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Wereport onan analytical and numerical study of the dynamicsof a three-dimensional
array of identical magnetic flux tubes in the reduced-magnetohydrodynamic description
of the plasma. We propose that the long-time evolution of this system is dictated
by flux-tube mergers, and that such mergers are dynamically constrained by the
conservation of the pertinent (ideal) invariants, viz. the magnetic potential and axial
fluxes of each tube. We also propose that in the direction perpendicular to the merging
plane, flux tubes evolve in a critically balanced fashion. These notions allow us to
construct an analytical model for how quantities such as the magnetic energy and
the energy-containing scale evolve as functions of time. Of particular importance
is the conclusion that, like its two-dimensional counterpart, this system exhibits an
inverse transfer of magnetic energy that terminates only at the system scale. We
perform direct numerical simulations that confirm these predictions and reveal other
interesting aspects of the evolution of the system. We find, for example, that the
early time evolution is characterized by a sharp decay of the initial magnetic energy,
which we attribute to the ubiquitous formation of current sheets. We also show that a
quantitatively similar inverse transfer of magnetic energy is observed when the initial
condition is a random, small-scale magnetic seed field.
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1. Introduction

Inverse transfer of magnetic energy from small to large scales in highly conducting
plasmas is an important topic in modern plasma physics and astrophysics. It
is particularly important for understanding magnetogenesis (Kulsrud & Zweibel
2008), i.e. the origin of large-scale magnetic fields that are ubiquitous in space
and astrophysical systems. Examples of such systems include planets, such as
Earth and Jupiter, main-sequence stars including the Sun, neutron stars and white
dwarfs, accretion disks around black holes, the interstellar medium (ISM) in galaxies,
including the Milky Way, and, on even larger scales, the hot gas in the intracluster
medium. While the leading paradigm for the origin of large-scale fields invokes
turbulent magnetohydrodynamic (MHD) «$2 dynamo (Parker 1955), driven by
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turbulence coupled with large-scale differential rotation (Goldreich & Lynden-Bell
1965), successful dynamo action needs a seed magnetic field of sufficient strength and
sufficiently large coherence length to overcome resistive (or other non-ideal) losses.
In some natural systems, however, the seed field may originate at very small, kinetic
scales and then has to traverse many orders of magnitude in coherence length to
reach the desired, extremely large, astronomical scales.

An important example of this scenario arises when the initial field is generated via
the Weibel instability (Fried 1959; Weibel 1959) — for example, in a collisionless
shock (Medvedev & Loeb 1999). This is relevant to systems as diverse as gamma-
ray-burst (GRB) jets, supernova explosions and large-scale accretion shocks at the
outskirts of galaxies during the early stages of galaxy formation (Gruzinov 2001).
The initial field in these situations can be conceptualized as small-scale (of the order
of a few electron or ion skin depths) elongated magnetic flux ropes associated with
current filaments (Silva et al. 2003; Huntington et al. 2015). The ultimate fate of
these seed fields is unclear. On the one hand, although they may be strong (in the
sense that magnetic pressure is comparable to the plasma pressure, i.e. the plasma
B ~1), they might dissipate rather quickly due to their small scales. On the other hand,
current filaments are prone to coalesce and thus gradually transfer energy to larger
scales. Therefore, it is not a priori clear whether such electron-scale (or ion-scale)
fields survive on long time scales, how quick and effective the inverse magnetic-energy
cascade arising from their mergers might be and what fraction of the initial magnetic
energy the inverse cascade can deliver to large-enough scales, where the field can be
picked up and amplified by the ambient turbulence (e.g. in the context of galactic
magnetogenesis). An estimation of such scales can be found in appendix A. In the
context of GRB prompt emission and afterglow, an important additional question is
whether the Weibel-produced field in a relativistic shock can survive long enough to
explain the observed powerful synchrotron emission (Medvedev & Loeb 1999; Silva
et al. 2003; Medvedev et al. 2005; Ruyer & Fiuza 2018).

A complex, volume-filling network of magnetic flux ropes is also relevant for
various heliospheric environments. In the solar corona, flux-tube dynamics is believed
to be a key element in determining the complex magnetic structures that are
observed (Parker 1983), and in addressing longstanding problems such as coronal
heating (Dmitruk & Goémez 1999; Einaudi & Velli 1999; Klimchuk, Patsourakos &
Cargill 2008; Khabarova et al. 2015; Zank et al. 2015). In the solar wind, in situ
measurements made by the ACE, Ulysses and Wind Spacecraft track the evolution
and merging of flux tubes, which may be associated with enhancement in the flux
of energetic ions (Hu, Chen & le Roux 2019). In addition, observations from the
two Voyager spacecraft (Stone et al. 2005, 2008) and IBEX (McComas et al. 2009)
strongly suggest that the heliosheath is composed of a turbulent sea of magnetic flux
ropes (Opher ef al. 2011). Understanding the dynamics of these flux ropes is thus
critical to developing a model of the heliosheath, and its efficiency at accelerating
energetic particles. Indeed, magnetic reconnection in this ‘sea’ of flux tubes has been
proposed as a mechanism for the acceleration of anomalous cosmic rays (Lazarian &
Opher 2009; Drake et al. 2010; Le Roux ef al. 2015), providing additional motivation
to understand the merging of flux tubes in a statistical way.

The broad recognition of the scientific importance of flux-rope dynamics has
motivated numerous theoretical and experimental studies. Detailed numerical kinetic
investigations of the merging of a small number (usually 2-4) of flux ropes were
carried out recently (East et al. 2015; Yuan et al. 2016; Lyutikov et al. 2017a,b).
These studies consider only a few interacting flux ropes and thus cannot be viewed as
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Multi-scale dynamics of magnetic flux tubes and inverse energy transfer 3

statistical investigations of a hierarchical, multi-stage coalescence process. However, in
recent years, several theoretical studies have used statistical approaches to understand
systems of merging structures in various astrophysical contexts (Gruzinov 2001;
Medvedev et al. 2005; Kato 2005; Katz, Keshet & Waxman 2007; Fermo, Drake &
Swisdak 2010; Lyutikov et al. 2017a,b; Zrake & Arons 2017) and the dynamics of
coronal magnetic loops (Uzdensky & Goodman 2008). Despite all of these efforts,
important questions remain to be answered. For example, what are the underlying
physical mechanisms of the merging process, and what are the merging statistics
in three-dimensional (3-D) systems? On the experimental side, there have been
detailed investigations of the 2-D dynamics during the merger of pairs of annular flux
ropes (Yamada et al. 1997; Jara-Almonte et al. 2016) and others focusing on the 3-D
dynamics of flux ropes (Furno et al. 2005; Gekelman, Lawrence & Van Compernolle
2012; Intrator et al. 2013; Sears et al. 2014; Gekelman et al. 2016).

Another problem which may be intimately connected to the flux-tube dynamics is
that of the recently reported numerical observation of inverse transfer of magnetic
energy in non-helical turbulent systems (Zrake 2014; Brandenburg, Kahniashvili
& Tevzadze 2015; Reppin & Banerjee 2017). These results have been met with
some surprise, because conventionally in MHD turbulence, the inverse energy
transfer associated with the inverse cascade of magnetic helicity is explained by
the conservation of non-zero net magnetic helicity (Pouquet 1978; Matthaeus &
Lamkin 1986; Christensson, Hindmarsh & Brandenburg 2001). A possible approach
to understanding the above-mentioned recent numerical observations is to figure out
the detailed magnetic field dynamics that enables inverse energy transfer. From this
point of view, a statistical description of the dynamics of magnetic structures can
shed light on this self-organization of magnetic field by providing a dynamical model
of this process.

Motivated by these considerations, in previous work (Zhou et al. 2019, hereafter
referred to as Z19) we derived a solvable analytical model describing the evolution of
two-dimensional, initially small-scale magnetic fields via their successive coalescence
enabled by magnetic reconnection. The model is based on the conservation of
mass and magnetic flux during the merging process. Our theory identifies magnetic
reconnection as the key mechanism controlling the evolution of the field and
determining the properties of such evolution: magnetic energy is found to decay
as 7', where 7 is time normalized to the (appropriately defined) reconnection time
scale; and the correlation length of the field grows as 7'/2. Our 2-D hierarchical model
was directly verified by 2-D reduced-magnetohydrodynamic (RMHD) simulations that
we carried out.

In the present paper, we generalize our theory to 3-D systems (§ 2 and appendix B),
which we successfully test with 3-D RMHD simulations (§3). In appendix A, we
apply the scaling laws of magnetic field evolution obtained in this work to the
problem of galactic magnetogenesis, and address the relevance of small-scale magnetic
seed fields to the galactic dynamo. Additionally, we demonstrate (appendix C) that
reconnection-enabled inverse transfer remains a robust phenomenon when the initial
condition is a random magnetic field, rather than a structured array of magnetic flux
tubes. Conclusions from this study and a discussion of some implications of our work
can be found in §4.

2. Statistical theory of three-dimensional flux-tube mergers
2.1. Three-dimensional hierarchical model

In this section, we introduce a 3-D hierarchical model to describe the merger of
magnetic flux tubes. Our goal is to obtain explicit expressions for the evolution of
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quantities such as magnetic energy and the coherence length of magnetic field in
both the merging plane and the direction perpendicular to it, as functions of time.
Similar to its 2-D counterpart (Z19), the 3-D model is constructed in the framework
of resistive incompressible RMHD, although the key ideas should remain valid in
some collisionless plasma descriptions.

In our RMHD system, a constant strong background magnetic guide field B, = B,Z
is assumed, and the xy plane is referred to as the perpendicular plane. We consider
an ensemble of magnetic flux tubes of the same size and with the same magnetic
field strength as the initial condition. The magnetic field in each flux tube can be
decomposed into the constant guide field B, and the perpendicular magnetic field B,
corresponding to an electric current parallel or anti-parallel to the guide field. For
simplicity, each flux tube is assumed to be of cylindrical shape, with radius R (in the
xy plane) and length [ in the z direction. The lengths R and [ represent the coherence
lengths of the perpendicular magnetic field, B, in the directions perpendicular and
parallel, respectively, to the guide field. In the RMHD approximation, B, and R are
asymptotically smaller than B, and [/ respectively. The magnetic field lines in each flux
tube thus have either right- or left-handed helical shapes depending on the direction
of the current, with asymptotically small pitch angles. The flux tubes are assumed to
be randomly distributed in the system and volume filling, with half of them carrying
currents parallel to the guide field, and the other half anti-parallel. Each flux tube
is a system of concentric cylindrical magnetic flux surfaces nested around the tube’s
single magnetic axis aligned with the guide field. It contains axial magnetic flux ¥, =
B,mR?* and poloidal (i.e. azimuthal around the magnetic axis) magnetic flux ¥, =
BRI, where BY™ is the characteristic perpendicular magnetic field of each flux tube.
In the perpendicular xy plane, the magnetic potential of a flux tube is defined as
Ybe = BUR similar to its 2-D counterpart. Thus, ¥, = y""/. figure 1 schematically
represents the simplified geometry of a single tube as we have just described.

The magnetic energy associated with the perpendicular magnetic field contained in
a flux tube is €y >~ TR*I(B}™)?/(87) = (¥"**)?/8. Denoting by N the number density
of flux tubes per unit volume [N ~ 1/(mtR?)], the total magnetic energy density (of
the perpendicular magnetic field) of the system is, therefore, Ey =€y N = (B‘fbe)2 /(87).
In addition, we denote the number density of flux tubes per unit area in the xy plane
as N, where N, ~1/(nR*) and N, = NI.

A non-zero local magnetic helicity exists associated with each flux tube, defined as
h= f dVipe A + B, where B=V x A. In the RMHD limit, however, this expression
simplifies as follows:

h = / dVype A -B = / dVie (A By + A B™)

~ —B, / dVipe "™ ~ —(B,nR?) (B™RIl) = —W,¥,, (2.1
represented by the product of axial flux and poloidal flux. In the derivation, the
approximation is made based on the RMHD ordering A; < A, and B}™ < B,.

When two flux tubes with parallel axial currents are close to each other, they are
unstable to the coalescence instability and approach each other (Finn & Kaw 1977),
merging into a wider flux tube via reconnection of their poloidal fluxes. For simplicity,
we assume the merging process to happen in discrete stages, denoted by index n. We
assume the mergers to proceed in hierarchical fashion and, therefore, take all flux
tubes to be identical at each stage. The index n is thus added as a subscript to the
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FIGURE 1. Schematic of the flux-tube geometry considered in our analytical model. A flux

tube is characterized by its radius R, length [, perpendicular magnetic field B'*, axial flux

¥, and poloidal flux ¥,.

above quantities to indicate the generation of mergers to which they belong. As the
flux tubes merge, the above quantities evolve; i.e. they are functions of n and so,
implicitly, of time.

We also assume mergers to be binary (N, ,y1 = N ,/2) and governed by basic
conservation laws (similar arguments can be found in Medvedev et al. (2005),
Polomarov, Kaganovich & Shvets (2008), Lyutikov et al. (2017a) and Zrake & Arons
(2017)).

First, the merger of two flux tubes should conserve the axial magnetic flux: ¥, 1 =
2Y, ,. Since the axial magnetic field B, is a constant, it follows that the area of the
perpendicular cross-section should be conserved and, therefore,

R,1 =~/2R,. (2.2)

Second, the perpendicular magnetic potential associated with each flux tube is not
affected by reconnection and, as in the two-dimensional case (Z19), should remain the
same: YMPf = . Combined with (2.2), we obtain the evolution of perpendicular
magnetic field and its energy density

BY™ | =BY /N2, Eyii=Eua/2. (23)

We assume that the parallel coherence length of each flux tube is determined
by the critical balance condition, i.e. the statement that the pertinent parallel and
perpendicular time scales should roughly be the same (Goldreich & Sridhar 1995).
Parallel dynamics is dictated by the propagation of shear Alfvén waves along the
magnetic field. Therefore, the parallel time scale is 7y ~ [/V,4, with V, the Alfvén
speed computed with the guide field. In the perpendicular plane, the relevant time
scale is 7, ~ R/vs, with vy the Alfvén speed computed with B‘jbe. That this is
the relevant perpendicular time scale to consider remains true even during mergers,
since merging tubes are not static, but rather move in the perpendicular plane at
roughly the ambient v,. Note also that another relevant perpendicular time scale
is the reconnection time — that is, the time it takes to merge two tubes through
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reconnection. This is always slower than Alfvénic, implying that critical balance can
always establish itself dynamically.
We thus find

Ty~ 1. =1/B,~R/B™. (2.4)

Plugging equations (2.2)—(2.3) into this relation, we obtain the evolution of coherence
length of magnetic field in the parallel direction

- 2.5)

That is, [ ~ R?, i.e. the magnetic flux tubes grow faster in the parallel direction than
on perpendicular planes. Knowing the magnetic potential remains the same during the
merging process, the poloidal flux (¥, = ¥"*]) increases with the length of the flux
tubes: ¥, .1 =2¥,,. As a result of the increasing flux contained in each generation
of flux tubes as they merge and grow, the magnetic helicity associated with each flux
tube also increases: h,,| = 4h,.

Our next step in order to obtain a continuous-time description of the evolution is to
compute the lifetime of each generation; this entails a discussion of the reconnection
process mediating the mergers.

The Lundquist number corresponding to the merging tubes at any given nth
stage is defined as S, = R,va,/n, where n is the (constant) magnetic diffusivity.
Importantly, S o< RB*/n o« " /n. Therefore, and as we pointed out in our earlier
work (Z19), the constancy of the magnetic potential ™ during the mergers implies
the same for the Lundquist number: S,,, = S,. In particular, in MHD, if S < 10%,
reconnection proceeds in the Sweet—Parker (SP) regime (Parker 1957; Sweet 1958).
In this regime, the dimensionless reconnection rate, defined as B = Vrc/Va, Scales
with the Lundquist number as B.. >~ S~'/2. In contrast, if S > 10* then magnetic
reconnection proceeds in the plasmoid-dominated regime (Biskamp 1986; Loureiro,
Schekochihin & Cowley 2007; Lapenta 2008; Bhattacharjee et al. 2009; Samtaney
et al. 2009; Huang & Bhattacharjee 2010; Uzdensky, Loureiro & Schekochihin 2010;
Loureiro et al. 2012; Loureiro & Uzdensky 2016) with B.. ~ 0.01. Therefore, we
reach the non-trivial conclusion that the normalized reconnection rate, .., remains
unchanged throughout the evolution, and the merging process remains in the same
reconnection regime (SP or plasmoid dominated) in which it started initially.

We can now proceed to calculate the lifetime of each generation. We note first
that, by definition, the time it takes to reconnect (merge) two flux tubes is 7, =
BlR/va = Blt.. Since B < 1, the time scale for the nth stage is approximately

rec
the reconnection time at this stage

Ty~ Treen X Brod Ru/ B (2.6)

rec

Consequently, 7,,; =27,. The time taken to reach the nth stage is thus
L=y =1 212", n>1, 2.7)

where 1) = B! Ro/B"", Ry and B are the radius and perpendicular magnetic field of

the initial flux tubes, respectively. Therefore, we can express the index »n as a function
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of time: n=log, t/7y. The explicit formulae for the different quantities as a function
of n can be obtained from the recursive relations derived earlier

By =B\"s 27", Epy,=Ey2™", (2.8)

kin=kio2™? R,=R2"*, 1,=12", (2.9)

NJ_,,, =NJ_’()27n. (210)

By using n = log, /1), we obtain the continuous time evolution of the relevant
quantities

B =BT, Ey=Euo (2.11)

ky =k ot "%, R=R,'?, [=I, (2.12)

Ni=N_ ', (2.13)

where 7=1/7, is time normalized to the initial reconnection time scale and k; =2m/R
is the perpendicular wavenumber. We note that the aspect ratio of a flux tube I/R~7"/2.
Therefore, as flux tubes merge and grow, they become progressively more slender.
However, they always satisfy the critical balance and remain (marginally) stable
to kink-type instabilities (appendix B). We also note that [ = lof = Iy(va.0Brec/Ro)t.
Combined with the critical balance scaling of initial flux tubes /o/V4 ~ Ry/va0, Where
V4 is the Alfvén speed based on the guide field, we obtain [ = V,B..z. We can thus
consider V,f.. as the characteristic speed for the growth of tube’s length.

To summarize our 3-D hierarchical model: in the perpendicular plane, the merging
of flux tubes through reconnection results in the decay of the perpendicular magnetic
field, and in the growth of the perpendicular length scale ((2.11) and (2.12)); these
conclusions are identical to those obtained from two-dimensional considerations
(namely, equation (3) in Z19). In the parallel direction (i.e. along the guide field),
the dynamics is (causally) set by critical balance; combined with the perpendicular
relations, this yields a prediction for the growth of the flux-tube coherence length in
the direction along the guide field.

2.2. Self-similar properties and magnetic power spectra

The power-law time dependencies ((2.11)-(2.13)) suggest that the system evolves in
a self-similar manner. We note that the perpendicular dynamics in the 3-D RMHD
system is the same as that in its 2-D counterpart (Z19). Therefore, the self-similar
properties and the behaviour of the perpendicular magnetic power spectrum should
also be identical between the 2-D and 3-D cases. We discuss these properties in
more detail in this section, for the completeness of this paper. In the perpendicular
plane, the growing length scale and decreasing field strength ((2.11) and (2.12)) can
be represented by a dynamical renormalization, which we show as follows. With the
power-law time evolution, quantities at any given two moments of time 7 and #' can
be related through a scaling factor A = (' /7)'/?

ki (f) =k, (f'), BY™ @) =ABY™(r), i=A"%1. (2.14)

That is, the time evolution of the system is equivalent to performing the above scale
transformation. In a system consisting of volume-filling flux tubes, the perpendicular
magnetic field B, follows the same scaling as B'**. That is, B, (f) = AB, (7).
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Let us see how this self-similarity affects the evolution of the perpendicular
magnetic power spectrum, which we define as

~ 1 2mk 4 - ~
Mk H= o /dzreﬂ”'rwdx, 0)-B(x+r, 1), (2.15)

81t (27)?2
where the angle brackets represent a 3-D average over all x, and r is a vector on the
perpendicular (xy) plane. The spectrum is also averaged over the z dimension, which is
not explicitly shown in equation (2.15). Using equation (2.14), the spectra at different
times are related as

~ - 1 2m(ky /A
Mlk (), 1] = M(k/A, /lzt)=fM d*(ar)
8t (2m)?
VB (A, 1) - BL[AGx + 1), A7)

1 1 2]'[]{1_

=4 2. ik, 1 ~ 3
= A 87[ (2]‘[)2 /d re (B (x,1) B, (x+r,1))

= A 'M(k,, 7). (2.16)

It can be shown that the perpendicular magnetic power spectrum satisfying the relation
equation (2.16) has the self-similar solution (Olesen 1997)

Mk, D) =1"*M"k 7% =k, F(k, 1%, (2.17)

where M and F are scaling functions of the variable k, 7'/2.

The solution equation (2.17) represents the pattern of energy decay and scale
growth, determined by the physics of the merger events. However, it does not
contain any information about energy as a function of scale. Assuming the case of a
power-law spectrum, the scaling function has to satisfy M (k,7/%) o< (k. #'/*)77, where
—y is the index of the spectrum. Equation (2.17) can thus be further expressed as

Mk, Dot 2k, 7777 o7, (2.18)
where 20 =y + 1.

3. Numerical study

We now proceed to test the predictions of the previous section by means of direct
numerical simulations with the code Viriato (Loureiro et al. 2016). The code
solves the three-dimensional, incompressible, reduced-MHD equations (Kadomtsev &
Pogutse 1973; Strauss 1976; Zank & Matthaeus 1992; Schekochihin ef al. 2009)

0 d

=V T, G.D)
0 0
SVip 19, Vgl =Var Vi + [, ViUT+ Vo, (32)

where V, is the Alfvén speed based on the (constant and uniform) guide field, V, =
B,/s/4mp and [A, B] = 0,A0,B — 0,Ad,B. The flux function v is defined as =
—A,/+/4Ttp, where A, is the axial component of the magnetic vector potential. The
streamfunction ¢ is ¢ = ce/B, where ¢ is the electrostatic potential. The magnetic
field (measured in velocity units) and velocity are thus related to ¢ and ¢ as

B=2ZxVy +2B,
u, =z xVo. } 3.3)
The viscosity v is taken equal to the magnetic diffusivity » in all simulations.
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3.1. Simulation set-up

In Viriato, the length scales on the perpendicular plane and in the parallel direction
are normalized to (arbitrary) reference lengths L, and L; respectively (L, < L; in the
RMHD limit). Times are normalized to the parallel Alfvén time 74 =L;/V,. In the
following description, all quantities are given in dimensionless form. The simulation
domain is a box of dimensions L, x L, x L,, where L, =L, in all the simulations
presented. We set L, = 2w, and show the results from simulations with L, = 4L,.
A more elongated simulation box allows more generations of mergers before the
length [/ of the flux tubes in the z direction reaches the length of the box. In order
to adequately resolve the dynamics along z, and considering the computational cost
of the simulation, we find a box with L, =4L, to be optimal. The box has periodic
boundary conditions in all directions.

The initial condition is a straightforward extension to three dimensions of our
previous 2-D study (Z19). There is no initial flow, ¢(x, vy, z, t = 0) = 0, and
the magnetic flux tubes are invariant in the z direction: ¥ (x, y, z, t = 0) =
Yo cos(kox) cos(kyy). It is easy to check that this initial condition satisfies the
dissipationless version of equations (3.1)—(3.2) and is therefore an (ideal) equilibrium.
We thus have a 2k, x 2k, static array of guide-field-aligned magnetic flux tubes of
alternating polarities. In all runs we set ky =8 and so the initial radius of each flux
tube is Ry = L,/4ko = 1t/16. We further fix oko =1 to set the strength of the initial
in-plane magnetic field B, o = ¥o/Ry = 2/m. A spatially random perturbation with
small (linear) amplitude is added to trigger the dynamic evolution of the system. This
perturbation breaks the axial symmetry of the system.

In the RMHD limit, the magnetic helicity of the system is Hy = [ dVA - B ~
B, [[dVy. We note that, while the local magnetic helicity associated with each flux
tube is finite (2.1), the net magnetic helicity of the entire set-up is zero. Since Hy, is
an ideal invariant, it should remain approximately zero throughout the evolution of the
system. Therefore, our simulations are relevant to the study of inverse energy transfer
in non-helical turbulent systems, a question briefly alluded to in the Introduction and
further discussed in appendix C.

We set v =7 =10"* in the simulation, corresponding to the Lundquist number of
the initial flux tubes Sy = Rovao/n = 1250. The perpendicular plane is (spectrally)
resolved with 1024 grid points. As per our discussion of §2.1, this value of S,
implies that we expect the reconnection of two flux tubes to fall in the SP regime;
the thickness of the SP current layers during the first generation of mergers, dsp o &
So 2R, is only marginally resolved with approximately one cell. But we note that
as the system evolves and the flux tubes grow to larger scales, the thickness of the
current sheets increases (the Lundquist number is expected to remain constant, as
we have argued in § 2.1, but the radius of the tubes progressively increases) and the
simulation becomes progressively better resolved. Naturally, it would be desirable to
investigate initial conditions characterized by even higher values of Sy, such as to
access the plasmoid-mediated reconnection regime. Unfortunately, the computational
requirements presented by such simulations are too great: we estimate that achieving
So = 10* with the same number of initial flux tubes (ky = 8) requires a numerical
resolution of at least 3000 grid points in each perpendicular dimension. This is too
demanding even if the parallel resolution requirements were to remain unchanged.

The parallel length of the box is resolved with 512 grid points. A seventh-order
upwind scheme is used to advect the fields in this direction. To check the convergence
with respect to parallel resolution, we performed a simulation with the same physical
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parameters but with 1024° grid points instead (thus doubling the resolution in the z-
direction), and evolved the system for the first few generations of mergers (during
which the simulation is least resolved). The results are indistinguishable from the
fiducial run with 1024 x 512 grid points.

Finally, we also perform a 512° run in which the resistivity and viscosity are
replaced with hyper-dissipation. Specifically, the dissipative terms in equation (3.1)
and equation (3.2) become nyVSy and vyV!*®, respectively. Since the time step
with which the equations are integrated is constantly recomputed by Viriato to
maximize the efficiency of the calculation, it follows that the values of ny and vy
are also continuously adjusted in the code to ensure that the hyper-dissipation is
reduced to the minimum possible for a given spatial resolution (Loureiro et al. 2016).
However, in the simulation reported here, we observe that the temporal variation of
these coefficients is so small that it is justified to consider ny and vy as constants.
The corresponding effective hyper-Lundquist number is Sy = Ryvao/nu ~ 5 x 108

3.2. Visualizations

We begin the analysis of the results of the numerical simulations by showing
visualizations at different times of the run with regular dissipation, Sy = 1250. The
hyper-dissipative run looks qualitatively similar, except that structures are, of course,
sharper. In figure 2 we show the vorticity w, = V?¢ and current density J, = V2 at
various times. The top panel shows w, on the xy plane at z=0 (i.e. w,(x, y, z=0)),
and the middle panel shows J, on that same plane (i.e. J,(x, y, z=0)). The bottom
panel shows J, on the xz plane at y=0 (i.e. J,(x, y=0, 7)), plotted at the same times
as the middle panels.

These plots suggest a two-stage evolution of the system. The length of the initial
flux tubes (8m) is much longer than the length that critical balance would dictate
(approximately 0.3) and, therefore, the flux tubes are not causally connected from
one end of the box to the other. When reconnection events start at different positions
along z-axis (i.e. on different xy planes), the flux tubes break in the z-direction
(kink-type instabilities are not expected in our RMHD system, as we discuss in
appendix B). Due to this unstable set-up of elongated flux tubes, the system first
enters a transient stage of developing turbulence. At this stage, finer structures appear
and the system becomes fully turbulent (see the snapshot at t = 11t,). After the
transient stage, the system relaxes to a more natural state, where the initial set-up
is ‘washed out’ by the developing turbulence. The system then enters a prolonged
stage of decaying turbulence, during which progressively larger flux tubes emerge
(both in the xy and in xz planes). The length of the flux tubes grows faster than the
radius, consistent with our prediction in (2.12) (this can be seen in figure 2, and a
quantitative demonstration is shown in § 3.6).

In figure 3 we show current sheets, defined as the regions where |J,(x, y, 2)| > 3Jims
and J,,, is the root mean square of J,. The increasing complexity at the transient stage
is manifested by this plot: the breaking of flux tubes leads to increasing number of
current sheets, indicating more structures and reconnection sites. This phenomenon is
also shown quantitatively by the probability distribution function of current density
square J? in figure 7, which we will describe in §3.4.

3.3. Magnetic topology

In this subsection we introduce a method to study the topology of the magnetic field;
specifically, we aim to quantify the number of flux tubes on the perpendicular planes
so as to make contact with our predictions of § 2.
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FIGURE 2. Visualizations for the run with Sy = 1250: vorticity density w, (normalized by
its root mean square value) at various times on the xy planes at z=0 (a); current density
J, (normalized by its root mean square value) at various times on the xy planes at z=0
(b) and on the xz planes at y=0 (c).
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FIGURE 3. Current density contours selected according to |J;| > 3J,, at various times for
the run with S, = 1250.
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Any flux tube crossing a given xy plane will leave a local maximum or minimum
point of the flux function on the plane (called the O-point). That is, the cross-section
of the flux tube on the plane has a structure of a magnetic island. Similarly, the
current layers between two merging flux tubes will leave a saddle point on the flux
function of the plane (called the X-point). Both the O-points and the X-points are the
critical (or stationary) points of a scalar field — in this case, the flux function ¥ (x, y)
on the plane. In principle, on each xy plane, the number of O-points should be the
same as that of X-points. They help characterize in a quantitative way the topology of
the magnetic field and can be identified using the technique which we describe next.

We identify the X/O points using the method of Hessian matrix, following previous
work (Servidio et al. 2009, 2010). On a given xy plane, we first identify all the critical
points of the magnetic potential, defined by V ¢ = 0, where the perpendicular
magnetic field By = 0. Then we numerically calculate the second-order partial
derivatives of the flux function Y at the critical points, constructing the Hessian

matrix
_ (0 Oy
H= (ayx v ayi W) (3.4)

and computing its determinant and eigenvalues. If H is positive definite at point (x, y),
then the point is an O-point with local minimum; and vice versa: a point with negative
definite H is an O-point with local maximum. If H has one positive and one negative
eigenvalues, such point is a saddle point, called X-point. Rarely, the determinant of
H is zero; the locations where this happens are called degenerate critical points.

We apply this diagnostic to time slices throughout the simulation, thus obtaining the
time evolution of the number of X/O-points, N, (¢). For each time slice, we examine
eight xy planes spread evenly along the z-direction. An example is shown in figure 4.
Lastly, the number of X/O-points is averaged over the eight planes (all xy planes
should be statistically equivalent).

Figure 5 shows the time evolution of N, for the run with S; = 1250. The data
points are the number of X/O-points averaged over eight xy planes and the shadowed
area shows the variation between different xy planes. Initially, there are 16 x 16 =256
X/O points, as specified by our initial condition. During the transient stage (between
~ 614 — 3074), the number of X/O points first increases by approximately a factor
of 2, and then rapidly decreases. During this stage, the increase in the number of
X/O-points is correlated to the deformation of flux tubes and the formation of current
sheets (figure 2 and figure 3). This indicates the formation of reconnection sites at
multiple places and leads to rapid magnetic energy dissipation, as we will discuss in
§3.4.

After the transient stage, the decay of N, slows down and scales with time as N, ~
t~!, as it predicted by our hierarchical model (2.13). This suggests that the late-time
evolution of the system is indeed governed by the merger of magnetic flux tubes.

3.4. Energy decay

From the visualizations and the number of magnetic structures, we can see that the
system first goes through a transient stage of developing turbulence. This is followed
by a prolonged stage of decaying turbulence, with the formation of progressively
larger magnetic structures. The behaviour of magnetic energy evolution, as we will
now describe, is consistent with this physical picture.

Figure 6 shows the time evolution of magnetic and kinetic energies for the run
with Sy = 1250. Rapid magnetic energy decay occurs during the transient stage
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FIGURE 4. Current density J, (colours) and magnetic flux ¥ (contours) on the xy plane
at z=1L,, at t=10074 for the run with Sy = 1250. Green circles (‘O’ symbols) identify
the positions of O-points; green crosses (‘x’ symbols) mark the positions of X-points.
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FIGURE 5. Time evolution of the number of X and O points, N, for Sy = 1250. The
data points show the values of the number of X/O-points averaged over eight xy planes
for each timeslice. The shadowed area shows the variation between different xy planes. A
t~! power law, predicted in §2, is shown for reference.

(around 674 to 30t,), corresponding to the increase, followed by rapid decrease, of
the number of X/O points (figure 5). Also, it corresponds to the stage, as we observe
from the visualizations, of increasing complexity with the breaking of flux tubes and
the emergence of finer structures. Therefore, we attribute the rapid magnetic energy
dissipation during this stage to the formation of a large amount of reconnection
sites with localized current sheets among the twisted and deformed structures in this
complex system. After this stage (1 = 301,), the magnetic energy decay clearly follows
a t~! scaling, as predicted by our hierarchical model, equation (2.11). It coincides
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FIGURE 6. Time evolution of total magnetic energy (E)) and kinetic energy (Eg) for
So =1250. A 1! power law is shown for reference, in accordance with our prediction,
equation (2.11).

with the stage when the number of X/O points exhibits the same scaling, N, ~ !
(figure 5), also in accordance with our predictions, equation (2.13). These numerical
confirmations of our predictions suggest that indeed the key process underlying the
evolution of our system at this stage is the merger of flux tubes, which appears to
proceed as we envisioned in § 2.

Further evidence to support the claims on enhanced energy dissipation during the
transient stage is provided in figure 7, which shows the compensated probability
distribution function (PDF) of current density square, JZ, normalized to its mean
square, J2_, at different moments of time (in resistive RMHD with constant resistivity,
the magnetic energy dissipation (ohmic heating) rate per unit volume is proportional
to JZ) We arbitrarily choose one snapshot at the transient stage (= 1114) and two
from the self-similar stage (¢t = 65t4 and t = 214t14). The PDFs of the two later
snapshots (during the self-similar stage) are similar, while the PDF at r= 1174 has a
clear tail at the high current density end. This suggests that, during the transient stage,
there are more localized current sheets facilitating the rapid dissipation of magnetic
energy.

The kinetic energy, starting from zero, rapidly increases as the flux tubes start to
interact. It then traces the magnetic energy and undergoes the transient rapid-decay
stage and r~! self-similar stage. Comparing the vorticity density w. and the current
density J, on the same xy planes at the same moments of time (figure 2), we find
that the flow in the system is dominated by the reconnection outflows with the Alfvén
speed based on the perpendicular magnetic field. Therefore, when the magnetic energy
decays through the merger of flux tubes, the kinetic energy follows magnetic energy
and decays as ¢~!. During the self-similar stage, a small oscillating exchange between
magnetic energy and kinetic energy is observed, which we will discuss in §3.5.

The rapid magnetic energy decay that we observe in the transient stage bears
similarities to that observed in the numerical study of magnetized jets from active
galaxies (O’Neill, Beckwith & Begelman 2012; Alves, Zrake & Fiuza 2018). A jet
can be viewed as a screw-pinch/single flux tube that is unstable to current-driven
instabilities, such as the kink instability. Such instabilities distort the flux tube and
create localized transient current sheets, enhancing the dissipation of magnetic energy.
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FIGURE 7. Compensated probability distribution function of JZ/JZ . for Sy =1250 at three
moments of time. The tail at large J2/J% for the PDF at r =117, indicates a greater
number of localized current sheets in the transient stage.

In our system with a strong guide field, we do not expect kink-type instabilities (see
discussion in appendix B). However, the configuration of a large ensemble of flux
tubes has more degrees of freedom to form reconnection sites via their twisting and
deformation.

3.5. Spectra and related quantities

We now proceed to investigate the time evolution of the magnetic and kinetic energy
spectra. In order to obtain the clearest spectra possible, we analyse the run with
hyper-dissipation instead of normal (Laplacian) diffusivity. For reference, the time
evolution of energies for this run is shown in figure 8. Comparison with figure 6
shows qualitatively similar behaviour between the two runs, although two differences
stand out: (i) in the hyper-dissipative run the kinetic energy remains approximately
a factor of 2 below the magnetic energy, whereas in the S, = 1250 resistive run
they have comparable magnitudes in the self-similar part of the evolution (i.e. for
t/t4 2 40); and (ii) the amplitude of the oscillations in the late evolution of the
energies is significantly reduced in the hyper-dissipative case. We will first discuss
the energy spectra and then turn to the reasons for these differences at the end of
this subsection.

Generally speaking, the magnetic energy in the system is contained not only in
magnetic flux tubes but also in Alfvén wave packets launched by the convective
motion of flux tubes in the perpendicular plane at the scale of flux tubes. Magnetic
energy contained in flux tubes is transferred to larger scales through the flux-tube
mergers, while that contained in Alfvén wave packets cascades to smaller scales
through nonlinear interactions. In the Alfvén wave packets, the kinetic energy is in
equipartition with the magnetic energy, cascading to smaller scales. A k=% spectrum
is expected for both the magnetic and the kinetic energy as a result of the turbulent
direct cascade (Boldyrev 2006). There is another ingredient in the system that can
potentially contribute significantly to the magnetic and kinetic energy spectrum — the
thin current sheets between merging flux tubes. The sharp magnetic field reversals
at the current sheets are expected to yield a k= magnetic energy spectrum (Burgers
1948). The Alfvénic outflows from reconnection layers, whose spatial profile is
derived in Loureiro, Schekochihin & Uzdensky (2013), are expected to yield a flat
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FIGURE 8. Time evolution of total magnetic (E)) and kinetic (Ex) energies for the run
with hyper-dissipation.

kinetic energy spectrum. That is, the thin current sheets in the system can potentially
steepen the turbulent magnetic energy spectrum, and flatten the turbulent kinetic
energy spectrum.

With these considerations borne in mind, let us analyse the numerical results.
The perpendicular magnetic energy spectrum M(k,, t) at different moments of time
is shown in figure 9(a). The initial spectrum peaks at the scale corresponding to
the cross-section of the initial flux tubes. As the flux tubes merge, the peak of
the spectrum shifts to larger scales, until it becomes limited by the box size. An
inertial range appears to the right of the peak, with a power-law exponent y &~ 2 at
earlier times, and y &~ 3/2 at later times. The kinetic spectrum, shown in figure 10,
does not have a steady power law. At later times, while the magnetic spectrum
peaks at k; =4, corresponding to the size of islands, the kinetic spectrum peaks at
k, =2, corresponding to the large-scale motion of the islands. Such motion injects
kinetic energy into the system, potentially yielding a power-law inertial range at
smaller scales, which we tentatively fit with kf/ 2, However, at earlier times, the
kinetic spectrum follows a shallower power law ~ k;'. While we do not have an
explanation for the —1 index, we think it is consistent with the observation that at
earlier times the system has many localized thin current sheets, where the kinetic
energy is dominated by the (Alfvénic) outflows. The outflows have a spatial profile
yielding a flat spectrum as we described above, and act as a source of kinetic energy
at all scales. As the flux tubes merge and grow to larger scales, the thickness of the
current sheets also grows and the magnetic reversal becomes less sharp, resulting in a
weaker flattening effect on the spectrum. The kinetic spectrum thus becomes steeper
at later times. At early times (before the turbulence is fully developed), the magnetic
spectrum follows a k > spectrum resulting from the sharp field reversals (Burgers
1948). At later times, as the turbulent cascade becomes stronger, the k7> spectrum
is replaced by a shallower kf/ * turbulent spectrum. Interestingly, in our 2-D study,
a k;* magnetic energy spectrum was maintained throughout the evolution (figure 4
in Z19). The reason for this difference is that, in the 2-D system, the magnetic
energy significantly dominates the kinetic energy, making the system less turbulent
than its 3-D counterpart. The direct turbulent cascade is too weak to form a k=3/2
spectrum, and therefore, the total magnetic energy spectrum in our 2-D system is
mostly determined by the current sheets, yielding a k> spectrum.
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FIGURE 9. Raw (@) and normalized (b) perpendicular magnetic power spectra, for
simulation with hyper-dissipation. Dotted and dashed lines indicate reference slopes of k7>
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FIGURE 10. Perpendicular kinetic power spectra for the simulation with
hyper-dissipation. k7' and k*’* slopes are shown for reference.

Our analytical model of §2 leads to the prediction that the long-time evolution
of the magnetic energy spectrum should be self-similar, equation (2.18). To test
this prediction, we show in figure 9(b) the spectra normalized to their instantaneous
maximum value, M,..(f), as a function of wavenumber normalized to the values
k1 max(t) at which My, () are achieved. We observe that, except for the transient-stage
spectrum at ¢t = 10t,, the spectra thus normalized approximately collapse onto the
same distribution, and that this collapse becomes progressively better as time increases.
Mathematically, this behaviour is expressed as M(k,, t) =M OM (k [k 1.max),» Where
Mk, /k 1.max) 1S the static universal distribution to which all the curves collapse after
normalization.

We also observe that, after the transient stage, the time evolutions of k; n.x and
M,.x approximately follow the power-law-in-time behaviour: k; . o t~/2, and
Mo o< t712 — see the second and third panels in figure 11. Thus, the magnetic
energy spectrum can be expressed as M(k,, t) oc t~'/2M(k,t'/?), in agreement with
the prediction of (2.18). Furthermore, since the scaling function is itself a power law

in the inertial range, M(k, 1'/?) kf/ 2 (y = 3/2), according to our prediction, the
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FIGURE 11. Time evolution of &y (a), ki max (D), Mmax (¢) and M, (for selected values
of k; d), for the simulation with hyper-dissipation.

time evolution of spectral magnetic energy density at any fixed wavenumber should
behave as M, (f) o< 7%, where o = (y 4+ 1)/2 = 5/4. This is indeed observed in
the bottom panel of figure 11, where after the transient stage, M, (¢#) (for moderate
wavenumbers) approaches the 1=/ power law. At the largest scale the energy keeps
building up, explicitly showing the inverse transfer of magnetic energy. From the
measured scaling laws described above, we conclude that the self-similar solution of
the magnetic power spectrum, based on our hierarchical analytical model, is confirmed
by our numerical results.

Complementary to the time evolution of & ., the growth of the perpendicular
coherence length of our system is illustrated by computing the magnetic-energy-
containing scale, defined as

/ 2mk'M(ky, 1) dk,
Em(t) = .

(3.5)
/M(kl, t)ydk,

As shown in the top panel of figure 11, after the transient stage, &, increases with
time roughly following the ¢'/? scaling, consistent with our model, until the later stage
(t 2 100t4) during which the parallel length of flux tubes becomes limited by the
length of the box.
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FIGURE 12. Parallel (to the guide-field B,) magnetic power spectra at different moments
of time for the simulation with hyper-dissipation.

To characterize the system’s dynamics along the guide field, we show in figure 12
the magnetic power spectrum as a function of k,. A broad energy distribution develops
once the flux tubes break in the z direction. As flux tubes merge, magnetic energy
at high k, rapidly decreases, indicating the increasing coherence length in z direction.
This is consistent with the measurement of magnetic structure functions (figure 13),
showing the rapid growth of the characteristic flux tube, as we explain in § 3.6.

Finally, let us address the issue of the oscillatory energy exchange between the
magnetic field and the flow. From the time evolution of magnetic energy density at
different wavenumbers k; (figure 11d), we see that energy oscillation mostly happens
at the smallest k;, corresponding to system-size magnetic flux tubes. These tubes
cannot merge and grow into larger scales due to the system-size limit (in a sense, they
have reached a final ‘equilibrium’ consisting of two flux tubes of opposite polarities).
Instead, they exchange energy with the flow — possibly both in the form of Alfvén
waves, and bouncing motions: background flows can push these flux tubes against
each other, leading to their (incompressible) deformation. This increases magnetic field
line tension and results in a restitution force leading to an oscillation whose amplitude,
therefore, depends on the ratio of the kinetic-to-magnetic energy. Since the magnetic
energy is larger in the hyper-dissipative case than in the Laplacian resistivity case
(simply because hyper-resistivity leads to better conservation of magnetic energy), the
hyper-dissipation case has smaller amplitude oscillations.

3.6. Magnetic structure functions

In order to obtain statistical information on the growth of flux tubes, and to test the
assumption of critical balance, we calculate the second-order structure function of the
magnetic field B(x, t), defined as

S5 (6x, 1) = (IB(x2, 1) — B(x1, 0)*),,, (3.6)

where dx =x, —x; and the angle brackets indicate the average over the position x;
in the simulation domain. We define the local mean field as B,, = [B(x,) + B(x3)]/2
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FIGURE 13. Contours of normalized (to its maximum value) magnetic structure function
S (8x, 8x;) at various times for the run with hyper-dissipation.

and the local unit magnetic field vector I;m = B,,/|B,,| represents its direction. These
definitions ensure that the structure function is computed with respect to the local
mean magnetic field (as it should, if it is to be used to gauge whether the turbulence
we observe is critically balanced (Cho & Vishniac 2000; Mallet et al. 2016)), rather
than the global guide field. The local coordinates (6x,, 8x;) can thus be specified by

A

8x, = |b,, x 6x|, 6x,=bh,, - bx. (3.7)

The correlation lengths of the magnetic field parallel and perpendicular to the local
mean field, which we interpret as the statistical length and radius of the flux tubes
respectively, are thus expressed by the contours of the structure function Sg) (6x, 6xy)
on the (8x,, dx)) plane. This is shown in figure 13 (normalized to the instantaneous
maximum value of the structure function). We then define the characteristic length
[ and the radius R of the flux tubes using the intersection of the contour line
Sy /S}(i:nax =0.7 (roughly the largest value at which the contour lines are not affected
by noise) with the dx; axis and the d6x; axis, respectively. Note that because of
periodic boundary conditions, the largest values of dx, and dx;, and hence maximum
radius and length of a flux tube that can be attained in our simulations, are roughly
L./~/2=+/2m and L./2 = 4m, respectively. The growth of the typical flux tube can
be clearly observed as the system evolves with time. The growth of parallel length
is faster than that in the perpendicular direction, which agrees with our discussion in
§ 2 that the aspect ratio of a flux tube increases with time (//R ~7/?).

In order to characterize the time evolution of magnetic flux tubes, we take eight
snapshots between ¢ =101, and =801, (roughly every 1074). For each snapshot, we
compute the values of / and R. The time evolution of R (not shown) roughly follows a
t'/2 scaling (similar to the time evolution of &y shown in figure 11), whereas the time
evolution of [ scales linearly with time (figure 14a), in accordance with the prediction
of equation (2.12). We also compute the root-mean-square value of the perpendicular
magnetic field, B,, and test if it satisfies the critical balance scaling, I/B, ~ R/B.,
where fBg =B,L,/L; =1 is the guide field normalized in the same way as used to
compute the structure function. We plot [ versus R/B, for these eight snapshots in
figure 14(b). As seen, the critical balance condition is indeed verified (except for the
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FIGURE 14. Time evolution of / (a, dashed line represents a t' power law, equation (2.5))
and scaling of [ versus R/B, (b, dashed line represents the critical balance scaling,
equation (2.4)) for the run with hyper-dissipation, where / and R are the length and radius
of the characteristic flux tube respectively.

last snapshot, whereupon the parallel length of flux tubes has reached the length of
the simulation box, and the critical balance scaling is thus expected to break). This
confirms our assumption made in §2 that in our system of merging flux tubes, the
aspect ratio of the flux tubes, //R, is determined by critical balance.

3.7. Energy transfer function

In this subsection we use shell-to-shell energy transfer functions to quantify the
transfer between magnetic and kinetic energy at different scales. This enables us to
identify direct and inverse energy transfer in our simulations. This technique has been
used in studies of MHD and kinetic turbulence (e.g. Alexakis, Mininni & Pouquet
(2005), Told et al. (2015)), and we made modifications for its use in the RMHD
system.

We define the shell-filtered variables as

Bi(xi, 0= Y Byl e™™ (3.8)
K<k; <K+1
and A
Wi, =Y wilky, e (3.9)
K<k; <K+1

Here, x, is the projection of the position vector onto the xy plane and the Fourier
and inverse Fourier transforms are only performed in the x- and y- directions. The
shell-filtered variables contain only the magnetic and velocity fields within a certain
range of perpendicular scales. The shell transfer functions are obtained by calculating
the evolution equation of energy in each shell averaged over the z direction. We are
interested in the time evolution of magnetic energy in each shell K

1
9, </ d2xL2(B’i)2>z

=< / deLZ[B’j«BL-VL)u%—B’j-(uL-VL>B§]—n|VLB"|2> . (3.10)
Q z
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FIGURE 15. Averaged energy transfer from shell Q to shell K at r =107, (first stage)
and = 60t, (second stage) for the run with hyper-dissipation. (a¢) magnetic-to-magnetic
transfer Tj,(Q, K). (b) kinetic-to-magnetic transfer 7,,(Q, K).

The transfer of magnetic energy from shell Q to shell K is

Ty (0, K) = — < / d’x B - (u, - VL>B%> : (3.11)

z

and the transfer of kinetic energy in shell Q to magnetic energy in shell K is

Tw(Q,K) = </d2x¢31i - (BL- Vl)u§> - (3.12)

Z

We perform the energy transfer function diagnostic on the results of the run
with hyper-dissipation. We arbitrarily choose one snapshot during the first stage of
developing turbulence (¢t = 10t4) and another during the second stage of decaying
turbulence (¢t = 60t,) to illustrate the behaviour of shell-to-shell energy transfer, as
shown in figure 15. To guide the reader, we note that red colour below (above) the
diagonal in these plots denotes an inverse (direct) energy transfer; and vice versa for
the blue colour. We first focus on the contour plot of 7},,(Q, K) at t=10t4, shown in
the top-left panel. At this moment, the magnetic energy spectrum shown in figure 9
peaks at k; =8. There is a strong direct energy transfer from shells Q =7, 8 to shells
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K > Q, indicating the non-local direct transfer characterizing the formation of thin
current sheets (consistent with the k[? magnetic energy spectrum as we explained
earlier, shown in figure 9a). There is also a weak but statistically significant inverse
transfer of magnetic energy from shells O =7, 8 to shells K =5 — 7 (corresponding
to the peak of magnetic spectrum). This suggests that the inverse transfer happens at
the scale of flux tubes and is caused by flux-tube merger. Due to the development
of turbulence, T,, is dominated by the direct transfer from small-Q shells to large-K
shells overall. At this stage, there is also a transfer of magnetic energy to kinetic
energy close to the diagonal, as shown in the contour plot of 7,, in the bottom-left
panel, consistent with the formation of plasma flow.

At t = 6014, flux tubes have reached larger scales (with a peak at around k;, =4).
Shells K, Q > 3 are dominated by the strong direct transfer between a wide range
of scales. However, although relatively weak in strength, there is also a finite inverse
magnetic energy transfer from shells Q > 3 to shells K =1 — 2 shown by the red
horizontal band along the lower boundary of the contour plot of T, in the top-right
panel. From the T,, plot in the bottom-right panel, we observe a mild transfer from
magnetic energy in shells K=1,2 to kinetic energy in shells Q > 4. For K > 3, kinetic
energy in shells Q is transferred to magnetic energy in shells K if Q < K, while for
0 > K, the transfer between kinetic and magnetic energy happens in both directions.

In summary, the energy transfer diagnostics paint a complex picture that is
consistent with the analytical model and numerical results discussed earlier. Both
inverse and direct energy transfer occurs: the former driven by flux-tube coalescence;
the latter by the turbulent dynamics that arises. While the direct energy transfer is
dominant, it is the inverse transfer that progressively delivers energy to larger and
larger scales until reaching the simulation domain size.

4. Conclusion

In this work, we investigate the inverse transfer of magnetic energy in 3-D
MHD turbulence, and propose the merger of magnetic flux tubes through magnetic
reconnection as its underlying physical mechanism. An analytical model is developed
in the 3-D RMHD framework, based on the hierarchical merger of flux tubes.
Perpendicular to the strong guide field, the dynamics is found to be identical to that
in the analogous 2-D system. The perpendicular magnetic field energy decays as 7!
and the perpendicular correlation length grows as 7'/?, where 7 is the time normalized
to the reconnection time scale. Parallel to the guide field, the dynamics is determined
by critical balance, setting the aspect ratio of the flux tubes. The power-law time
evolution of physical quantities leads to the self-similar evolution of the perpendicular
magnetic spectrum M(k,,7) oc7k|”, where 20 =y + 1.

Our analytical model is confirmed by direct numerical solution of 3-D incompressible
RMHD equations. The initial equilibrium (without plasma flow) is set up with an
ensemble of volume-filling flux tubes of alternating polarities aligned with the guide
field. Given a small perturbation, the system undergoes a two-stage evolution. The
system first enters a transient stage of developing turbulence, during which the flux
tubes break in the parallel direction, leading to the development of turbulence and
enhanced magnetic energy dissipation. A prolonged self-similar stage of decaying
turbulence ensues, during which the evolution of various quantities is captured by
our analytical model and the assumption of critical balance is confirmed by the
measurement of second-order magnetic structure function.

Our 3-D system shares similarities and differences with its 2-D counterpart. The
presence of a strong guide field (underlying the RMHD formalism that we employ in
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our simulations) implies that the merger of flux tubes in the perpendicular planes is
identical in three dimensions and in two dimensions. That is, in both cases the mergers
are well described by rules stemming from the conservation of mass and poloidal flux
(or magnetic potential). A novel aspect of our work is the observation that, in the 3-D
case, critical balance determines the relationship between perpendicular and parallel
flux-tube dynamics. The 3-D system tends to have a larger kinetic-to-magnetic energy
ratio than the 2-D version (for the same initial Lundquist number Sy), mainly due to
the flow arising in the initial stage of developing turbulence and the Alfvén waves
propagating along the guide field. This renders the 3-D system more turbulent than
the 2-D system. The kK~ magnetic energy spectrum appears in 2-D systems, caused by
the sharp field reversals at thin current sheets. Although such current sheets are also
present in the 3-D simulations, this effect is masked by a k~3/? magnetic spectrum
caused by the direct turbulent cascade.

This work lies exclusively in the (reduced) MHD framework. In many realistic
astrophysical situations the magnetic field generation and early-stage evolution are
most likely happening in collisionless plasmas without background magnetic fields.
One may thus question the applicability of our results to such situations. While we do
think that direct applicability may not be warranted, we also note that our analytical
model for statistical flux-tube mergers stems from the conservation of quantities that
we would expect to remain conserved in the collisionless regime in the absence of
background magnetic fields. We thus think that the ideas we have proposed here
should form the basis of the corresponding collisionless model, which we defer to
future study.

One may also wonder if the scaling laws of inverse energy transfer — and magnetic
reconnection as the process that enables such inverse transfer — in systems with a
strong guide field remain valid in isotropic systems (i.e. systems without a guide field),
as investigated by Brandenburg et al. (2015) and Zrake (2014). This is the subject of
ongoing investigations (Bhat, Zhou & Loureiro 2020); preliminary results suggest that
is indeed the case.
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Appendix A. Interaction between inverse magnetic transfer and ambient turbulence
in the context of galactic magnetogenesis

In this appendix we estimate the scale where the magnetic seed fields can be picked
up and amplified by the turbulent dynamo.
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FIGURE 16. Schematic of kinetic energy spectrum and magnetic energy spectrum. Kinetic
energy is injected at the large scale L, and cascades to smaller scales. Magnetic seed fields
are generated at the small scale /. and inverse transfer to larger scales.

We consider an unmagnetized hydro-turbulent astrophysical system where there is
an asymptotically large scale separation between the injection of kinetic energy
at large scales and the generation of magnetic seed fields at small scales. A
Kolmogorov cascade of kinetic energy is assumed, resulting in a k~>/* inertial range
of kinetic energy spectrum Ex(k), starting from the large driving scale L, down to
the intermediate scales we are interested in. The evolution of magnetic seed fields is
assumed to follow the scaling laws we derived in §2 ((2.11) and (2.12)). We consider
the seed fields to be generated at a small scale /.4, and described by a time-dependent
characteristic wavenumber k(7) ~7~/? as they merge and grow into larger scales. The
magnetic energy density of seed fields associated with its instantaneous characteristic
wavenumber evolves as Ey(7) ~ 7!, therefore, the magnetic energy density scales as
Ey (k) ~ k*. Figure 16 shows a cartoon of the situation we have in mind: the kinetic
and magnetic energy spectra resulting from the direct cascade and inverse transfer,
respectively. Kinetic energy dominates at the large scales while magnetic energy
dominates at small scales. In this appendix, we provide an estimation of the critical
scale [. where the kinetic and magnetic energy are comparable. At such scale, the
ambient turbulent flow is dynamically important to the evolution of magnetic seed
fields, and can act as a dynamo to amplify the magnetic field.

The kinetic energy at the critical scale I., £ (I.), and at the driving scale Ly, Ex(Ly),
are related by the Ex(k) ~k=>/* spectrum, while the magnetic energy at [, Ey(l.), and
at the initial scale leeq, Ep(lseea), are related by the Ey (k) ~ k* spectrum

L 1o\ 2

Ex(le) = E(Lo) (C) o Enle) = En(lieea) <C> . (A1)
LO lseed

The kinetic energy at the driving scale L, and magnetic energy at the initial scale

leq can both be related to the plasma thermal pressure. At the driving scale L,, we

have Ex(Ly) ~ M?*P, where M ~ 1 is the Mach number of the turbulence. At the seed-

field generation scale I.q, we have Ey(leeq) ~ €pP, Where €p is a parameter of the

saturation amplitude of the instability, and €z ~0.01 if we consider the magnetic seed

fields generated by the Weibel instability (Silva et al. 2003).

The critical scale /. calculated from the condition Ex(I.) ~ En(l.) is

6/11,5/11 ( €8\
I~ e L) <W) : (A2)

Downloaded from https://www.cambridge.org/core. MIT Libraries, on 02 Apr 2021 at 02:18:07, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50022377820000641


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377820000641
https://www.cambridge.org/core

Multi-scale dynamics of magnetic flux tubes and inverse energy transfer 27

and the magnetic energy at this critical scale /. is

Lo 10/11
Eu(l) ~ (L> S (A3)
0

From equation (A 2) we learn that the critical scale [. is close to the geometric mean
between the driving large scale L, and the microscopic seed-field scale l..q. We also
note that the dependence of /. on the equipartition parameter €g, which is determined
by the mechanisms of seed-field generation, is very weak. The dependence of /. on
the Mach number M, which is determined by various astrophysical events injecting
kinetic energy into the system, is also weak. Therefore, we think this estimation
of the critical scale /. (A2) should be a robust result, since it does not strongly
depend on the astrophysical processes that generate the turbulence and magnetic seed
fields, but on the generic features of the turbulent energy cascade, and the scaling
laws for inverse energy transfer ((2.11) and (2.12)), which are derived based on the
fundamental conservation laws.

The scale of magnetic seed fields /g generated by the Weibel instability
should be of the order of electron (or ion) skin depth d, (or d;). For a typical
galaxy, Lo~ 30 parsec ~ 10 cm, d, ~ 10° ¢cm and d; ~ 10" cm (Schekochihin et al.
2009). If we consider leeq ~ d,, we obtain [. ~ 10'"" cm ~ 10%d, (if leea ~ d;, We
obtain I, ~ 10'2 cm ~ 0.1 AU). The strength of magnetic seed fields B(leeq) ~ nG
(approximately 3 ©G magnetic field corresponds to equipartition with the plasma
pressure, where electron density n, ~ 1 cm™> and temperature T, ~ 1 eV are assumed
in the interstellar medium (ISM)). We thus obtain the strength of magnetic field at
the critical scale B(l.) ~ B(lseq)(lseea/le) ~ 1072 G for leeq ~d, (B(I.) ~ 107" G for
leea ~ d;). We note that the strength of this magnetic field is significantly larger than
that generated by the Biermann battery effect, while its scale is deep in the MHD
range (since /. is approximately the geometric mean of the driving scale and plasma
skin depth).

Our estimation is relevant for the problem of the galactic dynamo. Imagine we start
with a completely unmagnetized and hydro-turbulent ISM, and a shock is launched
through the ISM by an astrophysical event. The shock will produce microscopic
filaments with typical radius of 107 cm (of the order of ion skin depth (Kato &
Takabe 2008; Spitkovsky 2008)), and with the amplitude of magnetic seed fields
of the order of microgauss. These magnetic filaments would at first undergo a
self-evolution, without being affected by the turbulent flow at larger scales. During this
stage, filaments will quickly merge with each other through magnetic reconnection,
increasing their length scale and decreasing the strength of magnetic field. This
merging process would allow the filaments to deliver the magnetic field of the
strength of 10~!" G to the scale of 10'? cm, where the turbulent flow is dynamically
important. This can be viewed as the starting point for the turbulent MHD dynamo.
That is, the above gives an estimate for the scale and strength of the initial seed field
for the galactic dynamo problem.

Appendix B. Current sheet stability to ideal kink-type modes

Our treatment and discussion of the dynamical evolution of an ensemble of flux
tubes made no reference to the possible role of ideal kink-type instabilities. In part this
is justified by the fact that, in RMHD, a flux tube (more precisely, a screw pinch) with
a circular cross-section is stable to the ideal internal kink mode (Hazeltine & Meiss
2003). One may wonder, however, if the highly elongated current sheets that arise as
two flux tubes merge might themselves be kink unstable. While it is unclear to us
how to answer this question in full generality, it is possible to demonstrate stability
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for a simple one-dimensional current sheet described by a magnetic flux profile vy(x)
and no flow, ¢y(x) =0.

Consider, therefore, the ideal RMHD system of equations, and linearize them around
the equilibrium (x), whose exact functional shape need not be specified for this
proof. We obtain

YY1 — ik, 00 = ik Vadhr, B1)
y (37 — k§)¢1 = [Yo, Vvl + [¥1, VYol + ik, Va(d] — k;%)l/ﬁ- (B2)

The combination of these two relations yields the following equation for the
perturbed streamfunction ¢;:

[ + (k:Vi + kd0)2102 — )1 + 2k (k. Vs + ky00) 020001 =0, (B3)

It can be shown that, as expected, equation (B 3) is self-adjoint, since it is derived
from the ideal MHD equations possessing the self-adjoint properties. That is, it can
be written in the form

Ly =0 f(x)0:pi] + g(x)1 =0, B4

where L is a self-adjoint operator and
f@) =%+ (kVa + kdcho)?, (B5)
8() =~k f(x). (B6)

Due to the properties of self-adjoint operators, the eigenvalues y can only be either
real or imaginary. If % <0, the modes are purely oscillatory, and if y2 > 0, the modes
are purely growing or damped. The self-adjoint operator £ satisfies ffcoo ¢ Lo dx=0.
Therefore (B 3) yields

/ G0 (f(X)apr) — k; f(x) 1] dx=0. B7)
Using the boundary condition ¢; — 0 as x — 00, we obtain

/ (f().p7 3.1 + k; f(x) T ¢p1) dx = 0. (B8)

Equivalently, equation (B 8) can be written as an expression for y>

/ (kVa + Ky 900)* (0,07 0.1 + KThy) dx
yr=—== = : (B9)
/ (0.0, + K97 d

This expression makes the fact that > < 0 explicit for any non-trivial solution ¢(x);
i.e. any admissible modes are purely oscillatory: essentially, shear Alfvén waves
propagating in a non-trivial magnetic field. The specific values of y? will depend on
the functional form of y(x), but not their sign.

Based on this analysis, we conclude that two representative structures of the system
that we study in this paper — cylindrical flux tubes and the current sheets between
them — are stable to ideal kink-type modes. This is not, of course, a proof that the
kink instability plays no role in the evolution of our system. However, in addition, we
call attention to the fact that, at least at the twiddle-algebra level, the critical balance
condition, which our system does seem to obey rather well, is the condition for kink
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FIGURE 17. Current density J, (normalized by its root mean square value) at various
times on the xy plane at z=0 for a run starting with a random magnetic field.

stability. Altogether, we think these are reasonably convincing arguments for ignoring
ideal kink-type modes in our analysis.

Appendix C. Inverse energy transfer of random magnetic fields

The inverse transfer of magnetic energy and the formation of large-scale structures
in a system consisting of volume-filling flux tubes can be explained by our
hierarchical model based on the merger of flux tubes, as we demonstrate in the
main part of this paper. However, it is possible that this fundamental physical process
— merger of magnetic structures through magnetic reconnection — can be a more
general phenomenon. It is well known that in 3-D MHD turbulence an inverse helicity
cascade and the corresponding inverse energy transfer occurs due to the conservation
of (non-zero) net magnetic helicity (Pouquet 1978; Christensson et al. 2001). Recently,
however, Brandenburg et al. (2015) and Zrake (2014) numerically demonstrated that
an inverse energy transfer exists even when the net magnetic helicity is zero, in 3-D
decaying non-relativistic and relativistic turbulence respectively. A careful parameter
study of this problem can be found in Reppin & Banerjee (2017). Bhat et al. (2020)
argue that this non-helical inverse transfer phenomenon might be explained by the
merger of magnetic structures in a qualitatively similar way to the process that we
have described in this paper and in Z19.

To further explore and substantiate this idea and, more generally, to demonstrate that
the inverse transfer that we observe is a generic phenomenon, and not something that
depends on the specific form of the initial magnetic field — we present in this appendix
a simulation which differs from the ones analysed in the main body of the paper in
that the initial condition is instead a random magnetic field. Specifically, we initialize
a Gaussian random magnetic field, with the perpendicular magnetic spectrum narrowly
peaked around k, ( =20. In the parallel direction we impose sinusoidal perturbations
using the modes with the 16 longest wavelengths and random phases. The simulation
is performed with 512% x 256 grid points, and we have used hyper-dissipation rather
than regular (Laplacian) resistivity and viscosity.

From the visualizations of current density shown in figure 17, we see the emergence
of larger structures from the initial small-scale random magnetic field. The behaviours
of the magnetic energy decay and of the perpendicular magnetic spectrum are similar
to the runs with the flux-tube set-up, and are consistent with the predictions of our
hierarchical model. The time evolution of magnetic energy (figure 18) shows the ¢!
scaling. In figure 19 we show the time evolution of the perpendicular magnetic power

spectrum M(k,, t). As the system evolves, a kf/ * inertial range is developed, and
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FIGURE 18. Time evolution of total magnetic (E),) and kinetic (Eg) energies for the run
starting with random magnetic field.
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FIGURE 19. Raw (a) and normalized (b) perpendicular magnetic power spectra, for a
simulation starting with random magnetic fields. A kf/ : slope is shown for reference.

the spectra are observed to migrate to larger scales (figure 19a), demonstrating the
inverse energy transfer. When normalized as described in § 3.5, the spectra roughly
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overlap (figure 19b), indicating the self-similar evolution of the system, as predicted
by our hierarchical model in §2.2.

The similarities between this simulation and those reported in the main section of
this paper strongly support the notion that non-helical inverse transfer enabled by
magnetic reconnection is a generic phenomenon.
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