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A new bound for smooth spline spaces

Hal Schenck�, Mike Stillman�� and Beihui Yuan��

Abstract. For a planar simplicial complex � � R2, Schumaker proves in [22] that a lower

bound on the dimension of the space C r
k

.�/ of planar splines of smoothness r and degree k

on � is given by a polynomial P�.r; k/, and Alfeld–Schumaker show in [2] that P�.r; k/ gives

the correct dimension when k � 4r C 1. Examples due to Morgan–Scott, Tohaneanu, and Yuan

show that the equality dim C r
k

.�/ D P�.r; k/ can fail for k 2 f2r; 2r C 1g. In this note we

prove that the equality dim C r
k

.�/ D P�.r; k/ cannot hold in general for k � .22r C 7/=10.

Mathematics Subject Classification (2010). 41A15; 13D40, 52C99.

Keywords. Spline, dimension formula, cohomology.

1. Introduction

Let � be a triangulation of a simply connected polygonal domain in R2 having f1

interior edges and f0 interior vertices. A landmark result in approximation theory

is the 1979 paper of Schumaker [22], showing that for any triangulation �, any

smoothness r and any degree k, the dimension of the vector space C r
k

.�/ of splines

of smoothness r and degree at most k is bounded below by

P�.r; k/ D
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r C 1 C j.1 � n.vi //
�
; 0
�
;

and n.vi / is the number of distinct slopes at an interior vertex vi . In [2], Alfeld–

Schumaker prove for k � 4r C 1,

dim C r
k .�/ D P�.r; k/:
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Hong [12] shows equality holds for k � 3r C2, and [2] shows equality for k � 3r C1

and generic �.

When the degree k is small compared to the order of smoothness, formula .1:1/

can fail to give the correct value for dim C r
k

.�/: a 1975 example of Morgan–Scott

shows it fails for .r; k/D.1; 2/. In [19] it was conjectured that dim C r
k

.�/DP�.r; k/

for k � 2r C1, but a recent example [25] shows that equality fails for .r; k/ D .2; 5/.

In 1974, Strang [26] conjectured that for .r; k/ D .1; 3/ the formula holds for a

generic triangulation.

In [3], Billera used algebraic methods to prove Strang’s conjecture, winning the

Fulkerson prize for his work. A number of subsequent papers [4, 5, 7, 14, 15, 20,

21, 24, 28] use tools from algebraic geometry to study splines. The translation to

algebraic geometry takes the set of splines of all polynomial degrees k, and packages

it as a vector bundle C r.�/ on P 2. The discrepancy between P�.r; k/ and the actual

dimension in degree k is then captured by the dimension h1.C r.�/.k// of the first

cohomology of C r.�/.

The examples above do not preclude the possibility that dim C r
k

.�/ D P�.r; k/

holds for every triangulation � if k � 2r C 2. Our main result shows this is

impossible:

Theorem 1.1. There is no constant c so that dim C r
k

.�/ D P�.r; k/ for all � and
all k � 2r C c. In particular, there exists a planar simplicial complex � for which

h1.C r.�/.k// ¤ 0 for all k � 22r C 7

10
:

This shows there exists a simplicial complex � such that dim C r
k

.�/ > P�.r; k/ for

all k � 22rC7
10

. For formula (1.1) to yield the correct value for dim C r
k

.�/ for every

triangulation �, we must have

k >
22r C 7

10
> 2:2r:

2. Algebraic preliminaries

Billera’s construction in [3] computes the C 1 splines as the top homology module of

a certain chain complex. An introduction to homology and chain complexes aimed at

a general audience appears in [18], so the presentation below is terse. The paper [20]

introduces a modification of Billera’s construction, allowing a precise splitting of the

contributions to dim C r
k

.�/ into parts depending, respectively, on local and global

geometry.
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Definition 2.1. For a planar simplicial complex �, let �i be the set of interior

faces of dimension i .all triangles are considered interior/. For � 2 �1, let l�
be a linear form vanishing on � , and for v 2 �0, let J.v/ be the ideal generated

by lrC1
� , with � ranging over all interior edges containing v. Construct a complex

of R D RŒx1; x2; x3� modules as below, with differential @i the usual boundary

operator in relative .modulo @.�// homology.

R=JW 0 �!
M

�2�2

R
@2�!

M
�2�1

R=lrC1
�

@1�!
M

v2�0

R=J.v/ �! 0:

By construction, H2.R=J/ is a graded R-module, consisting of the set of splines

of all degrees, and defines the sheaf C r.�/. It is easy to show that

H0.R=J/ D 0 and H1.R=J/ D
M
k�0

H 1.C r.�/.k//:

In particular,

dim C r
k .�/ D P�.r; k/ C dimR H 1.C r.�/.k//:

Recall that a syzygy on an ideal hf1; : : : ; fki is a polynomial relation on the fi . For

an interior vertex v, J.v/ D hlrC1
�1

; : : : ; lrC1
�n

i, so a syzygy on J.v/ is of the form

nX
iD1

si � lrC1
�i

D 0:

A main result of [20] is:

Theorem 2.2. The module H1.R=J/ is given by generators and relations as

H1.R=J/ '
� M

�2�o
1

R.�r � 1/
�
=S;

where

� The set �o
1 consists of totally interior edges � : neither vertex of � is in @.�/.

� S D L
v2�0

Syz.v/: the direct sum of the syzygies on J.v/ at each interior vertex.

Hence H1.R=J/ is the quotient of a free module with a generator for each totally

interior edge � by vectors of polynomials of the form .s1; : : : ; sn/. Note that if two

totally interior edges �1; �2 with the same slope meet at a vertex, then there is a degree

zero syzygy between them, and S will have a column with nonzero constant entries.
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3. Proof of theorem

Following [25], we consider the simplicial complex � below.

By Theorem 2.2, the discrepancy module H1.R=J/ has two generators. There are

three interior vertices, and we need to quotient by the syzygies at each vertex. Note

that each vertex has only three edges with distinct slopes attached, hence we must

compute the syzygies on ideals of the form

hlrC1
1 ; lrC1

2 ; lrC1
3 i:

The key is that this is a local question, so after translating a vertex so it lies at the

origin, we have an ideal in two variables (recall that because we homogenized the

problem, our points now lie in P 2, so the linear forms defining edges are homogeneous

in three variables). The paper [10] gives a precise description of the syzygies on any

ideal generated by powers of linear forms in two variables. In the case of three forms

as above there are only two syzygies, in degreesjr C 1

2

k
and

lr C 1

2

m
:

Specializing to the case where r C 1 D 4j , we see that there are two syzygies, both

of degree 2j . Next, we note that two of the three vertices are connected to one totally

interior edge and two edges which touch the boundary, so writing the six relations

(two syzygies on each of the three interior vertices) as a matrix, we see that

H1.R=J/ ' R2.�r � 1/=S;

where

S D
�
s11 s12 s13 s14 0 0

0 0 s23 s24 s25 s26

�
:

As noted above, the rows correspond to the generators for H1.R=J/: the first row

corresponds to the totally interior edge v0v1 and the second row to the totally interior

edge v0v2; let lij denote a nonzero linear form vanishing on vivj .
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The first two columns of S correspond to the two syzygies at vertex v1, the second

two columns to the syzygies at vertex v0, and the last two columns to the syzygies at

vertex v2. Since the syzygies at v0 are on the ideal

hlrC1
01 ; lrC1

02 ; lrC1
08 i;

the third and fourth columns of S have no zero entries, because the syzygies involve

both generating edges v0v1; v0v2. In contrast, the syzygies at v1 are on the ideal

hlrC1
01 ; lrC1

13 ; lrC1
14 i:

Hence in the matrix S , only the component of the syzygy involving lrC1
01 appears —

there is no part of the syzygy involving lrC1
02 . This also explains why the rightmost

two columns of S have nonzero entry only in the second row. For the next lemma,

we need some concepts from commutative algebra.

Definition 3.1. An ideal I D hf1; : : : ; fki � R with k minimal generators

is a complete intersection if each fi is not a zero divisor on R=hf1; : : : ; fi�1i.
Equivalently, the map

R=hf1; : : : ; fi�1i �fi�! R=hf1; : : : ; fi�1i
is an inclusion.

From a geometric standpoint, being a complete intersection means that the locus

V.f1; : : : ; fk/ where the fj simultaneously vanish has codimension equal to k. In

particular, an ideal I minimally generated by k elements is a compete intersection if

it has codimension k, and an almost complete intersection if it has codimension k �1.

Definition 3.2. Let I; J be ideals in a ring R. Then the colon ideal

I W J D ff 2 R j f � j 2 I for all j 2 J g:
There is a nice connection of colon ideals to syzygies: if I D hf1; : : : ; fki and

kX
iD1

aifi D 0

is a syzygy on I , then ak 2 hf1; : : : ; fk�1i W hfki. We shall make use of this in the

next lemma.

Lemma 3.3. The ideals

I1 D hs11; s12i and I2 D hs25; s26i
are complete intersections.
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Proof. An ideal with two generators f; g is a complete intersection when f and g

are relatively prime, or equivalently when the unique minimal syzygy on f; g is given

by

f � g � g � f D 0:

The ideal hlrC1
1 ; lrC1

2 ; lrC1
3 i is an almost complete intersection, which means that

two generators, say flrC1
1 ; lrC1

2 g are a complete intersection. Proposition 5.2 in [6]

proves an almost complete intersection is directly linked to a Gorenstein ideal. In

this case the linked ideal is

hlrC1
1 ; lrC1

2 i W lrC1
3 D hs11; s12i:

A homogeneous Gorenstein ideal in two variables is a complete intersection, so the

result follows.

We’re now ready to put the pieces together. Define

� D
�
s13 s14

s23 s24

�
:

Then H1.R=J/ may be presented as the cokernel of the map

R2.�6j /
��! R.�4j /=I1

M
R.�4j /=I2:

The Hilbert function of a graded module M takes as input an integer t , and gives

as output the dimension of the vector space Mt . Since Ii is a complete intersection

with two generators in degree 2j , there are exact sequences:

0 �! R.�4j / �! R.�2j /2 �! R �! R=Ii �! 0:

Tensoring this exact sequence with R.�4j / yields a sequence whose rightmost term

is a direct summand of the target of the map �. When k � 2r C 2 D 8j (so that all

the modules in the exact sequence above contribute), taking the Euler characteristic

of the sequence and using that

HF
�
R.�i/; k

� D
 

k � i C 2

2

!

yields

HF
�
R2.�6j /; k

� D .k � 6j C 2/.k � 6j C 1/;

HF
�
R.�4j /=I1

M
R.�4j /=I2; k

� D .k � 4j C 2/.k � 4j C 1/

� 2.k � 6j C 2/.k � 6j C 1/

C .k � 8j C 2/.k � 8j C 1/:
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Therefore the Hilbert function of the target of � minus the Hilbert function of the

source of � is

�k2 C .12j � 3/k � 28j 2 C 18j � 2;

which has two real roots, the larger at

k D 6j � 3=2 C
p

32j 2 C 1

2
> .6 C 2

p
2/j � 3=2

> 8:8j � 2:2 C :7 D 22r C 7

10
:

We have been working with the assumption that r C 1 D 4j ; for r � 7 the

condition k � 8j holds and we’ve shown the cokernel of � must be nonzero in

degree � 22rC7
10

: For r D 3 and j D 1 the condition that k � 8 fails–the larger root

is at approximately 7:4. In this case, a direct computation verifies that coker.�/ is

nonzero in degree 7. The same line of argument works with a minor modification for

.r C1 mod 4/ 2 f1; 2; 3g, with no change in the bound, and concludes the proof.

Remarks and open questions. The triangulation � appearing in �3 is the only known

triangulation for which

P�.r; 2r C 1/ ¤ dim C r
2rC1.�/:

For r � 70, computations show that the maximal value for which H1.R=J�/ ¤ 0 is	
9r C 2

4



D
	

45r C 10

20



�
	

44r C 14

20



D
	

22r C 7

10



:

In particular the bound of Theorem 1.1 is quite close to optimal for �. This raises

two interesting questions.

(1) Is it possible to lower the value of k such that dim C r
k

.�/ D P�.r; k/ holds for

all �?

(2) Is it possible to raise the value of k such that dim C r
k

.�/ > P�.r; k/ holds for

some �?
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