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ABSTRACT

It has been recently shown numerically that there exists an inverse transfer of magnetic energy in decaying, non-helical,
magnetically dominated, magnetohydrodynamic turbulence in three dimensions (3D). We suggest that magnetic reconnection is
the underlying physical mechanism responsible for this inverse transfer. In the two-dimensional (2D) case, the inverse transfer
is easily inferred to be due to smaller magnetic islands merging to form larger ones via reconnection. We find that the scaling
behaviour is similar between the 2D and 3D cases, i.e. the magnetic energy evolves as t~!, and the magnetic power spectrum
follows a slope of k~2. We show that on normalizing time by the magnetic reconnection time-scale, the evolution curves of the
magnetic field in systems with different Lundquist numbers collapse on to one another. Furthermore, transfer function plots
show signatures of magnetic reconnection driving the inverse transfer. We also discuss the conserved quantities in the system
and show that the behaviour of these quantities is similar between the 2D and 3D simulations, thus making the case that the
dynamics in 3D could be approximately explained by what we understand in 2D. Lastly, we also conduct simulations where the
magnetic field is subdominant to the flow. Here, too, we find an inverse transfer of magnetic energy in 3D. In these simulations,

the magnetic energy evolves as ¢~ and, interestingly, a dynamo effect is observed.
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1 INTRODUCTION

Turbulent processes are of fundamental importance to a wide
range of systems, from quantum fluids to astrophysical plasmas
(Biskamp 2003; Skrbek & Sreenivasan 2012). In a typical turbulent
system, energy injected at a certain scale direct cascades down to
smaller and smaller scales until it is dissipated by microphysical
processes. On the other hand, an inverse cascade, or inverse transfer,
involves energy being transferred from smaller to larger scales.
This can occur in both forced or freely decaying turbulent systems
(e.g. Davidson 2004). The best-known inverse cascading system
is two-dimensional (2D) hydrodynamic turbulence, where energy
inverse cascades, while enstrophy direct cascades (Kraichnan 1967;
Batchelor 1969). Indeed, the 2D hydrodynamic inverse cascade is
widely considered one of the most important results in turbulence
(Frisch 1995; Falkovich & Sreenivasan 2006), since Kolmogorov’s
1941 work. Both energy and enstrophy are inviscid invariants in
2D hydrodynamics. Here, the existence of more than one ideally
conserved quadratic quantity in the system can lead to an inverse
cascade (Nazarenko 2011). The three-dimensional (3D) system
mimics 2D-like inverse transfer when there is anisotropy due to
strong rotation or the presence of a strong magnetic field (Yakhot &
Pelz 1987; Baggaley, Barenghi & Sergeev 2014; Pouquet et al. 2019).
Biferale, Musacchio & Toschi (2012) demonstrated that even in the
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case of 3D isotropic and homogeneous hydrodynamic turbulence,
there can be an inverse cascade when parity (mirror symmetry) of
the flow is broken.

Similarly, in 3D magnetohydrodynamics (MHD)), it is well known
that even in isotropic and homogenous decaying turbulence, inverse
cascade occurs due to the presence of non-zero net magnetic helicity
that breaks the parity in the system (Pouquet, Frisch & Leorat
1976; Christensson, Hindmarsh & Brandenburg 2001). Magnetic
helicity is a well-conserved quantity in the limit of large magnetic
Reynolds number (Ry). Thus it is possible to have an inverse
transfer in decaying turbulence in 3D MHD as long as it has
helical magnetic fields (Christensson et al. 2001). However, recent
simulations (Berera & Linkmann 2014; Zrake 2014; Brandenburg,
Kahniashvili & Tevzadze 2015; Reppin & Banerjee 2017; Zhou,
Loureiro & Uzdensky 2020) have shown that there exists an inverse
transfer of magnetic energy in 3D MHD decaying turbulence, even
in the absence of net magnetic helicity.

In this paper, we investigate the underlying cause of such a
3D non-helical inverse transfer. We find that there are similarities
between the 2D and 3D cases. The 2D inverse transfer has been
previously well studied, and the relevant ideal conserved quantities
have been identified: total energy and vector-potential squared (Fyfe
& Montgomery 1976; Pouquet 1978; Biskamp & Welter 1989).
However, earlier 2D studies used Kolmogorov-type arguments to
obtain scaling solutions for the decaying field (Biskamp 2003). These
arguments do not shine light upon the underlying physical processes
responsible for the inverse transfer. In recent work by Zhou et al.
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(2019), a simple model based on merging magnetic islands provides
a physical picture for the inverse transfer in the 2D system, and finds
that the relevant time-scale is that dictated by magnetic reconnection,
which underlies such mergers. Here, we propose that magnetic
reconnection is responsible for the 3D non-helical inverse transfer as
well. Using direct numerical simulations, we study 3D, non-helical,
decaying MHD turbulence and build connections to the 2D case. We
present evidence of similarities between 2D and 3D systems, and
suggest that magnetically dominated 3D systems display a 2D-like
behaviour.

We think these findings are pertinent to several cosmological and
astrophysical contexts. This reconnection-based understanding of the
non-helical inverse transfer, if true, could affect the time-scales of
magnetic field evolution in the early Universe (Banerjee & Jedamzik
2004; Sethi & Subramanian 2005; Subramanian 2016). Occurrence
of reconnection in magnetically dominated decaying turbulence can
be relevant to the understanding of high-energy phenomena such as
gamma-ray bursts and Crab nebula flares (Asano & Terasawa 2015;
Zrake 2016; Blandford et al. 2017). Furthermore, such decaying
turbulence has been studied in the context of star formation in
molecular clouds (Mac Low et al. 1998; Gao, Xu & Law 2015), and
is relevant to the seeding of magnetic fields in protogalaxies from
supernovae ejecta (Beck et al. 2013), and also in the case of galaxy
clusters after a merger event (Subramanian, Shukurov & Haugen
2006; Sur 2019). In the context of galactic dynamos, a discussion
is presented by Zhou et al. (2020) on the potential significance of
inverse transfer in obtaining the required seed magnetic fields (see
their appendix A).

2 NUMERICAL SET-UP

2.1 The model

We use the PENCIL CODE! to simulate decaying MHD turbulence in
both 2D and 3D. We solve the MHD equations given by

DInp v )
= — U,
Dt
D B Fvisc
Du_ _oyinpy IXB | P @)
Dt P P
0A
¥=uXB—77MOJ7 3)

on a Cartesian N?> or N* grid, with periodic boundary conditions,
where N is the number of grid points in any given direction. The
operator D/Dt = d/dt + u - V is the advective derivative, with u
the fluid velocity field. We solve the uncurled version of the induction
equation, in terms of the vector potential, A, related to the magnetic
field by B =V x A. We adopt the Weyl gauge ® = 0, where ®
denotes the scalar potential. The current density is J =V x B/,
with 1y the vacuum permeability. The viscous force is Fic = V -
2vpS, where v is the kinematic viscosity, and S is the traceless
rate of strain tensor with components §;; = %(u,;,j +uji) — %SijV .
u (commas denote partial derivatives). Finally, n is the magnetic
diffusivity. In the 2D runs, we solve a 2D version of equations (1)—
(3) obtained by setting 9, = 0 and eliminating vector components in
the z direction. Other than compressibility effects (which are minor
in our simulations), this 2D version of the equations is identical
to the 2D version of the reduced MHD equations (Kadomtsev &
Pogutse 1974; Strauss 1976; Schekochihin et al. 2009). The code
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Inverse energy transfer due to reconnection

3075

Table 1. A summary of all runs and their respective parameters (in dimen-
sionless units). uymgo and Brmgo are the initial root-mean-squared values of the
flow and the magnetic field, respectively. In all runs, we set k, ~ 25 at 1 = 0.

Run Resolution n x 10* Urms0 Bimso S

A2D 20482 0.5 0.0 0.2 1000
B2D 10242 1.0 0.0 0.2 500
C2D 10242 2.0 0.0 0.2 250
F2D 10242 1.0 0.2 0.02 50

A3D 10243 0.5 0.0 0.2 1000
B3D 10243 1.0 0.0 0.2 500
C3D 5123 2.0 0.0 0.2 250
D3D 5123 4.0 0.0 0.2 125
E3D 5123 8.0 0.0 0.2 50

F3D 10243 0.25 0.2 0.02 200

uses dimensionless quantities by measuring length in units of the
domain size L, speed in units of the isothermal sound speed c;,
density in units of the initial value p,, and magnetic field in units of
(opoc?)'/?. We choose L = 27, and ¢; = pg = o = 1.

2.2 Initial conditions and parameters

The initial magnetic field is generated in the wavenumber space
with a certain spectrum and random phases, similar to the method
in Brandenburg et al. (2015). The magnetic power spectrum is k*
(Brandenburg et al. 2015) for k < ko, and is exponentially cut-off
beyond ky. Such a spectrum is obtained from the vector potential in
Fourier space, A ;j(k), whose three components j are given by

A n/4—1/2 .

Aty = Ao (/)" exp (—K2/K3) exp (i (k). @)
where exponent n = 2 and ¢(k) are random phases and A, is the
amplitude.

We define the Lundquist number in our simulations as S =
Va(2m/k,)/m, where V is the Alfvén velocity and k,, is the wavenum-
ber at which the magnetic power spectrum peaks. In our main runs,
analysed in Sections 3.1-3.3, the initial Alfvén velocity is Va =
0.2 (which implies that compressibility effects are weak and can be
ignored in the analysis of the dynamics) and the initial velocity field
is zero. We have also carried out runs with non-zero initial velocity
field; these are reported in Section 3.4. In all runs we set k, ~ 25 at ¢
= 0. We have run simulations across a range of Lundquist numbers
as allowed by the resolution limit of 20482 in 2D and 1024° in 3D.
The magnetic Prandtl number (Pry; = v/n) in all our simulations is
1. For easy reference, all runs reported in this paper are listed in
Table 1.

3 RESULTS

3.1 Decaying turbulent magnetic fields in 2D

We first present our study of 2D simulations of decaying MHD
turbulence (simulations A2D, B2D, and C2D in Table 1). In the
top panel of Fig. 1, the evolution of magnetic energy is shown in
a log—log plot. It decays in time as a power law, with an exponent
close to —1 at late times. This result matches with that obtained
in the 2D simulations performed by Zhou et al. (2019), which
focused on an initial condition consisting of an ordered array of
current filaments (or, equivalently, magnetic islands) with alternating
polarities. Upon introducing small perturbations into that system,
the current filaments move out of the initial (unstable) equilibrium.
The subsequent evolution of the system is then primarily dictated
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Figure 1. Top panel: Evolution of magnetic energy (solid black) and kinetic
energy (dashed blue) in a 2D simulation, A2D, with § = 1000 and resolution
of 20482, Bottom panel: Magnetic power spectra M(k, £) are plotted at regular
intervals of At = 10 with a thick final curve at t = 70.

by the coalescence, via magnetic reconnection, of filaments with
equal polarity. Mergers of island pairs lead to larger islands, albeit
at the cost of magnetic energy dissipation. Successive mergers lead
to progressively larger structures, resulting in an inverse transfer of
magnetic energy. This occurs hierarchically in a self-similar manner,
giving rise to power-law-in-time behaviour. Similarly, even in the
case of a random initial condition such as employed here, we observe
an inverse transfer as the system evolves in time. This is quite evident
in the time progression of the magnetic power spectrum, shown in
the bottom panel of Fig. 1. The initial spectrum (random field peaked
at k, ~ 25) is seen to shift from large wavenumbers to smaller ones,
depicting an inverse transfer. The spectra reveal a small range where
they scale as k~2; the same power law is observed by Zhou et al.
(2019), who attribute it to the dominance of sharp current sheets. (i.e.
a Burgers’ spectrum; Burgers 1948).

As in Zhou et al. (2019), the growth of magnetic energy at
large scales that we find in our 2D simulations is due to magnetic
reconnection. This can be seen explicitly and clearly from a sequence
(a movie) of time evolving contour plots of A, (see supplementary
material), or from the corresponding stills at specific moments of time
shown in Fig. 2. Current sheets — sharply localized enhancements of
current density in Fig. 3 — are seen to form at the interface of any pair
of interacting islands, leading to their reconnectiona and resulting in
larger islands. The magnetic islands can be seen to grow progressively
larger in time due to island mergers.

A complementary way to understand inverse transfer in this 2D
system is to consider the conserved quantities in the system. For
the ideal 2D MHD equations (in the absence of dissipation), these
are the total energy, &y + Ek = (B?)/2 + p(u?)/2 (given weak
compressibility), and vector-potential squared, P = (A2), (where
() represents integral over the domain) (e.g. Biskamp 2003). In the
following, we show that in our non-ideal system where the kinetic
energy is subdominant, by considering the evolution of & and P,
we can deduce that decaying 2D MHD turbulence displays inverse
transfer of energy. The evolution equations for magnetic energy and
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vector-potential squared in a closed domain (as is the case in our
simulations, given that we employ periodic boundaries conditions)
in the non-ideal case are given by

//d53<3—2) =—//dSu-(JxB)+ng, (5)

ar \ 2

//dS b (A—g) = —//dS nB?. (6)
Dr \ 2

In the 2D limit that we consider here, only one component of the
vector potential is needed, i.e. B =V x A,Z, where the Z is the unit
vector orthogonal to the 2D plane. Similarly, only one component of
the current density survives, J, = 0,8y — 0,B,.

From equations (5) and (6), it is possible to deduce the following
implications for a freely evolving turbulent system. While the
evolution of vector-potential squared is governed by only a decay
term on the RHS of equation (6), the equation for magnetic energy,
equation (5), also consists of a source term given by u - (J x B).
Depending on the sign of this term, either the energy is being
transferred from the magnetic field to the velocity field, or vice
versa. Now, in these simulations, the velocity field is initially zero,
and it is entirely driven by the magnetic field. We assume that the
backreaction from the generated flow on the field is negligible: this
is a reasonable assumption if the kinetic energy is subdominant, as
is indeed the case in our system (see the top panel of Fig. 1). Thus,
as the system is allowed to evolve freely, the magnetic field loses
its energy to either the velocity field or to resistive decay. Given
that the system is turbulent, the magnetic field is expected to decay
even as 11 — 0 because the field can develop small enough scales
(current sheets). As a result, (J?) can remain finite in that limit.
However, as n — 0, the term on the right-hand side of equation (6),
n(B?) (where (B?) is essentially independent of resistivity) will
go to zero, thereby rendering volume-integrated vector-potential
squared, P, to be nearly invariant. In short, in the limit of n —
0 (or, equivalently, in the limit of very large R,, or §), the vector-
potential squared is better conserved than the magnetic energy,
Em = (B?)/2.

We can now use this conservation property to argue why such a
freely decaying turbulent system can exhibit inverse transfer. In the
Fourier domain, we have B = ik x A2, where k = k. & + kyy. It
follows that

|BI? = K*|A. @)

Now, let us use the expressions for &y and P in the Fourier domain,
1 .

fu =, [ 1B @k ®)

P = / |A)> d’k, )

and consider that most of the magnetic energy is concentrated in a
single scale in the system; we shall call it the correlation scale, kcq;-
It then follows from equation (7) that

kcorr ~ 5M/P (10)

Since this is an unforced stochastic system, the magnetic energy, Ey;,
will decay. Given that P is better conserved than &y, P remains nearly
constant as &y decreases; thus, the wavenumber k., is expected to
decrease. This implies a shift of the correlation scale in the system to
larger and larger scales — the spectral signature of an inverse transfer.
Indeed, if we substitute the scaling &y o ¢! into equation (10),
and consider P to be constant in time, we obtain keooct~ 2. This is
consistent with what we find from our simulations when we trace
keore as a function of time. Both of these scalings are predicted by
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Figure 3. Evolution of the current density (J;) in 1/8 of the domain from the 2D simulation A2D, at times ¢t = 1, r = 15, and ¢ = 45, from left to right. The

overlaid lines are contours of A..

the reconnection-based hierarchical model of Zhou et al. (2019),
and are verified by the RMHD numerical simulations carried out
in that paper (note that the hierarchical model itself is based on
mass and magnetic flux (A,) being conserved during island mergers
through reconnection). Thus, we conclude that the implications from
2D conservation properties are consistent with the physical picture
of island mergers via reconnection in 2D; together, they provide a
solid explanation for the inverse transfer of magnetic energy in the
2D system.

3.2 Decaying turbulent non-helical magnetic fields in 3D

Next, we turn to 3D simulations (runs A3D, B3D, C3D, D3D, and
E3D in Table 1). The 3D run resolutions go up to 10243 grid points,
and all have an initial condition similar to the 2D case of random
magnetic fields with power peaked at small scales, as specified in
equation (4).

As in the 2D case, we again observe a power-law-in-time magnetic
energy decay with exponent —1, as shown in the top panel of Fig. 4
(at later times, the decay of magnetic energy steepens, possibly due
to diffusion beginning to dominate the system. Brandenburg et al.
(2015), who use a similar set-up, do not report such a transition,
possibly because the higher resolution that they employ (2304%)
reduces diffusive effects in their simulation).

From the bottom panel of Fig. 4, a range indicating k=2 slope
in the magnetic spectrum can be observed (with limited extension,
given the numerical resolution), in agreement with Brandenburg et al.
(2015) and Zrake (2014). These scalings are intriguingly similar to
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Figure 4. Top panel: Evolution of magnetic energy (solid black) and kinetic
energy (dashed blue) in the 3D simulation A3D, with § = 1000 and resolution
of 10243, The bottom panel shows magnetic power spectra M(k, ) for the
same run, plotted at regular intervals of At =5, with a thick final curve at ¢
=50.
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Figure 6. Evolution of a component of the magnetic field, By, shown on the 3D domain from the 3D simulation, C3D, at times t = 2, = 15, and t = 50 from

left to right.

the ones seen already in the 2D case, thus triggering the following
questions:

(i) To what extent are the 3D simulations similar to the 2D ones?

(i) Can we conclude that, even in 3D, ‘structure mergers’ via
reconnections are responsible for this inverse transfer of magnetic
energy?

This section and the next are concerned with answering these
questions.

First, we see in Fig. 5 qualitative similarities with the 2D runs;
namely, the evolution of the magnetic field structures (from a slice
out of the 3D domain) resembles the behaviour of the magnetic
islands seen in the contour plots from the 2D system (Fig. 2). We
also show the evolution of the x-component of the field, B,, in Fig. 6.
It is clearly seen that the field structures grow in scale. However,
here in the 3D case, the structures are more elongated and are not as
symmetric as in the 2D case. None the less, they do not exhibit
any specific directionality overall. In other words, while locally
each field structure does seem to prefer a certain direction (given
the elongation), these preferences are randomly distributed over the
domain. Thus, there is no development of a large-scale structure
that can bias the system in a certain randomly chosen direction, as
is routinely seen, for example, in helical dynamos (Brandenburg &
Subramanian 2005).

MNRAS 501, 3074-3087 (2021)

From comparisons with the 2D results, there is a suggestion that
perhaps, even in the 3D system, a reconnection-based mechanism
might be responsible for the growth of the structures over time. Zhou
et al. (2020) have explored the suggestion in this work, in the context
of reduced MHD, and found it to correctly describe their numerical
results. To further support this idea, we show in Fig. 7 the absolute
J2+ J? + J?). The wispiness
of the current density structures corroborates the existence of current
sheets where reconnection can take place.

Already at this point it is possible to argue for why there are
similarities between the 2D and 3D results. Given that the system
is magnetically dominated, we think that a strong local anisotropy
arises spontaneously. This is manifest in the previously mentioned
elongation of the magnetic structures in Figs 5 and 6. This local
anisotropy could be responsible for the 2D-like results we see in 3D
as well (such as the magnetic energy scaling of #~! and the spectral
scaling of k~2).

Next, we look at the conservation properties in both the 2D and
3D systems. First, we show in the top panel of Fig. 8 the evolution
of the rate of change of the 2D MHD ideal invariants P (black) and
En (red dashed) (given that kinetic energy is subdominant here), A4
=d(In P)/dr and A5 = d(In Eyy)/dt, respectively, calculated from run
A2D. As expected, A4 is much smaller than g, thus demonstrating
P to be better conserved than &, as we have argued earlier. In the
bottom panel of Fig. 8, we show the evolution of A4 and Ap from the

value of the current density, |J| =
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and magnetic energy, Ap (dashed red), is shown for 2D and 3D simulations,
A2D and A3D (where S = 1000) in the top and bottom figures, respectively.
In each figure, the upper panel is a log-linear plot, whereas the lower panel
is a linear—linear one. In the bottom figure, an additional curve from a 3D
simulation employing the Lorenz gauge is shown in dotted blue.

3D simulation A3D, and again we find the former to be much smaller
than the latter. While theoretically P is strictly an ideal invariant only
in 2D, these results suggest that it is possible to make a case for its
approximate conservation in 3D as well.
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Figure 9. Magnetic and kinetic power spectra plotted at times = 2 and ¢

= 12 from the 2D and 3D runs, A2D and A3D, in upper and lower panels,
respectively.

Consider therefore the evolution of P in 3D,

dVDAz—dV A-VA B’ 11
/ E(?)‘/ u-(A-VA) - B, (11)

This equation differs from the 2D case only by the termu - (A - VA)
on the RHS. Here, again, we appeal to the fact that flow is subdomi-
nant to the field in order to assume that backreaction of the flow on the
field is negligible. Such subdominance can be seen in Fig. 9: in the

vicinity of the peak wavenumber, the amplitude of the kinetic power
spectra is lower than the magnetic power spectra by about an order of

magnitude, in both 2D and 3D cases. Furthermore, the source term
u - (A - VA) in question from equation (11) can be compared to the
analogous source term in the equation for the magnetic energy equa-
tion (5), u - (B - V B) (note that equation 5 is valid in 3D also). This
term arises on expandingu - (J x B) =u - (—V(B*/2)+ B - VB).

Assuming that |B| ~ ko |A| (in a scenario where most of the power

is in a single scale, represented by the wavenumber k.o > 1), then
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these sources differ by a factor of k2, with the term u - (A - VA)
being smaller of the two. Thus, again, we conclude that in the limit
of n — 0, P decays much slower than . Consequently, it follows
from equation (10) that there can be an inverse transfer in 3D as well,
as seen in the 3D simulations.

Since we are dealing with quantities based on vector potential, a
fair concern is with regard to the gauge dependence. As mentioned
earlier, our model equations adopt the Weyl gauge (® = 0). To check
for possible gauge-related effects in the results, we performed a
simulation using instead the Lorenz gauge, with the same parameters
and initial conditions as those employed in our main runs with the
Weyl gauge. In the Lorenz gauge (or the pseudo-Lorenz gauge), we
have 0, ® = —ch - A (Brandenburg & Kipyld 2007), where ¢ is the
speed of sound instead of the speed of light. We overplot the result
in the bottom panel of Fig. 8 (dotted blue line). It can be seen that
the results from the Lorenz gauge are indistinguishable from those
with the Weyl gauge. This is consistent with the expectation of better
conservation of P than of £y to hold up in any gauge within a closed
domain, as the sink terms in the equations for P and &y remain the
same.

While these arguments based on ideal conserved quantities are
useful to provide plausibility to the notion that the understanding of
3D non-helical inverse transfer lies in its 2D-like behaviour, we still
do not have more substantial evidence for reconnection being the
driving factor for the inverse transfer. To gain a better understanding
of the system, we study the time-scale governing its dynamical
evolution. In doing so, we continue to probe the similarities between
the 2D and 3D cases.

The power law governing the evolution of the magnetic field in
the 2D system is expected to be By = Bo(t/T )", as shown by
Zhou et al. (2019), where 1. is the reconnection time-scale, given
by Tee = ﬂr;,' (27 [kcorr0)/ V a0, With B the normalized reconnection
rate, koo 1S the wavenumber associated with the initial correlation
scale and V is the initial Alfvén velocity. Here, we use the Sweet—
Parker scaling for the reconnection rate (Parker 1957; Sweet 1958),
Bree = S™'2, which is appropriate for values of S lower than the
critical value of ~10* to trigger the plasmoid instability (Loureiro,
Schekochihin & Cowley 2007; Samtaney et al. 2009). Note that as
the simulation proceeds, the correlation scale, (277 /kcor;) (We take keopr
= k), increases, and the Alfvén velocity, V,, decreases; Zhou et al.
(2019) show that these changes are such that the Lundquist number,
S = VaQn/keorr)/1 is expected to remain constant. For two different
runs with different Lundquist numbers S; and S,, at any given time
t, the ratio of the magnetic field strengths is then predicted to scale
as Brmsl/BrmSZ = (S]/S2)1/4.

In Figs 10 and 11, we compare By, evolution curves from 2D and
3D runs, respectively, with different values of S, which vary by a
factor of 2 from one run to another. In the bottom panels of Figs 10
and 11, we normalize the time axis by the reconnection time-scale
Tree (nOte that the normalization . is computed for the initial ko,
and not varied with time; this is because ko, is a discrete quantity and
thus its variation does not lead to a secular evolution of the time axis
t/Trec). On applying this normalization, there is a notable tendency
for curves from different simulations to collapse on top of each other.
The collapse of the curves is better in the 2D case than the 3D case;
but, even in the 3D case, for runs with increasing values of S, the
gap between the successive curves decreases. The curves from runs
with the highest resolution and Lundquist numbers, S = 500, shown
in dash—dotted green, and S = 1000, shown in dotted black, very
nearly collapse on top of each other. These results suggest that the
reconnection time-scale dictates the dynamical evolution of both the
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Figure 10. Time evolution of By from 2D runs with different values of S.
In the lower panel, the time axis has been normalized by the reconnection
time-scale T pertaining to each value of S.
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2D and 3D systems. A point to be noted is that when the time axes
are normalized by the resistive time-scale instead, the curves do not
collapse together.

This result of curves collapsing together on normalization of time
by 7. strongly supports the possibility of magnetic reconnection
being the key mechanism responsible for this 3D non-helical inverse
transfer.

3.3 Energy transfer functions

The previous sections have provided both qualitative and quantitative
arguments in support of the notion that magnetic reconnection is the
physical mechanism underlying the inverse transfer that we observe
in both the 2D and 3D simulations. Additional support for this
conclusion arises from the analysis of the energy transfer functions,
which we now discuss.

We calculate spectral transfer functions involving transfer between
different scales in the magnetic energy, given by 7};, between
magnetic and kinetic energies, given by 7,;, and between different
scales in the kinetic energy, given by 7,,,. The transfer function 7, (Q,
K) denotes the transfer of energy from shell Q to shell K, with the
subscript referring to the energy reservoir, u for kinetic energy and b
for magnetic energy. In other words, 7,,(Q, K) > 0 denotes a transfer
from the reservoir x to y, and T\,(Q, K) < 0 denotes transfer from
y to x. These functions are antisymmetric when x = y. The transfer
functions are given by (Grete et al. 2017)

Ty (0, K) = —/BK -(u-V)B?

+%BK~BQ(V-u)dx, (12)
T (O K):/BK-V- (£®wQ>
o NG
—BX.BV. ("’—Q>dx (13)
2/p ’

Tuu( Q. K) = —/wK V) w?

1
+§w’( w2 (V- u)dx, (14)

where ® denotes tensor product, w = ,/pu, and the shell-filtered
quantities in real space are given by ¢* (x) = [, dp(k)e’**dk.

We intend to look for signatures of magnetic reconnection in the
transfer function plots calculated from our simulations. Energetically,
MHD reconnection involves energy transfer from the magnetic to the
velocity fields, manifested by the Alfvénic outflows along the length
of the current sheet that it generates. There is also, in addition, Ohmic
dissipation in the current sheet.

In previous sections, we have mentioned that the merging of mag-
netic islands facilitated by reconnection results in inverse transfer in
a 2D system; these mergers take place in hierarchical fashion, where
each generation of mergers produces islands of larger sizes (Zhou
et al. 2019). We conjecture that the 3D system evolves in a similar
way, with reconnection merging current filaments, and resulting in an
inverse cascade of magnetic energy. If this conjecture is true, then we
expect to observe, at any given point in time, significant transfer of
magnetic to kinetic energy at a scale corresponding to the dominant
island size at that time (the current sheet length-scales as the size of
the islands).

Given this theoretical understanding, we have the following
expectations for the transfer function plots:

Inverse energy transfer due to reconnection
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(i) In the Tpp plot, the scales at which the merging of islands (or
current filaments) predominantly takes place (corresponding to ko)
should exhibit inverse transfer, while rest of the (smaller) scales
should decay or direct transfer to further smaller scales.

(i1) In the T,p plot, the transfer from magnetic to kinetic energy
should stand out at scales comparable to those at which the inverse
transfer (i.e. reconnection) is dominant.

(iii) In the Ty, plot, there should be a similarity with the Ty, plot
as the flows accompanying the fields will behave similarly.

Note that the expectations for the behaviour of transfer functions
for a system where magnetic reconnection drives the inverse transfer
are quite specific, as opposed to a case where a generic turbulence-
related process drives the inverse transfer. For example, in a generic
turbulence-related process, we do not expect the transfer from the
magnetic to the velocity fields to be concentrated around certain
scales, but to be spread out over a wide range of scales.

In the upper panel of Fig. 12, the Tjp, plot from a 2D simulation
(taken at a time when k, ~ 9) shows both inverse and direct transfer
of energy for certain ranges of scales. Notice that the reflection
of the patterns around the diagonal is due to antisymmetry. Next,
observe that on the lower side of the diagonal there is a change from
the dominant colour of red at lower wavenumbers to the dominant
colour of blue at higher wavenumbers. This means that there is
inverse transfer of energy from Q = 10 to K = 6-9 indicated by the
red colour, and for Q > 10 forward transfer is dominant, as indicated
by the blue colour.

In the middle panel of Fig. 12, the T,; plot shows that energy
transfer from the magnetic field to the velocity field is from K =
11-14 to Q ~ 6, as indicated by the blue patch. Since the blue colour
refers to negative values, it implies the direction of the transfer to
be from K to Q and thus from the magnetic to the kinetic energy
reservoirs. This confirms that the transfer is localized to a certain set
of scales as expected for a phenomenon (reconnection) dependent
process, as opposed to a generic turbulence-driven process.

The bottom panel of Fig. 12 shows the T,, plot. Below the
diagonal line, the darkest red spot at Q = 10 and the surrounding
small red patch is indicative of minor inverse transfer of energy.
This is consistent with the reasoning that the merger of magnetic
structures causes the underlying flow structures to also acquire a
larger characteristic scale. In that sense, the features in 7}, plot mimic
the Tj, plot. Also, given that the flow is energetically subdominant
to the field, the 7, transfers are expected to be small.

Similarly, we show transfer function plots for the 3D case in
Fig. 13. In the plot of Tj,, we find that the pattern changes trend
around Q ~ 10. Scales larger than the wavenumber Q =~ 10
exhibit inverse transfer (these are the scales where reconnection
would be taking place), while Q > 10 show forward transfer, as
expected. In the plot for 7, the transfer from magnetic to kinetic
reservoirs is localized around Q ~ 12 and K ~ 10, as expected from
a reconnection-dependent process dominantly happening at these
scales. Again, as in 2D case, the Ty, plot here in 3D shows similarity
to the Tpp plot, with a minor inverse transfer of energy from around
Q = 7. Note that the energy transfers are mostly local and thus the
patterns seen in all the plots are mostly concentrated around the
diagonal in both 2D and 3D cases.

The 2D and 3D transfer function plots tell a similar story —
with greater clarity in the 3D case, we think, because turbulence
in that limit is unconstrained. The behaviour of the transfer functions
matches our expectations for a magnetic-reconnection-driven inverse
cascade.
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Figure 12. Top, middle, and bottom panels show the transfer functions 7pp,
Tub, and Ty, respectively, from the 2D simulation A2D. At this point of time,

t =10 in the simulation, k, ~ 9.
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Figure 14. Top panel: Evolution of magnetic energy (solid black) and kinetic
energy (dashed blue) in a 2D simulation, F2D, with non-zero initial velocity.
Bottom panel: Magnetic and kinetic power spectra from the same simulation,
plotted at regular intervals of At =5, with a thick final curve at r = 45.

3.4 The case when the initial velocity field is non-zero

In all simulations analysed up to this point, the velocity field was
initialized to be zero. The flows that arose in these simulations were
generated by the magnetic field, and were shown to be subdominant to
it. Magnetic reconnection is typically accompanied by the conversion
of magnetic to kinetic energy. These generated flows, thus, are largely
Alfvénic in nature. And such flows, where u and B are mostly
parallel, lead to negligible induction.

However, if the velocity field is non-zero (and the system is
not magnetically dominated) to begin with, it can lead to a non-
trivial stretching term (B - Vu), resulting in conversion of kinetic
to magnetic energy. Then the simple arguments for showing A4 <
Ap will not hold true anymore. This invites the question that if we
consider a non-zero initial velocity field, will we observe energy
decay of a different nature, one without an inverse transfer? To clarify
this question, we have also performed simulations where the initial
velocity field is not only non-zero, but dominant, which we discuss
in this section.

We first examine the 2D case (run F2D). We initialize the flow field
in a manner similar to the magnetic field, as specified in Section 2.2.
While the slope of the magnetic power spectrum is set to k*, the
kinetic spectrum is set to k> (chosen because this is the slope that
develops in the runs when the initial velocity field is zero). Also, typs
is initialized to be larger than B,y by a factor of 10. In Fig. 14, we
show the evolution curves of the magnetic and kinetic energies, and
also their spectra. It is seen that there is no inverse transfer in energy
(there is minor growth at k = 1, which we will address below), and
also the temporal scaling of the magnetic energy evolution curve is
much steeper than the ~¢~! evolution found in the case of zero initial
velocity (Fig. 1).

Next, we show in Fig. 15 the evolution curves of the magnetic
and kinetic energies, and their spectra, for the 3D case (run F3D).
Here, surprisingly, we do find an inverse transfer. However, the
magnetic energy (and the kinetic energy) does not evolve as ~¢~!

Inverse energy transfer due to reconnection
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Figure 15. Top panel: Evolution of magnetic energy (solid black) and kinetic
energy (dashed blue) in a 3D simulation, F3D, with non-zero initial velocity.
Bottom panel: Magnetic and kinetic power spectra M(k, 1) plotted at regular
intervals of Ar =5, with a thick final curve at r = 50.

but as ~¢~"#. This numerical scaling of ~¢~'* is close to the decay
law of ~t~'97, as governed by the Loitsyanky invariant (Davidson
2000; obtained in the case of hydrodynamic turbulence but not
unreasonable to consider here, given the dominance of the kinetic
energy).

It is not at once obvious why there is a continued inverse transfer
behaviour also when the initial kinetic energy is non-zero in the
3D case. To understand this, we have to consider that there exists a
crucial difference between 2D and 3D cases with respect to dynamo
action. It is well known from antidynamo theorems that there can be
no sustained dynamo action in 2D (Zeldovich 1957; Moffatt 1978).
A random velocity field can give rise to anomalous diffusion. In
the absence of any sustained dynamo action, such an anomalous
diffusion can lead to rapid decay of the field in 2D. In Fig. 16, it can
be seen that the system indeed looks turbulent. The stretching of the
fields by turbulence can grow the fields in a certain direction while
thinning them out in the perpendicular direction. Thus, even though
the structures seem to grow in size over time, they are extremely thin
and drawn out.

In 3D, besides an anomalous diffusion, these same underlying
random motions can also lead to a dynamo, which can mitigate the
effect of the anomalous diffusion. The presence of dynamo in our
3D simulations with initial flow can be seen from the top panel of
Fig. 15, where the B,y actually increases slightly before it decays.
The dynamo effect could explain the difference in the nature of
decay of magnetic fields in 2D and 3D, when fields are subdominant
to random flows.

In Fig. 17, we find that on a 2D plane from within the 3D domain,
the magnetic field structures are not as drawn out as in the 2D case.
They, in fact, retain a more definitive form similar to the earlier cases,
as in Figs 2 and 5. It is not clear if magnetic reconnection has a role
to play in the inverse transfer seen in the 3D case. To investigate this
further, we now study the transfer function plots obtained for the 3D
case.

MNRAS 501, 3074-3087 (2021)

1202 dy 20 Uo 1s9nB Aq 8EE6£09/20€/2/1L0S/2I01ME/SEIUW/WIO0d dNODILSPED.//:SA)IY WO} PaPEOjUMOQ



3084

Figure 16. Evolution of the vector potential (A;) from the 2D simulation, F2D, with non-zero initial velocity shown in contour plots at times t = 2, t = 10, and
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t = 40 from left to right.
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Figure 17. Evolution of a component of the vector potential (A;) in an arbitrary 2D slice (in x—y plane) from the 3D domain of the 3D simulation, F3D, with
non-zero initial velocity shown in contour plots at times # = 5, ¢ = 20, and 7 = 60 from left to right.

Fig. 18 presents the energy transfer function plots for the run H3D.
Even though the spectra in Fig. 15 show the signature of inverse
transfer, a corresponding distinctive signature in 7y is lacking. The
red spots below the diagonal (or equivalently, the blue spots above
the diagonal), which indicate inverse transfer, are very few. Here,
direct or forward transfer dominates the plot. Also the 7, plot
is dominated by red colour, indicating that the transfers are from
kinetic to magnetic energy, supporting a scenario of dynamo action.
Similarly, the 7, plot mostly shows forward transfers as one would
expect for a fairly turbulent flow. Thus, overall, the transfer function
plots in this case of non-zero initial velocity, fail to uncover any
signatures of reconnection-based inverse transfer.

None the less, an interesting feature can be observed in the 7,
plot. While most of the energy transfers are from low wavenumbers
in the kinetic energy reservoir to the high wavenumbers in the
magnetic energy reservoir, there is also energy transfer to smaller
wavenumbers. For example, the wavenumber Q = 10 contributes
significant energy to K = 7-9. This could be the tail of the small-
scale dynamo at low wavenumbers (Haugen, Brandenburg & Dobler
2004; Bhat & Subramanian 2013). Then the question which arises is
why is there an inverse transfer in decaying turbulence with dynamo
effects. In such a system, the eddies that are supercritical to carry out
the dynamo action would pertain to the peak in the kinetic spectrum.
It can, then, be seen from the Fig. 15, that due to selective decay,
this peak shifts to the lower wavenumbers. As the peak in the kinetic

MNRAS 501, 3074-3087 (2021)

spectrum shifts, it could also shift the scales at which the magnetic
energy grows, thus leading to an effect that resembles the inverse
transfer. A similar effect of flow (which exhibits inverse transfer)
dragging the field could be the reason for the growth of magnetic
energy at k = 1 as seen in Fig. 14 in the 2D simulation, F2D. A more
detailed investigation of the case of non-zero initial velocity field in
decaying non-helical MHD turbulence is left to a future paper.

4 DISCUSSION AND CONCLUSIONS

We have investigated the inverse transfer of magnetic energy in the
decay of non-helical MHD turbulence in 2D and 3D simulations.
We find that the scaling of magnetic energy with time (~¢~!) and
that of power spectrum with wavenumber (~k~?) is similar between
both 2D and 3D cases (when the initial velocity field is zero). This is
suggestive of similar mechanisms being responsible, in both cases,
for the inverse transfer. In the 2D case, Zhou et al. (2019) have
shown that island mergers via magnetic reconnection are key to
understanding formation of larger and larger structures that lead to
inverse transfer. We find that our simulation results support the idea
that magnetic reconnection is responsible for the inverse transfer in
3D non-helical turbulent systems as well.

Our investigations have yielded two main results via the study
of conserved quantities, time-scales, and length-scales (via transfer
function plots). In 2D MHD, the ideal invariants include energy and
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Figure 18. Top, middle, and bottom panels show the transfer functions Tpp,
Tup, and Ty, respectively, from the 3D simulation F3D, with non-zero initial
velocity. At this point of time, # = 30 in the simulation, k, ~ 9.

vector-potential squared. We have provided analytical arguments to
show that in a turbulent system, for large Lundquist numbers, vector-
potential squared P is better conserved than magnetic energy Euv
(the dominant component of energy in our system) and how, for a
decaying system, this can lead to inverse energy transfer. We have
calculated the rate of change of the two ideal invariants from the
2D simulation and show that indeed P is better conserved than &y.
Further, we found that this was the case even in the 3D simulations,
indicating that the dynamics in 3D have 2D-like tendencies. This is
our first main result.

Inverse energy transfer due to reconnection
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Our second main result is that this inverse transfer, both in 2D
and in 3D, is due to magnetic reconnection. Indeed, on normalizing
the time axis by the magnetic reconnection time-scale, we find the
evolution curves of the magnetic energy from runs with varying
values of Lundquist numbers collapse on top of each other in
both 2D and 3D (the collapse being better at larger values of S).
Additionally, the transfer function plots show clear signatures of
magnetic reconnection driving the inverse transfer. We find from the
Ty, plots that only those scales either at or above the peak correlation
scale, at any given time, exhibit inverse transfer as expected from a
physical picture of island (or filament) mergers being dominant at a
certain scale. The more clinching evidence arises from the 7, plots,
where it is seen that a set of scales compatible with our understanding
of the reconnection process in this system stand out in the transfer of
magnetic to kinetic energy.

From these results, an emergent characteristic of the magnetically
dominated 3D system is its tendency to align with the behaviour
observed in 2D. The overarching question is then what element in
3D renders it with 2D-like behaviour? We think the answer lies in
the fact that the system is magnetically dominated. The field can
provide anisotropy at small scales i.e. the current sheets can have
local guide fields. Magnetic reconnection in 3D, when presided by
guide field, leads to familiar 2D results (Onofri et al. 2004). Indeed,
in another recent study of inverse energy transfer using the reduced
MHD model (which assumes a strong background magnetic field),
Zhou et al. (2020) find mergers between magnetic flux tubes driving
inverse transfer.

Returning to the result of k=2 slope in the magnetic power spec-
trum, it has been pointed out that this corresponds to the theoretical
expectation for weak turbulence (Brandenburg et al. 2015). However,
Zhou et al. (2019) find in their 2D simulations that it corresponds to
the presence of thin current sheets. In accordance with our findings
of 2D-like behaviour in 3D, this explanation of thin current sheets
for k=2 slope may carry over to 3D as well. Zhou et al. (2020) report
a k= slope in their reduced MHD simulations but, unlike the case
in the simulations here, they also find that kinetic energy is not
subdominant to the magnetic energy.

To ascertain whether by making the magnetic field subdominant
the inverse transfer in energy ceases to appear, we performed
simulations where the initial velocity was set to a large non-zero
value. In the 2D simulation, the system becomes turbulent leading
to much faster decay of energy, likely due to anomalous diffusion
and there is no significant inverse transfer. In contrast, in the 3D
case, the energy decay follows a ! scaling, and we do observe a
definitive signature of inverse transfer in the evolution of the magnetic
spectrum. Furthermore, the evolution of magnetic energy reveals a
dynamo effect which possibly counters the anomalous diffusion,
leading to a decay rate that is slower than the one seen in the 2D
case. On studying the transfer function plots for the 3D simulation,
we find that the signature for inverse transfer (that was seen in the
magnetic spectra) is surprisingly absent in Ty, plot. However, the
T reveals that there is transfer of energy from the kinetic energy
reservoir to magnetic energy to both small and large scales, where the
larger portion goes to the small scales. This kinetic energy transfer
to larger magnetic scales is a possible signature of the tail of small-
scale dynamo action at small wavenumbers. This tail can possibly
shift further to lower wavenumbers as the peak in kinetic spectrum
shifts due to selective decay, leading to an inverse transfer type effect
(as seen in the evolving magnetic spectra).

We have mentioned several astrophysical and cosmological appli-
cations to which our results might be relevant in the introduction
section. In all of the applications mentioned, the astrophysical
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systems under consideration consist of highly conducting, large
Lundquist number (or magnetic Reynolds number) plasmas. The
range of Lundquist numbers explored in this paper is limited by the
resolution and thus our simulations are in a regime where Sweet—
Parker model for magnetic reconnection is valid. However, at higher
values of S, the nature of reconnection changes with the onset of
the plasmoid instability (Loureiro et al. 2007). Recent research
has revealed that the plasmoid instability renders the magnetic
reconnection rate independent of S for S > 10*, with a reconnection
rate of ~0.01 V, (Bhattacharjee et al. 2009; Uzdensky, Loureiro &
Schekochihin 2010; Loureiro & Uzdensky 2016). This would be the
time-scale to be considered in the astrophysical systems which can
be described with the MHD framework. If, instead, the environment
under consideration is weakly collisional, the adequate reconnection
rate to consider would be faster, of the order of 0.1V, (e.g. Cassak,
Liu & Shay 2017).

A previous study of this problem had shown that the inverse
transfer is weak or altogether absent upon increasing the magnetic
Prandtl number, Pry, (Reppin & Banerjee 2017). This is consistent
with the understanding that magnetic reconnection at higher Pry,
becomes increasingly inefficient (Park, Monticello & White 1984).
However, it is not clear if at both higher S and Pry, this trend will
continue, as the ensuing plasmoid instability could potentially change
it (Loureiro, Schekochihin & Uzdensky 2013).

In conclusion, we provide a physical understanding to the puzzling
and unexpected 3D non-helical inverse transfer via analysis of direct
numerical simulations of magnetically dominated, decaying MHD
turbulence. We argue that magnetic reconnection is the physical
mechanism responsible for the emergence of progressively larger
structures. Further, we show that the behaviour in the 3D system is
intriguingly similar to that in 2D, possibly because of local anisotropy
in this system. These results could have important consequences for
a wide range of astrophysical applications.
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