
0.1. Rees Algebras, Syzygies, and Implicitization

Our goal in this section is to describe in more depth the concepts introduced
earlier in the chapter:

• Rees and Symmetric Algebras, Jacobian dual.
• Fitting ideals and Annihilators.
• Free resolutions and McRae invariant.
• The Approximation complex.
• Multigraded implicitization.
• Extensions and Future directions.

The setup is that the ideal

I = 〈f1, . . . , fd〉 ⊆ R = k[x1, . . . , xn]

is generated by homogeneous elements of degree m, which define a map of rings

S = k[y1, . . . , yd]
φ−→ R, yi �→ fi.

This in turn gives rise to a corresponding map of varieties

P
n−1 \B Φ−→ P

d−1,

where the base locus B = V(I) consists of the points where Φ is undefined. Our
focus will be on the case where d = n+1 and Φ generically finite onto it’s image, so
the image of Φ is a hypersurface H = V(F ). We begin with a motivating example:

Example 0.1. Let l = x1 + x2 + x3 and

I = 〈x1x2x3, x1x2l, x1x3l, x2x3l〉.
The four lines V(x1),V(x2),V(x3),V(l) depicted below

determine the base locus B, which consists of the six intersection points

B = {[0 : 1 : 0], [0 : 0 : 1], [0 : 1 : −1], [1 : 0 : −1], [1 : −1 : 0], [1 : 0 : 0]}.
The ideal I has a presentation given by

0 −→ R(−4)3

⎡
⎢⎢⎢⎢⎢⎢⎣

l 0 0
−x3 x3 0
0 −x2 x2

0 0 −x1

⎤
⎥⎥⎥⎥⎥⎥⎦

−−−−−−−−−−−−−−−→ R(−3)4
[
x1x2x3 x1x2l x1x3l x2x3l

]
−−−−−−−−−−−−−−−−−−−−−−−−−→ I −→ 0.
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The leftmost matrix consists of the syzygies on the ideal I: polynomial relations
on the 1× 4 matrix of polynomials generating I. If we denote the basis vectors for
R4 as {y1, . . . y4} then we may rewrite the syzygies as

y1l − y2x3, y2x3 − y3x2, y3x2 − y4x1.

Now we turn this inside out, and write the three expressions above (recall that
l = x1 + x2 + x3) as column vectors with respect to the basis {x1, x2, x3} of R1:

B =

⎡
⎣ y1 0 −y4

y1 −y3 y3
y1 − y2 y2 0

⎤
⎦

Let

F = det(B) = y2y3y4 − y1y3y4 − y1y2y4 − y1y2y3.

An easy computation shows that F (f1, f2, f3, f4) = 0, so that the determinant of
B is the implicit equation for the hypersurface H.

It is instructive to examine the geometry of this example more closely. It is a
classical fact ([107], §V.3) that the blow up X of P2 at six general points may be
embedded as a smooth cubic surface in P

3, using the divisor

D = 3E0 −
6∑

i=1

Ei,

where E0 is the proper transform of a line and Ei is the exceptional curve over a
blown up point. The intersection pairing on X satisfies

E2
0 = 1 E2

i = −1 if i �= 0 EiEj = 0 if i �= j

In our example, the points are not general: for example, the line L = V(x1) contains
the 3 basepoints (say p1, p2, p3), and we compute

D · L = (3E0 −
6∑

i=1

Ei) · (E0 − E1 − E2 − E3) = 3− 3 = 0.

This computation shows that any of the four lines which contain three points of
the base locus is contracted to a point; in particular we expect V(F ) to have four
singular points. The Jacobian ideal of F is generated by⎡

⎢⎢⎣
y2y3 + y2y4 + y3y4
y1y3 + y1y4 − y3y4
y1y2 + y1y4 − y2y4
y1y2 + y1y3 − y2y3

⎤
⎥⎥⎦

which has zeroes at exactly the four coordinate points of P3, confirming our expec-
tation that H = V(F ) has four singular points. ��

The remainder of this section will be devoted to understanding the tools and
techniques that are used to produce the implicit equation F , in particular to explain
the mysterious switch between the matrix of syzygies of I, and the matrix B.
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Rees and Symmetric algebras. The Rees algebraR(I) of an ideal I = 〈f1, . . . , fd〉 ⊆
R is defined as the image of the map

R[y1, . . . , yd]
β−→ R[t] via yi �→ fi · t.

If R is a domain, then since R(I) is isomorphic to a subring of R[t], then R(I) will
also be a domain. If we grade by the variables yi, we have

ker(β)1 =
∑

aiyi �→ t ·∑ aifi = 0 iff (ai) ∈ syz(I)
ker(β)2 =

∑
aijyiyj �→ t2 ·∑ aijfifj = 0 iff (aij) ∈ syz(I2)

ker(β)3 =
... iff (aijk) ∈ syz(I3)

It follows from the definition that R(I) 	 R[y1, . . . , yd]/ ker(β). A close cousin
of R(I) is the symmetric algebra S(I), defined as R[y1, . . . , yd]/ ker(β)1. It turns
out that computing R(I) is a difficult problem, discussed at length at the end of
the chapter. The symmetric algebra S(I) is simpler; in the special case where
ker(β) = ker(β)1, the ideal I is said to be of linear type.

Example 0.2. Example FILL IN computes the ideal defining the Rees algebra
R(I) of I = 〈t4, s2t2, s4 − st3〉. The Macaulay2 package ReesAlgebra by David
Eisenbud [78] allows us to compute R(I) as follows (some output suppressed)

i1 : R=ZZ/31991[s,t];

i2 : I=ideal(t^4,s^2*t^2,s^4-s*t^3);

i3 : syz(gens I)

o3 = {4} | s2 -st |

{4} | -t2 s2 |

{4} | 0 -t2 |

3 2

o3 : Matrix R <--- R

i4 : RI=reesIdeal I;

o4 : Ideal of R[w , w , w ]

0 1 2

i5 : transpose gens RI

o5 = {-1, -6} | w_0st-w_1s2+w_2t2 |

{-1, -6} | w_0s2-w_1t2 |

{-2, -9} | w_0w_1t-w_1^2s+w_0w_2s |

{-2, -9} | w_0^2s-w_1^2t+w_0w_2t |

{-4, -16} | w_0^3w_1-w_1^4+2w_0w_1^2w_2-w_0^2w_2^2 |

i6 : isLinearType RI

o6 = false

The two syzygies on I appear as the first two generators for the ideal defining R(I),
and we see that S(I) and R(I) differ. ��
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It is a useful exercise (or see [77] Exercise A2.6) to show that if R is a domain,
then the kernel of the surjection from S(I) to R(I) consists of those elements of
S(I) which are annihilated by R: the kernel of S(I) −→ R(I) is the R-torsion of
the symmetric algebra.

In general the linear type condition is rare: S(I) typically has R-torsion. Busé-
Jouanolou proved that if the base locus B is a zero-dimensional local complete
intersection, then the R-torsion is rather mild, which can be phrased in terms of
local cohomology:

Definition 0.3. For an ideal I and R-module M , the zeroth local cohomology
is

H0
I (M) = {m ∈ M | Ij ·m = 0 for some j ∈ N}.

Letting the role of I be played by the ideal m = 〈x1, . . . , xn〉, there is a standard
four term sequence in local cohomology (Theorem A4.1 of [77]):

0 −→ H0
m(M) −→ M −→

⊕
i∈Z

H0(M̃(i)) −→ H1
m(M) −→ 0.

If we use S(I) for M in the above sequence, then if I is linear type outside m, this
means R(I) and S(I) define the same sheaf outside V(m), and R(I) is the third
term in the sequence above. The surjection from S(I) to R(I) forces H1

m(S(I)) to
vanish, and so we obtain the exact sequence

(0.1) 0 −→ H0
m(S(I)) −→ S(I) −→ R(I) −→ 0.

Recall that the annihilator Ann(M) of an R-module M is the ideal

{r ∈ R | r ·m = 0 for all m ∈ M}.
A pair of theorems due to Busé-Jouanolou are the key to using syzygies to study
implicitization. Regarding R(I) as a graded module over R, we have:

Theorem 0.4. [39] The kernel of φ is AnnS(R(I)0).

Proof. First, note that

ker(φ) = ker(β) ∩ S.

This follows since if F ∈ S satisfies

F (f1t, . . . , fdt) = 0 ∈ R[t],

then specializing to t = 1 shows ker(β)∩S ⊆ ker(φ). On the other hand, since the fi
are homogeneous, this means that ker(φ) is also homogeneous, so F (f1t, . . . , fdt) =
tm·F (f1, . . . , fd) = 0, which implies ker(φ) ⊆ ker(β)∩S. SinceR(I) 	 R⊗S/ ker(β),
F ∈ S annihilates the degree zero (in R) component of R(I) exactly if

F · 1 ∈ ker(β),

which holds exactly when F ∈ ker(β) ∩ S = ker(φ). �
Caveat: if we do not assume that R is a polynomial ring, then an additional hy-

pothesis, that H0
m(R) = 0, is necessary for the theorem to hold. Similar arguments

yield

Theorem 0.5. [39] If H0
m(S(I))b = 0 for all b ≥ a, then

AnnS(S(I)b) ⊆ ker(φ) for all b ≥ a,

and equality holds if I is of linear type outside m.
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If I is not of linear type, then the next best case is when the defining ideal of
R(I) has the expected form. To explain this terminology, we need the notion of the
Jacobian dual:

Definition 0.6. LetN denote the matrix of first syzygies on I = 〈f1, . . . , fd〉 ⊆
R = k[x1, . . . , xn], and write

[y1, . . . , yd] ·N = [x1, . . . , xn] ·B,

where the entries of B are linear in the yi variables. The matrix B is the Jacobian
dual of N . If the defining ideal of R(I) is generated by [y1, . . . , yd] ·N and the d×d
minors of B, then R(I) is said to be of expected form.

The mystery matrix B that appeared in Example 0.1 is exactly the Jacobian
dual. In Theorem 0.5, the hypothesis that I is linear type outside m means that in
high enough degree b in the R variables,

H0
m(S(I))b = 0

and hence in high enough degree, S(I) and R(I) agree. Theorem 0.5 provides a path
to connect implicitization problems to Fitting ideals and the McRae invariant, and
as we shall see, gives a concrete means to efficiently compute the implicit equation
F . Example 0.1 is of expected form; Example 0.17 is not.

Fitting Ideals and the Annihilator of a module. A standard construction in
algebra is that of the Fitting ideal of a module. For us, the context is that of a
polynomial ring R and finitely generated R-module M . Then

Definition 0.7. Given a presentation

Rn ψ−→ Rm −→ M −→ 0.

for M , Fitti(M) is the ideal of m− i by m− i minors of ψ; in particular Fitt0(M)
is the ideal of m×m minors of ψ.

It is a good exercise to show that the Fitting ideals of M are independent of
choice of ψ; they capture information about the annihilator of the module.

Theorem 0.8. Fitt0(M) ⊆ Ann(M).

Proof. If n < m then since Rm is a free module, the map ψ splits and M has
a direct summand which is a free module; if R is a domain then Ann(M) = 0, as
are the m×m minors. So assume n ≥ m. Choose an m×m submatrix A of ψ such
that det(A) �= 0, yielding a commuting diagram

0

��

0

��

0

��

Rm A ��

��

Rm ��

�
��

M ′

��

�� 0

Rn ψ
�� Rm �� M �� 0

Since M is a quotient of M ′, relations on M ′ are also relations on M and

Ann(M ′) ⊆ Ann(M).
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We need to show that det(A) kills M ′. If a ∈ M ′ = coker(A), then

det(A) · a = 0 ⇐⇒ det(A) · a = Ax for some x,

and such an x can be found by Cramer’s rule. �
By Proposition 20.7 of [77], if M can be generated by q elements, then we have

that Ann(M)q ⊆ Fitt0(M). This implies that the radical ideals satisfy√
Fitt0(M) =

√
Ann(M).

Theorem 0.4 and Theorem 0.5 show that finding the implicit equation is a problem
of computing annihilators, hence Fitting ideals will play a role.

Free resolutions and the McRae invariant.

Definition 0.9. A sequence of modules Ci and morphisms di

C : · · · −→ Ci+1
di+1−→ Ci

di−→ Ci−1
di−1−→ · · ·

is a complex if im(di+1) ⊆ ker(di) for every i. It is exact at position i if im(di+1) =
ker(di). The ith homology module is defined as Hi(C) = ker(di)/ im(di+1), hence
Hi(C) = 0 iff C is exact at position i.

An important special case occurs when the complex has the form

F : 0 −→ Fn
dn−→ Fn−1

dn−1−→ · · ·F1
d1−→ F0 −→ M −→ 0,

where the modules Fi are free of rank ri, and the complex is everywhere exact. In
this case F is called a free resolution of M .

By the Hilbert syzygy theorem (Corollary 19.7, [77]), a finitely generated mod-
ule M over the polynomial ring R has a finite free resolution, which stops in at most
n steps, where n is the number of variables of R.

Example 0.10. Consider the ideal I = 〈x2, y2, z2〉 ⊆ R = k[x, y, z]. Then the
free resolution of R/I takes the form

0 −→ R(−6)

⎡
⎢⎢⎢⎣
z2

−y2

x2

⎤
⎥⎥⎥⎦

−−−−−→ R3(−4)

⎡
⎢⎢⎢⎣
y2 z2 0
−x2 0 z2

0 −x2 −y2

⎤
⎥⎥⎥⎦

−−−−−−−−−−−−−−−→ R3(−2)

[
x2 y2 z2

]
−−−−−−−−−−→ R −→ R/I

Notice that the first syzygies are spanned by the obvious relations: for every pair
(f, g) in I, there is a relation g · f − f · g = 0. Such a syzygy is called a Koszul
syzygy, and the free resolution above has a simple construction in terms of exterior
algebra.

Definition 0.11. For any set of polynomials {f1, . . . , fd} ⊆ R, the Koszul
complex is given by

0 −→ Λd(Rd) = R −→ Λd−1(Rd) −→ · · ·Λ2(Rd)
d2−→ Λ1(Rd) = Rd d1−→ R,

with di(ej1 ∧ · · · ∧ eji) =
∑i

k=1(−1)kfkej1 ∧ · · · êjk ∧ eji). A straightforward com-
putation shows that di−1 ◦ di = 0.

The Koszul complex is exact iff the fi are a regular sequence: for all i, multipli-
cation by fi defines an injection on R/〈f1, . . . , fi−1〉. Geometrically, this means that
eachV(f1, . . . , fi−1) has codimension i−1 or equivalently intersectingV(f1, . . . , fi−1)
with V(fi) drops the dimension by exactly one. For this reason, a variety whose
ideal is defined by a regular sequence is known as a complete intersection.
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Now we turn to a special situation: let M be a module over a polynomial ring
R, such that M is torsion: for each m ∈ M , there is some nonzero r ∈ R such that
r ·m = 0. Let F be a free resolution for M . Since R is a domain we may localize
F at the zero ideal, yielding an exact sequence of vector spaces, with the di having
entries in the field of fractions of R. Since the rank of Fn is rn we may factor dn

as

[
αn

βn

]
, with rank(αn) = rn.

By exactness the image of dn is the kernel of dn−1, and so we may write dn−1

as [
βn−1 ∗
∗ αn−1

]
with βn−1 is of rank rn and αn−1 is of rank (rn−1 − rn). Iterate this procedure.
Since M is torsion iff it has rank zero, we also have that

n∑
i=0

(−1)iri = 0.

Thus in the factorization of d1 = [β1 | α1] the rank of α1 = r1 − r2 + r3 − · · · = r0.

Definition 0.12. The McRae invariant of M is

S(M) =
det(α1) · det(α3) · · ·
det(α2) · det(α4) · · · =

∏
det(αi)

(−1)i−1

.

This definition seems to depend on the choice of the αi. However, just as in the
case of Fitting ideals, it turns out that the McRae invariant is well-defined. For a
proof of this, and the remarkable properties of the McRae invariant below, we refer
to the book of Northcott [162].

Theorem 0.13. The McRae invariant is

• Independent of the choices of αi.
• Multiplicative on short exact sequences.
• Is an element of R, rather than the field of fractions.
• Is the smallest principal ideal containing Fitt0(M).

If we hope to apply Theorem 0.13 above in conjunction with Theorem 0.4 or
Theorem 0.5, we will need to obtain a resolution of R(I)0 or S(I)b as an S-module.
This takes us to our next key tool.

Remark 0.14. If F• is not exact but simply a chain complex, it is possible to
define the determinant of F•, see [94]. We will not need this level of generality.

The Approximation Complex. The canonical example of a chain complex is
the Koszul complex which appeared in Example 0.10. The Koszul complex takes
center stage as we describe the work of Herzog-Simis-Vasconcelos in [110], [111] on
approximation complexes. Roughly speaking, the idea is to build a hybrid complex
using S = k[y1, . . . , yd] and the ideal I = 〈f1, . . . , fd〉 ⊆ R = k[x1, . . . , xn].

Definition 0.15. In the setting above, let dfi be the ith Koszul differential

on {f1, . . . , fd}, Zi the kernel of dfi , and dSi the Koszul differential on {y1, . . . , yd}.
The approximation complex Z is

Z : · · · −→ Zi+1 ⊗ S
dS
i+1−→ Zi ⊗ S

dS
i−→ Zi−1 ⊗ S

dS
i−1−→ · · ·
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Like the Koszul complex, Z depends only on I and not the choice of generators.

To see the maps are well defined, note that dfdS +dSdf = 0. Let γ ∈ ker(dfi ) = Zi;

since γ ∈ ker(dfi ), d
Sdf (γ) = 0. Combining this with (dfdS + dSdf )(γ) = 0, we see

that dfdS(γ) = 0; hence
dS(γ) ∈ Zi−1 ⊗ S.

Consider the rightmost homology of the approximation complex. Since Z1 consists
exactly of the syzygies on I, and Z0 is R, we find

H0(Z) = R⊗k S/ syz(I) 	 S(I).

IfHi(Z) = 0 for all i ≥ 1, then the approximation complex will give a free resolution
for S(I), and we will be able to apply the results on Fitting ideals and the McRae
invariant to obtain information about the implicit equation.

Theorem 0.16. [110] The approximation complex Z is acyclic iff

fi+1 ·Hj(K(f1, . . . , fi)) = 0 for all i ∈ {0, . . . , d− 1}, j > 0,

In [37], Busé-Chardin use a spectral sequence argument to prove that if V(I)
is zero dimensional, then the approximation complex is acyclic outside V(m) iff
I is locally an almost complete intersection (ACI), that is, generated by at most
one more equation than the codimension. In this case, Theorem 0.16 yields a free
resolution of S(I). In the ACI case an extraneous factor appears in the McRae
invariant [36]. Of course, we do not need the whole free resolution; by Theorem 0.5
we need the subresolution of S(I)a, where H0

m(S(I)b) = 0 for all b ≥ a.
Results of Busé-Jouanolou [39] and Busé-Chardin [37] show that when the base

locus is empty, taking a ≥ (n− 1)(m− 1) suffices, where m is the degree of the fi,
and if the base locus is nonempty, we can actually choose a ≥ (n− 1)(m− 1)− ε,
where ε is the minimal degree hypersurface containing the base locus.

In Example 0.1, we had n = 3 = m, so if I were basepoint free we would need
the degree (3− 1)(3− 1) = 4 piece of the approximation complex. However, since
the minimal degree curve through the six base points is a cubic, it suffices to look
at the degree 4 − 3 = 1 graded piece of S(I). This explains what happened in
Example 0.1; the key takeaway is that basepoints make the computation simpler!

Our next example also has a local complete intersection base locus, but illus-
trates that typically we need more than two steps of the approximation complex to
determine the implicit equation.

Example 0.17. The ideal I = 〈x2
1, x

3
2〉 is a local complete intersection, and since

I has a generator in degree two we need the degree two piece of the approximation
complex. The map φ is determined by the cubics in I:

[
x3
1 x2

1x2 x3
2 x2

1x3

]
whose syzygies are generated by the columns of⎡

⎢⎢⎣
−x2 −x3 0 0
x1 0 −x3 −x2

2

0 0 0 x2
1

0 x1 x2 0

⎤
⎥⎥⎦

which has degree two component generated by the image of⎡
⎢⎢⎣
−x1x2 −x2

2 −x2x3 −x1x3 −x2x3 −x2
3 0 0 0

x2
1 x1x2 x1x3 0 0 0 −x2x3 −x2

3 −x2
2

0 0 0 0 0 0 0 0 x2
1

0 0 0 x2
1 x1x2 x1x3 x2

2 x2x3 0

⎤
⎥⎥⎦
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Multiplying [y1, y2, y3, y4] against M yields nine elements

[−y1x1x2 + y2x
2
1, . . . ,−y2x

2
2 + y3x

2
1],

and contracting against the quadrics in {x1, x2, x3} shows that (Z1)2 is generated
by the columns of

M((Z1)2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

y2 0 0 y4 0 0 0 0 y3
−y1 y2 0 0 y4 0 0 0 0
0 0 y2 −y1 0 y4 0 0 0
0 −y1 0 0 0 0 y4 0 −y2
0 0 −y1 0 −y1 0 −y2 y4 0
0 0 0 0 0 −y1 0 −y2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Next, we need the term Z2 in the approximation complex. There are two ways
to do this: on the one hand, because I is a local complete intersection, we could
simply compute the kernel of the matrix above. Or we could consider the kernel of
the second Koszul differential on I, which is generated by the columns of⎡

⎢⎢⎢⎢⎢⎢⎣

x3 x3
2 0 0

0 −x2
1x2 0 x2

1x3

0 x3
1 x2

1x3 0
−x2 0 0 −x3

2

x1 0 −x3
2 0

0 0 x2
1x2 x3

1

⎤
⎥⎥⎥⎥⎥⎥⎦

The quadratic component of the image is generated by

x3(e1 ∧ e2)− x2(e1 ∧ e4) + x1(e2 ∧ e4).

Pushing this forward via the Koszul differential yields

x3(x
3
1e2 − x2

1x2e1)− x2(x
3
1e4 − x2

1x3e1) + x1(x
2
1x2e4 − x2

1x2e2).

Multiplying this by {x1, x2, x3} to obtain the quadratic component and express-
ing the result in terms of the ordered basis above shows that Z2 has quadratic
component spanned by the columns of⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y4 0 0
0 y4 0

−y1 0 y4
−y2 0 0
y1 −y2 0
0 0 −y2
0 y1 0
0 0 y1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The determinant of the topmost 3×3 block of this is y34 , and the determinant of the
complementary (hence, rightmost) block of the matrix M((Z1)2) is y

3
4 · (y32 − y21y3),

so the implicit equation is given by

y34 · (y32 − y21y3)

y34
= y32 − y21y3,

which is easily checked to be correct. ��
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Multigraded Implicitization. A case which has attracted much interest in geo-
metric modeling occurs when the ring R is multigraded. The hypersurface case
which is the focus here was studied by Botbol in [25], and we now describe this in
more detail.

The most familiar example of a multigraded map occurs when the map φ is
given by monomials. In this case the image is a toric variety and it is possible
to compute the implicit equation (or equations if the image is not a hypersurface)
using simplicial homology. Let

A = N{a1, . . . ,ad} ⊆ Z
n

be a semigroup, and A the matrix with ith column ai. The toric ideal of A is

IA = 〈yα − yβ | α, β ∈ N
d and α− β ∈ ker(A)〉 ⊆ S = k[y1, . . . , yd].

To any m ∈ Z
n we associate a simplicial complex

Δm = {J ⊆ {1, . . . , d} | m−
∑
i∈J

ai lies in A}.

A result of Hochster [116] shows that

H̃j(Δm, k) = TorSj (IA, k)m.

In particular, the generators of the ideal of the implicitization correspond to el-
ements of TorS0 (IA, k), so are given by the zeroth reduced homology of certain
simplicial complexes built from the semigroup A.

Example 0.18. Let A ⊆ Z
2 be generated by[

3 2 1 0
0 1 2 3

]
We think of these lattice points as vertices v1, . . . , v4. Then a computation shows
that for

m ∈
{(

2
4

)
,

(
3
3

)
,

(
4
2

)}
we have H̃0(Δm, k) 	 k. For example Δ(

2
4

) has vertices v1, v2, v3 and edge v1v3.

Computing, we see that the ideal IA has three generators

y22 − y1y3 in degree
(
2
4

)
y1y4 − y2y3 in degree

(
3
3

)
y23 − y2y4 in degree

(
4
2

)
The first syzygies of IA may be computed in similar fashion, and a computation
shows that

H̃1(Δm, k) = k

iff

m ∈
{(

5
4

)
,

(
4
5

)}
For more details and an in-depth exposition, see [156]. ��
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In the more general setting of a multigraded ideal I which is not generated by
monomials, the approximation complex machinery works by taking a sufficiently
high multidegree subcomplex of Z. The multigraded structure means that the local
cohomology must be computed with respect to a different ideal.

In geometric modeling, the most common surfaces are triangular surfaces, which
correspond geometrically to P

2, and tensor product surfaces, which correspond ge-
ometrically to P

1 × P
1. Algebraically, a tensor product surface comes from a bi-

grading on R = k[s, t, u, v], with s, t of degree (1, 0) and u, v of degree (0, 1). To
make multigraded implicitization concrete, we focus on tensor product surfaces.

Let Rm,n denote the graded piece of R in bidegree (m,n). A regular map

P
1 × P

1 Φ−→ P
3 is defined by four polynomials

{p0, p1, p2, p3} ⊆ Rm,n

with no common zeros on P
1 × P

1. The empty locus on P
1 × P

1 is defined by the
bigraded ideal

m = 〈s, t〉 ∩ 〈u, v〉 = 〈su, sv, tu, tv〉.

Therefore the map Φ is basepoint free map iff the ideal

I = 〈p0, p1, p2, p3〉

satisfies
√
I = m.

Example 0.19. Consider the ideal

I = 〈s2u, s2v, t2u, t2v + stv〉,

generated by four elements of bidegree (2, 1). The syzygies on I are generated by
the columns of ⎡

⎢⎢⎣
−v −t2 0 0 −tv
u 0 −st− t2 0 0
0 s2 0 −sv − tv −sv
0 0 s2 tu su

⎤
⎥⎥⎦

which we encode as

uy1 − vy0 = 0
s2y2 − t2y0 = 0

s2y3 − (st+ t2)y1 = 0
tuy3 − (sv + tv)y2 = 0
suy3 − svy2 − tvy0 = 0

If we were in the singly graded case, we would need to consider degree 2, and a basis
for Z2

1 consists of {s, t, u, v} · uy1 − vy0, and the remaining four relations. With
respect to the ordered basis {s2, st, t2, su, sv, tu, tv, u2, uv, v2} for R2 the matrix for
d21 : Z2

1 −→ Z2
0 is
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 y2 y3 0 0
0 0 0 0 0 −y1 0 0
0 0 0 0 −y0 −y1 0 0
y1 0 0 0 0 0 0 y3
−y0 0 0 0 0 0 −y2 −y2
0 y1 0 0 0 0 y3 0
0 −y0 0 0 0 0 −y2 −y0
0 0 y1 0 0 0 0 0
0 0 −y0 y1 0 0 0 0
0 0 0 −y0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This matrix represents all the first syzygies of total degree two. The multi-
graded setting gives us extra structure to work with, and in Corollary 14 of [28],
Botbol-Dickenstein-Dohm give a bound in terms of the multidegree; in the case of
this example the bound tells us that it suffices to work with the subcomplex of
the approximation complex of bidegree (1, 1). The first syzygies of bidegree (1, 1)
correspond to the submatrix whose rows are indexed by {su, sv, tu, tv}, which is
given by

⎡
⎢⎢⎣

y1 0 0 y3
−y0 0 −y2 −y2
0 y1 y3 0
0 −y0 −y2 −y0

⎤
⎥⎥⎦

The image of φ is the determinantal hypersurface

H = V(y0y
2
1y2 − y21y

2
2 + 2y0y1y2y3 − y20y

2
3).

For curves, Sederberg-Goldman-Du [179] and Cox-Hoffman-Wang [56] show
that the structure of the syzygy matrix is closely connected to the behavior of the
singular locus of the implicit curve. This also holds for tensor product surfaces
in P

3 of bidegree (2, 1): in [174] Schenck-Seceleanu-Validashti show that there are
six possible structures for the syzygy matrix, and describe the codimension one
singular locus for each case. In our example above (from [174]) there is a unique
syzygy of bidegree (0, 1), which in turn forces the codimension one singular locus
of H to be the union of three lines V(y0, y2) ∪V(y1, y3) ∪V(y0, y1).
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Since the generators of I are of bidegree (2, 1), the bidegree (0, 1) syzygy occurs
in total degree (2, 2), and the variables wi are of degree (1, 0, 0). Therefore the
generator w1u − w3v of the Rees ideal occurs in degree (1, 2, 2), explaining the
labelling of the last matrix below.

i1 : R=ZZ/31991[s,t,u,v,Degrees=>{{1,0},{1,0},{0,1},{0,1}}];

i2 : I=ideal(s^2*u,s^2*v,t^2*u,t^2*v+s*t*v);

i3 : rI=(res coker gens I).dd

1 4

o3 = 0 : R <--------------------------- R : 1

| s2u t2u s2v stv+t2v |

4 5

1 : R <----------------------------------------- R : 2

{2, 1} | -v -t2 0 0 0 |

{2, 1} | 0 s2 0 -sv-tv -tv |

{2, 1} | u 0 st+t2 0 tu |

{2, 1} | 0 0 -s2 tu -su+tu |

5 2

2 : R <---------------------- R : 3

{2, 2} | -t2 0 |

{4, 1} | v 0 |

{4, 1} | 0 -u |

{3, 2} | s-t -t |

{3, 2} | t s+t |

2

3 : R <----- 0 : 4

0

i4 : transpose gens reesIdeal I

o4 = {-1, -2, -2} | w_1u-w_3v |

{-1, -4, -1} | w_2s2-w_3t2 |

{-1, -3, -2} | w_0tu-w_2sv-w_2tv |

{-1, -3, -2} | w_0su-w_2sv-w_3tv |

{-1, -4, -1} | w_0s2-w_1st-w_1t2 |

{-2, -5, -2} | w_1w_2t+w_0w_3s-w_0w_3t-w_1w_3t |

{-2, -5, -2} | w_1w_2s-w_0w_3s+w_1w_3t |

{-2, -4, -4} | w_0^2u2-2w_0w_2uv+w_2^2v2-w_2w_3v2 |

{-3, -6, -4} | w_1w_2^2v+w_0^2w_3u-2w_0w_2w_3v-w_1w_2w_3v |

{-4, -8, -4} | w_1^2w_2^2-2w_0w_1w_2w_3-w_1^2w_2w_3+w_0^2w_3^2 |

Tensor product surfaces are a type of ruled surfaces, on which there is an exten-
sive literature, ranging from the classical work of Edge [76] and Salmon [172] to
contemporary work motivated by geometric modeling. We give pointers to relevant
papers in the next section. ��
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Directions for future research. There are a myriad of open questions at the
interface of geometric modeling and algebraic geometry. A central problem is how
to leverage results from situations where the free resolution of I is known to obtain
results on the Rees algebra. For an example along these lines, if I is codimension
two and Cohen-Macaulay, then I has a Hilbert-Burch resolution: I = 〈f1, . . . fd〉 is
generated by the (d − 1) × (d − 1) minors of a d × d − 1 matrix, whose columns
are the syzygies of I. In [158], Morey-Ulrich determine the equations for the Rees
algebra, when all the syzygies are linear, and [24] gives an answer when exactly
one syzygy is nonlinear; however the general case remains open. Some additional
questions:

• Rees algebras of rational curves and connections to singularities. In addi-
tion to the works [179] and [56] mentioned earlier, there is a large litera-
ture on the interplay between syzygies and singularities of rational curves.
In [57] Cox-Kustin-Polini-Ulrich carry out a comprehensive investigation;
see also Cortadellas Beńıtez-D’Andrea [50] [51].

• Tensor product surfaces have been extensively studied, but there remain
many open questions. See [69], [74], [79], [86], [213] for some work on
low degree cases; more generally study toric implicitization [25], [28],[68].

• Matrix representations: rather than finding the actual implicit equation,
focus on a matrix which drops rank at points of the implicitization. As
Botbol-Busé-Chardin write in [26] “matrices have to be seen as implicit
representations on their own, without relying on the more classical implicit
equation”. For more work along these lines, see [28], and [27].

• Codimension three Gorenstein ideals have a structure theorem, and in
[142], Kustin-Polini-Ulrich determine the equations for the Rees algebra.
Is there a similar result for Gorenstein deviation two ideals, where there
is a structure theory due to Huneke-Ulrich [121] and the resolutions are
known from Kustin [141]?

• The resolution of ideals obtained from the submaximal minors of a matrix
of variables may be constructed via representation theory and Bott-Borel-
Weyl, see Weyman [208] for details. What can one say about the Rees
algebra of such examples? About the simplest case of an Eagon-Northcott
resolution?

• While Hochster’s method provides a way to compute the implicit equa-
tions for the image of a monomial map, computing minimal generators for
R(I) is nontrivial: see Lin [149] for a beautiful application of Alexander
duality to the initial ideal of the maximal minors of a generic matrix, and
Fouli-Lin [84] for additional results on squarefree monomial ideals.

• When R(I) is of quadratic type (determined by syz(I) and syz(I2), [38]
shows that half the degrees where the torsion is nonzero are understood.

• Methods from tropical geometry: if one can determine the degree of the
implicit equation of a hypersurface, then the problem of actually describ-
ing it is linear algebra; in [72] and [191] tropical geometry is used to shed
light on the problem.


