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Selected configuration interaction (SCI) methods are currently enjoying a resurgence due to several
recent developments which improve either the overall computational efficiency or the compactness
of the resulting SCI vector. These recent advances have made it possible to get full CI (FCI) quality
results for much larger orbital active spaces, compared to conventional approaches. However, due to
the starting assumption that the FCI vector has only a small number of significant Slater determi-
nants, SCI becomes intractable for systems with strong correlation. This paper introduces a method
for developing SCI algorithms in a way which exploits local molecular structure to significantly re-
duce the number of SCI variables. The proposed method is defined by first grouping the orbitals into
clusters over which we can define many particle cluster states. We then directly perform the SCI
algorithm in a basis of tensor products of cluster states instead of Slater determinants. While the
approach is general for arbitrarily defined cluster states, we find significantly improved performance
by defining cluster states through a Tucker decomposition of the global (and sparse) SCI vector. To
demonstrate the potential of this method, called tensor product selected configuration interaction
(TPSCI), we present numerical results for a diverse set of examples: 1) modified Hubbard model
with different inter- and intra-cluster hopping terms, 2) less obviously clusterable cases of bond
breaking in Ny and Fa, and 3) ground state energies of large planar m-conjugated systems with
active spaces of up to 42 electrons in 42 orbitals. These numerical results show that TPSCI can be
used to significantly reduce the number of SCI variables in the variational space, and thus paving a
path for extending these deterministic and variational SCI approaches to a wider range of physical

systems.

I. INTRODUCTION

The efficient simulation of strongly correlated elec-
trons remains a key challenge toward better understand-
ing several critical areas of chemical and molecular sci-
ences including catalysis, organometallic chemistry, ex-
cited state processes, and many more. Although the
term “strongly correlated” is rather ambiguously defined,
we will take this to mean a system which cannot be ef-
ficiently and accurately modeled using perturbative or
diagrammatic techniques starting from a single Slater
determinant wavefunction. For systems dominated by
one-electron interactions, Hartree-Fock (HF) represents a
useful approach, such that the resulting single Slater de-
terminant wavefunctions are qualitatively accurate. Con-
sequently, the full configuration interaction (FCI) wave-
function written as a sum of all possible determinants
bears a near unit coefficient weighting the HF ground
state determinant. Methods such as perturbation the-
ory, or coupled-cluster work extremely well in this regime.
However, as the relative strength of the two-electron com-
ponent increases, the HF state becomes less useful as an
approximation, with many different determinants con-
tributing significantly. This leads to a breakdown of most
common approximations, such as perturbation theory,
coupled-cluster theory, density functional theory, etc.

Although any algorithm which solves an arbitrary
strongly correlated system is likely to exhibit exponen-
tial scaling, it is often the case that a molecule’s Hamil-
tonian has some structure that can be exploited to make
the problem easier. For example, if a molecule’s strong
correlation arises due to an orbital near-degeneracy, then
active-space methods are effective in obtaining accurate

results from a relatively simple computation. For sys-
tems which have a near one-dimensional structure, ma-
trix product states provide highly efficient representa-
tions which can be solved for using density matrix renor-
malization group (DMRG).}3 Likewise, approximately
two-dimensional structure can be efficiently parameter-
ized using projected entangled pair states (PEPS),%°
and recent improvements in contraction algorithms have
made these algorithms more promising for molecular
applications.® More general tensor networks have also
been explored.” !? For systems whose strong correlation
occurs among a relatively small subset of Slater deter-
minants (as opposed to a single particle subset defining
an active-space) one might choose to perform a configura-
tion interaction (CI) calculation using only the important
Slater determinants. This is the physical motivation for
so-called “selected CI” methods which have a long his-
tory in the field,'>'5 but which have seen a resurgence
during the past few years.'6-23

Selected CI methods typically involve an iterative pro-
cedure in which a CI calculation is performed within a
small subspace of Slater determinants, and this subspace
is iteratively refined using some search algorithm to find
the most important Slater determinants. The basic algo-
rithmic steps of a selected CI program involve:

1. Determine an initial variational space (typically ei-
ther the HF determinant or the set of single and
double excitations).

2. Find the ground state of the Hamiltonian in the
current variational space.

3. Perform some search algorithm which identifies
which determinants outside of the space are most



important. This importance criterion is usually
based on perturbative or energy minimization es-
timates.

4. Construct a new variational space based on the
search results, and continue until the spaces stop
changing.

Although all selected CI approaches follow these gen-
eral steps, they differ in various details. As one of the
first approaches of this sort, the configuration interaction
perturbatively selected iteratively (CIPSI)®2425 algo-
rithm builds the CI space by adding determinants which
have first order coefficients larger than some threshold,
€. CIPSI has also been improved in the last 40 years by
various groups. An overview of many different CIPSI
approaches across the years, including a collection of
useful references, can be found in the work of Yann
et al.26 CIPSI has also been recently used with Diffu-
sion Monte Carlo where the determinantal part is con-
structed using SCI.27 29 The FCI-QMC?%3! method pro-
posed by Booth and co-workers can be considered as a
stochastic variant of CIPSI method.!®2® More recently,
the Adaptive Sampling CI (ASCI)16-32:33 was developed
where only a few determinants with large coeflicients
were considered for generating new determinants. With
the goal of achieving better accuracy guaranteed, the A-
CI method adds determinants based on a variational en-
ergy criterion A.3¢ Following their earlier work, Evange-
lista and co-workers then proposed the adaptive CI (ACI)
method which produces compact wavefunctions with tun-
able accuracy.!” As a deterministic generalization of heat-
bath sampling,®® heat-bath CI (HCI)!836738 adds deter-
minants based on the magnitude of the Hamiltonian ma-
trix element. This selection criteria is very cost efficient
since it avoids sampling the determinants directly by us-
ing the magnitude of the integrals themselves, skipping
the denominator computation for the selection step. The
Monte Carlo CI (MCCI) method, proposed by Greer, re-
peatedly adds interacting configurations randomly to the
reference space and generates a variational space.3?:40

All of the SCI methods mentioned above succeed when
the number of significant coefficients in the FCI wave-
function is small, and they fail when this number be-
comes large. This becomes problematic when the de-
gree of strong correlation increases. Luckily, the distri-
bution of FCI wavefunction coefficients directly depends
on the choice of basis. For example, it has been ob-
served that rotating the one-particle basis to diagonal-
ize an approximate one-particle density matrix (natu-
ral orbitals) increases the compactness of a selected CI
wavefunction.'6:3241 However, single particle rotations
are only the simplest type of change of basis one could
consider. This presents a natural question: Can one find
a basis (not necessarily comprised of Slater determinants)
which yields a more compact FCI wavefunction, thus de-
creasing the number of variational parameters in a SCI
procedure?

In this paper, we explore a new basis designed to pro-

vide a more compact representation of the wavefunction
leading to larger scale SCI calculations. This basis is de-
fined by performing many-body rotations on disjoint sets
of orbitals (or “clusters”). The resulting tensor product
state (TPS) basis can incorporate a large amount of elec-
tron correlation into the basis vectors themselves. As a
result, the exact FCI wavefunction written in terms of
tensor product states can be more compact, requiring
significantly fewer basis vectors than in the analogous
expansion in terms of Slater determinants. In the follow-
ing sections we describe the construction of the tensor
product state basis by way of a Tucker decomposition of
a sparse global state vector,*? and a method to exploit
the resulting compactness by developing a framework for
performing CIPSI calculations directly in terms of ten-
sor product states. We refer to this method as tensor
product selected CI (TPSCI), and we investigate the nu-
merical performance for a number of systems, including
the Hubbard model (Sec. IITA), diatomic molecular dis-
sociation (Sec. IIIB), and large aromatic systems with
active spaces up to 42 electrons in 42 orbitals (Sec. IIIC).
A cartoon schematic of the TPSCI method is shown in
Fig. 1.

II. THEORY

In this section, we start by providing a description
of our notation used to represent arbitrary tensor prod-
uct states, which is similar to the work by Scuseria and
co-workers in their cluster-based mean field study.** We
then explain how the Hamiltonian matrix elements can
be obtained between arbitrary tensor product states and
give a layout of the TPSCI algorithm used in this paper.
Finally, we discuss the Tucker decomposition technique
used to further compress the TPSCI wavefunction.

A. Tensor Product State

We start by partitioning the spatial orbitals into clus-
ters. Within each cluster, NV, we define a set of cluster
states, |a),, each of which is a linear combination of
all possible Slater determinants involving a cluster’s or-
bitals. In order to simplify the notation, we use lower
case Roman characters to enumerate orbitals (p, g, ...),
upper case Roman to enumerate clusters (I, J,...), and
Greek letters to enumerate local many-body cluster
states (a, f,...). A global tensor product state (TPS)
over the full system can be represented using these clus-
ter states as:

[¢) =laB...7) =)y [B)y - M) N (1)

By taking all possible tensor products of local cluster
states (involving all sectors of a cluster’s Fock space), we
exactly span the original Hilbert space. Thus, the exact
full CI wavefunction can be represented in this TPS basis
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FIG. 1: Schematic representation of the TPSCI algorithm for a three cluster problem. Each stack of lines indicates the different
local states for each cluster, with different colors indicating different particle number states. Bold colors indicate that the state
is activated in that basis vector. The threshold, €, can be used to move states from Q to P, based on the magnitude of the
first order wavefunction (though other criteria could be used as well).
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Here cq,8,...,y is the expansion coefficient in front of the
corresponding TPS configuration.

There is freedom in how the orbitals are organized into
clusters. The orbital clustering can be chosen based on
orbital locality, symmetry of the system, or any other
criterion. While the choice of this clustering is up to the
user, the guiding principle is that the Hamiltonian should
act more strongly within clusters and more weakly be-
tween them. If a reasonable clustering can be found, an
accurate approximation to the FCI state can be repre-
sented using few tensor product states as compared to
the full space.

For the ground state of a given system, the tensor prod-
uct state formed as the direct product of the lowest en-
ergy state of each cluster can be used as an initial ap-
proximation. In other words, the solution for the global
ground state can be approximated as

o) =10}, 10}, --10), (3)
However, this approximation can be quite drastic since
the cluster states are not influenced by neighboring clus-
ters, i.e., each state is the gas-phase ground state of the
cluster. Alternatively, one could choose cluster states
which rigorously minimize the energy of the TPS approx-
imation, |¥p). This approach is known as the cluster-
based mean field (cMF) approximation.*? In that work,
Jimenez-Hoyos and Scuseria further minimize the energy
subject to inter-cluster orbital rotations. The result-

ing cMF wavefunction, then has an optimal set of clus-
ter states and orbitals (for representing a single TPS).
This technique has also been recently applied to ab initio
molecular systems by Hermes and Gagliardi.***> While
this significantly improves the reference wavefunction,
only the ground state of each cluster is defined by the
variational condition. The cMF energy is invariant to
rotations of the excited cluster states. Analogous to the
definition of canonical molecular orbitals in HF theory,
the local cluster’s excited state could be defined as sim-
ply the higher energy eigenvectors of the “one-cluster re-
duced Hamiltonian”, which is the cMF analogue of the
Fock matrix. Both being eigenfunctions of an effective
mean-field operator, the cluster state energies in cMF
are analogous to the orbital energies in HF theory. As
such, one can form perturbative expansions about each
mean-field operator, as is done in traditional MP2 theory
and in the PT2 correction developed for the cMF work.*3

B. Matrix Elements

In order to optimize the expansion coefficients of the
TPS basis vectors described above, one needs to evaluate
the Hamiltonian matrix elements between arbitrary TPS
configurations. Although the matrix elements in a tradi-
tional determinant-based CI code are straightforward to
evaluate, the TPS matrix elements are significantly more
involved.

To start, we first partition the second quantized Hamil-



tonian,
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into distinct operators which are labelled by the clusters
upon which they act.

H= ZH}+ZHIJ+ Z Hijx+ Z Hryxr
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For instance, H; corresponds to the operators that are
local to cluster, I. The two-body term Hy; involves all
Hamiltonian operators such that the operator indices oc-
cur in clusters I and J. Interactions such as 2-body
charge-transfer, exchange, and dispersion fall within this
set. The details of implementing the one-body and
two-body terms have been worked out by Shiozaki and
coworkers as part of the ASD method.*®47 However, un-
like in ASD which is defined for two clusters, we assume
an arbitrary number of clusters. As a result, we must
also handle the 3-body and 4-body Hamiltonian terms
explicitly.

Due to the antisymmetric nature of fermions, many of
the above “local” terms require a non-local treatment.
For instance, to act a creation operator on cluster 3, it
must first anticommute through the first two clusters.
While a general algorithm can be defined easily when us-
ing the Jordan-Wigner spin mapping (and this was the
approach we took for an initial proof of principle code),
this approach incurs significant overhead, and prevents
efficient vectorization, due to the need to account for
operator commutation with Pauli Z matrices. To avoid
this, and to speed up the matrix element construction,
we make the restriction that each cluster state has well-
defined particle number and S,. This keeps the Pauli Z
strings diagonal, allowing us to simply precompute the
anticommiutation sign before doing any floating point
operations. In other words, we don’t allow mixing be-
tween the local cluster states in different sectors of Fock
space. This also has the added benefit of extra Hamilto-
nian sparsity and trivial quantum number preservation
of the global state (i.e., ensuring that the final state has
the correct number of electrons).

To provide a concrete example, let us consider one con-
tribution to the two-body matrix element:
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between two arbitrary TPS configurations:
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Here, we first move each group of operators to the as-
sociated cluster it acts on, keeping track of any signs.
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where y = Zi{;ll Nk, meaning we just sum the number
of electrons in each state on clusters between the two
active clusters. Next applying the bra to get the matrix
element, we are left with:
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where w (w') is the local state occupied in |¢) (|¢')), and
the operator tensor,

ng[j = (8 |AJf Tr|ﬁ>1 (13)
is a quantity local to cluster I, and
Y7 = (v18), (14)

is a quantity local to cluster J. In the above, all terms
are zero unless the associated cluster states are from com-
patible cluster Hilbert spaces. For example, |3’), must
have one more electron than |3),;. These are similar to
transition density matrices, and are precomputed and ac-
cessed from memory when needed in the above expres-
sions. Due to the orthonormality of the cluster states, for
each cluster K # {I, J}, the overlap evaluates to a Kro-
necker delta indicating that the matrix element between
any two TPS’s is zero unless all of the non-active cluster
states are in the same state. This is the TPS analogy to
Slater-Condon rules, and significantly reduces the num-
ber of terms we must compute. Similar manipulations
are required for all the various 1, 2, 3, and 4 body terms.

C. TPSCI Algorithm

Once the matrix elements have been implemented,
then the exact state can in principle be obtained in the
TPS basis. However, as described in the introduction,
this is intractable, and we need some method for identi-
fying important TPS configurations. To achieve this, we
use the SCI strategies developed for Slater determinants
and adapt them for generating a compact basis of TPS
configurations. While all of the different SCI strategies
described above in the introduction could be leveraged
in this TPS basis, for this initial report we simply based
our work on the earlier CIPSI method, often using the



simplified search defined in ASCI work.!® A schematic large to work with efficiently. Because the Hamilto-
overview of the TPSCI method is shown in Fig. 1. nian is relatively dense in the TPS basis, the action

The algorithmic steps for TPSCI are quite similar to of the Hamiltonian on each configuration generates
the Slater determinant CIPSI: a large number of possible new configurations. To

increase efficiency, we introduce a screening thresh-
1. Precompute cluster states and operator ten-

sors. Choose a technique for defining the cluster
states. We find that the cMF method works well,
and for many systems the orbital optimization in
cMF provides significantly improved results. Using
these defined cluster states, compute all 28 unique
operator tensors, including those in Eq. 13 and 14,
between states in compatible sectors of the local
Fock space. This is a very memory intensive step,
limiting the approach to clusters of about 6 spatial
orbitals. However, if unimportant cluster states can
be identified and discarded, then significant reduc-
tions in memory can be made. Many approaches to
this could be imagined, and we describe one tech-
nique based on an approximate Schmidt decompo-
sition in the Appendix. Here we also store the coef-
ficients mapping the local Slater determinant basis
to the cluster state basis.

. Initialize the variational P space. With Slater
determinants, this might be done by choosing ei-
ther the HF state or CISD space. In this work, we
initialize by deciding on an initial Fock space con-
figuration which defines how many electrons are in
each cluster to begin with. We then choose the low-
est energy TPS with that Fock space configuration.
Alternatively, one can choose multiple Fock space
configurations, and this is sometimes useful when
describing delocalized states.

. Build the Hamiltonian matrix in the current
P space and diagonalize. As mentioned ear-
lier, the matrix element evaluation (described in
Sec. IIB) is more expensive than usual determi-
nant based codes. Although our current code builds
the full Hamiltonian matrix (limiting our current
work to variational spaces containing up to around
100,000 TPS), this can trivially be adapted to per-
form a matrix-vector product to avoid constructing
the full matrix. This creates the current variational
state, |P) =, ¢; |P;), and variational energy, Ej.

. Calculate the action of the Hamiltonian on
each configuration in the P space. For each
TPS, |P;), that has a variational coefficient larger
than a user-defined threshold,

lci| > e, (15)

apply each of the terms in the Hamiltonian, and
collect the resulting configurations that lie in the
Q space. This threshold, €., is the search simplifi-
cation introduced in ASCI.

For larger systems and larger clusters, the action
of the Hamiltonian on the P space can become too

old (e,) to discard negligible configurations coupled
by each Hamiltonian term. Here non-negligible is
defined to be terms such that:

[(Q)| Ha |Py) il > e (16)

where H, is any of the terms in Eq. 5. We
then add all terms |Q;) where Eq. 16 is true,
creating a vector of coefficients in the Q space,
oj = (Q;| H|Pi) ci.

5. Compute first order coefficients in the QO
space. Using a chosen perturbative expansion (we
consider either Epstein-Nesbet (EN) or the Moller-
Plesset-like approach (MP) defined in Ref. 43),
compute the first-order coefficient for each configu-
ration: cél) = (Q;| H|P;) ¢i/D;. Tf EN partitioning
is chosen,*8:49

D; =FEy— (Q;] H|Q;), (17)

whereas, if MP partitioning is chosen a barycen-
tric denominator is defined based on the effective
cluster mean field operator, F7:

D; =) (PIF|P) =) (Q|F1]Q;),  (18)
I I

Notice that this reduces to the MP-based approach
defined for cMF if the P space contains only a single
TPS.%3 If ¢MF is used to define the cluster states,
then each mean field operator, F7, is diagonal, mak-
ing it computationally efficient to compute these
denominators. If, on the other hand, a different
cluster basis is chosen (vide infra) then we simply
take the diagonal elements of FI, pushing the off-
diagonal elements to the perturbation. We have
found that typically the MP partitioning is compa-
rable to the EN partitioning, but at a much reduced
cost.

Add any Q space configurations with first order
coeflicients larger than a threshold:

(1))2
;|7 > € (19)
to the P space, and return to step 3, exiting if no
new configurations are to be added.

Finally, we can compute the full PT correction for the
final variational (P) space, by setting ¢, = 0, computing
the full matrix-vector action (o), and performing a dot
product:

AEpry = Z C;l)aj (20)
J

This is usually the most expensive step in the entire cal-
culation.
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FIG. 2: Self consistent Tucker decomposition loop. After op-
timizing an approximate global state via TPSCI, the sparse
tensor contraction can be easily used to perform a Tucker
decomposition of the state. This involves diagonalizing the
single cluster reduced density matrices. To retain local quan-
tum numbers, we only block diagonalize the RDMs within a
given Fock space. Because the Tucker decomposition often
significantly decreases the number of variational parameters,
one can optionally start with a loose threshold €y to get a
better set of cluster states, then tighten the threshold until it
reaches the desired value, €, a procedure we refer to as “boot-
strapping” explained in the Supplementary Information.

D. Tucker Decomposition

Up to this point, we have mainly considered the use of
cMF for generating the cluster state basis. This is a nat-
ural choice, as it variationally minimizes the reference
TPS. However, this basis often does not lead to suffi-
ciently compact representations after introducing entan-
glement. If only two clusters are present, then an SVD of
the global state could be performed which would provide
a maximally compact representation. When considering
systems with multiple clusters, no such unique and opti-
mal decomposition exists. However, we can still use the
same physical intuition and define the cluster state ba-
sis to be the eigenvectors of the cluster’s reduced density
matrix. For two clusters, this is of course equivalent to
an SVD of the global state, or a MPS. When the num-
ber of clusters is greater than two, this generalizes to a

higher-order SVD, or Tucker decomposition.*2:5°
Tisjd = Cap..xUialUj s - Uay (21)

In the absence of truncation, Eq. 21 is essentially a
change of basis, from i to «, from j to 3, etc. Each
matrix U can be obtained by unfolding the tensor along
the associated axis and performing an SVD, e.g.,

Tij..i = Ui,aZaVa,j..d (22)

Zero values in Y can be dropped without approxima-
tion, revealing a subspace for the first index. After one
has formed the U matrix for each index, “core tensor”,
CapB,....v, can be formed by a simple change of basis.
Equivalently, the U matrices can be considered as eigen-
vectors of the clusters reduced density matrix evaluated
via,

piit = Tij...dTiv j,...d (23)

In order to compute the Tucker decomposition of a
TPSCI wavefunction, (here represented as a sparse ten-
sor of TPS expansion coefficients) we also first construct
the reduced density matrix, po o, sequentially for each
cluster. Computing the reduced density matrix for clus-
ter, I, involves a contraction over all clusters J # I needs
to be performed.

svela, By, y) (24)

Fortunately, only a few of these coefficients are non-zero
due to the sparsity of the TPSCI approach, making the
computation efficient. Further, because we impose local
quantum numbers N and S, only the symmetry sublocks
of the reduced density matrices are actually needed (with
the rest being zero),

Pa’a = C(O/7ﬁ7 s
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such that a and o’ have the same number of up and down
electrons. Once the cluster reduced density matrices are
diagonalized producing new cluster states, we repeat the
TPSCI calculation to get a new global vector. This pro-
cess can be iterated until the density matrix stops chang-
ing, establishing a self-consistency condition. Although
each iteration increases the computational cost, we find
that the first iteration usually provides the most signifi-
cant compression, with subsequent iterations only mak-
ing smaller changes. Because of this, we have found it
effective to perform just a single Tucker iteration, or to
use a Tucker basis from a loose TPSCI calculation (i.e.,
large €) as the basis for tighter TPSCI calculations in a
“bootstrapping” fashion (this is explained further in the
Supplementary Information). We have found that this
works quite well for obtaining a compact basis at reason-
able cost. This procedure is illustrated in Fig. 2.

If the full self-consistent Tucker solution is desired, we
find that the convergence is often quite quick such that
the energy stops changing significantly after only a few



iterations. However, it is conceivable that this highly
non-linear optimization could become a problem. In our
previous work,?® we found that a DIIS accelerated pro-
cedure which simultaneously extrapolates each cluster
RDM greatly improved convergence in challenging cases.
The same strategy could be applied here if needed.

E. Implementation Details

Our current code is written in Python, using NumPy
for the computation of the matrix elements. Our code
uses PySCF®! for performing RHF calculations and com-
puting the one- and two-electron integrals. As a pilot im-
plementation, the performance of our code is far from op-
timal, with many opportunities existing for optimization.
However, despite this, we are still able to perform rather
non-trivial calculations on large active spaces, sometimes
with higher accuracy than we were able to achieve with
HCI or ASCI. We expect that an implementation in a
lower-level language like C++ will increase the method’s
performance considerably.

One aspect of this work which is likely to impact per-
formance is the technique chosen for storing the wave-
function. Since our states are sparse without any pre-
dictable structure in the indices, we simply choose to use
a hash table to store the configurations. This is done
using Python’s OrderedDict implementation. However,
because we enforce local symmetries (N and S,), we
use a nested hash table. By specifying a Fock space
configuration over N clusters as an immutable tuple-
of-tuples ((N},N}), (NF,ND), ..., (WY ,N}) ) all TPS
states with the same distribution of particle numbers can
be described with a tuple of state indices: (a,f,...,7).
Consequently, an arbitrary TPS expansion coefficient can
be accessed by two sequential hash table lookups:

TBL2 = TBL1[((N},N}), (N3, N7), ..., (W}, N}))] (26)

(oM BN NN = TBL2[, B,...,4]  (27)

This approach seems quite appropriate for dealing with
variational degrees of freedom, of which there are typ-
ically only a modest number (i.e., fewer than around
100k). However, when computing the first-order per-
turbative correction to the wavefunction, this number of
configurations can create hash tables too large to store
in memory. We have addressed this problem in the short
term, by simply (but at significant CPU work) pruning
small values before adding them to our hash table, using
€s from Eq. 16. However, a better solution would be
to devise a low-memory PT2 correction for a TPS basis
analogous to either the deterministic approach by Tub-
man and coworkers®? or the semistochastic approaches
by Sharma et al.>” or Yann et al.’® as implemented in
the Quantum Package code?6,

In addition to the storage and manipulation of the
state vector information, storing the operator tensors
from Eq. 12 also requires some care. Our code is or-
ganized in a class-based structure, such that each cluster

is an instance of a Cluster class, which owns all local
operator tensor data, stored as dense arrays. However,
because we have preserved local symmetries, we can re-
duce the storage by keeping only the operator transitions
which are not symmetry forbidden. As such, in order to
access an operator tensor, we again use a hash table to
map specific Fock space transitions to operator tensors.
For example, consider two states, |y),; and |6);, which
live in Fock spaces (N},Nj) and (N’%,N’D, respectively.
The operator tensors associated with the pf¢'# opera-
tors only have data available if symmetry allowed, i.e., if
Np == N’/Ir + 1 and N| == N’i. If that’s satisfied, then
the dense tensor can be retrieved by a hash table lookup
taking in the local Fock space transition:

7% = DATA[string(AAa)][(N], NL NI, N])]  (28)
where string(AAa) indicates a request for an operator
string with three a operators (A=« spin, B=0 spin), and
the first two are creation (upper case) and the last is
annihilation (lower case). This allows us to have a fine
grained control over the tensor contractions used to form
matrix elements, preventing the computation of any hard
zeros. Because the Hamiltonian contains up to four-index
quantities, a naive strategy would also store the full set
of two-particle transition densities, Fg‘ﬁ;. However, be-
cause these terms can only contribute to local Hamilto-
nian terms, we can precontract these terms into a local
Hamiltonian matrix, avoiding the need to store the 6 in-
dex quantities, leaving the memory bottleneck to be the
5 index terms: ngo;,. This memory bottleneck prevents
us from considering exact clusters larger than 6 orbitals.
The size of this tensor, ]."f,‘grl, is O(N>MM') where M
is the number of states in the largest Fock space, M’ is
the number of states in the next largest Fock space with
one electron different, and NV is the number of orbitals in
the cluster. Because the number of states, M, increases
factorially, it is difficult to store data for more than a few
clusters having 6 orbitals. One way to reduce the mem-
ory demands is to truncate the number of cluster states.
This can be done either by energy or by entanglement
measures, as is outlined in the Appendix. Additional im-
provements can be made by manually handling the vari-
ous tensor contractions. Currently these are handled in a
rather abstract way which prevents much customization.

By the nature of the algorithm each non-trivial step is
relatively easily parallelized. We have implemented the
most expensive steps using shared memory paralleliza-
tion, and have seen good scaling on the machines we’ve
tested this on, systems with 24 or 32 cores. However,
it would be relatively straightforward to parallelize over
many nodes, and we plan on doing this in the near future.

F. Related works

There are several approaches in the literature which
share the orbital clustering feature and TPS representa-



tion used in TPSCI. Perhaps the work most closely re-
lated to TPSCI is the Block Correlated Coupled Cluster
(BCCC) approach of Li and coworkers.?* 5 In BCCC,
the orbitals are grouped into clusters and the wavefunc-
tion is represented in a TPS basis. Then, inter-cluster
correlations are treated with an exponential parameteri-
zation, whose amplitudes are solved for non-linearly. The
excitonically renormalized CC (XR-CC) also works in a
TPS basis where the state-to-state interaction is solved
for in a CC fashion.’® Our method shares the TPS basis,
but differs in both the treatment of intercluster correla-
tion, and in the definition of the block states.

Another related cluster-based approach is the Renor-
malized Exciton Method (REM)87 of Malrieu and
coworkers.1764 In contrast to both TPSCI and BCCC,
REM includes the intercluster interactions via a Bloch
effective Hamiltonian. In terms of the implementation,
our approach is most closely related to the Active Space
Decomposition (ASD) of Shiozaki and coworkers.5®> The
ASD method was extended to more than two clusters us-
ing a DMRG type wavefunction.5%:67 One can view TP-
SCI as a generalization of ASD to arbitrary numbers of
clusters, with the global state optimization being approx-
imated with CIPSI rather than the exact subspace diag-
onalization used in their work. Again, the Tucker decom-
position basis is another distinguishing aspect of our cur-
rent work. Another approach which helped inspire our
current work is the Cluster Mean Field (¢cMF) method
of Scuseria and coworkers.*? In fact, in most of the nu-
merical calculations below, we use the fully optimized
(both orbital and cluster state rotations) cMF as the ref-
erence TPS for TPSCI. The cMF method has also been
extended to ab initio systems with the name variational
localized active space self consistent field (VLASSCF).58
cMF and TPSCI also share the orbital clustering, but
TPSCI goes beyond the variational description of a single
TPS and also defines the Cluster states through a Tucker
decomposition. Other TPS methods include the rank-
one basis proposed for molecular aggregates,5” and the
ab initio Frenkel Davydov Exciton Model (AIFDEM) of
Herbert and coworkers for modeling the low-lying singly
excited states of aggregates using monomer direct prod-
uct basis.%”

The TPSCI method also shares some features with
other approaches which do not necessarily work with a
TPS basis, but still involves some degree of orbital clus-
tering. The ORMAS (occupation restricted multiple ac-
tive space) method restricts the number of electrons in
different orbital blocks and truncates the configuration
expansion while still in the determinant basis.”® The Re-
stricted Active-Space (RAS) method™ and Generalized
Active-Space method are also approaches which involve
orbital clustering, but the similarities essentially end
there.” The multi-level DMRG (ML-DMRG) method
proposed by Ma and coworkers use chemical intuition
based orbital ordering and parition the active space
into high and low level subspaces with variable bond
dimensions.”

III. RESULTS AND DISCUSSION

The main goal of TPSCI is to make the calculation
of large molecules possible when the number of determi-
nants get intractable for determinant based selected CI.
Hence one of the main focuses in this paper will be a com-
parison between the TPSCI method and Slater determi-
nant based SCI to understand how clustering impacts the
compactness of the representation. We compare mainly
two aspects, the accuracy vs. final dimension of the vari-
ational space.

a. How to compare compactness of different meth-
ods? There is indeed some ambiguity in deciding how
to compare TPSCI with determinant based SCI meth-
ods. Ultimately, it’s not immediately clear what should
be treated as a variable when counting degrees of free-
dom. On the one hand, since TPSCI involves diagonal-
izing local Hamiltonians to define the cluster basis, one
might consider these local wavefunction coefficients as
variables. Thus adding to the parameter count for TP-
SCI. Similarly, we could add orbital coefficients into the
list of variables for both TPSCI and SCI. On the other
hand, one might prefer to define variables to be param-
eters optimized by a global objective function (full sys-
tem energy). In this paper we have chosen the latter
definition, as this seems to be more consistent with the
literature (e.g., basis set contraction coefficients aren’t
usually considered degrees of freedom in post-SCF cal-
culations), and because it is more closely related to the
computational cost (the initial cMF calculation is much
faster than the resulting TPSCI). For TPSCI, the cluster
state basis is a precomputed quantity, which is generally
a trivial component of the calculation. While this can
be updated via Tucker rotations, we generally don’t op-
timize the cluster states self-consistently. However, the
cost profile would change considerably in the large clus-
ter limit. Because we are using FCI solutions inside of a
cluster (though one is not necessarily required to do this),
the computational cost increases factorially with increas-
ing cluster size. However, for the small clusters we’ve
considered in this work (6 orbitals or less), the CMF cal-
culation is a trivial component of the overall cost. As
such, throughout the results section, we will make com-
parisons between different methods based on the number
of degrees of freedom which are optimized to minimize
the full molecule’s energy. Thus the term “Dimension”
will refer to the number of Slater determinants or TPS’s.

In many of the results below, we use a simple conver-
gence technique we refer to as “bootstrapping” which
avoids going through larger dimensioned intermediate
steps during the Tucker optimization. This approach is
explained in the Supplementary Information.

In section IIT A we study a simple modified Hubbard
model which allows us to manually tune the impact of
“clusterability” on the performance of TPSCI. Because
SCI methods were unable to accurately model the Hub-
bard model, we use DMRG as a benchmark to compare
the TPSCI results. The DMRG results were obtained



using the ITensor library.” In section IIIB we study
smaller ab initio systems. We present data for Ny bond
dissociation curve with 6-31G basis, active space = (10e,
160). We also present data for cc-pVDZ basis set re-
sults for Ny and F5 molecules at their equilibrium and
stretched bond lengths, having active spaces of (10e, 260)
and (14e, 260), respectively.

Finally in section III C we study the ground state ener-
gies for a few 7 conjugated systems. The largest molecule
in our test set is hexabenzocoronene, which has an active
space of (42e, 420). The geometries were optimized us-
ing B3LYP/cc-pVDZ level of theory, and the xyz files
can be found in the Supplementary Information. The
HCI data quoted for the Hubbard model, Ny molecule
and the 7 conjugated systems were obtained using the
Arrow package.'®3637 The PT correction used for HCI
is computed semistochastically (SHCT).?¢ The ASCI data
for the Hubbard model were generated using the Q-Chem
package.” The integrals for all the molecular examples
were computed using PySCF.51

A. Hubbard Model

Model Hamiltonians provide a useful tool for exploring
the behavior of different approximate simulation tech-
niques. In this section, we use the Hubbard model to
explore how the inherent “clusterability” of a system of
fermions affects the performance of TPSCI. All the Hub-
bard calculations are carried out at half-filling with no
periodic boundary conditions.

1. Hubbard: Effect of Clusterability

Being motivated by the assumption that one can find
some local structure in the Hamiltonian, the uniform
Hubbard model is taken as our worst case scenario, and
we expect our method to be inefficient in this domain.
Since we are working in a TPS basis, the best case sce-
nario would be a Hamiltonian with no interactions be-
tween clusters. In such a case, the exact ground state
becomes a single TPS. We expect a wide variety of phys-
ical systems to occur between these artificial limits. As
such, we start in Fig. 3(a) by exploring the transition be-
tween uniform lattice to a highly clusterable lattice, by
scanning the relative strength of the Hamiltonian cou-
pling between clusters. The Hamiltonian used has two
distinct hopping terms, and one electron-electron repul-

sion term:
H=Y" > ~heeotd D —tackei
I (i,jel)o 1J (iel,jed)o
+UD ning, (29)

J

where t; (t2) denote hopping within (between) clusters,
and U is the Coulomb repulsion. In order to make this

a strongly correlated system, we set U = 5t; and start
with a uniform lattice, t; =t = 1. We then change the
magnitude of of the inter-cluster hopping, o2, scaled as
;—1 where n varies from 1 to 5.

In Fig. 3, we observe confirmation that the accuracy
and compactness of TPSCI should increase with increas-
ing clusterabilty. We compare TPSCI with two differ-
ent determinant based SCI methods, the HCI and ASCI
methods. For this strongly correlated system, Slater
determinant-based SCI methods were not able to find ac-
curate results for any point on this scan, with reasonable
numbers of variational parameters except for the uniform
lattice. Even with the uniform lattice, it can be seen that
TPSCI has 2 orders of magnitude less configurations as
compared to ASCI or HCI. For the ASCI method, 1 mil-
lion determinants were included in the variational space
while the HCI results were computed using €; = 5e-4 and
€2 = 1e-9. For both ASCI and HCI, we present data with
the HF basis since it gave better results compared to the
local basis. From these calculations it can be clearly seen
that the traditional SCI methods would not scale well for
larger systems with clusterable property.

At higher ratios of ¢ : to, the TPSCI results are almost
exact with a variational space of less than a few thousand
configurations. This is a result of the fact that the ex-
act ground state is moving increasingly close to a single
TPS. Hence in the single particle basis, the representa-
tion is not really sparse and far more determinants than
computationally feasible might need to be included for
such an example. For large U/t ratio, the single particle
basis would be even worse. TPSCI on the other hand
does not depend on this and hence can be used as a good
alternative.

2. Hubbard: Effect of Lattice Size

In this second example, we explore how accuracy and
dimension of the variational space changes when increas-
ing the size of the system. To do this, we fix the t;/to
ratio to %. Consistent with the previous section, we set
U = 5t;. We start with the 16-site problem from above,
but now increase the system size from 16, to 36, to 64 site
lattices, all at half-filling and antiferromagnetic. Based
on the performance of SCI on the 16 site problem, we did
not attempt to compute the SCI energies for these larger
lattices. Also consistent with the above section, the TP-
SCI calculations uses a clustering in which all ¢;-coupled
sites form a cluster. As such, the three different systems
have 4, 9, and 16 clusters, respectively. This is shown in
Figure 4.

We use both orbital optimized and frozen orbital
cMF references for the TPSCI calculation. We denote
the frozen orbital (orbital optimized) version as TP-
SCI (TPSCI’) and the corresponding reference as cMF
(cMF?). We compare both TPSCI and TPSCI’ results
with DMRG values with a fixed M value of 1600. We
also plot the reference TPS (¢cMF and ¢cMFE’) energy for
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FIG. 3: Clusterability of the Hubbard model. (a) Schematic representation of the Hubbard model used for the data, dark lines
correspond to ¢; and lighter lines correspond to t2. (b) Energy/site of the system as the ¢; : ¢2 ratio is changed. TPSCI lines
are nearly indistinguishable from the DMRG results. (c) Comparison of the dimension of the variational space as the t1 : t2
ratio is changed. DMRG result uses M=1600. The TPSCI calculations reported use (e=5e-8 e.=le-2 e;=1e-7) with MP PT

correction.
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FIG. 4: Size dependence of the Hubbard model is studied
where we plot Energy/particle vs. lattice size. The intra-
cluster:inter-cluster hopping ratio is fixed at 1/23. For CMF
(CMEFE’) orbitals are frozen (optimized). The TPSCI (TP-
SCI’) dimensions for each data points are: 16-site: 173 (429),
36-site: 1073 (1205) , 64-site: 1978 (2735) The DMRG cal-
culations were carried out with a ’snake-like’ path to keep
stronger interactions more local.”®

these systems for comparison. Despite these being 2D
systems, DMRG works quite well, although for the larger
lattices (especially the 64 site lattice), the accuracy of
TPSCI approaches that of DMRG. We note though, that

it’s difficult to achieve a fair comparison of TPSCI and
DMRG, as both can, in principle, be systematically im-
proved to get arbitrarily accurate results. Nonetheless,
for the 64-site example, the variational energy for TP-
SCT’ (using 2735 variables) is comparable to DMRG with
M=1600. The Hubbard model in the frozen basis is ex-
tremely sparse and PT correction for this 64-site could be
easily computed, since the repulsion is diagonal. For the
orbital optimized version this is not the case and hence
we have only included the variational energy correction.
One challenge arises when studying the Hubbard
model with different Hamiltonian parameters. Because
the Hamiltonian enters into the selection criterion for the
TPSCI method (via the first order amplitudes), we find
that the TPSCI threshold value € does not yield consis-
tent convergence behavior. This means that the accuracy
of the method cannot be directly linked to the selection
criteria when modeling different Hamiltonians. While we
only notice this problem with the Hubbard Hamiltonian,
it is something we plan to investigate more in the future.
One strategy would be to develop a TPSCI version of the
A-CI method of Evangelista for growing the P space,*
which is designed to have better accuracy guaranteed.

B. Molecular diatomics
1. Nitrogen dissociation with 6-31G

While model Hamiltonians are useful for artificially ex-
ploring the behavior of an approximation, the ultimate
goal of our work is to produce an efficient method for
ab initio molecular modeling. To understand the con-
vergence behavior for molecular electronic structure, we
start with a canonical example of a small strongly corre-
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FIG. 5: Nitrogen molecule with clustering based on bonding patterns. (a) The molecular orbitals for Ny and the clustering
choices (4c) four clusters and (8c) eight clusters (b) Error with CAS-CI results for TPSCI method with the two different
clustering options and HCI method. Grey area denotes regions with chemical accuracy, 1 kcal/mol. (c) dimension of the
variational space along the PES scan The TPSCI calculations reported use (e=5e-8 e.=1e-3 e;=1e-7) with EN perturbative
correction. The HCI calculations reported use (e1=2e-4 ex=1e-9) with a semistochastic EN perturbative correction.

lated system: N dissociation.

For the Hubbard model it was straightforward to form
the clusters based on sparsity of the hopping term. In
contrast, for small molecular systems the clustering is less
straightforward. For a diatomic system like Ny molecule,
traditional single reference methods like CCSD provide
good results at shorter bond lengths, but fail when the
bond is stretched. Six orbitals in the N5 molecule become
degenerate when bond is stretched and therefore RHF
reference is not good enough to represent the molecule.

In this section, we study the Ny example with frozen
1s orbitals. Even though Nj is a triple bonded system,
the interaction between these bonds are not as strong as
the bond itself. Hence, we can partition the orbitals in
the triple bond (6e, 60) into three (2e, 20) clusters. This
would mean putting the o and ¢* bonds in a cluster, and
the two 7 and n* bonds in separate clusters. We are
left with the lone pairs and we leave them in a separate
cluster. This is similar to a perfect pairing type clus-
ter since each cluster is a pair of bonding/antibonding
orbitals.””"® Hence the clustering would look like this in

* * *

a minimal basis: (05, 03),(0pz, 0p.)s (Tpzy Tpz)s (Tpy,
Toy)

In the 6-31G basis, there are extra 3s and 3p basis
functions on top of the minimal basis. Hence we have
a total of 16 orbitals. We can put the extra orbitals in
bonding/antibonding pair clusters, similar to a perfect
pairing type clustering. This makes a total of 8 clusters.
We can also combine the orbitals of same angular mo-
mentum but different principle quantum numbers as one
cluster. This would lead to a clustering with 4 orbitals
per cluster. We refer to these two types of clusterings as
8c and 4c:

e 8c:(2s), (3s), (2p-), (3p2), (2px), (3p=), (2py), (3py)

e 4c:(2s, 3s), (2p=, 3p-), (2Px, 3Px), (2Dy, 3py)

By defining the clusters in this way in 4c, dynamic cor-
relation for each bond is included within a cluster.

We compare these two clustering choices against HCI
with €;=2e-4 (variational part) and e;=1e-9. For TP-
SCI, we use cMF with frozen orbitals as the reference,
with a selection threshold of e=5e-8,%® and with EN per-
turbative correction. The search space for each iteration
was defined with e.=1e-3 and a screening of the Q space
couplings was set to e;=1e-7. We have found that set-
ting the search threshold e¢; <1e-7 consistently provides
sub-mH accuracy.

The molecular orbital clusterings, 4c and 8c, are pic-
torially depicted in Figure 5(a). In Figure 5(b), we show
the error with respect to FCI results. The region of chem-
ical accuracy is marked by 1 kcal/mol. As seen from the
figure 5(b), the 8c results are not as accurate as the HCI
or 4c results. These calculations can be made more accu-
rate by using a lower threshold, but for clarity we chose to
show data using same threshold for both 4c and 8c data.
The PT correction of the determinant based HCI is bet-
ter at lower energies, and gets worse for the stretched
geometries where the system is more strongly correlated.
The variational dimension for the HCI method increases
as the bond is dissociated (more strong correlation). This
is in contrast to relatively constant dimension for TPSCI
along the PES.

2. Diatomics with cc-pVDZ basis

In order to observe the impact of dynamical correla-
tion, we have also performed TPSCI calculations for the
larger basis-set, cc-pVDZ. As in the previous subsection,
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TABLE I: Diatomic systems: Na (10e, 260) and F2 (14e, 260) with cc-pVDZ basis. We compare both HCI and ASCI results
with TPSCI. We also provide results with natural orbitals for ASCI calculations. The TPSCI calculations reported use (e=5e-8
e.=5e-3 es=1e-7). The HCI calculation use (e1=5e-4 e2=1e-9) and all the ASCI calculations used a variational space of 50,000
determinants, except for the 2r calculation with natural orbitals where the 50k calculation converged to an excited state so we

report results from a 100k calculation. *ASCI calculation converged to the nearly degenerate quintet state.

No Variational PT2 Dim |Variational PT2 Dim Variational PT2 Dim
r=1.0977 r 2r 3r

HCI -109.2692 -109.2769 37,577(-108.9571 -108.9668 53,028 |-108.9477 -108.9564 42,782
TPSCI [-109.2694 -109.2769 8,274 |-108.9607 -108.9674 15,659 [-108.9522 -108.9572 12,744
ASCI -109.2723 -109.2770 50,000{-108.9603 -108.9673 50,000 |-108.9515 -108.9570 50,000
ASCI-no |-109.2738 -109.2771 50,000{-108.9641 -108.9677 100,000 (-108.9524* -108.9568 50,000
Fo Variational PT2 Dim |Variational PT2 Dim Variational PT2 Dim
r=1.4119 r 2r 3r

HCI -199.0913 -199.0992 68,994 (-199.0489 -199.0554 67,434 |-199.0489 -199.0549 65,476
TPSCI |-199.0911 -199.0991 6,225 |-199.0501 -199.0556 3,694 |-199.0498 -199.0551 3,956
ASCI -199.0923 -199.0993 50,000{-199.0498 -199.0556 50,000 |-199.0499 -199.0550 50,000
ASCI-no [-199.0937 -199.0994 50,000(-199.0500 -199.0556 50,000 |-199.0496 -199.0551 50,000
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SOOI TR (SB[ oo | %% | oo | ww
Q00| 0000) S| 08| =3 [ 23| @9 || elmde
CIE 1 -1 EL
2s 2p;  2px 2py  3dyy 3d;  3dy; 3da
3s 3p; 3px 3py  3dx2y2

FIG. 6: Choice of active-space orbital clustering for cc-pVDZ
basis sets for No and Fa

we cluster with bonding/antibonding pairs. We consider
three different bond lengths for both Ny and Fs.

While we follow a similar clustering pattern as the 6-
31G results above, in the cc-pVDZ basis, extra d-shell
orbitals are present leading to more clusters. To keep
the size of the clusters small, for the present paper, we
partition the d-orbitals such that the atomic pairs com-
ing from d.2, d,, and d,, each form cluster. We leave
the two dy and dg2_,2 as a 4-orbital cluster. Taken to-
gether, this creates a total of 8 clusters for both Ny and
F,. By adding higher principle quantum number orbitals
into the cluster, we are effectively allowing the clusters to
become dynamically correlated. The clustering pattern is
described below, keeping in mind that each orbital listed
represents two orbitals, one from each atomic center.

L4 (257 3S)a (2p2a 3p2)7 (2pxa 3px)7 (2pya 3py)7 (3dxya
3dm2_y2), (3ds2), (3dyz), (3d,2)

This clustering is shown for Ny in Fig. 6 In Table I,
we present data for three bond lengths r, 2r, 3r where
r=1.0977 (1.4119) for N (F2). The thresholds for all the
TPSCI calculations were (e=5e-8, ¢.=5e-3, es=1e-T7),
and the frozen cMF reference state was used. The HCI

calculation were computed using €; = 5e-4, while the
ASCI calculations were performed using 50K determi-
nants. The most immediate conclusion, is that TPSCI
converges to chemical accuracy with a smaller dimension
than the determinant based methods. It has been previ-
ously shown that the use of natural orbitals can improve
determinant based selected CI algorithms.??*! By using
natural orbitals with ASCI, we observe similar behavior,
although even with natural orbitals, the wavefunction in
determinant based SCI is not as compact as the TPSCI
wavefunction. The use of natural orbitals seems to have
the largest effect near equilibrium bond distances, with
a smaller dependence on orbitals occuring at stretched
distances.

C. m-conjugated systems

While the small diatomic molecules of the previous sec-
tion provide a rigorous test of the TPSCI method for sys-
tems which are well described by existing SCI methods
like HCI and ASCI, our goal in designing TPSCI is to
model active spaces which are larger and more strongly
correlated than what can be afforded with the traditional
Slater determinant-based approaches. For this reason, we
now turn our attention to systems which are expected to
be good applications of TPSCI, systems which are non-
linear (so a MPS is non-ideal), strongly correlated, and
somewhat clusterable. Taking poly-aromatic hydrocar-
bons (PAH’s) as test cases, might perhaps be surprising
because the characteristic delocalization of the 7 system
might seem to suggest exactly the worst case scenario
for observing “clusterability”. However, the success of
Clar’s rule in relating the number of disjoint benzene
units with stability, seems to suggest that a clustering
pattern chosen from Clar’s rule might be effective. A
suggestion that is consistent with recent results using
fragment-based DFT methods.”



13

FIG. 7: m-conjugated systems for TPSCI calculation with blue circles representing the clusters for the system.

We have chosen a few example PAH’s (shown in Fig.
7) ranging in size and clusterability, with the clustering
pattern consistent with Clar’s rule shown in blue. In ad-
dition to the well-known coronene-type bonding pattern
(2, 4, 6), we have also considered a few systems which
contain rather strained 4-center ring bridging units (1, 3,
5). Though less stable, materials based on this bonding
pattern have recently been synthesized using polymer-
ization reactions of 1,3,5-trihydroxybenzene molecules.®°
These material can have interesting applications because
of its planar structure like graphene and porous nature.
For the sake of simplicity, we use the minimal STO-3G
basis for these systems, since we are only studying the
m-conjugated electrons.®? The active space for molecules
1-6 consist of 12, 18, 24, 24, 36, 42 orbitals, respectively.

To initialize the clusters, we started with localized or-
bitals and then performed a cMF calculation to obtain
a cluster basis, and optimal orbitals. We found that the
orbital optimization (only mixing orbitals within the ac-
tive space and between clusters) lowered the energy a
substantial amount compared to the frozen ¢cMF (-0.38
au in the case of 6). To minimize the memory require-
ments, we used the embedded Schmidt trunction (EST)
approach described in the appendix, for each of these
systems discarding Schmidt vectors with singular values
smaller than 1e-4. This value was found to provide large
memory (and cpu) savings, without significantly impact-
ing the accuracy, with our tests indicating that the error
was below 1mH. For each of these systems, we then per-
formed three increasingly tight TPSCI calculations de-
fined by the following settings:

1. (e=1le-6, e.=1le-2, e,=1e-6)
2. (e=1le-7, €.=le-2, €;=1e-6)
3. (e=1e-8, ¢.=1e-2, ¢,=1e-6)

each time performing an MP perturbative correction set-
ting (e.=0, es=1e-7). Only a single Tucker iteration

was performed for the e=1e-6 calculation, and then that
basis was used for the more accurate calculations. For
molecules 5 and 6, we were unable to obtain the PT2
correction for the e=1e-8 calculations.

For HCI, we used canonical HF orbitals, as we found
that natural orbitals didn’t have a significant affect for
these systems. The HCI was computed for molecule 1-4
using (e;=1e-5, es=1e-9). For molecule 5 and 6, the
variational space became too large, and thus the tight-
est data we could obtain for 5 and 6 was ¢;=3e-5 and
€1=4e-5, respectively.

In Table II, we present the most accurate HCI data,
alongside TPSCI data using the intermediate threshold
level: (e=1e-7 e.=1le-2 €s=1e-6). For biphenylene, 1,
we can see that both HCI and TPSCI give essentially
the exact result for this small active space of (12e, 120).
Nonetheless, even for this small system, the TPS ba-
sis is much more compact than a determinantal basis
201 vs. 174,757. However, this shouldn’t be too sur-
prising, because 1 only has two clusters, meaning the
“Tucker” decomposition performed at e=1e-6 is actually
an SVD, which is formally the most compact representa-
tion. For larger systems though, this is not the case, and
the Tucker decomposition no longer presents a diagonal
representation.

Considering the larger molecules we continue to see a
similar increase in compactness by around 3 orders of
magnitude. Molecules 2 and 3 collect only a few thou-
sand configurations while still being more accurate than
the HCI results with millions of determinants (Table II).

a. Clusterability Considering molecules 3 and 4
side-by-side, provides insight into the impact of cluster-
ability. Both systems have the same active space size,
(24e, 240), but they differ in the connectivity of the clus-
ters. Molecule 3 is able to be clustered into four 6-site
clusters, a complete Clar’s tiling. Molecule 4 on the other
hand can only be grouped into three 6-site clusters, and
three remaining 2-site clusters. This has a significant
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TABLE II: Comparison between TPSCI and HCI for the m-conjugated systems used in the study. The molecules are labelled
according to Figure 7. The TPSCI calculations reported use (e=1e-7 e.=1e-2 e;=1e-6). The HCI calculations use (e;=1e-5
€2=1e-9) for molecules 1-4. For 5 (e1=3e-5 e2=1e-9) and for 6 (e1=4e-5 ex=1e-9).

molecule Variational PT2 Extrapolated Dim
TPSCI HCI TPSCI HCI TPSCI HCI TPSCI HCI
1 (12e, 120) -453.6310 -453.6310 -453.6310 -453.6310 -453.6310 -453.6310 201 174,757
2 (18e, 180) -680.5951 -680.5906 -680.5958 -680.5944 -680.5964 -680.5970 2,440 7,397,514
3 (24e, 240) -904.9121 -904.8865 -904.9136 -904.9012 -904.9142 -904.9144 3,885 21,179,338
4 (24e, 240) -905.2157 -905.2100 -905.2238 -905.2212 -905.2307 -905.2307 16,272 19,510,272
5 (36e, 360) | -1353.8138 -1353.6927 | -1353.8199  -1353.7509 | -1353.8244  -1353.8259 10,376 20,232,920
6 (42e, 420) | -1582.4291  -1582.2378 | -1582.4402 -1582.3255 | -1582.4482  -1582.4396 20,325 11,194,996
(a) 3 :(24, 24) (b) 4 :(24, 24)
—904.82 —9.049e2 e HCl 1 ~905141 e Hal
~0.010 e TpPsCl e TPSCI
~0.012 e HCI+PT ® HCI+PT
T904847 o ® TPSCI+PTA —905.161 o TPSCI+PT
_ -0.016 -
& —904.86 - 0000  0.002 uf —905.18 1
> >
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g g
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-904.92 4 . . . . ! ! . , . . |
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05
AE; (Ep) AE; (Ep)
(c) 5 :(36, 36) (d) 6 :(42, 42)
—1.353e3 —1.582e3
_ _ P
1.3538e3 p— -0.201 1.5824e3 e HCl p
—-0.604 —0.01 / e TPSCI A —0.03 e TPSCI
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FIG. 8: Extrapolation scheme for the four large molecules considered. The grey area corresponds to + 1 kcal/mol about the

extrapolated TPSCI energy (solid black line)

impact on the compactness, with 4 requiring over four
times the number of TPS’s and being further from the
extrapolated result. Nonetheless, comparison with deter-
minant based SCI is still impressive. With approximately
16 thousand TPS configurations, the TPSCI energy for
4 is significantly lower than the determinant based SCI
result with 19 million determinants.

b. Extrapolation Because of the slow convergence of
correlation energy with variational dimension, it is often
useful to use a few SCI calculations and extrapolate to
the exact result. We can also do this for TPSCI, pro-
vided each of the variational and PT2 energy pairs are
computed using the same cluster basis. In Fig. 7, we use
the available energies to extrapolate to the exact result,



giving us both an estimate of the FCI energy, and also
an estimate of how accurate our TPSCI calculations are.
TPSCI extrapolations are performed using all 3 accuracy
levels, except for molecules 5 and 6, for which only the
first two calculations were used to extrapolate. Compar-
ing these extrapolations to the HCI extrapolations we
observe that even though the TPSCI energies are much
closer to converged, the HCI extrapolations (with the
exception of the largest system 6) are very effective and
provide comparable FCI estimates. Overall, these sys-
tems indicate that the TPSCI method provides a unique
representation able to more efficiently captures correla-
tion in clusterable systems, extending the applicablity of
SCTI algorithms to larger systems.

IV. CONCLUSION AND FUTURE WORK

In this work, we have introduced a new selected CI
method using tensor products of cluster states as the ba-
sis. By folding the most important correlations into the
basis vectors themselves, much more compact wavefunc-
tions can be obtained using the basic selected CI pro-
cedures, a feature which can significantly improve the
performance for strongly correlated systems. In choos-
ing the nature of the cluster states, we found that the
Tucker decomposition provided a simple and efficient way
to significantly improve the compactness of the final TP-
SCI wavefunction. Although our current code is far from
optimized, we have demonstrated advantages over deter-
minant based methods for large active spaces in PAH’s.
However, even if our implementation was sufficiently op-
timized, it’s not obvious that TPSCI will provide a faster
“time to solution” compared to methods like HCI or
ASCI for small systems in large basis sets due to the lack
of clusterability. The TPS representation involves quite
a bit of computational overhead, which is only likely to
pay off for spatially extended systems (like PAH’s) which
provide better opportunities for effective clustering.

This initial paper presents the algorithm, an imple-
mentation, and proof of concept results. However, much
work remains to be done. A few of the ongoing and future
works will involve:

1. Develop efficient and low-memory PT2 correction
algorithm, similar to the deterministic®® or semis-
tochastic approach.37:53

2. Investigating the behavior of different orbital clus-
terings. Good performance of TPSCI requires the
sensible partitioning of the orbitals into clusters. In
this work, we’ve largely done this by hand. How-
ever, this does not necessarily provide the best clus-
tering. We plan on developing automated proce-
dures for orbital clustering. Preliminary results
suggest that partitioning clusters based on the ex-
change matrix seems to work quite well. How-
ever, more rigorous approaches based on informa-
tion theory®!® might provide improved results.
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3. Exploring the performance of cluster basis trunca-
tion. We have explored two different approaches
(energy based, and entanglement based), but it’s
not yet obvious what the best approach is, or how
the technique depends on the chemical system.

4. Improved implementation. While our current code
is efficient enough to obtain all the results in this
manuscript, including the (42e, 420) results and
the 64 site Hubbard lattice example, many steps
are far from optimal, with obvious “hot spots” oc-
curing in pure Python functions. Using C++ to
reimplement these steps should provide significant
improvements.

5. Exploring how the different components of the var-
ious SCI methods such as HCI, ACI, ASCI, etc.
behave in the TPS basis.

6. Extending the method to study excited states. One
possible route would be to use similar approach
taken in the original CIPSI work. Another inter-
esting direction is to form a reference state using
single excitations in clusters as done in AIFDEM?34
and include important configurations avoiding col-
lapse to the ground state. TPSCI would be espe-
cially well suited for modeling excitations in molec-
ular aggregates, due to the lack of covalent bonds
between systems making the TPS representation
converge extremely quickly.
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VI. SUPPORTING INFORMATION

The “bootstrapping” approach is discussed in the sup-
porting information. The geometries used for the PAH
system is provided in coordinates.txt file. The raw
data for all the systems are also included with the sup-
porting information in file raw_data.x1lsx.

Appendix A: Truncation of cluster states using
approximate Schmidt vectors

The TPSCI method described in the main text
presents an algorithm for systematically approximating
the exact solution within a basis of tensor products of
many-body cluster states. This algorithm is quite general
and can be used with cluster states obtained in a number



of ways. The most straightforward approach would be to
simply diagonalize the Hamiltonian operator which only
acts locally on the cluster (i.e., all indices correspond to
orbitals within the cluster). This has the convenience
that local operators become diagonal, but lacks all inter-
actions with other clusters. A better approach, would be
to use the cluster mean-field (¢cMF) method developed
by Jiménez-Hoyos and Scuseria.*? Ignoring the orbital
optimization component of cMF first, cMF is the varia-
tional minimization of a single tensor product state wave-
function. This amounts to defining each cluster’s ground
state as the lowest energy eigenstate of an effective local
Hamiltonian, which includes the mean-field interactions
with all clusters. Because the energy of a single TPS
only depends on each cluster’s ground state, the higher
energy cluster states aren’t determined rigorously by a
variational principle as the cMF energy has a rotational
invariance among the non-ground cluster state (this is
analogous to problems in trying to tie physical meaning
to virtual orbitals in Hartree-Fock). However, the cMF
local Hamiltonian is uniquely defined, and its associated
eigenbasis (i.e., the “canonical” cluster state basis) pro-
vides an improved set of vectors for defining the cluster
basis used in TPSCI.

For small clusters (e.g., less than about 5 spatial or-
bitals) the full cluster state basis can be used without any
complications. However, for larger clusters, the memory
requirements needed to store the local operator tensors,

I‘;‘;(’Zﬁ‘ﬂ become significant. For example, the largest sec-
tor of Fock space for a six site cluster (3 o and 3 S elec-
trons) has a dimension of 400. Storing the associated
tensors requires about 2.5Gb per cluster: This doesn’t
include the numerous smaller particle number spaces.
However, for a system that is clusterable one should be
able to discard many of these states without significantly
impacting the global ground state.

Using the eigenvalue of the cMF Hamiltonian is one
way to determine which cluster states to discard. How-
ever, because local energies aren’t good predictors of en-
tanglement, rather large numbers of states are needed
to maintain accurate results for global quantities. To
address this issue, we have developed a relatively simple
approach for defining more compact cluster states, which
we refer to as “embedded Schmidt truncation” (EST).
For cluster I, the goal is to obtain a compact set of vec-
tors which captures as much of its entanglement with the
rest of the system as possible. The ideal set of vectors
would then be obtained by diagonalizing the cluster I's
reduced density matrix obtained from the exact global
system’s ground state. To develop a practical approxi-
mation to this, we instead decide to find the ground state
of a smaller system comprised of cluster I and a small
number of bath orbitals which directly interact with I,
using a mean-field description of the remaining system.
This approach is based on the “Concentric Localization”
concept recently used in projection based embedding,®®
and also density matrix embedding theory.5¢

In order to identify the bath orbitals for cluster I, we
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simply SVD the off-diagonal block of the exchange matrix
between orbitals in cluster I and orbitals in clusters J #
1.

Kp{q :Z Z Z (pr|sq)Drs

LM reL seM
_ I I
- Z Up,s}‘SVq,s
s

where D, is the one-particle reduced density matrix re-
sulting from the cMF calculation. The bath orbitals for
cluster I are defined to be those which directly interact
with cluster I via the exchange operator, and are triv-
ially obtained by rotating the MO coefficients, C}, ,,, by
the right singular vectors:

bath,I __ § § I
C,u,s - Cﬂaqv:],s

J#I qeJ

Vpel,q¢I (Al)

(A2)

(A3)

This creates a natural compression of exchange inter-
actions, and the number of non-zero singular values,
s, is bounded by the number of orbitals in cluster I.
The molecular orbitals are now organized into three sub-
spaces,

CI — Ccluster,I|Cbath,I |Cenv,I’ (A4)
where C°™»! are the orbitals associated with the null
space of the exchange coupling. This procedure can
be continued recursively to define another bath, which
completely captures the interaction between the previous
bath and the environment, creating a recursive approach
to organizing all the orbitals by their “nearness” to clus-
ter I. In this work, we only consider the first layer bath.
The goal is now to obtain the exact solution to the com-
bined cluster+bath system and then SVD the resulting
ground state to define a basis of many body states to use
for cluster I. Because the bath orbitals are defined via
the SVD, the number of bath orbitals will always be less
than or equal to the number of orbitals in that cluster.
For instance, if a cluster has 6 orbitals, then to obtain
the basis, one would need to compute only the ground
state for a 12 orbital problem. For larger clusters, this
will quickly become expensive, but since only the ground
state is needed, conventional selected CI algorithms like
ASCI or SCI could be used alternatively for this step.

If the environment orbitals were unentangled with the
cluster and bath orbitals, then the 1RDM in the envi-
ronment space would be idempotent and we could simply
perform a CASCI calculation to obtain this ground state.
Because this is not the case generally, we simply purify
the density in the environment space, and use this back-
ground density for the CASCI core. Once the ground
state of the embedded cluster|bath system is obtained,
We organize the resulting CI vector into contributions to
local particle number spaces and then perform an SVD.
This provides us with a set of vectors with well defined
particle numbers for cluster I, ordered according to their
weight in the embedded ground state. This process is
repeated separately for each cluster.



As described so far, this is simply a change of basis for
the cluster states on I. No approximation has been made,
and the final TPSCI wavefunction can still converge to
the exact ground state. However, because our vectors are
now weighted according to an approximate entanglement
metric instead of energy, we can now perform a more ag-
gressive truncation on the number of cluster states used
to determine the dimension of the Hilbert space acces-
sible to the TPSCI algorithm. In practice, this works
extremely well when the system is well localized (e.g.,
polyaromatic hydrocarbons), and deleting cluster states
with singular values smaller than .0001 seems to consis-
tently have sub milliHartee impact on the results. Of
course, for some systems this might not be ideal, and al-
ternatives might need to be considered. This will be a
focus of future work.
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