conditional
expectations are needed in both schemes (4.23) and (4.29). Well known approaches
include the Monte Carlo method, quasi-Monte Carlo methods and numerical integration
methods [29].

In the following section, we demonstrate the performance of our optimal filtering
method for estimating solutions of FBSDEs, and we use the classic uniform mesh to

represent Xt and
←−
X t, and use Gaussian-Hermite quadrature to approximate conditional

expectations.

5 Numerical experiments

In this section, we verify the performance of our algorithm. The main theme of our
approach is to use the inner product of the conditional pdf for the state of the forward
SDE in the target FBSDE system and the solutions of FBSDEs to obtain data informed
solution estimations. Therefore, the primary computational tasks of this algorithm are
numerical solutions for FBSDEs and numerical solutions for FBDSDEs, which would
provide conditional pdf for the forward SDE Xt. In the first example we present a
demonstrate experiment to confirm the convergence of our algorithm under theoretical
framework by calculating the inner product of solutions of FBSDEs and solutions of
FBDSDEs. In the second example we examine the effectiveness of our algorithm in
estimating solutions of coupled FBSDEs with observational data. In Example 3, we solve
a linear stochastic feedback control problem to demonstrate the practical application
potential of the computational framework we introduced in this work.

5.1 Example 1.

Consider the following coupled FBSDE system

dXt =ytdt+σdWt

dyt =
( sin(Xt +α)

σ
zt−

1

2
σ2yt

)
dt+ztdWt.

(5.31)

with analytical solution yt = sin(Xt +α) and zt = cos(Xt +α)σ, where α is a given con-
stant and σ is the diffusion coefficient in the forward SDE. Then, we introduce the
following FBDSDE system that mimics the time inverse FBDSDE system correspond-
ing to an optimal filtering problem

d
←−
X t =ytdt+σd

←−
W t

dYt =Yt

(
2(
←−
X t−β)yt−

(
−1+2(

←−
X t−β)2

)
σ2 +

1

8

)
dt

+Ztd
←−
W t +

1

2
YtdBt.

(5.32)

Although the deterministic integral in the BDSDE part of the above FBDSDE system
is not exactly

∫
b′(Xs,ys,zs)ds as desired in the aforementioned framework, it provides

a close analogue which can be used to examine the convergence performance of our
methodology. We can derive that the analytic solution Yt for (5.32) is Yt = exp

(
−

(
←−
X t−β)2 + Bt

2

)
, which looks like a typical unnormalized Gaussian distribution.
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In this example, we choose the parameters in (5.31) and (5.32) as α= 1, β=−1,
σ= 0.25, and show the convergence trend in approximating yt, zt in Table 1. The “Error

Table 1: Example 1: Approximation errors for yt, zt

Stepsize ∆t= 2−3 ∆t= 2−4 ∆t= 2−5 ∆t= 2−6 ∆t= 2−7 CR

Error yt 2.508e−02 1.052e−02 5.049e−03 2.431e−03 1.189e−03 1.091

Error zt 7.915e−03 4.723e−03 2.346e−03 1.148e−03 5.652e−04 0.965

yt” and “Error zt” that we present in the table are errors in L2 norm corresponding
to the given partition stepsize, i.e. ∆t= 2−3,2−4,2−5,2−6,2−7, and “CR” stands for
convergence rate. We can see from the table that the convergence rate for the numerical
solutions of FBSDEs is first order. In Table 2, we show the root mean square errors
(RMSE) in L2 norm for the Yt approximation. In this experiment, we also use partition
stepsize ∆t= 2−3,2−4,2−5,2−6,2−7 to be consistent with the (yt,zt) approximations,
and repeat the numerical experiment 300 time to calculate RMSEs. As a result, we can
see from the table that numerical scheme (4.29) for solving the FBDSDE system has
half order convergence rate, i.e. CR= 0.687 in this experiment.

Table 2: Example 1: Approximation errors for Yt

Stepsize ∆t= 2−3 ∆t= 2−4 ∆t= 2−5 ∆t= 2−6 ∆t= 2−7 CR

RMSE Yt 3.005e−02 1.902e−02 1.172e−02 7.8493e−03 4.316e−03 0.687

Since X̂t is the mean value of Xt variable whose accuracy is based on the Yt ap-
proximation that is presented in Table 2, in this example we examine numerical ap-
proximations for <yt,Yt> and <zt,Yt>, which are proportional to ŷt and ẑt under the
optimal filtering framework. In Figure 1, we plot the logarithmic RMSEs of <yt,Yt>
approximations and <zt,Yt> approximations in subplot (a) and subplot (b), respec-
tively. In each subplot, we use red, black, green, blue and magenta curves to represent
approximation logarithmic RMSEs with stepsize ∆t= 2−3,2−4,2−5,2−6,2−7, respective-
ly. From the figure, we can see the convergence trend of our algorithm with decreasing
temporal stepsizes under the theoretical framework,

5.2 Example 2.

In this example, we present the effectiveness of our algorithm in estimating the solution
Vt of the FBSDE system with observational data. To proceed, we consider the following
FBSDE system

dXt =
(
yt−arctan(Xt)−

t

2

)
dt+σdWt,

dyt =
(1

2
− Xt

(1+X2
t )
σzt

)
dt+ztdWt,

(5.33)

where the SDE and BSDE are coupled. We can derive that the solutions yt and zt of the
above FBSDE system are yt = arctan(Xt)+ t

2 and zt = 1
1+X2

t
σ. In order to estimate the
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Figure 1: Convergence of the estimations: subplot (a) shows estimation errors for <
yt,Yt>; subplot (b) shows estimation errors for <zt,Yt>.

solution, in this example we assume that we receive observational data on the solution
Xt of the FBSDE system (5.33). Specifically, we introduce the following observation
process to give us Xt measurements

dMt =Xtdt+RdBt,

where R is the variance for the noise Bt and the observation function is linear, i.e.
g(Xt) =Xt. As a result, we aim to solve the following optimal filtering problem

dXt =
(
yt−arctan(Xt)−

t

2

)
dt+σdWt,

dMt =Xtdt+RdBt,
(5.34)

We observe that with the analytical solution yt = arctan(Xt)+ t
2 , the forward SDE in

(5.33) is equivalent to a standard Brownian motion. Therefore, given the solution yt of
the FBSDE system, the optimal filtering problem (5.34) is equivalent to the following
linear version

dXt =σdWt,

dMt =Xtdt+RdBt,
(5.35)

which can be solved analytically by the classic Kalman filter. Since the filtering prob-
lem (5.35) does not depend on the FBSDE system and the Kalman filter provides the
exact solution, we use the Kalman filter in this example as the benchmark reference
performance for the estimation.

In Figure 2, we present the estimation for X̂t over the time interval [0,2], which can
be considered as the tracking performance for the state of Xt given the observation Mt.
The observation gap we choose in this experiment is ∆t= 0.04, therefore we track Xt for
50 steps, i.e. N = 50. The black curve marked by “plus signs” shows the real state of Xt;
the red curve marked by “crosses” represent the estimation obtained by the backward
SDE filter approach for the optimal filtering problem (5.34); and the blue curve marked
by “circles” is the Kalman filter estimation for the equivalent linear problem (5.35). We
can see from this figure that the backward SDE filter which implements our computa-
tional framework provides very similar results to the Kalman filter which only works
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Figure 2: Estimation for the state of Xt. (Example 2)

for simplified problems. We want to point out that although the Kalman filter method
does not always match the real state in this experiment, it gives the best estimate for
the state based on observations due to the noises contained in the observational data.

Next, we verify the capability of our method in solving nonlinear problems, especially
in dealing with nonlinear observations. In the following experiment, we use a nonlinear
observation function to collect observational information, i.e. let

dMt = (Xt)
2dt+RdBt, (5.36)

where the data is collected through the nonlinear function (Xt)
2. In Figure 3, we present
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Figure 3: Estimation for the state of Xt with indirect observations. (Example 2)

the backward SDE filter estimation for Xt by using the nonlinear observation process
(5.36). The magenta curve marked by “plus signs” is the real state and the blue curve
marked by “diamonds” is the backward SDE filter estimation. We can see that although
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we use nonlinear observations for the state, our method still provides close estimation
for the state.

To examine the solution estimation performance for the FBSDE system, in Figure
4 we plot the estimate solutions yt and zt, i.e. ŷt and ẑt, in subplots (a) and (b)
respectively. In each subplot, we use the red curve marked by “crosses” to represent
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(a) Estimation for yt
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(b) Estimation for zt

Figure 4: Estimation for the state of yt and zt. (Example 2)

the backward SDE filter estimation with the linear observation introduced in (5.34);
the blue curve marked by “diamonds” shows the backward SDE filter estimation with
the nonlinear observation process (5.36); the black curve marked by “diamonds” is
the Kalman filter estimation derived from the equivalent linear filtering problem (5.35)
with analytical solutions yt and zt, which performs as the reference solution. From this
experiment, we can see that our estimations are very close to the reference estimation
obtained by the Kalman filter, which indicates the effectiveness of our computational
framework in estimating solutions of FBSDEs.

5.3 Example 3.

In this example, we apply our method to solve a feedback stochastic optimal control
problem. The optimal control part of the problem is the classic linear-quadratic (LQ)
model, which is described by the following controlled state equation{

dXs =[AXs +Bus]ds+CdWs, s∈ [t,T ],

Xt =x,
(5.37)

where A, B and C are given constants and ut is the control process that governs the
equation of Xt. In the stochastic optimal control problem, we want to determine a
control process ut that minimizes the convex cost functional which is defined as following

J(t,x;u) =E
[∫ T

t

(
q(X(s))+ |u(s)|2

)
ds+h(X(T ))

]
.

Here, q(·) and h(·) are convex coercive functions. It can be shown that the optimal
control ut uniquely exists to minimize the cost function, i.e. infut∈U J(t,x;u), and
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satisfies the expression ut =−Byt, where yt is the solution of the following coupled
FBSDE 

dXs =
[
AXs−B2ys

]
ds+CdWs

dys =−
[
Ays−qx(Xs)

]
ds+zsdWs

Xt =x, yT =hx(XT ).

(5.38)

As a result, solving the aforementioned optimal control problem is equivalent to solving
the FBSDE system (5.38), and we can obtain the optimal control ut by using the
numerical solution for yt which could be very accurate. However, the control strategy
we obtain in this way only gives us a function of Xt and in practice the control should
depend on the state of Xt which is actually unknown. In order to make real time
estimation for Xt and make adjustment to better design the control strategy ut, we
assume that we could receive observations on the state equation Xt and denote the
observation process as

Mt =Xt +Ḃt.

Therefore, the optimal filtering estimate X̂t would give us the timely feedback for the
current state of controlled process and the estimate solution ŷt for the FBSDE system
(5.38) would lead to the control strategy that we should use at the time instant t based
on the observational data.

To implement the numerical experiment, we choose q(x) = 0.15 x2 and h(x) = 0.1x2

in the cost function. For the controlled process, we let A= 0.1, B= 0.5 and C= 0.25,
and assume that our initial guess for X0 to be X̂0 = 0 while the actual state is X0 = 0.1.
We assume that we receive observations in every 0.02 second, i.e. ∆t= 0.02 and estimate
the controlled process and the control process for 1 second, i.e. N = 50. Since this is a
classic benchmark problem which can be well solved by the Kalman filter, we compare
our estimate with the estimate obtained by using the Kalman filter method. In Figure 5,
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Figure 5: Estimation for the state Xt. (Example 3)

we plot the estimate for Xt over the time interval [0,1] to demonstrate the performance
of filtering methods in state estimation. The black curve marked by “plus signs” is the
real controlled state that we observe; the red curve marked by “crosses” is the backward
SDE filter estimate for the state of Xt; the blue curve marked by “circles” shows the
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estimate obtained by using the Kalman filter method. We can see that both methods
provide similar results, which are very close to the real state of the controlled dynamics.

Finally, we present the data informed estimation for the solution yt, i.e. ŷt, given the
observational information contained in Mt. With the estimated ŷt, we can derive the
real time feedback optimal control as ût =−Bŷt. In Figure 6, we show the estimation
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Figure 6: Example 3: Estimation for the state of yt.

performance by using the backward SDE filter and the Kalman filter. The red curve
marked by “crosses” is the estimate obtained by using the backward SDE filter and the
black curve marked by “diamonds” is the estimate obtained by using the Kalman filter
which we use in this experiment as the benchmark reference performance. We can see
that the backward SDE filter estimate is very close to the Kalman filter estimate, which
is also consistent with the estimation for the controlled process (demonstrated in Figure
5). We also want to mention that our method is not restricted to the linear case of the
feedback stochastic optimal control problem, which is the only case that the Kalman
filter is applicable. In this way, our method would allow us to solve broader application
problems.
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