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A new bound for smooth spline spaces

Hal Schenck* Mike Stillman** and Beihui Yuan™*

Abstract. For a planar simplicial complex A € R2, Schumaker proves in [22] that a lower
bound on the dimension of the space C}(A) of planar splines of smoothness r and degree k
on A is given by a polynomial Pa (r, k), and Alfeld—Schumaker show in [2] that Pa (1, k) gives
the correct dimension when k > 4r + 1. Examples due to Morgan—Scott, Tohaneanu, and Yuan
show that the equality dim C; (A) = Pa(r,k) can fail for k € {2r,2r + 1}. In this note we
prove that the equality dim C; (A) = Pa(r, k) cannot hold in general for k < (22r + 7)/10.
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1. Introduction

Let A be a triangulation of a simply connected polygonal domain in R? having f
interior edges and fp interior vertices. A landmark result in approximation theory
is the 1979 paper of Schumaker [22], showing that for any triangulation A, any
smoothness r and any degree k, the dimension of the vector space C; (A) of splines
of smoothness r and degree at most k is bounded below by

Pa(r.k) = (kgz) + (k_;“)fl— ((’“;2) - (’;2)) fo+a. (1)

where

o= Zai, o; = Zmax{(r + 1+ j(1—n(v))),0},

J

and n(v;) is the number of distinct slopes at an interior vertex v;. In [2], Alfeld-
Schumaker prove for k > 4r + 1,

dim C} (A) = Pa(r, k).
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Hong [12] shows equality holds for k > 3r 42, and [2] shows equality for k > 3r +1
and generic A.

When the degree k is small compared to the order of smoothness, formula (1.1)
can fail to give the correct value for dim C; (A): a 1975 example of Morgan—Scott
shows it fails for (r, k) = (1, 2). In [19] it was conjectured that dim C; (A) = Pa(r, k)
for k > 2r + 1, but a recent example [25] shows that equality fails for (r, k) = (2, 5).
In 1974, Strang [26] conjectured that for (r,k) = (1,3) the formula holds for a
generic triangulation.

In [3], Billera used algebraic methods to prove Strang’s conjecture, winning the
Fulkerson prize for his work. A number of subsequent papers [4, 5,7, 14, 15, 20,
21,24,28] use tools from algebraic geometry to study splines. The translation to
algebraic geometry takes the set of splines of all polynomial degrees k, and packages
it as a vector bundle €” (A) on P2. The discrepancy between P (r, k) and the actual
dimension in degree k is then captured by the dimension /! (€” (A)(k)) of the first
cohomology of €7 (A).

The examples above do not preclude the possibility that dim C; (A) = Pa(r, k)
holds for every triangulation A if k > 2r + 2. Our main result shows this is
impossible:

Theorem 1.1. There is no constant ¢ so that dim C;(A) = Pa(r, k) for all A and
all k = 2r + c. In particular, there exists a planar simplicial complex A for which

R (A (k) £ 0 forallk < 222: T

This shows there exists a simplicial complex A such that dim C; (A) > Pa(r, k) for
allk < %. For formula (1.1) to yield the correct value for dim C// (A) for every
triangulation A, we must have

22r +17
10

k > > 2.2r.

2. Algebraic preliminaries

Billera’s construction in [3] computes the C ! splines as the top homology module of
a certain chain complex. An introduction to homology and chain complexes aimed at
a general audience appears in [18], so the presentation below is terse. The paper [20]
introduces a modification of Billera’s construction, allowing a precise splitting of the
contributions to dim C}/ (A) into parts depending, respectively, on local and global
geometry.
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Definition 2.1. For a planar simplicial complex A, let A; be the set of interior
faces of dimension i (all triangles are considered interior). For v € Ay, let [;
be a linear form vanishing on 7, and for v € Ay, let J(v) be the ideal generated
by /71, with t ranging over all interior edges containing v. Construct a complex
of R = R[xy, x2,x3] modules as below, with differential d; the usual boundary
operator in relative (modulo d(A)) homology.

RIg:0— D R @ R/ @ R/ — 0.

gelAr T€EA veEAQ

By construction, H,(R/ &) is a graded R-module, consisting of the set of splines
of all degrees, and defines the sheaf €7 (A). It is easy to show that

Ho(R/g)=0 and H\(R/§) =D H'(E"(A)(K)).
k>0

In particular,
dim C[ (A) = Pa(r,k) + dimg H'(€"(A)(k)).

Recall that a syzygy on an ideal { f1,..., fr) is a polynomial relation on the f;. For
an interior vertex v, J(v) = (l{l“, e, ltrn“), so a syzygy on J(v) is of the form

n
ZS,‘ . l;—i_l =0.
i=1

A main result of [20] is:
Theorem 2.2. The module Hy(R /&) is given by generators and relations as
Hi(R/) = (€D RC-r=1)/s.
teAg
where
* The set A9 consists of totally interior edges t: neither vertex of T is in 9(A).

e S= P Syz(v): the direct sum of the syzygies on J(v) at each interior vertex.
vEAQ

Hence H{(R/g) is the quotient of a free module with a generator for each totally

interior edge t by vectors of polynomials of the form (s, ...,s,). Note that if two

totally interior edges 71, 72 with the same slope meet at a vertex, then there is a degree

zero syzygy between them, and S will have a column with nonzero constant entries.
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3. Proof of theorem

Following [25], we consider the simplicial complex A below.

v_3=(-4,2) v_8=(0,2) v_7=(4,2)

v_0=(0,-1)

v_1=(-2,0) v_2=(2,0)

v_a=(-4,-2) v_5=(0,-2) v_6=(4,-2)

By Theorem 2.2, the discrepancy module H;(R/g) has two generators. There are
three interior vertices, and we need to quotient by the syzygies at each vertex. Note
that each vertex has only three edges with distinct slopes attached, hence we must
compute the syzygies on ideals of the form

(llr+17 l£+1, l;—H).

The key is that this is a local question, so after translating a vertex so it lies at the
origin, we have an ideal in two variables (recall that because we homogenized the
problem, our points now lie in P2, so the linear forms defining edges are homogeneous
in three variables). The paper [10] gives a precise description of the syzygies on any
ideal generated by powers of linear forms in two variables. In the case of three forms
as above there are only two syzygies, in degrees

r+1 r+1
L J and [ -‘ .
2 2
Specializing to the case where r 4+ 1 = 4, we see that there are two syzygies, both
of degree 2. Next, we note that two of the three vertices are connected to one totally

interior edge and two edges which touch the boundary, so writing the six relations
(two syzygies on each of the three interior vertices) as a matrix, we see that

H{(R/§) = R*(=r = 1)/,

where
g |S11 sz s13 S14 0 0
0 0 23 s24 525 S26

As noted above, the rows correspond to the generators for Hy(R/$): the first row
corresponds to the totally interior edge vov; and the second row to the totally interior
edge Vovy; let /;; denote a nonzero linear form vanishing on v;v;.



A new bound for smooth spline spaces 5

The first two columns of S correspond to the two syzygies at vertex vy, the second
two columns to the syzygies at vertex vg, and the last two columns to the syzygies at
vertex v,. Since the syzygies at vg are on the ideal

+1 gr+1 gr+1
{lor Loz log )
the third and fourth columns of S have no zero entries, because the syzygies involve
both generating edges Vo071, VoU2. In contrast, the syzygies at v; are on the ideal
+1 gr+1 gr+l
(lor " 15w lia )
Hence in the matrix S, only the component of the syzygy involving l;f ! appears —
there is no part of the syzygy involving 16; ! This also explains why the rightmost

two columns of S have nonzero entry only in the second row. For the next lemma,
we need some concepts from commutative algebra.

Definition 3.1. An ideal / = (fi,..., fx) € R with k minimal generators
is a complete intersection if each f; is not a zero divisor on R/{f1,..., fi—1)-
Equivalently, the map

RI(freeos fict) 25 RIS fio)

is an inclusion.

From a geometric standpoint, being a complete intersection means that the locus
V(fi...., fx) where the f; simultaneously vanish has codimension equal to k. In
particular, an ideal / minimally generated by k elements is a compete intersection if
it has codimension k, and an almost complete intersection if it has codimension k — 1.

Definition 3.2. Let 7, J be ideals in a ring R. Then the colon ideal
I:J={feR|f-jelforaljelJ}
There is a nice connection of colon ideals to syzygies: if I = (f1,..., fx) and
k
2 aifi =0
i=1

isasyzygy on I, thenag € (f1,..., fr—1) : (fx)- We shall make use of this in the
next lemma.

Lemma 3.3. The ideals
Iy = (s11,812) and I = (s25,526)

are complete intersections.
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Proof. An ideal with two generators f, g is a complete intersection when f and g
are relatively prime, or equivalently when the unique minimal syzygy on f, g is given
by
f-g-g-f=0.

The ideal (/] ', 1571 5%} is an almost complete intersection, which means that
two generators, say {/] 1 l;“} are a complete intersection. Proposition 5.2 in [6]
proves an almost complete intersection is directly linked to a Gorenstein ideal. In
this case the linked ideal is

(LY D = (511, 812).

A homogeneous Gorenstein ideal in two variables is a complete intersection, so the
result follows. O

We’re now ready to put the pieces together. Define

Then H,(R/¢) may be presented as the cokernel of the map

R*(=6)) 2> R(~4))/ 1, D R(~4))/ L.

The Hilbert function of a graded module M takes as input an integer ¢, and gives
as output the dimension of the vector space M;. Since I; is a complete intersection
with two generators in degree 2, there are exact sequences:

0 — R(-4j) — R(-2j)> — R— R/I; — 0.

Tensoring this exact sequence with R(—4/) yields a sequence whose rightmost term
is a direct summand of the target of the map ¢p. When k > 2r + 2 = 8 (so that all
the modules in the exact sequence above contribute), taking the Euler characteristic
of the sequence and using that

HF (R(—i).k) = (k B ; - 2)
yields

HF (R*(—6j),k) = (k —6j +2)(k — 6] + 1),

HF (R(=4j)/1 @ R(=4j)/12.k) = (k —4j + 2)(k —4j + 1)
—2(k —6j +2)(k —6j + 1)
+ (k—8j +2)(k —8j + 1).
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Therefore the Hilbert function of the target of ¢ minus the Hilbert function of the
source of ¢ is
—k% + (12j —3)k — 282+ 18 —2,

which has two real roots, the larger at

32j2+1
k=6j—3/24+ Y221 (642v2)j —3)2
2r +7

>88) —22+.7="1

We have been working with the assumption that r + 1 = 4j; for r > 7 the
condition k& > 8j holds and we’ve shown the cokernel of ¢ must be nonzero in
degree < %. For r = 3 and j = 1 the condition that k > 8 fails—the larger root
is at approximately 7.4. In this case, a direct computation verifies that coker(¢) is
nonzero in degree 7. The same line of argument works with a minor modification for
(r +1 mod 4) € {l, 2, 3}, with no change in the bound, and concludes the proof. [

Remarks and open questions. The triangulation A appearing in §3 is the only known
triangulation for which

Pa(r.2r + 1) #dim C5,  (A).

For r < 70, computations show that the maximal value for which H;(R/Ja) # 0is

9 +2| | 45r+10 - d4r + 14| [ 22r +7
4 1 20 - 20 L1
In particular the bound of Theorem 1.1 is quite close to optimal for A. This raises
two interesting questions.

(1) Is it possible to lower the value of k such that dim C} (A) = P(r, k) holds for
all A?

(2) Is it possible to raise the value of k such that dim C; (A) > Pa(r, k) holds for
some A?
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