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Abstract
This paper is concerned with finite sample approximations to the supremum of a non-
degenerateU -process of a general order indexed by a function class. We are primarily
interested in situations where the function class as well as the underlying distribution
change with the sample size, and the U -process itself is not weakly convergent as
a process. Such situations arise in a variety of modern statistical problems. We first
consider Gaussian approximations, namely, approximate theU -process supremum by
the supremum of a Gaussian process, and derive coupling and Kolmogorov distance
bounds. Such Gaussian approximations are, however, not often directly applicable
in statistical problems since the covariance function of the approximating Gaussian
process is unknown. This motivates us to study bootstrap-type approximations to the
U -process supremum. We propose a novel jackknife multiplier bootstrap (JMB) tai-
lored to the U -process, and derive coupling and Kolmogorov distance bounds for the
proposed JMB method. All these results are non-asymptotic, and established under
fairly general conditions on function classes and underlying distributions. Key tech-
nical tools in the proofs are new local maximal inequalities for U -processes, which
may be useful in other problems. We also discuss applications of the general approx-
imation results to testing for qualitative features of nonparametric functions based on
generalized local U -processes.
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1 Introduction

This paper is concerned with finite sample approximations to the supremum of a
U -process of a general order indexed by a function class. We begin with describing
our setting. Let X1, . . . , Xn be independent and identically distributed (i.i.d.) random
variables defined on a probability space (�,A,P) and taking values in a measurable
space (S,S) with common distribution P . For a given integer r � 2, letH be a class
of jointly measurable functions (kernels) h : Sr → R equipped with a measurable
envelope H (i.e., H is a nonnegative function on Sr such that H � suph∈H |h|).
Consider the associated U -process

Un(h) := U (r)
n (h) := 1

|In,r |
∑

(i1,...,ir )∈In,r
h(Xi1, . . . , Xir ), h ∈ H, (1)

where In,r = {(i1, . . . , ir ) : 1 � i1, . . . , ir � n, i j �= ik for j �= k} and
|In,r | = n!/(n − r)! denotes the cardinality of In,r . Without loss of generality, we
may assume that each h ∈ H is symmetric, i.e., h(x1, . . . , xr ) = h(xi1 , . . . , xir ) for
every permutation i1, . . . , ir of 1, . . . , r , and the envelope H is symmetric as well.
Consider the normalized U -process

Un(h) = √
n{Un(h)− E[Un(h)]}, h ∈ H. (2)

The main focus of this paper is to derive finite sample approximation results for
the supremum of the normalized U -process, namely, Zn := suph∈H Un(h)/r , in the
case where the U -process is non-degenerate, i.e., Var(E[h(X1, . . . , Xr ) | X1]) > 0
for all h ∈ H. The function class H is allowed to depend on n, i.e., H = Hn ,
and we are primarily interested in situations where the normalized U -process Un is
not weakly convergent as a process (beyond finite dimensional convergence). For
example, there are situations where Hn depends on n but Hn is further indexed by a
parameter set � independent of n. In such cases, one can think of Un as a U -process
indexed by � and can consider weak convergence of the U -process in the space of
bounded functions on�, i.e., �∞(�). However, even in such cases, there are a variety
of statistical problems where the U -process is not weakly convergent in �∞(�), even
after a proper normalization. The present paper covers such “difficult” (and in fact yet
more general) problems.

U -processes are powerful tools for a broad range of statistical applications such
as testing for qualitative features of functions in nonparametric statistics [1,25,38],
cross-validation for density estimation [43], and establishing limiting distributions of
M-estimators (see, e.g., [4,18,50,51]). There are two perspectives onU -processes: (1)
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they are infinite-dimensional versions of U -statistics (with one kernel); (2) they are
stochastic processes that are nonlinear generalizations of empirical processes. Both
views are useful in that: (1) statistically, it is of greater interest to consider a rich
class of statistics rather than a single statistic; (2) mathematically, we can borrow the
insights from empirical process theory to derive limit or approximation theorems for
U -processes. Importantly, however, (1) extendingU -statistics toU -processes requires
substantial efforts and different techniques; and (2) generalization from empirical
processes to U -processes is highly nontrivial especially when U -processes are not
weakly convergent as processes. In classical settings where indexing function classes
are fixed (i.e., independent of n), it is known that Uniform Central Limit Theorems
(UCLTs) in the Hoffmann-Jørgensen sense hold for U -processes under metric (or
bracketing) entropy conditions, where U -processes are weakly convergent in spaces
of bounded functions [4,8,18,44] (these references also cover degenerateU -processes
where limiting processes are Gaussian chaoses rather than Gaussian processes). Under
such classical settings, [5,56] study limit theorems for bootstrappingU -processes; see
also [3,6,9,19,32–34,55] as references on bootstraps forU -statistics. Giné and Mason
[27] introduce a notion of the local U -process motivated by a density estimator of a
function of several variables proposed by [24] and establish a version of UCLTs for
localU -processes.More recently, [11] studies Gaussian and bootstrap approximations
for high-dimensional (order-two) U -statistics, which can be viewed as U -processes
indexed by finite function classes Hn with increasing cardinality in n. To the best of
our knowledge, however, no existing work covers the case where the indexing function
class H = Hn (1) may change with n; (2) may have infinite cardinality for each n;
and (3) need not verify UCLTs. This is indeed the situation for many of nonparametric
specification testing problems [1,25,38]; see examples in Sect. 4 for details.

In this paper, we develop a general non-asymptotic theory for directly approxi-
mating the supremum Zn = suph∈H Un(h)/r without referring a weak limit of the
underlying U -process {Un(h) : h ∈ H}. Specifically, we first establish a general
Gaussian coupling result to approximate Zn by the supremum of a Gaussian process
WP in Sect. 2. Our Gaussian approximation result builds upon recent development in
modern empirical process theory [13–15] and high-dimensional U -statistics [11]. As
a significant departure from the existing literature [4,14,15,27], our Gaussian approx-
imation for U -processes has a multi-resolution nature, which is neither parallel with
the theory of U -processes with fixed function classes nor that of empirical processes.
In particular, unlike U -processes with fixed function classes, the higher-order degen-
erate components are not necessarily negligible compared with the Hájek (empirical)
process (in the sense of the Hoeffding projections [31]) and they may impact error
bounds of the Gaussian approximation.

However, the covariance function of the Gaussian process WP depends on the
underlying distribution P which is unknown and hence the Gaussian approximation
developed in Sect. 2 is not directly applicable to statistical problems such as computing
critical values of a test statistic defined by the supremum of aU -process. On the other
hand, the (Gaussian) multiplier bootstrap developed in [13,15] for empirical processes
is not directly applicable toU -processes since theHájek process also depends on P and
hence is unknown. Our second main contribution is to develop a fully data-dependent
procedure for approximating the distribution of Zn . Specifically, we propose a novel
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jackknifemultiplier bootstrap (JMB) tailored toU -processes in Sect. 3. The key insight
of the JMB is to replace the (unobserved) Hájek process by its jackknife estimate (cf.
[10]). We establish finite sample validity of the JMB (i.e., conditional multiplier CLT)
with explicit error bounds. As a distinguished feature, our error bounds involve a
delicate interplay among all levels of the Hoeffding projections. In particular, the key
innovations are a collection of new powerful local maximal inequalities for level-
dependent degenerate components associated with theU -process (see Sect. 5). To the
best of our knowledge, there has been no theoretical guarantee onbootstrap consistency
for U -processes whose function classes change with n and which do not converge
weakly as processes. Our finite sample bootstrap validity results with explicit error
bounds fill this important gap in literature, although we only focus on the supremum
functional.

It should be emphasized that our approximation problem is different from the prob-
lem of approximating the whole U -process {Un(h) : h ∈ H}. In testing monotonicity
of nonparametric regression functions, [25] consider a test statistic defined by the
supremum of a boundedU -process of order-two and derive a Gaussian approximation
result for the normalizedU -process. Their idea is a two-step approximation procedure:
first approximate the U -process by its Hájek process and then apply Rio’s coupling
result [47], which is a Komlós–Major–Tusnády (KMT) [36] type strong approxima-
tion for empirical processes indexed by Vapnik-Červonenkis (VC) type classes of
functions. See also [35,41] for extensions of the KMT construction to other func-
tion classes. It is worth noting that the two-step approximation of U -processes based
on KMT type approximations in general requires more restrictive conditions on the
function class and the underlying distribution in statistical applications. Our regular-
ity conditions on the function class and the underlying distribution for the Gaussian
and bootstrap approximations are easy to verify and are less restrictive than those
required for KMT type approximations since we directly approximate the supremum
of aU -process rather than the wholeU -process; in fact, our approximation results can
cover examples of statistical applications for which KMT type approximations are not
applicable or difficult to apply; see Sect. 4 for details. In particular, both Gaussian and
bootstrap approximation results of the present paper allow classes of functions with
unbounded envelopes provided suitable moment conditions are satisfied.

To illustrate the general approximation results for suprema of U -processes, we
consider the problem of testing qualitative features of the conditional distribution
and regression functions in nonparametric statistics [1,25,38]. In Sect. 4, we propose
a unified test statistic for specifications (such as monotonicity, linearity, convexity,
concavity, etc.) of nonparametric functions based on the generalized local U-process
(the name is inspired by [27]). Instead of attempting to establish aGumbel type limiting
distribution for the extreme-value test statistic (which is known to have slow rates
of convergence; see [30,46]), we apply the JMB to approximate the finite sample
distribution of the proposed test statistic.Notably, the JMB is valid for a larger spectrum
of bandwidths, allows for an unbounded envelope, and the size error of the JMB
is decreasing polynomially fast in n, which should be contrasted with the fact that
tests based on Gumbel approximations have size errors of order 1/ log n. It is worth
noting that [38], who develop a test for the stochastic monotonicity based on the
supremum of a (second-order) U -process and derive a Gumbel limiting distribution
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for their test statistic under the null, state a conjecture that a bootstrap resampling
method would yield the test whose size error is decreasing polynomially fast in n [38,
p. 594]. The results of the present paper formally solve this conjecture for a different
version of bootstrap, namely, the JMB, in a more general setting. In addition, our
general theory can be used to develop a version of the JMB test that is uniformly
valid in compact bandwidth sets. Such “uniform-in-bandwidth” type results allow one
to consider tests with data-dependent bandwidth selection procedures, which are not
covered in [1,25,38].

1.1 Organization

The rest of the paper is organized as follows. InSect. 2,wederive non-asymptoticGaus-
sian approximation error bounds for the U -process supremum in the non-degenerate
case. In Sect. 3, we develop and study a jackknife multiplier bootstrap (with Gaus-
sian weights) tailored to the U -process to further approximate the distribution of the
U -process supremum in a data-dependent manner. In Sect. 4, we discuss applications
of the general results developed in Sects. 2 and 3 to testing for qualitative features of
nonparametric functions based on generalized localU -processes. In Sect. 5, we prove
new multi-resolution and localmaximal inequalities for degenerateU -processes with
respect to the degeneracy levels of their kernel. These inequalities are key technical
tools in the proofs for the results in the previous sections. In Sect. 6, we present the
proofs for Sects. 2, 3. Appendix contains additional proofs, discussions, and auxiliary
technical results.

1.2 Notation

For a nonempty set T , let �∞(T ) denote the Banach space of bounded real-valued
functions f : T → R equipped with the sup norm ‖ f ‖T := supt∈T | f (t)|. For a
pseudometric space (T , d), let N (T , d, ε) denote the ε-covering number for (T , d),
i.e., the minimum number of closed d-balls with radius at most ε that cover T . See
[53, Section 2.1] or [29, Section 2.3] for details. For a probability space (T , T , Q)
and a measurable function f : T → R, we use the notation Q f := ∫ f dQ whenever
the integral is defined. For q ∈ [1,∞], let ‖ · ‖Q,q denote the Lq(Q)-seminorm, i.e.,
‖ f ‖Q,q := (Q| f |q)1/q := (

∫ | f |qdQ)1/q for finite q while ‖ f ‖Q,∞ denotes the
essential supremum of | f | with respect to Q. For a measurable space (S,S) and a
positive integer r , Sr = S×· · ·× S (r times) denotes the product space equipped with
the product σ -field Sr . For a generic random variable Y (not necessarily real-valued),
let L(Y ) denote the law (distribution) of Y . For a, b ∈ R, let a ∨ b = max{a, b} and
a ∧ b = min{a, b}. Let 
a� denote the integer part of a ∈ R. “Constants” refer to
finite, positive, and non-random numbers.
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2 Gaussian approximation for suprema of U-processes

In this section, we derive non-asymptotic Gaussian approximation error bounds for the
U -process supremum in the non-degenerate case, which is essential for establishing
the bootstrap validity in Sect. 3. The goal is to approximate the supremum of the
normalized U -process, suph∈H Un(h)/r , by the supremum of a suitable Gaussian
process, and derive bounds on such approximations.

We first recall the setting. Let X1, . . . , Xn be i.i.d. random variables defined on
a probability space (�,A,P) and taking values in a measurable space (S,S) with
common distribution P . For a technical reason, we assume that S is a separable metric
space andS is its Borel σ -field. For a given integer r � 2, letH be a class of symmetric
measurable functions h : Sr → R equipped with a symmetric measurable envelope
H . Recall the U -process {Un(h) : h ∈ H} defined in (1) and its normalized version
{Un(h) : h ∈ H} defined in (2). In applications, the function class H may depend on
n, i.e., H = Hn . However, in Sects. 2 and 3, we will derive non-asymptotic results
that are valid for each sample size n, and therefore suppress the possible dependence
of H = Hn on n for the notational convenience.

We will use the following notation. For a symmetric measurable function h : Sr →
R and k = 1, . . . , r , let Pr−kh denote the function on Sk defined by

Pr−kh(x1, . . . , xk) = E[h(x1, . . . , xk, Xk+1, . . . , Xr )]
=
∫

· · ·
∫

h(x1, . . . , xk, xk+1, . . . , xr )dP(xk+1) · · · dP(xr ),

whenever the latter integral exists and is finite for every (x1, . . . , xk) ∈ Sk (P0h = h).
Provided that Pr−kh is well-defined, Pr−kh is symmetric and measurable.

In this paper, we focus on the case where the function class H is VC (Vapnik-
Červonenkis) type, whose formal definition is stated as follows.

Definition 2.1 (VC type class) A function classH on Sr with envelope H is said to be
VC type with characteristics (A, v) if supQ N (H, ‖ · ‖Q,2, ε‖H‖Q,2) � (A/ε)v for
all 0 < ε � 1, where supQ is taken over all finitely discrete distributions on Sr .

We make the following assumptions on the function class H and the distribution
P .

(PM) The function class H is pointwise measurable, i.e., there exists a countable
subset H′ ⊂ H such that for every h ∈ H, there exists a sequence hk ∈ H′
with hk → h pointwise.

(VC) The function classH is VC type with characteristics A � (e2(r−1)/16)∨ e and
v � 1 for envelope H . The envelope H satisfies that H ∈ Lq(Pr ) for some
q ∈ [4,∞] and Pr−k H is everywhere finite for every k = 1, . . . , r .

(MT) Let G := Pr−1H := {Pr−1h : h ∈ H} and G := Pr−1H . There exist (finite)
constants

bh � bg ∨ σh � bg ∧ σh � σg > 0
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such that the following hold:

‖G‖P,q � bg, sup
g∈G

‖g‖�P,� � σ 2
gb

�−2
g , � = 2, 3, 4,

‖Pr−2H‖P2,q � bh, and sup
h∈H

‖Pr−2h‖�P2,�
� σ 2

hb
�−2
h , � = 2, 4,

where q appears in Condition (VC).

Some comments on the conditions are in order. Conditions (PM), (VC), and (MT)
are inspired by Conditions (A)–(C) in [15]. Condition (PM) is made to avoid mea-
surability difficulties. Our definition of “pointwise measurability” is borrowed from
Example 2.3.4 in [53]; [29, p. 262] calls a pointwise measurable function class a func-
tion class satisfying the pointwise countable approximation property. Condition (PM)
ensures that, e.g., suph∈H Un(h) = suph∈H′ Un(h), so that suph∈H Un(h) is a (proper)
random variable. See [53, Section 2.2] for details.

Condition (VC) ensures that G is VC type as well with characteristics 4
√
A and 2v

for envelope G = Pr−1H ; see Lemma 5.4 ahead. Since G ∈ L2(P) by Condition
(VC), it is seen from Dudley’s criterion on sample continuity of Gaussian processes
(see, e.g., [29, Theorem 2.3.7]) that the function class G is P-pre-Gaussian, i.e., there
exists a tight Gaussian random variable WP in �∞(G) with mean zero and covariance
function

E[WP (g)WP(g
′)] = Cov(g(X1), g

′(X1)), g, g
′ ∈ G.

Recall that a Gaussian process W = {W (g) : g ∈ G} is a tight Gaussian random
variable in �∞(G) if and only if G is totally bounded for the intrinsic pseudometric
dW (g, g′) = (E[(W (g) − W (g′))2])1/2, g, g′ ∈ G, and W has sample paths almost
surely uniformly dW -continuous [53, Section 1.5]. In applications, G may depend
on n and so the Gaussian process WP (and its distribution) may depend on n as
well, although such dependences are suppressed in Sects. 2 and 3. The VC type
assumption made in Condition (VC) covers many statistical applications. However, it
is worth noting that in principle, we can derive corresponding results for Gaussian and
bootstrap approximations under more general complexity assumptions on the function
class beyond the VC type, as our local maximal inequalities for the U -process in
Theorem 5.1 ahead, which are key technical results in the proofs of the Gaussian and
bootstrap approximation results, can cover more general function classes than VC
type classes; but the resulting bounds would be more complicated and may not be
clear enough. For the clarity of exposition, we focus on VC type function classes and
present a Gaussian coupling bound for general function classes in “Appendix E”.

Condition (MT) imposes suitable moment bounds on the kernel and its Hájek
projection. Specifically, thismoment condition contains interpolated parameterswhich
control the lower moments (i.e., L2, L3, and L4 sizes) and the envelopes ofH and G.

Under these conditions on the function classH and the distribution P , we will first
construct a random variable, defined on the same probability space as X1, . . . , Xn ,
which is equal in distribution to supg∈G WP (g) and “close” to Zn with high-probability.
To ensure such constructions, a common assumption is that the probability space is
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rich enough. For the sake of clarity, wewill assume in Sects. 2 and 3 that the probability
space (�,A,P) is such that

(�,A,P) = (Sn,Sn, Pn)× (�, C, R)× ((0, 1),B(0, 1),U (0, 1)), (3)

where X1, . . . , Xn are the coordinate projections of (Sn,Sn, Pn), multiplier random
variables ξ1, . . . , ξn to be introduced in Sect. 3 depend only on the “second” coordinate
(�, C, R), andU (0, 1) denotes the uniform distribution (Lebesgue measure) on (0, 1)
(B(0, 1) denotes the Borel σ -field on (0, 1)). The augmentation of the last coordinate
is reserved to generate a U (0, 1) random variable independent of X1, . . . , Xn and
ξ1, . . . , ξn , which is needed when applying the Strassen–Dudley theorem and its con-
ditional version in the proofs of Proposition 2.1 and Theorem 3.1; see “Appendix B”
for the Strassen–Dudley theorem and its conditional version. We will also assume
that the Gaussian process WP is defined on the same probability space (e.g. one can
generate WP by the previous U (0, 1) random variable), but of course supg∈G WP (g)
is not what we want since there is no guarantee that supg∈G WP (g) is close to Zn .

Now, we are ready to state the first result of this paper. Recall the notation given in
Condition (MT) and define

Kn = v log(A ∨ n) and χn =
r∑

k=3

n−(k−1)/2‖Pr−k H‖Pk ,2K
k/2
n

with the convention that
∑r

k=3 = 0 if r = 2. The following proposition derives
Gaussian coupling bounds for Zn = suph∈H Un(h)/r .

Proposition 2.1 (Gaussian coupling bounds)Let Zn = suph∈H Un(h)/r . Suppose that
Conditions (PM), (VC), and (MT) hold, and that K 3

n � n. Then, for every n � r + 1
and γ ∈ (0, 1), one can construct a random variable Z̃n,γ such that L(Z̃n,γ ) =
L(supg∈G WP (g)) and

P(|Zn − Z̃n,γ | > C�n) � C ′(γ + n−1),

where C,C ′ are constants depending only on r, and

�n := �n(γ ) := (σ 2
gbgK

2
n )

1/3

γ 1/3n1/6
+ 1

γ

(
bgKn

n1/2−1/q + σhKn

n1/2
+ bhK 2

n

n1−1/q + χn

)
. (4)

In the case of q = ∞, “1/q” is interpreted as 0.

In statistical applications, bounds on theKolmogorov distance are oftenmore useful
than coupling bounds. For two real-valued random variables V ,Y , let ρ(V ,Y ) denote
the Kolmogorov distance between the distributions of V and Y , i.e., ρ(V ,Y ) :=
supt∈R |P(V � t) − P(Y � t)|. To derive a Kolomogorov distance bound, we will
assume that there exists a constant σg > 0 such that

inf
g∈G

‖g − Pg‖P,2 � σg. (5)
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Condition (5) implies that theU -process is non-degenerate. For the notational conve-
nience, let Z̃ = supg∈G WP (g).

Corollary 2.2 (Bounds on the Kolmogorov distance between Zn and supg∈G WP (g))
Assume that all the conditions in Proposition 2.1 and (5) hold. Then, there exists a
constant C depending only on r , σg and σg such that

ρ(Zn, Z̃) � C

⎧
⎨

⎩

(
b2gK

7
n

n

)1/8

+
(

b2gK
3
n

n1−2/q

)1/4

+
(
σ 2
hK

3
n

n

)1/4

+
(
bhK

5/2
n

n1−1/q

)1/2

+ χ
1/2
n K 1/4

n

⎫
⎬

⎭ .

In particular, if the function class H and the distribution P are independent of n,
then ρ(Zn, Z̃) = O({(log n)7/n}1/8).

Condition (5) is used to apply the “anti-concentration” inequality for the Gaussian
supremum (see Lemma A.1), which is a key technical ingredient of the proof of
Corollary 2.2. The dependence of the constant C on the variance parameters σg and
σg is not a serious restriction in statistical applications. In statistical applications, the
function class H is often normalized in such a way that each function g ∈ G has
(approximately) unit variance. In such cases, we may take σg = σg = 1 or (σg, σg)

as positive constants independent of n; see Sect. 4 for details.

Remark 2.1 (Comparisons with Gaussian approximations to suprema of empirical
processes)OurGaussian coupling (Proposition 2.1) and approximation (Corollary 2.2)
results are level-dependent on the Hoeffding projections of the U -process Un (cf.
(17) and (18) for formal definitions of the Hoeffding projections and decomposition).
Specifically, we observe that: (1) σg, σg, bg quantify the contribution from the Hájek
(empirical) process associated with Un ; (2) σh, bh are related to the second-order
degenerate component associated with Un ; (3) χn contains the effect from all higher
order projection terms of Un . For statistical applications in Sect. 4 where the function
class H = Hn changes with n, the second and higher order projections terms are
not necessarily negligible and we have to take into account the contributions of all
higher order projection terms. Hence, the Gaussian approximation for the U -process
supremum of a general order is not parallel with the approximation results for the
empirical process supremum [14,15].

3 Bootstrap approximation for suprema of U-processes

The Gaussian approximation results derived in the previous section are often not
directly applicable in statistical applications such as computing critical values of a
test statistic defined by the supremum of a U -process. This is because the covariance
function of the approximating Gaussian process WP (g), g ∈ G, is often unknown. In
this section, we study a Gaussian multiplier bootstrap, tailored to the U -process, to
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further approximate the distribution of the random variable Zn = suph∈H Un(h)/r in
a data-dependent manner. The Gaussian approximation results will be used as building
blocks for establishing validity of the Gaussian multiplier bootstrap.

We begin with noting that, in contrast to the empirical process case studied in
[13,15], devising (Gaussian) multiplier bootstraps for the U -process is not straight-
forward. From the Gaussian approximation results, the distribution of Zn is well
approximated by the Gaussian supremum supg∈G WP (g). Hence, one might be
tempted to approximate the distribution of supg∈G WP (g) by the conditional distribu-
tion of the supremum of the the multiplier process

G � g �→ 1√
n

n∑

i=1

ξi {g(Xi )− g}, (6)

where ξ1, . . . , ξn are i.i.d. N (0, 1) random variables independent of the data Xn
1 :=

{X1, . . . , Xn} and g = n−1∑n
i=1 g(Xi ). However, a major problem of this approach

is that, in statistical applications, functions in G are unknown to us since functions in
G are of the form Pr−1h for some h ∈ H and depend on the (unknown) underlying
distribution P . Therefore, we must devise a multiplier bootstrap properly tailored to
the U -process.

Motivated by this fundamental challenge, we propose and study the following ver-
sion of Gaussianmultiplier bootstrap. Let ξ1, . . . , ξn be i.i.d. N (0, 1) random variables
independent of the data Xn

1 [these multiplier variables will be assumed to depend only
on the “second” coordinate in the probability space construction (3)]. We introduce
the following multiplier process:

U


n(h) = 1√

n

n∑

i=1

ξi

⎡

⎣ 1

|In−1,r−1|
∑

(i,i2,...,ir )∈In,r
h(Xi , Xi2 , . . . , Xir )−Un(h)

⎤

⎦ ,

h ∈ H, (7)

where
∑

(i,i2,...,ir ) is taken with respect to (i2, . . . , ir ) while keeping i fixed. The

process {U
n(h) : h ∈ H} is a centered Gaussian process conditionally on the data
Xn
1 and can be regarded as a version of the (infeasible) multiplier process (6) with

each g(Xi ) replaced by a jackknife estimate. In fact, the multiplier process (6) can be
alternatively represented as

H � h �→ 1√
n

n∑

i=1

ξi {(Pr−1h)(Xi )− Pr−1h}, (8)

where Pr−1h = n−1∑n
i=1 P

r−1h(Xi ). For x ∈ S, denote by δx the Dirac mea-
sure at x and denote by δxh the function on Sr−1 defined by (δxh)(x2, . . . , xr ) =
h(x, x2, . . . , xr ) for (x2, . . . , xr ) ∈ Sr−1. For each i = 1, . . . , n and a function f on
Sr−1, let U (r−1)

n−1,−i ( f ) denote the U -statistic with kernel f for the sample without the
i-th observation, i.e.,
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Jackknife multiplier bootstrap for U-processes 1107

U (r−1)
n−1,−i ( f ) = 1

|In−1,r−1|
∑

(i,i2,...,ir )∈In,r
f (Xi2 , . . . , Xir ).

Then the proposed multiplier process (7) can be alternatively written as

U


n(h) = 1√

n

n∑

i=1

ξi

[
U (r−1)
n−1,−i (δXi h)−Un(h)

]
,

that is, ourmultiplier process (7) replaces each (Pr−1h)(Xi ) in the infeasiblemultiplier
process (8) by its jackknife estimate U (r−1)

n−1,−i (δXi h).
In practice, we approximate the distribution of Zn by the conditional distribution

of the supremum of the multiplier process Z 
n := suph∈H U


n(h) given Xn

1 , which can
be further approximated by Monte Carlo simulations on the multiplier variables.

To the best of our knowledge, our multiplier bootstrap method for U -processes is
new in the literature, at least in this generality; see Remark 3.1 for comparisons with
other bootstraps forU -processes. We call the resulting bootstrap method the jackknife
multiplier bootstrap (JMB) for U -processes.

Now, we turn to proving validity of the proposed JMB. We will first construct
couplings Z 
n and Z̃ 
n := Z̃ 
n,γ (a real-valued random variable that may depend on

the coupling error γ ∈ (0, 1)) such that: 1) L(Z̃ 
n | Xn
1 ) = L(Z̃), where L(· | Xn

1 )

denotes the conditional law given Xn
1 (i.e., Z̃ 
n is independent of Xn

1 and has the same

distribution as Z̃ = supg∈G WP (g)); and at the same time 2) Z 
n and Z̃ 
n are “close” to
each other. Construction of such couplings leads to validity of the JMB. To see this,
suppose that Z 
n and Z̃ 
n are close to each other, namely, P(|Z 
n − Z̃ 
n| > r1) � r2 for
some small r1, r2 > 0. To ease the notation, denote by P|Xn

1
and E|Xn

1
the conditional

probability and expectation given Xn
1 , respectively (i.e., the notation P|Xn

1
corresponds

to taking probability with respect to the “latter two” coordinates in (3) while fixing
Xn
1 ). Then,

P

{
P|Xn

1
(|Z 
n − Z̃ 
n| > r1) > r1/22

}
� r1/22

by Markov’s inequality, so that, on the event {P|Xn
1
(|Z 
n − Z̃ 
n| > r1) � r1/22 } whose

probability is at least 1 − r1/22 , for every t ∈ R,

P|Xn
1
(Z 
n � t) � P|Xn

1
(Z̃ 
n � t + r1)+ r1/22 = P(Z̃ � t + r1)+ r1/22 ,

and likewise P|Xn
1
(Z 
n � t) � P(Z̃ � t − r1)− r1/22 . Hence, on that event,

sup
t∈R

∣∣∣P|Xn
1
(Z 
n � t)− P(Z̃ � t)

∣∣∣ � sup
t∈R

P(|Z̃ − t | � r1)+ r1/22 .

The first term on the right hand side can be bounded by using the anti-concentration
inequality for the supremum of a Gaussian process (cf. [14, Lemma A.1] which is
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1108 X. Chen, K. Kato

stated in Lemma A.1 in “Appendix A”), and combining the Gaussian approximation
results, we obtain a bound on the Kolmogorov distance between L(Z 
n | Xn

1 ) and
L(Zn) on an event with probability close to one, which leads to validity of the JMB.

The following theorem is the main result of this paper and derives bounds on such
couplings. To state the next theorem, we need the additional notation. For a symmetric
measurable function f on S2, define f �2 = f �2

P by

f �2(x1, x2) :=
∫

f (x1, x) f (x, x2)dP(x).

Let νh := ‖(Pr−2H)�2‖1/2
P2,q/2

.

Theorem 3.1 (Bootstrap coupling bounds) Let Z 
n = suph∈H U


n(h). Suppose that

Conditions (PM), (VC), and (MT) hold. Furthermore, suppose that

σhK
1/2
n � σgn

1/2, νhKn � σgn
3/4−1/q , (σhbh)

1/2K 3/4
n � σgn

3/4,

bhK
3/2
n � σgn

1−1/q , and χn � σg.
(9)

Then, for every n � r + 1 and γ ∈ (0, 1), one can construct a random variable Z̃ 
n,γ
such that L(Z̃ 
n,γ | Xn

1 ) = L(supg∈G WP (g)) and

P(|Z 
n − Z̃ 
n,γ | > C�

n ) � C ′(γ + n−1),

where C,C ′ are constants depending only on r, and

�

n := �


n (γ )

:= 1

γ 3/2

{ {(bg ∨ σh)σgK
3/2
n }1/2

n1/4
+ bgKn

n1/2−1/q + (σgνh)
1/2Kn

n3/8−1/(2q)

+ σ
1/2
g (σhbh)1/4K

7/8
n

n3/8
+ (σgbh)1/2K

5/4
n

n1/2−1/(2q)
+ σ

1/2
g χ

1/2
n K 1/2

n

}
.

(10)

In the case of q = ∞, “1/q” is interpreted as 0.

We note that νqh � ‖Pr−2H‖q
P2,q

� bqh, but in our applications νh � bh and
this is why we introduced such a seemingly complicated definition for νh. To see that
νh � bh, observe that by the Cauchy–Schwarz and Jensen inequalities,

ν
q
h =

∫∫ {∫
(Pr−2H)(x1, x)(P

r−2H)(x, x2)dP(x)

}q/2
dP(x1)dP(x2)

�
{∫∫

(Pr−2H)q/2(x1, x2)dP(x1)dP(x2)

}2

�
∫∫

(Pr−2H)q(x1, x2)dP(x1)dP(x2) � bqh.
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Jackknife multiplier bootstrap for U-processes 1109

Condition (9) is not restrictive. In applications, the function classH is often normalized
in such a way that σg is of constant order, and under this normalization, Condition (9)
is a merely necessary condition for the coupling bound (10) to tend to zero.

The proof of Theorem 3.1 is lengthy and involved. A delicate part of the proof is
to sharply bound the sup-norm distance between the conditional covariance function
of the multiplier process U
n and the covariance function of WP , which boils down to
bounding the term

∥∥∥∥∥
1

n

n∑

i=1

{U (r−1)
n−1,−i (δXi h)− Pr−1h(Xi )}2

∥∥∥∥∥
H
.

To this end, we make use of the following observation: for a Pr−1-integrable function
f on Sr−1,U (r−1)

n−1,−i ( f ) is aU -statistic of order (r − 1), and denote by Sn−1,−i ( f ) its

first Hoeffding projection term. Conditionally on Xi , U
(r−1)
n−1,−i (δXi h)− Pr−1h(Xi )−

Sn−1,−i (δXi h) is a degenerate U -process, and we will bound the expectation of the
squared supremum of this term conditionally on Xi using “simpler” maximal inequal-
ities (Corollary 5.6 ahead). On the other hand, the term n−1∑n

i=1{Sn−1,−i (δXi h)}2 is
decomposed into

n−1(non-degenerateU -statistic of order 2)+ (degenerateU -statistic of order 3),

where the order of degeneracy of the latter term is 1, and we will apply “sharper”
local maximal inequalities (Corollary 5.5 ahead) to bound the suprema of both terms.
Such a delicate combination of different maximal inequalities turns out to be crucial
to yield sharper regularity conditions for validity of the JMB in our applications. In
particular, if we bound the sup-norm distance between the conditional covariance
function of U
n and the covariance function of WP in a cruder way, then this will lead
to more restrictive conditions on bandwidths in our applications, especially for the
“uniform-in-bandwidth” results [cf. Condition (T5′) in Theorem 4.4].

The following corollary derives a “high-probability” bound for the Kolmogorov
distance between L(Z 
n | Xn

1 ) and L(Z̃) (here a high-probability bound refers to a
bound holding with probability at least 1 − Cn−c for some constants C, c).

Corollary 3.2 (Validity of the JMB) Suppose that Conditions (PM), (VC), (MT), and
(5) hold. Let

ηn := {(bg ∨ σh)K
5/2
n }1/2

n1/4
+ bgK

3/2
n

n1/2−1/q + ν
1/2
h K 3/2

n

n3/8−1/(2q)

+ (σhbh)1/4K
11/8
n

n3/8
+ b1/2h K 7/4

n

n1/2−1/(2q)
+ χ

1/2
n Kn

with the convention that 1/q = 0 when q = ∞. Then, there exist constants C,C ′
depending only on r , σg, and σg such that, with probability at least 1 − Cη1/4n ,
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1110 X. Chen, K. Kato

sup
t∈R

∣∣∣P|Xn
1
(Z 
n � t)− P(Z̃ � t)

∣∣∣ � C ′η1/4n .

If the function class H and the distribution P are independent of n, then η1/4n is
of order n−1/16, which is polynomially decreasing in n but appears to be non-sharp.
Sharper bounds could be derived by improving on γ−3/2 in front of the n−1/4 term in
(10). The proof of Theorem 3.1 consists of constructing a “high-probability” event on
which, e.g., the sup-norm distance between the conditional covariance function of U
n
and the covariance function ofWP is small. To construct such a high-probability event,
the current proof repeatedly relies on Markov’s inequality, which could be replaced
by more sophisticated deviation inequalities. However, this is at the cost of more
technical difficulties and more restrictive moment conditions. In addition, we derive
a conditional UCLT for the JMB in “Appendix D” when H is fixed and P does not
depend on n.

Remark 3.1 (Connections to other bootstraps) There are several versions of bootstraps
for non-degenerate U -processes. The most celebrated one is the empirical bootstrap

U
∗
n(h) =

√
n

r |In,r |
∑

(i1,...,ir )∈In,r

{
h(X∗

i1 , . . . , X
∗
ir )− Vn(h)

}
, h ∈ H,

where X∗
1, . . . , X

∗
n are i.i.d. draws from the empirical distribution Pn = n−1∑n

i=1 δXi

and Vn(h) = n−r∑n
i1,...,ir=1 h(Xi1 , . . . , Xir ) is the V -statistic associated with kernel

h (cf. [5,6,11]). A slightly different bootstrap procedure

U
�
n(h) = n−r+1/2

∑

1�i1,...,ir�n

{
h(X∗

i1 , Xi2 , . . . , Xir )− h(Xi1 , Xi2 , . . . , Xir ))
}
,

h ∈ H,

is proposed in [3]; see Remark 2.7 therein. If H = {h} is a singleton and the asso-
ciated U -statistic Un(h) is non-degenerate, then U

�
n(h) and U∗

n(h) are asymptotically
equivalent in the sense that they have the same weak limit that is given by the centered
Gaussian random variable WP (Pr−1h); see Theorem 2.4 and Corollary 2.6 in [3].
Since the bootstrap U

�
n(h) can be viewed as the empirical bootstrap applied to a V -

statistic estimate of the Hájek projection, i.e.,U�n(h) = n−1/2∑n
i=1(δX∗

i
− Pn)Pr−1

n h,

our JMB is connected to (but still different from) U�n(h) in the sense that we apply
the multiplier bootstrap to a jackknife U -statistic estimate of the Hajek projection.
Another example is the Bayesian bootstrap (with Dirichlet weights)

U
�
n(h) =

√
n

r |In,r |
∑

(i1,...,ir )∈In,r
(wi1 · · ·wir − 1)h(Xi1 , . . . , Xir ), h ∈ H,

where wi = ηi/(n−1∑n
j=1 η j ) for i = 1, . . . , n and η1, . . . , ηn are i.i.d. exponential

random variables with mean one (i.e., (w1, . . . , wn) follows a scaled Dirichlet distri-
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bution) independent of Xn
1 = {X1, . . . , Xn} [39,40,48,56]. If H is a fixed VC type

function class and the distribution P is independent of n (hence the distribution of
the approximating Gaussian process WP is independent of n), then the conditional
distributions (given Xn

1 ) of the empirical bootstrap process {U∗
n(h) : h ∈ H} and the

Bayesian bootstrap process {U�n(h) : h ∈ H} (with Dirichlet weights) are known to
have the same weak limit as theU -process {r−1

Un(h) : h ∈ H}, where the weak limit
is the Gaussian process WP ◦ Pr−1 in the non-degenerate case [5,56]. The proposed
multiplier process in (7) is also connected to the empirical and Baysian bootstraps (or
more general randomly reweighted bootstraps) in the sense that the latter two boot-
straps also implicitly construct an empirical process whose conditional covariance
function is close to that of WP under the supremum norm (cf. [11]). Recall that the
conditional covariance function of U
n can be viewed as a jackknife estimate of the
covariance function of WP . For the special case where r = 2 and H = Hn is such
that |Hn| < ∞ and |Hn| is allowed to increase with n, [11] shows that the Gaussian
multiplier, empirical and randomly reweighted bootstraps (U�n(h) with i.i.d. Gaussian
weights wi ∼ N (1, 1)) all achieve similar error bounds. In the U -process setting, it
would be possible to establish finite sample validity for the empirical and more gen-
eral randomly reweighted bootstraps, but this is at the price of a much more involved
technical analysis which we do not pursue in the present paper.

4 Applications: testing for qualitative features based on generalized
local U-processes

In this section, we discuss applications of the general results in the previous sections
to generalized local U-processes, which are motivated from testing for qualitative
features of functions in nonparametric statistics (see below for concrete statistical
problems).

Let m � 1, r � 2 be fixed integers and let V be a separable metric space. Suppose
that n � r + 1, and let Di = (Xi , Vi ), i = 1, . . . , n be i.i.d. random variables taking
values in Rm × V with joint distribution P defined on the product σ -field on Rm × V
(we equip R

m and V with the Borel σ -fields). The variable Vi may include some
components of Xi . Let � be a class of symmetric measurable functions ϕ : Vr → R,
and let L : Rm → R be a (fixed) “kernel function”, i.e., an integrable function on
R
m (with respect to the Lebesgue measure) such that

∫
Rm L(x)dx = 1. For b > 0

(“bandwidth”), we use the notation Lb(·) = b−mL(·/b). For a given sequence of
bandwidths bn → 0, let

hn,ϑ (d1, . . . , dr ) := ϕ(v1, . . . , vr )

r∏

k=1

Lbn (x − xk), ϑ = (x, ϕ) ∈ � := X ×�,

where X ⊂ R
m is a (nonempty) compact subset. Consider the U -process

Un(hn,ϑ ) := U (r)
n (hn,ϑ ) := 1

|In,r |
∑

(i1,...,ir )∈In,r
hn,ϑ (Di1, . . . , Dir ),
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1112 X. Chen, K. Kato

which we call, following [27], the generalized local U-process. The indexing func-
tion class is {hn,ϑ : ϑ ∈ �} which depends on the sample size n. The U -process
Un(hn,ϑ ) can be seen as a process indexed by �, but in general is not weakly con-
vergent in the space �∞(�), even after a suitable normalization (an exception is the
case where X and � are finite sets, and in that case, under regularity conditions, the
vector {√nbmn (Un(hn,ϑ ) − Prhn,ϑ )}ϑ∈� converges weakly to a multivariate normal
distribution). In addition, we will allow the set � to depend on n.

We are interested in approximating the distribution of the normalized version of
this process

Sn = sup
ϑ∈�

√
nbmn {Un(hn,ϑ )− Prhn,ϑ }

rcn(ϑ)
,

where cn(ϑ) > 0 is a suitable normalizing constant. The goal of this section is to
characterize conditions under which the JMB developed in the previous section is
consistent for approximating the distribution of Sn (more generally we will allow the
normalizing constant cn(ϑ) to be data-dependent). There are a number of statistical
applications where we are interested in approximating distributions of such statistics.
We provide a couple of examples. All the test statistics discussed in Examples in 4.1
and 4.2 are covered by our general framework. In Examples 4.1 and 4.2, α ∈ (0, 1) is
a nominal level.

Example 4.1 (Testing stochastic monotonicity) Let X ,Y be real-valued random vari-
ables and denote by FY |X (y | x) the conditional distribution function of Y given X .
Consider the problem of testing the stochastic monotonicity

H0 : FY |X (y | x) � FY |X (y | x ′) ∀y ∈ R whenever x � x ′.

Testing for the stochastic monotonicity is an important topic in a variety of applied
fields such as economics [7,23,52]. For this problem, [38] consider a test for H0 based
on a local Kendall’s tau statistic, inspired by [25]. Let (Xi ,Yi ), i = 1, . . . , n be i.i.d.
copies of (X ,Y ). Lee et al. [38] consider the U -process

Un(x, y) = 1

n(n − 1)

∑

1�i �= j�n

{1(Yi � y)− 1(Y j � y)}

sign(Xi − X j )Lbn (x − Xi )Lbn (x − X j ),

where bn → 0 is a sequence of bandwidths and sign(x) = 1(x > 0) − 1(x <

0) is the sign function. They propose to reject the null hypothesis if Sn =
sup(x,y)∈X×Y Un(x, y)/cn(x) is large, where X ,Y are subsets of the supports of
X ,Y , respectively and cn(x) > 0 is a suitable normalizing constant. Lee et al. [38]
argue that as far as the size control is concerned, it is enough to choose, as a critical
value, the (1 − α)-quantile of Sn when X ,Y are independent, under which Un(x, y)
is centered. Under independence between X and Y , and under regularity conditions,
they derive a Gumbel limiting distribution for a properly scaled version of Sn using
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techniques from [45], but do not consider bootstrap approximations to Sn . It should
be noted that [38] consider a slightly more general setup than that described above in
the sense that they allow Xi not to be directly observed but assume that estimated Xi

are available, and also cover the case where X is multidimensional.

Example 4.2 (Testing curvature and monotonicity of nonparametric regression) Con-
sider the nonparametric regression model Y = f (X)+ ε with E[ε | X ] = 0, where Y
is a scalar outcome variable, X is an m-dimensional vector of regressors, ε is an error
term, and f is the conditional mean function f (x) = E[Y | X = x]. We observe i.i.d.
copies Vi = (Xi ,Yi ), i = 1, . . . , n of V = (X ,Y ). We are interested in testing for
qualitative features (e.g., curvature, monotonicity) of the regression function f .

Abrevaya and Jiang [1] consider a simplex statistic to test linearity, concav-
ity, convexity of f under the assumption that the conditional distribution of ε
given X is symmetric. To define their test statistics, for x1, . . . , xm+1 ∈ R

m , let
�◦(x1, . . . , xm+1) = {∑m+1

i=1 ai xi : 0 < a j < 1, j = 1, . . . ,m + 1,
∑m+1

i=1 ai = 1}
denote the interior of the simplex spanned by x1, . . . , xm+1, and defineD =⋃m+2

j=1 D j ,
where

D j =
{
(x1, . . . , xm+2) ∈ R

m×(m+2) : x1, . . . , x j−1, x j+1, . . . , xm+2 are affinely independent

and x j ∈ �◦(x1, . . . , x j−1, x j+1, . . . , xm+2)

}
.

The setsD1, . . . ,Dm+2 are disjoint. For given vi = (xi , yi ) ∈ R
m×R, i = 1, . . . ,m+

2, if (x1, . . . , xm+2) ∈ D then there exist a unique index j = 1, . . . ,m + 2 and a
unique vector (ai )1�i�m+2,i �= j such that 0 < ai < 1 for all i �= j,

∑
i �= j ai = 1,

and x j = ∑
i �= j ai xi ; then, define w(v1, . . . , vm+2) = ∑

i �= j ai yi − y j . The index
j and vector (ai )1�i�m+2,i �= j are functions of xi ’s. The set D is symmetric (i.e., its
indicator function is symmetric) and w(v1, . . . , vm+2) is symmetric in its arguments.

Under this notation, [1] consider the following localized simplex statistic

Un(x) = 1

|In,m+2|
∑

(i1,...,im+2)∈In,m+2

ϕ(Vi1 , . . . , Vim+2)

m+2∏

k=1

Lbn (x − Xik ), (11)

where ϕ(v1, . . . , vm+2) = 1{(x1, . . . , xm+2) ∈ D}sign(w(v1, . . . , vm+2)), which is a
U -process of order (m+2). To test concavity and convexity of f , [1] propose to reject
the hypotheses if Sn = supx∈X Un(x)/cn(x) and Sn = infx∈X Un(x)/cn(x) are large
and small, respectively, where X is a subset of the support of X and cn(x) > 0 is a
suitable normalizing constant. The infimumstatistic Sn can bewritten as the supremum
of a U -process by replacing ϕ with −ϕ, so we will focus on Sn . Precisely speaking,
they consider to take discrete deign points x1, . . . , xG with G = Gn → ∞, and take
the supremum or infimum on the discrete grids {x1, . . . , xG}. Abrevaya and Jiang [1]
argue that as far as the size control is concerned, it is enough to choose, as a critical
value, the (1−α)-quantile of Sn when f is linear, under whichUn(x) is centered due to
the symmetry assumption on the distribution of ε conditionally on X . Under linearity
of f , [1, Theorem 6] claims to derive a Gumbel limiting distribution for a properly
scaled version of Sn , but the authors think that their proof needs a further justification.
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The proof of Theorem 6 in [1] proves that, in their notation, themarginal distributions
of Ũn,h(x∗

g) converge to N (0, 1) uniformly in g = 1, . . . ,G (see their equation (A.1)),
and the covariances between Ũn,h(x∗

g) and Ũn,h(x∗
g′) for g �= g′ are approaching zero

faster than the variances, but what they need to show is that the joint distribution of
(Ũn,h(x∗

1 ), . . . , Ũn,h(x∗
G)) is approximated by N (0, IG) in a suitable sense, which is

lacking in their proof. An alternative proof strategy is to apply Rio’s coupling [47] to
the Hájek process associated to Un , but it seems non-trivial to apply Rio’s coupling
since it is non-trivial to verify that the function ϕ is of bounded variation.

On the other hand, [25] study testing monotonicity of f when m = 1 and ε is
independent of X . Specifically, they consider testing whether f is increasing, and
propose to reject the hypothesis if Sn = supx∈X Ǔn(x)/cn(x) is large, where X is a
subset of the support of X ,

Ǔn(x) = 1

n(n − 1)

∑

1�i �= j�n

sign(Y j − Yi )

sign(Xi − X j )Lbn (x − Xi )Lbn (x − X j ), (12)

and cn(x) > 0 is a suitable normalizing constant. Ghosal et al. [25] argue that as far
as the size control is concerned, it is enough to choose, as a critical value, the (1−α)-
quantile of Sn when f ≡ 0, under which Un(x) is centered. Under f ≡ 0 and under
regularity conditions, [25] derive a Gumbel limiting distribution for a properly scaled
version of Sn but do not study bootstrap approximations to Sn .

In Appendix F, we discuss some alternative tests in the literature for concav-
ity/convexity and monotonicity of regression functions.

Now, we go back to the general case. In applications, a typical choice of the
normalizing constant cn(ϑ) is cn(ϑ) = bm/2n

√
VarP (Pr−1hn,ϑ ) where VarP (·)

denotes the variance under P , so that each bm/2n cn(ϑ)−1Pr−1hn,ϑ is normalized to
have unit variance, but other choices (such as cn(ϑ) ≡ 1) are also possible. The
choice cn(ϑ) = bm/2n

√
VarP (Pr−1hn,ϑ ) depends on the unknown distribution P and

needs to be estimated in practice. Suppose in general (i.e., cn(ϑ) need not to be
bm/2n

√
VarP (Pr−1hn,ϑ )) that there is an estimator ĉn(ϑ) = ĉn(ϑ; Dn

1 ) > 0 for cn(ϑ)
for each ϑ ∈ �, and instead of original Sn , consider

Ŝn := sup
ϑ∈�

√
nbmn {Un(hn,ϑ )− Prhn,ϑ }

r ĉn(ϑ)
.

We consider to approximate the distribution of Ŝn by the conditional distribution of
the JMB analogue of Ŝn : Ŝ



n := supϑ∈� bm/2n U



n(hn,ϑ )/̂cn(ϑ), where

U


n(hn,ϑ ) = 1√

n

n∑

i=1

ξi

[
U (r−1)
n−1,−i (δDi hn,ϑ )−Un(hn,ϑ )

]
, ϑ ∈ �,
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Jackknife multiplier bootstrap for U-processes 1115

and ξ1, . . . , ξn are i.i.d. N (0, 1) random variables independent of Dn
1 = {Di }ni=1.

Recall that for a function f on (Rm × V)r−1, U (r−1)
n−1,−i ( f ) denotes the U -statistic

with kernel f for the sample without the i-th observation, i.e., U (r−1)
n−1,−i ( f ) =

|In−1,r−1|−1∑
(i,i2,...,ir )∈In,r f (Di2 , . . . , Dir ).

Let ζ, c1, c2, and C1 be given positive constants such that C1 > 1 and c2 ∈ (0, 1),
and let q ∈ [4,∞]. Denote by X ζ the ζ -enlargement of X , i.e., X ζ := {x ∈
R
m : inf x ′∈X |x − x ′| � ζ } where | · | denotes the Euclidean norm. Let CovP (·, ·)

and VarP (·) denote the covariance and variance under P , respectively. For the
notational convenience, for arbitrary r variables d1, . . . , dr , we use the notation
dk:� = (dk, dk+1, . . . , d�) for 1 � k � � � r . We make the following assumptions.

(T1) Let X be a non-empty compact subset of Rm such that its diameter is bounded
by C1.

(T2) The random vector X has a Lebesgue density p(·) such that ‖p‖X ζ � C1.
(T3) Let L : Rm → R be a continuous kernel function supported in [−1, 1]m such

that the function class L := {x �→ L(ax + b) : a ∈ R, b ∈ R
m} is VC type for

envelope ‖L‖Rm = supx∈Rm |L(x)|.
(T4) Let�be apointwisemeasurable class of symmetric functionsVr → R that isVC

type with characteristics (A, v) for a finite and symmetric envelope ϕ ∈ Lq(Pr )

such that log A � C1 log n and v � C1. In addition, the envelope ϕ satisfies that
(E[ϕq(V1:r ) | X1:r = x1:r ])1/q � C1 for all x1:r ∈ X ζ × · · · ×X ζ if q is finite,
and ‖ϕ‖Pr ,∞ � C1 if q = ∞

(T5) nb3mq/[2(q−1)]
n � C1nc2 with the convention that q/(q − 1) = 1 when q = ∞,

and 2m(r − 1)bn � ζ/2.
(T6) bm/2n

√
VarP (Pr−1hn,ϑ ) � c1 for all n and ϑ ∈ �.

(T7) c1 � cn(ϑ) � C1 for all n and ϑ ∈ �. For each fixed n, if xk → x in X and
ϕk → ϕ pointwise in �, then cn(xk, ϕk) → cn(x, ϕ).

(T8) With probability at least 1 − C1n−c2 , supϑ∈�
∣∣∣ ĉn(ϑ)cn(ϑ)

− 1
∣∣∣ � C1n−c2 .

Some comments on the conditions are in order. Condition (T1) allows the set X to
depend on n, i.e., X = Xn , but its diameter is bounded (by C1). For example, X can
be discrete grids whose cardinality increases with n but its diameter must be bounded
(an implicit assumption here is that the dimension m is fixed; in fact the constants
appearing in the following results depend on the dimension m, so that m should be
considered as fixed). Condition (T2) is a mild restriction on the density of X . It is
worth mentioning that V may take values in a generic measurable space, and even if
V takes values in a Euclidean space, V need not be absolutely continuous with respect
to the Lebesgue measure (we will often omit the qualification “with respect to the
Lebesgue measure”). In Examples 4.1 and 4.2, the variable V consists of the pair of
regressor vector and outcome variable, i.e., V = (X ,Y )with Y being real-valued, and
our conditions allow the distribution of Y to be generic. In contrast, [25,38] assume
that the joint distribution of X and Y have a continuous density (or at least they require
the distribution function of Y to be continuous) and thereby ruling out the case where
the distribution of Y has a discrete component. This is essentially because they rely
on Rio’s coupling [47] when deriving limiting null distributions of their test statistics.
Rio’s coupling is a powerful KMT [36] type strong approximation result for general
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1116 X. Chen, K. Kato

empirical processes, but requires the underlying distribution to be defined on a hyper-
cube and to have a density bounded away from zero on the hyper-cube. In contrast,
our analysis is conditional on X and we only require some moment conditions and
VC type conditions on the function class. Thus our JMB does not require Y to have a
density for its validity and thereby having a wider applicability in this respect.

Condition (T3) is a standard regularity condition on kernel functions L . Sufficient
conditions underwhichL isVC type are found in [28,29,43]. Condition (T4) allows the
envelope ϕ to be unbounded. Condition (T4) allows the function class� to depend on
n, as long as the VC characteristics A and v satisfy that log A � C1 log n and v � C1.
For example, � can be a discrete set whose cardinality is bounded by Cnc for some
constants c,C > 0. Condition (T5) relaxes bandwidth requirements in [25,38] where
m = 1 and q = ∞. For example, [25] assume nb2n/(log n)

4 → ∞ and bn log n → 0
for size control. For the problem of testing for regression/stochastic monotonicity of
univariate functions, our test statistic is of order r = 2. If we choose a bounded kernel
(such as the sign kernel), thenwe only need n−2/3+c � bn � 1 for some small constant
c > 0. Further, our general theory allows us to develop a version of the JMB that is
uniformly valid in compact bandwidth sets, which can be used to develop versions
of tests that are valid with data-dependent bandwidths in Examples 4.1 and 4.2; see
Sect. 4.1 ahead for details.

Condition (T6) is a high-level condition and implies the U -process to be non-
degenerate. Let ϕ[r−1](v1, x2:r ) := E[ϕ(v1, V2:r ) | X2:r = x2:r ]∏r

j=2 p(x j ), and
observe that

(Pr−1hn,ϑ )(x1, v1) = Lbn (x − x1)
∫
ϕ[r−1](v1, x − bnx2:r )

r∏

j=2

L(x j )dx2:r

for ϑ = (x, ϕ), where x − bnx2:r = (x − bnx2, . . . , x − bnxr ). From this expression,
in applications, it is not difficult to find primitive regularity conditions that guarantee
Condition (T6). To keep the presentation concise, however, we assumeCondition (T6).

Condition (T7) is concerned with the normalizing constant cn(ϑ). For the spe-
cial case where cn(ϑ) = bm/2n

√
VarP (Pr−1hn,ϑ ), Condition (T7) is implied by

Conditions (T4) and (T6). Condition (T8) is also a high-level condition, which
together with (T7) implies that there is a uniformly consistent estimate ĉn(ϑ) of
cn(ϑ) in � with polynomial error rates. Construction of ĉn(ϑ) is quite flexible: for
cn(ϑ) = bm/2n

√
VarP (Pr−1hn,ϑ ), one natural example is the jackknife estimate

ĉn(ϑ) =
√√√√bmn

n

n∑

i=1

{
U (r−1)
n−1,−i (δDi hn,ϑ )−Un(hn,ϑ )

}2
, ϑ ∈ �. (13)

The following lemma verifies that the jackknife estimate (13) obeys Condition (T8)
for cn(ϑ) = bm/2n

√
VarP (Pr−1hn,ϑ ). However, it should be noted that other estimates

for this normalizing constant are possible depending on applications of interest; see
[1,25,38].
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Lemma 4.1 (Estimation error of the normalizing constant) Suppose that Conditions
(T1)–(T7) hold. Let cn(ϑ) = bm/2n

√
VarP (Pr−1hn,ϑ ), ϑ ∈ � and ĉn(ϑ) be defined

in (13). Then there exist constants c,C depending only on r ,m, ζ, c1, c2,C1, L such
that

P

{
sup
ϑ∈�

∣∣∣∣
ĉn(ϑ)

cn(ϑ)
− 1

∣∣∣∣ > Cn−c
}

� Cn−c.

Now, we are ready to state finite sample validity of the JMB for approximating the
distribution of the supremum of the generalized local U -process.

Theorem 4.2 (JMB validity for the supremum of a generalized localU -process) Sup-
pose that Conditions (T1)–(T8) hold. Then there exist constants c,C depending only
on r ,m, ζ, c1, c2,C1, L such that the following holds: for every n, there exists a tight
Gaussian random variable WP,n(ϑ), ϑ ∈ � in �∞(�)with mean zero and covariance
function

E[WP,n(ϑ)WP,n(ϑ
′)] = bmn CovP (P

r−1hn,ϑ , P
r−1hn,ϑ ′)/{cn(ϑ)cn(ϑ ′)} (14)

for ϑ, ϑ ′ ∈ �, and it follows that

sup
t∈R

∣∣P(Ŝn � t)− P(S̃n � t)
∣∣ � Cn−c,

P

{
sup
t∈R

∣∣∣P|Dn
1
(Ŝ
n � t)− P(S̃n � t)

∣∣∣ > Cn−c
}

� Cn−c,
(15)

where S̃n := supϑ∈�WP,n(ϑ).

Theorem 4.2 leads to the following corollary, which is another form of validity of
the JMB. For α ∈ (0, 1), let q

Ŝ
n
(α) = q

Ŝ
n
(α; Dn

1 ) denote the conditional α-quantile

of Ŝ
n given Dn
1 , i.e., qŜ
n (α) = inf

{
t ∈ R : P|Dn

1
(Ŝ
n � t) � α

}
.

Corollary 4.3 (Size validity of the JMB test) Suppose that Conditions (T1)–(T8) hold.
Then there exist constants c,C depending only on r ,m, ζ, c1, c2,C1, L such that

sup
α∈(0,1)

∣∣∣P
{
Ŝn � q

Ŝ
n
(α)
}

− α

∣∣∣ � Cn−c.

4.1 Uniformly valid JMB test in bandwidth

A version of Theorem 4.2 continues to hold even if we additionally take the supremum
over a set of possible bandwidths. For a given bandwidth b ∈ (0, 1), let

hϑ,b(d1, . . . , dr ) = ϕ(v1, . . . , vr )

r∏

k=1

Lb(x − xk),
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1118 X. Chen, K. Kato

and for a given candidate set of bandwidths Bn ⊂ [bn, bn] with 0 < bn � bn < 1,
consider

Sn := sup
(ϑ,b)∈�×Bn

√
nbm{Un(hϑ,b)− Prhϑ,b}

rc(ϑ, b)
and

Ŝn := sup
(ϑ,b)∈�×Bn

√
nbm{Un(hϑ,b)− Prhϑ,b}

r ĉ(ϑ, b)
,

where cn(ϑ, b) > 0 is a suitable normalizing constant and ĉ(ϑ, b) > 0 is an estimate
of c(ϑ, b). Following a similar argument used in the proof of Theorem 4.2, we are able
to derive a version of the JMB test that is also valid uniformly in bandwidth, which
opens new possibilities to develop tests that are valid with data-dependent bandwidths
in Examples 4.1 and 4.2. For related discussions, we refer the readers to Remark 3.2
in [38] for testing stochastic monotonicity and [22] for kernel type estimators.

Consider the JMB analogue of Ŝn :

Ŝ
n = sup
(ϑ,b)∈�×Bn

bm/2

ĉn(ϑ, b)
√
n

n∑

i=1

ξi

[
U (r−1)
n−1,−i (δDi hϑ,b)−Un(hϑ,b)

]
.

Let κn = bn/bn denote the ratio of the largest and smallest possible values in the
bandwidth set Bn , which intuitively quantifies the size of Bn . To ease the notation
and to facilitate comparisons, we only consider q = ∞. We make the following
assumptions instead of Conditions (T5)–(T8).

(T5′) nb3m/2n � C1nc2κ
m(r−2)
n , κn � C1b

−1/(2r)
n , and 2m(r − 1)bn � ζ/2.

(T6′) bm/2
√
VarP (Pr−1hϑ,b) � c1 for all n and (ϑ, b) ∈ �× Bn .

(T7′) c1 � cn(ϑ, b) � C1 for all n and (ϑ, b) ∈ �× Bn . For each fixed n, if xk → x
in X , ϕk → ϕ pointwise in �, and bk → b in Bn , then cn(xk, ϕk, bk) →
cn(x, ϕ, b).

(T8′) With probability at least 1 − C1n−c2 , sup(ϑ,b)∈�×Bn

∣∣∣ ĉn(ϑ,b)cn(ϑ,b)
− 1
∣∣∣ � C1n−c2 .

Theorem 4.4 (Bootstrap validity for the supremum of a generalized local U -process:
uniform-in-bandwidth result) Suppose that Conditions (T1)–(T4) with q = ∞, and
Conditions (T5′)–(T8′) hold. Then there exist constants c,C depending only on
r ,m, ζ, c1, c2,C1, L such that the following holds: for every n, there exists a tight
Gaussian random variable WP,n(ϑ, b), (ϑ, b) ∈ � × Bn in �∞(� × Bn) with mean
zero and covariance function

E[WP,n(ϑ, b)WP,n(ϑ
′, b′)]

= bm/2(b′)m/2CovP (Pr−1hϑ,b, P
r−1hϑ ′,b′)/{cn(ϑ, b)cn(ϑ ′, b′)}

for (ϑ, b), (ϑ ′, b′) ∈ � × Bn, and the result (15) continues to hold with S̃n :=
sup(ϑ,b)∈�×Bn

WP,n(ϑ, b).
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Table 1 Empirical rejection
probability of the JMB test for
regression monotonicity at the
nominal sizes 0.05 and 0.10 with
Gaussian and Rademacher error
distributions

Nominal size Sample size Gaussian Rademacher

α = 0.05 n = 100 0.0374 0.0372

n = 200 0.0362 0.0408

n = 500 0.0412 0.0430

α = 0.10 n = 100 0.0846 0.0796

n = 200 0.0860 0.0872

n = 500 0.0886 0.0844

If bn = bn = bn (i.e., Bn = {bn} is a singleton set), then Conditions (T5′)–
(T8′) reduce to (T5)–(T8) and Theorem 4.4 covers Theorem 4.2 with q = ∞ as a
special case. Condition (T5′) states that the size of the bandwidth set Bn cannot be
too large. Conditions (T6′)–(T8′) are completely parallel with Conditions (T6)–(T8).
Such “uniform-in-bandwidth” type results are not covered in [1,25,38].

4.2 A simulation study on testing for monotonicity of regression

We provide a numerical example to verify the size validity of the JMB test for
monotonicity of regression in Example 4.2. We generate i.i.d. univariate covariates
X1, . . . , Xn from the uniform distribution on [0, 1] and consider the zero regres-
sion function f ≡ 0 (which implies that the covariate X and the response Y are
stochastically independent). As argued in [25], f ≡ 0 is the hardest case in terms of
size control under the null hypothesis H0 : f is increasing on [0, 1]. We consider two
error distributions: (i) Gaussian distribution εi ∼ N (0, 0.12); (ii) (scaled) Rademacher
distribution P(εi = ±0.1) = 1/2. For both error distributions, the (unnormalized)U -
process Ǔn(x) defined in (12) has mean zero (i.e., E[Ǔn(x)] = 0 for all x ∈ [0, 1]).
The Rademacher distribution is not covered in [25]. We use the Epanechnikov kernel
L(x) = 0.75(1 − x2) for x ∈ [−1, 1] and L(x) = 0 otherwise, together with band-
width parameter bn = n−1/5. We consider three sample sizes n = 100, 200, 500. For
each setup, we generate 2000 bootstrap samples. We consider test of the form

sup
x∈[0.05,0.95]

Ǔn(x)

ĉn(x)
> q ⇒ reject H0,

where ĉn(x) is given in (13) and the critical value q is calibrated by the JMB. In
particular, for any nominal size α ∈ (0, 1), the value of q := q(α) is chosen as the
(1−α)-th conditional quantile of the JBM. Empirical rejection probability of the JMB
test is obtained by averaging over 5000 simulations. We observe that the empirical
rejection probability is close to the nominal size of the JMB test. Table 1 shows the
proportion of rejections at the nominal sizes α = 0.05, 0.10, and Fig. 1 shows the
JMB approximation of the proportion of rejections uniformly in α ∈ (0, 1).
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Fig. 1 JMB approximation of sizes of the regression monotonicity test. Top row: Gaussian errors. Bottom
row: Rademacher errors

5 Local maximal inequalities for U-processes

In this section, we prove local maximal inequalities for U -processes, which are of
independent interest and can be useful for other applications. These multi-resolution
local maximal inequalities are key technical tools in proving the results stated in the
previous sections.

We first review some basic terminologies and facts about U -processes. For a text-
book treatment on U -processes, we refer to [18]. Let r � 1 be a fixed integer and let
X1, . . . , Xn be i.i.d. random variables taking values in a measurable space (S,S)with
common distribution P .

Definition 5.1 (Kernel degeneracy; Definition 3.5.1 in [18]) A symmetric measurable
function f : Sr → R with Pr f = 0 is said to be degenerate of order k with respect
to P if Pr−k f (x1, . . . , xk) = 0 for all x1, . . . , xk ∈ S. In particular, f is said to be
completely degenerate if f is degenerate of order r − 1, and f is said to be non-
degenerate if f is not degenerate of any positive order.

Let F be a class of symmetric measurable functions f : Sr → R. We assume that
there is a symmetricmeasurable envelope F forF such that Pr F2 < ∞. Furthermore,
we assume that each Pr−k F is everywhere finite. Consider the associated U -process

U (r)
n ( f ) = 1

|In,r |
∑

(i1,...,ir )∈In,r
f (Xi1 , . . . , Xir ), f ∈ F . (16)
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Jackknife multiplier bootstrap for U-processes 1121

For each k = 1, . . . , r , the Hoeffding projection (with respect to P) is defined by

(πk f )(x1, . . . , xk) := (δx1 − P) · · · (δxk − P)Pr−k f . (17)

The Hoeffding projection πk f is a completely degenerate kernel of k variables. Then,
the Hoeffding decomposition of U (r)

n ( f ) is given by

U (r)
n ( f )− Pr f =

r∑

k=1

(
r

k

)
U (k)
n (πk f ). (18)

In what follows, let σk be any positive constant such that sup f ∈F ‖Pr−k f ‖Pk ,2 �
σk � ‖Pr−k F‖Pk ,2 whenever ‖PFr−k‖Pk ,2 > 0 (take σk = 0 when ‖Pr−k F‖Pk ,2 =
0), and let

Mk = max
1�i�
n/k�(P

r−k F)(Xik
(i−1)k+1),

where Xik
(i−1)k+1 = (X(i−1)k+1, . . . , Xik).

We will assume certain uniform covering number conditions for the function class
F . For k = 1, . . . , r , define the uniform entropy integral

Jk(δ) := Jk(δ,F , F)

:=
∫ δ

0
sup
Q

[
1 + log N (Pr−kF , ‖ · ‖Q,2, τ‖Pr−k F‖Q,2)

]k/2
dτ,

(19)

where Pr−kF = {Pr−k f : f ∈ F} and supQ is taken over all finitely discrete distri-
butions on Sk . We note that Pr−k F is an envelope for Pr−kF . To avoid measurablity
difficulties, we will assume that F is pointwise measurable. If F is pointwise mea-
surable and Pr F < ∞ (which we have assumed) then πkF := {πk f : f ∈ F} and
Pr−kF for k = 1, . . . , r are all pointwise measurable by the dominated convergence
theorem.

Let ε1, . . . , εn be i.i.d. Rademacher random variables such that P(εi = ±1) = 1/2.
A real-valued Rademacher chaos variable of order k, X , is a polynomial of order k in
the Rademacher random variables εi with real coefficients, i.e.,

X = a +
n∑

i=1

aiεi +
∑

(i1,i2)∈In,2
ai1i2εi1εi2 + · · · +

∑

(i1,...,ik )∈In,k
ai1...ik εi1 · · · εik ,

where a, ai , ai1i2 , . . . , ai1...ik ∈ R. If only the monomials of degree k in the variables
εi in X are not zero, then X is a homogeneous Rademacher chaos of order k; see
Section 3.2 in [18].

Definition 5.2 (Rademacher chaos process of order k; page 220 in [18]) A stochastic
process X(t), t ∈ T is said to be a Rademacher chaos process of order k if for
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all s, t ∈ T , the joint law of (X(s), X(t)) coincides with the joint law of two (not
necessarily homogeneous) Rademacher chaos variables of order k.

In the remainder of this section, the notation � signifies that the left hand side is
bounded by the right hand side up to a constant that depends only on r . Recall that
‖ · ‖F = sup f ∈F | · |.
Theorem 5.1 (Local maximal inequalities for U -processes) Suppose that F is poin-
wise measurable and that Jk(1) < ∞ for k = 1, . . . , r . Let δk = σk/‖Pr−k F‖Pk ,2
for k = 1, . . . , r . Then

nk/2E[‖U (k)
n (πk f )‖F ] � Jk(δk)‖Pr−k F‖Pk ,2 + J 2k (δk)‖Mk‖P,2

δ2k
√
n

(20)

for every k = 1, . . . , r . If ‖Pr−k F‖Pk ,2 = 0, then the right hand side is interpreted
as 0.

The proof of Theorem 5.1 relies on the following lemma on the uniform entropy
integrals.

Lemma 5.2 (Properties of the maps δ �→ Jk(δ)) Assume that Jk(1) < ∞ for k =
1, . . . , r . Then, the following properties hold for every k = 1, . . . , r . (i) The map
δ �→ Jk(δ) is non-decreasing and concave. (ii) For c � 1, Jk(cδ) � cJk(δ). (iii) The
map δ �→ Jk(δ)/δ is non-increasing. (iv) The map (x, y) �→ Jk(

√
x/y)

√
y is jointly

concave in (x, y) ∈ [0,∞)× (0,∞).

Proof of Lemma 5.2 The proof is almost identical to [14, Lemma A.2] and hence omit-
ted. ��
Proof of Theorem 5.1 Pick any k = 1, . . . , r . It suffices to prove (20) when
‖Pr−k F‖Pk ,2 > 0 since otherwise there is nothing to prove (recall that we have
assumed that Pr F2 < ∞, which ensures that ‖Pr−k F‖Pk ,2 < ∞). Let ε1, . . . , εn
be i.i.d. Rademacher random variables independent of Xn

1 . In addition, let {X j
i } and

{ε ji } be independent copies of {Xi } and {εi }. From the randomization theorem for
U -processes [18, Theorem 3.5.3] and Jensen’s inequality, we have

E[‖U (k)
n (πk f )‖F ] � E

⎡

⎣

∥∥∥∥∥∥
1

|In,k |
∑

(i1,...,ik )∈In,k
ε1i1 · · · εkik (πk f )(X1

i1 , . . . , X
k
ik )

∥∥∥∥∥∥F

⎤

⎦

� E

⎡

⎣

∥∥∥∥∥∥
1

|In,k |
∑

(i1,...,ik )∈In,k
ε1i1 · · · εkik (Pr−k f )(X1

i1 , . . . , X
k
ik )

∥∥∥∥∥∥F

⎤

⎦

� E

⎡

⎣

∥∥∥∥∥∥
1

|In,k |
∑

(i1,...,ik )∈In,k
εi1 · · · εik (Pr−k f )(Xi1 , . . . , Xik )

∥∥∥∥∥∥F

⎤

⎦ .
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Conditionally on Xn
1 ,

Rn,k( f ) := 1√|In,k |
∑

(i1,...,ik )∈In,k
εi1 · · · εik (Pr−k f )(Xi1 , . . . , Xik ), f ∈ F

is a (homogeneous) Rademacher chaos process of order k. Denote by PIn,k =
|In,k |−1∑

(i1,...,ik )∈In,k δ(Xi1 ,...,Xik )
the empirical distribution on all possible k-tuples

of Xn
1 ; then Corollary 3.2.6 in [18] yields

‖Rn,k( f )− Rn,k( f
′)‖ψ2/k |Xn

1
� ‖Pr−k f − Pr−k f ′‖PIn,k ,2

, ∀ f , f ′ ∈ F ,

where ‖·‖ψ2/k |Xn
1
denotes the Orlicz (quasi-)norm associated withψ2/k(u) = eu

2/k −1
evaluated conditionally on Xn

1 . The ‖ · ‖ψ2/k |Xn
1
-diameter of the function class F is

at most 2σIn,k with σ 2
In,k

:= sup f ∈F ‖Pr−k f ‖2
PIn,k ,2

. So, since the first moment is

bounded by the ψ2/k-(quasi)norm up to a constant that depends only on k (and hence
r ), by Corollary 5.1.8 in [18] together with Fubini’s theorem and a change of variables,
we have

E

⎡

⎣

∥∥∥∥∥∥
1√|In,k |

∑

(i1,...,ik )∈In,k
εi1 · · · εik (Pr−k f )(Xi1 , . . . , Xik )

∥∥∥∥∥∥F

⎤

⎦

� E

⎡

⎢⎣

∥∥∥∥∥∥

∥∥∥∥∥∥
1√|In,k |

∑

(i1,...,ik )∈In,k
εi1 · · · εik (Pr−k f )(Xi1 , . . . , Xik )

∥∥∥∥∥∥F

∥∥∥∥∥∥
ψ2/k |Xn

1

⎤

⎥⎦

� E

[∫ σIn,k

0

[
1 + log N (Pr−kF , ‖ · ‖PIn,k ,2

, τ )
]k/2

dτ

]

= E

[
‖Pr−k F‖PIn,k ,2

∫ σIn,k /‖Pr−k F‖PIn,k ,2

0

[
1 + log N (Pr−kF , ‖ · ‖PIn,k ,2

, τ‖Pr−k F‖PIn,k ,2
)
]k/2

dτ

]

� E

[
‖Pr−k F‖PIn,k ,2

Jk(σIn,k/‖Pr−k F‖PIn,k ,2
)
]
.

The last inequality follows from the definition of Jk . Since Jk(
√
x/y)

√
y is jointly

concave in (x, y) ∈ [0,∞)× (0,∞) by Lemma 5.2 (iv), Jensen’s inequality yields

nk/2E[‖U (k)
n (πk f )‖F ] � ‖Pr−k F‖Pk ,2 Jk(z),

where z :=
√
E[σ 2

In,k
]/‖Pr−k F‖2

Pk ,2
. (21)
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1124 X. Chen, K. Kato

We shall bound E[σ 2
In,k

]. To this end, we will use Hoeffding’s averaging [49, Section
5.1.6]. Let

S f ,k(x1, . . . , xn) = 1

m

m∑

i=1

(Pr−k f )2(x(i−1)k+1, . . . , xik), m = 
n/k�.

Then, the U -statistic ‖Pr−k f ‖2
PIn,k ,2

= |In,k |−1∑
In,k (P

r−k f )2(Xi1 , . . . , Xik ) is the

average of the variables S f ,k(X j1 , . . . , X jn ) taken over all the permutations j1, . . . , jn
of 1, . . . , n. Hence,

E[σ 2
In,k ] � E

[
sup
f ∈F

S f ,k(X
n
1 )

]
= E

[∥∥∥∥∥
1

m

m∑

i=1

(Pr−k f )2(Xik
(i−1)k+1)

∥∥∥∥∥
F

]
=: Bn,k

by Jensen’s inequality, so that z � z̃ :=
√
Bn,k/‖Pr−k F‖2

Pk ,2
. Since the blocks

Xik
(i−1)k+1, i = 1, . . . ,m are i.i.d.,

Bn,k �(1) σ
2
k +E

[∥∥∥∥∥
1

m

m∑

i=1

{
(Pr−k f )2(Xik

(i−1)k+1)−E[(Pr−k f )2(Xik
(i−1)k+1)]

}∥∥∥∥∥
F

]

�(2) σ
2
k + 2E

[∥∥∥∥∥
1

m

m∑

i=1

εi (P
r−k f )2(Xik

(i−1)k+1)

∥∥∥∥∥
F

]

�(3) σ
2
k + 8E

[
Mk

∥∥∥∥∥
1

m

m∑

i=1

εi (P
r−k f )(Xik

(i−1)k+1)

∥∥∥∥∥
F

]

�(4) σ
2
k + 8‖Mk‖P,2

√√√√√E

⎡

⎣
∥∥∥∥∥
1

m

m∑

i=1

εi (Pr−k f )(Xik
(i−1)k+1)

∥∥∥∥∥

2

F

⎤

⎦,

where (1) follows from the triangle inequality, (2) follows from the symmetrization
inequality [53, Lemma 2.3.1], (3) follows from the contraction principle [29, Corollary
3.2.2], and (4) follows from the Cauchy–Schwarz inequality. By (a version of) the
Hoffmann-Jørgensen inequality to the empirical process [53, Proposition A.1.6],

√√√√√E

⎡

⎣
∥∥∥∥∥
1

m

m∑

i=1

εi (Pr−k f )(Xik
(i−1)k+1)

∥∥∥∥∥

2

F

⎤

⎦

� E

[∥∥∥∥∥
1

m

m∑

i=1

εi (P
r−k f )(Xik

(i−1)k+1)

∥∥∥∥∥
F

]
+ m−1‖Mk‖P,2.

The analysis of the expectation on the right hand side is rather standard. From the first
half of the proof of Theorem 5.2 in [14] (or repeating the first half of this proof with
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r = k = 1), we have

E

[∥∥∥∥∥
1√
m

m∑

i=1

εi (P
r−k f )(Xik

(i−1)k+1)

∥∥∥∥∥
F

]

� ‖Pr−k F‖Pk ,2

∫ z̃

0
sup
Q

√
1 + log N (Pr−kF , ‖ · ‖Q,2, τ‖Pr−k F‖Q,2)dτ.

Since the integral on the right hand side is bounded by Jk (̃z), we have

Bn,k � σ 2
k + n−1‖Mk‖2P,2 + n−1/2‖Mk‖P,2‖Pr−k F‖Pk ,2 Jk (̃z).

Therefore, we conclude that

z̃2 � �2 + ‖Mk‖P,2√
n‖Pr−k F‖Pk ,2

Jk (̃z), where �2 := σ 2
k ∨ n−1‖Mk‖2P,2
‖Pr−k F‖2

Pk ,2

.

By Lemma 5.2 (i) and applying [54, Lemma 2.1] with J (·) = Jk(·), r = 1, A2 = �2,
and B2 = ‖Mk‖P,2/(√n‖Pr−k F‖Pk ,2), we have

Jk(z) � Jk (̃z) � Jk(�)

[
1 + Jk(�)

‖Mk‖P,2√
n‖Pr−k F‖Pk ,2�

2

]
. (22)

Combining (21) and (22), we arrive at

nk/2E[‖U (k)
n (πk f )‖F ] � Jk(�)‖Pr−k F‖Pk ,2 + J 2k (�)‖Mk‖P,2√

n�2
. (23)

We note that � � δk and recall that δk = σk/‖Pr−k F‖Pk ,2. Since the map δ �→
Jk(δ)/δ is non-increasing by Lemma 5.2 (iii), we have

Jk(�) � �
Jk(δk)

δk
= max

{
Jk(δk),

‖Mk‖P,2 Jr (δk)√
n‖Pr−k F‖Pk ,2δk

}
.

In addition, since Jk(δk)/δk � Jk(1) � 1, we have

Jk(�) � max

{
Jk(δk),

‖Mk‖P,2 J 2k (δk)√
n‖Pr−k F‖Pk ,2δ

2
k

}
.

Finally, since

J 2k (�)‖Mk‖P,2√
n�2

�
J 2k (δk)‖Mk‖P,2√

nδ2k
,
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1126 X. Chen, K. Kato

the desired inequality (20) follows from (23). ��
When the function class F is VC type, we may derive a more explicit bound on

nk/2E[‖U (k)
n (πk f )‖F ].

Corollary 5.3 (Local maximal inequalities for U -processes indexed by VC type
classes) If F is pointwise measurable and VC type with characteristics A �
(e2(r−1)/16) ∨ e and v � 1, then

nk/2E[‖U (k)
n (πk f )‖F ] � σk

{
v log(A‖Pr−k F‖Pk ,2/σk)

}k/2

+ ‖Mk‖P,2√
n

{
v log(A‖Pr−k F‖Pk ,2/σk)

}k
(24)

for every k = 1, . . . , r .

Remark 5.1 (i). Our maximal inequality (20) scales correctly with the order of degen-
eracy, namely, the bound on E[‖U (k)

n (πk f )‖F ] scales as n−k/2 if F is fixed with n;
recall that the functions πk f , f ∈ F are completely degenerate functions of k vari-
ables. In addition, our maximal inequality is “local” in the sense that the bound is able
take into account the L2-bound on functions Pr−k f , f ∈ F , namely, the bound will
yield a better estimate if we have an additional information that such an L2-bound is
small.

(ii). Giné andMason [27, Theorem 8] establishes a different local maximal inequal-
ity for aU -process indexed by a VC type class with a bounded envelope. To be precise,
they prove the following bound under the assumption that the envelope F is bounded
by a constant M : there exist constants C1 and C2 depending only on r , A, v, and M
such that

nk/2E[‖U (k)
n (πk f )‖F ] � C1σr

(
log

A‖F‖Pr ,2

σr

)k/2
, k = 1, . . . , r (25)

whenever

nσ 2
r � C2 log

(
2‖F‖Pr ,2

σr

)
,

where σr is a positive constant satisfying sup f ∈F ‖ f ‖Pr ,2 � σr � ‖F‖Pr ,2. Our
Corollary 5.3 improves upon the bound (25) in several directions: 1) First, our bound
(24) allows for an unbounded envelope while the bound (25) requires the envelope to
be bounded. 2) Second, the constantsC1 andC2 appearing in the bound (25) implicitly
depend on the VC characteristics (A, v) and the L∞-bound M on the envelope F , in
addition to the order r , and so is not applicable to cases where the VC characteristics
(A, v) and/or the L∞-boundM changewith n. On the other hand, the constant involved
in our bound (24) depends only on r (recall that the notation � in present section
signifies that the left hand side is bounded by the right hand side up to a constant that
depends only on r ), and so is applicable to such cases. 3) Finally, our bound (24) is of
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the multi-resolution nature in the sense that it depends on the L2-bound on Pr−k f for
f ∈ F (i.e., σk) for each projection level k = 1, . . . , r rather than that on f ∈ F (i.e.,
σr ), which allows us to obtain better rates of convergence for kernel type statistics
than (25). In particular, σk for k < r can be potentially much smaller than σr , which
is indeed the case in the applications considered in Sect. 4. To be precise, for the
function class {bm/2n cn(ϑ)−1hn,ϑ : ϑ ∈ �} appearing in Sect. 4, σk would be of order
b−m(k−1)/2
n and so σk � σr for k < r ; see the proof of Theorem 4.2.
We also note that [2,26] derive sophisticated moment inequalities for U -statistics

in Banach spaces. However, we find that their inequalities are difficult to apply in our
setting.

(iii). Theorem 5.1 and Corollary 5.3 generalize Theorem 5.2 and Corollary 5.1 in
[14] to U -processes. In fact, Theorem 5.1 and Corollary 5.3 reduce to Theorem 5.2
and Corollary 5.1 in [14] when r = k = 1, respectively.

Before proving Corollary 5.3, we first verify the following fact about VC type
properties.

Lemma 5.4 IfF is VC typewith characteristics (A, v), then for every k = 1, . . . , r−1,
Pr−kF is also VC type with characteristics 4

√
A and 2v for envelope Pr−k F, i.e.,

sup
Q

N (Pr−kF , ‖ · ‖Q,2, τ‖Pr−k F‖Q,2) � (4
√
A/τ)2v, 0 < ∀τ � 1.

Proof of Lemma 5.4 This follows from Lemma A.3 in Appendix A with
r = s = 2. ��
Proof of Corollary 5.3 For the notational convenience, put A′ = 4

√
A and v′ = 2v.

Then,

Jk(δ) �
∫ δ

0
(1 + v′ log(A′/τ))k/2dτ � A′(v′)k/2

∫ ∞

A′/δ

(1 + log τ)k/2

τ 2
dτ.

Integration by parts yields that for c � ek−1,

∫ ∞

c

(1 + log τ)k/2

τ 2
dτ =

[
− (1 + log τ)k/2

τ

]∞

c
+ k

2

∫ ∞

c

(1 + log τ)k/2

τ 2(1 + log τ)
dτ

� (1 + log c)k/2

c
+ 1

2

∫ ∞

c

(1 + log τ)k/2

τ 2
dτ.

Since A′/δ � A′ � er−1 � ek−1 for 0 < δ � 1, we conclude that

∫ ∞

A/δ′
(1 + log τ)k/2

τ 2
dτ � 2δ(1 + log(A′/δ))k/2

A′ � δ(log(A/δ))k/2

A′ .

Combining Theorem 5.1, we obtain the desired inequality (24). ��
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The appearance of ‖Pr−k F‖Pk ,2/σk inside the log may be annoying in appli-
cations but there is a clever way to delete this term. Namely, choose σ ′

k = σk ∨
(n−1/2‖Pr−k F‖Pk ,2) and apply Corollary 5.4 with σk replaced by σ

′
k ; then the bound

for nk/2E[‖U (k)
n (πk f )‖F ] is

� σk {v log(A ∨ n)}k/2 + ‖Pr−k F‖Pk ,2√
n

{v log(A ∨ n)}k/2

+ ‖Mk‖P,2√
n

{v log(A ∨ n)}k .

Since v log(A ∨ n) � 1 by our assumption, the second term is bounded by the third
term. We state the resulting bound as a separate corollary since this form would be
most useful in (at least our) applications.

Corollary 5.5 If F is pointwise measurable and VC type with characteristics A �
(e2(r−1)/16) ∨ e and v � 1, then,

nk/2E[‖U (k)
n (πk f )‖F ] � σk {v log(A ∨ n)}k/2 + ‖Mk‖P,2√

n
{v log(A ∨ n)}k

for every k = 1, . . . , r . Furthermore, ‖Mk‖P,2 � n1/q‖Pr−k F‖Pk ,q for every k =
1, . . . , r and q ∈ [2,∞], where “1/q” for the q = ∞ case is interpreted as 0.

Proof of Corollary 5.5 The first half of the corollary is already proved. The latter half
is trivial. ��

If one is interested in bounding E[‖U (r)
n ( f ) − Pr f ‖F ], then it suffices to apply

(20) or (24) repeatedly for k = 1, . . . , r . However, it is often the case that lower order
Hoeffding projection terms are dominant, and for bounding higher order Hoeffding
projection terms, it would suffice to apply the following simpler (but less sharp) max-
imal inequalities.

Corollary 5.6 (Alternative maximal inequalities for U -processes) Let p ∈ [1,∞).
Suppose that F is pointwise measurable and that Jk(1) < ∞ for k = 1, . . . , r . Then,
there exists a constant Cr ,p depending only on r , p such that

nk/2(E[‖U (k)
n (πk f )‖p

F ])1/p � Cr ,p Jk(1)‖Pr−k F‖Pk ,2∨p

for every k = 1, . . . , r . If F is VC type with characteristics A � (e2(r−1)/16)∨ e and
v � 1, then Jk(1) � (v log A)k/2 for every k = 1, . . . , r .

Proof of Corollary 5.6 The last assertion follows from a similar computation to that in
the proof of Corollary 5.3. Hence we focus here on the first assertion. The proof is a
modification to the proof ofTheorem5.1 andwe shall use the notation used in the proof.
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The randomization theorem and Jensen’s inequality yield that n pk/2
E[‖U (k)

n (πk f )‖p
F ]

is bounded by

E

⎡

⎣

∥∥∥∥∥∥
1√|In,k |

∑

In,k

εi1 · · · εik (Pr−k f )(Xi1 , . . . , Xik )

∥∥∥∥∥∥

p

F

⎤

⎦ ,

up to a constant dependingonly on r , p,where ε1, . . . , εn are i.i.d.Rademacher random
variables independent of Xn

1 . Denote by E|Xn
1
the conditional expectation given Xn

1 .
Since the L p-norm is bounded from above by the ψ2/k-(quasi-)norm up to a constant
that depends only on k (and hence r ) and p, we have

E|Xn
1

⎡

⎣

∥∥∥∥∥∥
1√|In,k |

∑

In,k

εi1 · · · εik (Pr−k f )(Xi1 , . . . , Xik )

∥∥∥∥∥∥

p

F

⎤

⎦

� C

∥∥∥∥∥∥

∥∥∥∥∥∥
1√|In,k |

∑

In,k

εi1 · · · εik (Pr−k f )(Xi1 , . . . , Xik )

∥∥∥∥∥∥F

∥∥∥∥∥∥

p

ψk/2|Xn
1

for some constant C depending only on r and p. The entropy integral bound for
Rademacher chaoses (see the proof of Theorem 5.1) yields that the right hand side is
bounded by, after changing variables,

‖Pr−k F‖p
PIn,k ,2

J p
k

(
σIn,k/‖Pr−k F‖PIn,k ,2

)

up to a constant depending only on r , p. The desired result follows from bounding
σIn,k/‖Pr−k F‖PIn,k ,2

by1 andobservation thatE[‖Pr−k F‖p
PIn,k ,2

] � ‖Pr−k F‖p
Pk ,2∨p

by Jensen’s inequality. ��
Remark 5.2 Corollary 5.6 is an extension of Theorem 2.14.1 in [53]. For p = 1, Corol-
lary 5.6 is often less sharp than Theorem 5.1 since σk � ‖Pr−k F‖Pk ,2 and in some
cases σk � ‖Pr−k F‖Pk ,2. However, Corollary 5.6 is useful for directly bounding

higher order moments of ‖U (k)
n (πk f )‖F . For the empirical process case (i.e., k = 1),

bounding higher order moments of the supremum is essentially reduced to bounding
the first moment by the Hoffmann-Jørgensen inequality [53, Proposition A.1.6]. There
is an analogous Hoffmann-Jørgensen type inequality for U -processes (see [18, Theo-
rem 4.1.2]), but for k � 2, bounding higher order moments of ‖U (k)

n (πk f )‖F using
this Hoffmann-Jørgensen inequality combined with the local maximal inequality in
Theorem 5.1 would be more involved.

6 Proofs for Sects. 2 and 3

In what follows, let B(R) denote the Borel σ -field on R. For a set B ⊂ R and δ > 0,
let Bδ denote the δ-enlargement of B, i.e., Bδ = {x ∈ R : inf y∈B |x − y| � δ}.
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6.1 Proofs for Sect. 2

We begin with stating the following lemma.

Lemma 6.1 Work with the setup described in Sect. 2. Suppose that Conditions
(PM), (VC), and (MT) hold. Let Ln := supg∈G n−1/2∑n

i=1(g(Xi ) − Pg) and

Z̃ := supg∈G WP (g). Then, there exist universal constants C,C ′ > 0 such that

P(Ln ∈ B) � P(Z̃ ∈ BCδn )+ C ′(γ + n−1) for every B ∈ B(R), where

δn = (σ 2
gbgK

2
n )

1/3

γ 1/3n1/6
+ bgKn

γ n1/2−1/q . (26)

In the case of q = ∞, “1/q” is interpreted as 0.

The proof is a minor modification to that of Theorem 2.1 in [15]. Differences
are (1) Lemma 6.1 allows q = ∞, and constants C,C ′ to be independent of q;
(2) the error bound δn contains bgKn/(γ n1/2−1/q) instead of bgKn/(γ

1/qn1/2−1/q);
and (3) our definition of Kn is slightly different from theirs. For completeness, in
“Appendix C.1”, we provide a sketch of the proof for Lemma 6.1, which points out
required modifications to the proof of Theorem 2.1 in [15].

Proof of Proposition 2.1 In view of the Strassen–Dudley theorem (see Theorem B.1),
it suffices to verify that there exist constants C,C ′ depending only r such that

P(Zn ∈ B) � P(Z̃ ∈ BC�n )+ C ′(γ + n−1)

for every B ∈ B(R). In what follows,C,C ′ denote generic constants that depend only
on r ; their values may vary from place to place.

We shall follow the notation used in Sect. 5. Consider the Hoeffding decomposition
for Un(h) = U (r)

n (h): U (r)
n (h)− Prh = rU (1)

n (π1h)+∑r
k=2

(r
k

)
U (k)
n (πkh), or

Un(h) = √
n(U (r)

n (h)− Prh) = rGn(P
r−1h)+ √

n
r∑

k=2

(
r

k

)
U (k)
n (πkh),

where Gn(Pr−1h) := n−1/2∑n
i=1(P

r−1h(Xi )− Prh) is the Hájek (empirical) pro-
cess associated with Un . Recall that G = Pr−1H = {Pr−1h : h ∈ H}, and
let Ln = supg∈G Gn(g) and Rn = ‖√n

∑r
k=2

(r
k

)
U (k)
n (πkh)/r‖H. Then, since

|Zn − Ln| � Rn , Markov’s inequality and Lemma 6.1 yield that for every B ∈ B(R),

P(Zn ∈ B) � P({Zn ∈ B} ∩ {Rn � γ−1
E[Rn]})+ P(Rn > γ−1

E[Rn])
� P(Ln ∈ Bγ

−1
E[Rn ])+ γ

� P(Z̃ ∈ BCδn+γ−1
E[Rn ])+ C ′(γ + n−1), (27)

where δn is given in (26).
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It remains to bound E[Rn]. To this end, we shall separately apply Corollary 5.5 for
k = 2 and Corollary 5.6 for k = 3, . . . , r . First, applying Corollary 5.5 to F = H for
k = 2 yields

nE[‖U (2)
n (π2h)‖H] � C

(
σhKn + bhK

2
n n

−1/2+1/q
)
.

Likewise, applying Corollary 5.6 to F = H for k = 3, . . . , r yields

r∑

k=3

E[‖U (k)
n (πkh)‖H] � C

r∑

k=3

n−k/2‖Pr−k H‖Pk ,2K
k/2
n = Cn−1/2χn .

Therefore, we conclude that

E[Rn] � C
r∑

k=2

n1/2E[‖U (k)
n (πkh)‖H] � C ′ (σhKnn

−1/2 + bhK
2
n n

−1+1/q + χn

)
.

(28)

Combining (27) with (28) leads to the conclusion of the proposition. ��
Proof of Corollary 2.2 We begin with noting that we may assume that bg � n1/2, since
otherwise the conclusion is trivial by taking C � 1. In this proof, the notation �
signifies that the left hand side is bounded by the right hand side up to a constant that
depends only on r , σg, and σg. Let γ ∈ (0, 1) and pick a version Z̃n,γ of Z̃ as in
Proposition 2.1 (Z̃n,γ may depend on γ ). Proposition 2.1 together with [15, Lemma
2.1] yield that

ρ(Zn, Z̃) = ρ(Zn, Z̃n,γ ) � sup
t∈R

P(|Z̃n,γ − t | � C�n)+ C ′(γ + n−1)

= sup
t∈R

P(|Z̃ − t | � C�n)+ C ′(γ + n−1).

Now, the anti-concentration inequality (see Lemma A.1 in “Appendix A”) yields

sup
t∈R

P(|Z̃ − t | � C�n) � �n

{
E[Z̃ ] +

√
1 ∨ log(σg/(C�n))

}
. (29)

Since G is VC type with characteristics 4
√
A and 2v for envelope G (Lemma 5.4),

by Lemma A.2, we have N (G, ‖ · ‖P,2, τ ) � (16
√
A‖G‖P,2/τ)

2v for all 0 < ε � 1.
Hence, Dudley’s entropy integral bound [29, Theorem 2.3.7] yields E[Z̃ ] � (σg ∨
(n−1/2bg))K

1/2
n � K 1/2

n where the last inequality follows from the assumption that

bg � n1/2. Since
√
1 ∨ log(σg/(C�n)) � (Kn ∨ log(γ−1))1/2, we conclude that

ρ(Zn, Z̃) � (Kn ∨ log(γ−1))1/2�n(γ )+ γ + n−1.

The desired result follows from balancing K 1/2
n �n(γ ) and γ . ��
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1132 X. Chen, K. Kato

6.2 Proofs for Sect. 3

Proof of Theorem 3.1 In this proof we will assume that each h ∈ H is Pr -centered,
i.e., Prh = 0 for the rotational convenience. Recall that P|Xn

1
andE|Xn

1
denote the con-

ditional probability and expectation given Xn
1 , respectively. In view of the conditional

version of the Strassen–Dudley theorem (see Theorem B.2), it suffices to find con-
stants C,C ′ depending only on r , and an event E ∈ σ(Xn

1 ) with P(E) � 1− γ − n−1

on which

P|Xn
1
(Z 
n ∈ B) � P(Z̃ ∈ BC�


n )+ C ′(γ + n−1) ∀B ∈ B(R).

The proof of Theorem 3.1 is involved and divided into six steps. In what follows, let
C denote a generic positive constant depending only on r ; the value of C may change
from place to place.

Step 1: Discretization For 0 < ε � 1 to be determined later, let N := N (ε) :=
N (G, ‖ · ‖P,2, ε‖G‖P,2). Since ‖G‖P,2 � bg, there exists an εbg-net {gk}Nk=1 for
(G, ‖ · ‖P,2). By the definition of G, each gk corresponds to a kernel hk ∈ H such that
gk = Pr−1hk . The Gaussian process WP extends to the linear hull of G in such a way
that WP has linear sample paths (e.g., see [29, Theorem 3.7.28]). Now, observe that

0 � sup
g∈G

WP (g)− max
1� j�N

WP (g j ) � ‖WP‖Gε ,

0 � sup
h∈H

U


n(h)− max

1� j�N
U


n(h j ) � ‖U
n‖Hε

,

where Gε = {g − g′ : g, g′ ∈ G, ‖g − g′‖P,2 < 2εbg} and Hε = {h − h′ : h, h′ ∈
H, ‖Pr−1h − Pr−1h′‖P,2 < 2εbg}.

Step 2: Construction of a high-probability event E ∈ σ(Xn
1 ) We divide this step

into several sub-steps.
(i). For a P-integrable function g on S, we will use the notation

Gn(g) := 1√
n

n∑

i=1

{g(Xi )− Pg}.

Consider the function class Ğ · Ğ = {gg′ : g, g′ ∈ Ğ} with Ğ = {g, g − Pg : g ∈ G}.
Recall thatG with envelopeG is VC typewith characteristics (4

√
A, 2v). The function

class {g − Pg : g ∈ G} with envelope Ğ := G + PG is VC type with characteristics
(4

√
2A, 2v + 1) from a simple calculation. Conclude that Ğ with envelope Ğ is VC

type with characteristics (8
√
2A, 2v + 1), and by Lemma A.5, Ğ · Ğ with envelope

Ğ2 is VC type with characteristics (16
√
2A, 4v + 2). For g, g′ ∈ G, P(gg′)2 �
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√
Pg4
√
P(g′)4 � σ 2

gb
2
g by Condition (MT). Likewise,

P(g − Pg)2(g′ − Pg′)2 �
√
P(g − Pg)4

√
P(g′ − Pg′)4

� 8
√
Pg4 + (Pg)4

√
P(g′)4 + (Pg′)4

� 16
√
Pg4
√
P(g′)4 � 16σ 2

gb
2
g.

We also note that ‖Ğ‖P,q � 2‖G‖P,q � 2bg. Hence, applying Corollary 5.5 with
F = Ğ · Ğ, r = k = 1, and q = q/2 yields

n−1/2
E[‖Gn‖Ğ·Ğ] � C

(
σgbgK

1/2
n n−1/2 + b2gKnn

−1+2/q
)
,

so that with probability at least 1 − γ /3,

n−1/2‖Gn‖Ğ·Ğ � Cγ−1
(
σgbgK

1/2
n n−1/2 + b2gKnn

−1+2/q
)

(30)

by Markov’s inequality.
(ii). Define

ϒn :=
∥∥∥∥∥
1

n

n∑

i=1

{U (r−1)
n−1,−i (δXi h)− Pr−1h(Xi )}2

∥∥∥∥∥
H
. (31)

We will show that

E[ϒn] � C
{
σ 2
hKnn

−1 + ν2hK
2
n n

−3/2+2/q + σhbhK
3/2
n n−3/2

+b2hK
3
nn

−2+2/q + χ2
n

}
. (32)

Together with Markov’s inequality, we have that with probability at least 1 − γ /3,

ϒn � Cγ−1
{
σ 2
hKnn

−1 + ν2hK
2
n n

−3/2+2/q + σhbhK
3/2
n n−3/2

+b2hK
3
nn

−2+2/q + χ2
n

}
. (33)

The proof of the inequality (32) is lengthy and deferred after the proof of the theorem.
(iii). We shall bound E[‖Un(h) − Prh‖2H]. Applying Corollary 5.6 to H for k =

2, . . . , r yields

r∑

k=2

E[‖U (k)
n (πkh)‖2H] � C

(
b2hK

2
n n

−2 + n−1χ2
n

)
.
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1134 X. Chen, K. Kato

Next, since U (1)
n (π1h), h ∈ H is an empirical process, we may apply the Hoffmann-

Jørgensen inequality [53, Proposition A.1.6] to deduce that

E[‖U (1)
n (π1h)‖2H] � C

{
(E[‖U (1)

n (π1h)‖H])2 + b2gn
−2+2/q

}

� C
(
σ 2
gKnn

−1 + b2gK
2
n n

−2+2/q + b2gn
−2+2/q

)

� C
(
σ 2
gKnn

−1 + b2gK
2
n n

−2+2/q
)
,

where the second inequality follows from Corollary 5.5. Since σg � σh and bg � bh,

E[‖Un(h)− Prh‖2H] � C
(
σ 2
hKnn

−1 + b2hK
2
n n

−2+2/q + n−1χ2
n

)
,

so that by Markov’s inequality, with probability at least 1 − γ /3,

‖Un(h)− Prh‖2H � Cγ−1
(
σ 2
hKnn

−1 + b2hK
2
n n

−2+2/q + n−1χ2
n

)
. (34)

(iv). Let PIn,r = |In,r |−1∑
(i1,...,ir )∈In,r δ(Xi1 ,...,Xir )

denote the empirical distri-
bution on all possible r -tuples of Xn

1 . Then Markov’s inequality yields that with
probability at least 1 − n−1,

‖H‖PIn,r ,2 � n1/2‖H‖Pr ,2. (35)

Now, define the event E by the the intersection of the events (30), (33), (34), and
(35). Then, E ∈ σ(Xn

1 ) and P(E) � 1 − γ − n−1.
Step 3: Bounding the discretization error for WP By theBorell-Sudakov-Tsirel’son

inequality (cf. [29, Theorem 2.5.8]), we have

P

(
‖WP‖Gε � E[‖WP‖Gε ] + 2εbg

√
2 log n

)
� n−1.

From a standard calculation, N (Gε, ‖ · ‖P,2, τ ) � N 2(G, ‖ · ‖P,2, τ/2). Since G is VC
typewith characteristics 4

√
A and 2v for envelopeG, by LemmaA.2, we have N (G, ‖·

‖P,2, τ‖G‖P,2) � C(16
√
A/τ)2v , so that N (Gε, ‖ ·‖P,2, τ ) � (32

√
Abg/τ)4v . Now,

Dudley’s entropy integral bound [53, Corollary 2.2.8] yields

E[‖WP‖Gε ] � C(εbg)
√
v log(A/ε).

Choosing ε = 1/n1/2, we have

E[‖WP‖Gε ] � Cbgn
−1/2

√
v log(An1/2) � CbgK

1/2
n n−1/2.

Since log n � Kn , we conclude that

P

(
‖WP‖Gε � CbgK

1/2
n n−1/2

)
� n−1.
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Jackknife multiplier bootstrap for U-processes 1135

Step 4: Bounding the discretization error for U


n . Since {U
n(h) : h ∈ H} is a cen-

tered Gaussian process conditionally on Xn
1 , applying the Borell-Sudakov-Tsirel’son

inequality conditionally on Xn
1 , we have

P|Xn
1

(
‖U
n‖Hε

� E|Xn
1
[‖U
n‖Hε

] +√2�n log n
)

� n−1,

where �n := ‖n−1∑n
i=1{U (r−1)

n−1,−i (δXi h)−Un(h)}2‖Hε
with ε = 1/n1/2.

We begin with bounding�n . For any h ∈ Hε, n−1∑n
i=1{U (r−1)

n−1,−i (δXi h)−Un(h)}2
is bounded by n−1∑n

i=1{U (r−1)
n−1,−i (δXi h)}2 since the average of U (r−1)

n−1,−i (δXi h), i =
1, . . . , n is Un(h) and the variance is bounded by the second moment. Further, the
term n−1∑n

i=1{U (r−1)
n−1,−i (δXi h)}2 is bounded by

2

n

n∑

i=1

{U (r−1)
n−1,−i (δXi h)− Pr−1h(Xi )}2

+ 2

n

n∑

i=1

{(Pr−1h(Xi ))
2 − P(Pr−1h)2} + 2P(Pr−1h)2.

(36)

The last termon the right hand side of (36) is bounded by 8(εbg)2. The supremumof the
first term onHε is bounded by 8ϒn sinceHε ⊂ {h−h′ : h, h′ ∈ H} [the notationϒn is
defined in (31)]. For the second term, observe that {(Pr−1h)2 : h ∈ Hε} ⊂ {(g−g′)2 :
g, g′ ∈ G}, (g−g′)2− P(g−g′)2 = (g2− Pg2)+2(gg′ − Pgg′)+ ((g′)2− P(g′)2),
and {g2 : g ∈ G} ⊂ Ğ · Ğ, so that the supremum of the second term on the right hand
side of (36) is bounded by 8n−1/2‖Gn‖Ğ·Ğ . Therefore, recalling that we have chosen
ε = 1/n1/2, we conclude that

�n � 8(εbg)
2 + 8n−1/2‖Gn‖Ğ·Ğ + 8ϒn

� Cγ−1
{
σgbgK

1/2
n n−1/2 + b2gKnn

−1+2/q + σ 2
hKnn

−1

+ ν2hK
2
n n

−3/2+2/q + σhbhK
3/2
n n−3/2 + b2hK

3
nn

−2+2/q + χ2
n

}

on the event E .
Next, we shall bound E|Xn

1
[‖U
n‖Hε

] on the event E . Since H is VC type with
characteristics (A, v), we have

N (Hε, ‖ · ‖PIn,r ,2, 2τ‖H‖PIn,r ,2) � N 2(H, ‖ · ‖PIn,r ,2, τ‖H‖PIn,r ,2) � (A/τ)2v.

In addition, since
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1136 X. Chen, K. Kato

d2(h, h′) := E|Xn
1
[{U
n(h)− U



n(h

′)}2]

= 1

n

n∑

i=1

{U (r−1)
n−1,−i (δXi h)−Un(h)−U (r−1)

n−1,−i (δXi h
′)+Un(h

′)}2

� 1

n

n∑

i=1

{U (r−1)
n−1,−i (δXi h)−U (r−1)

n−1,−i (δXi h
′)}2 � ‖h − h′‖2

PIn,r ,2
,

where the last inequality follows from Jensen’s inequality, and since a weaker pseu-
dometric induces a smaller covering number, we have

N (Hε, d, 2τ‖H‖PIn,r ,2) � N (Hε, ‖ · ‖PIn,r ,2, 2τ‖H‖PIn,r ,2) � (A/τ)2v.

Hence, using 2
[
(n−(r−1)/2‖H‖Pr ,2) ∨�

1/2
n

]
as a bound on the d-diameter ofHε, we

have by Dudley’s entropy integral bound

E|Xn
1
[‖U
n‖Hε

] � C
∫ (n−(r−1)/2‖H‖Pr ,2)∨�1/2

n

0

√
v log(A‖H‖PIn,r ,2

/τ)dτ

� C
(
(n−(r−1)/2‖H‖Pr ,2) ∨�

1/2
n

)

√
v log(A‖H‖PIn,r ,2

/(n−(r−1)/2‖H‖Pr ,2))

� C
(
(n−(r−1)/2‖H‖Pr ,2) ∨�

1/2
n

)√
v log(Anr/2)

on the event E (we have used ‖H‖PIn,k ,2
� n1/2‖H‖Pr ,2 on E). Since n−(r−1)/2

‖H‖Pr ,2 � χn , we have

E|Xn
1
[‖U
n‖Hε

] � C(χn ∨�
1/2
n )K 1/2

n

� Cγ−1/2
{
(σgbgK

3/2
n )1/2n−1/4 + bgKnn

−1/2+1/q

+ σhKnn
−1/2 + νhK

3/2
n n−3/4+1/q + (σhbh)

1/2K 5/4
n n−3/4

+ bhK
2
n n

−1+1/q + χnK
1/2
n

}

on the event E . Hence, we conclude that

P|Xn
1
(‖U
n‖Hε

� Cδ(1)n ) � n−1

on the event E , where

δ(1)n = 1

γ 1/2

{
(σgbgK

3/2
n )1/2

n1/4
+ bgKn

n1/2−1/q + σhKn

n1/2
+ νhK

3/2
n

n3/4−1/q

+ (σhbh)1/2K
5/4
n

n3/4
+ bhK 2

n

n1−1/q + χnK
1/2
n

}
.
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Step 5: Gaussian comparison Let Z 
,εn := max1� j�N U


n(h j ) and Z̃ ε :=

max1� j�N WP (g j ). Observe that the covariance between U


n(hk) and U



n(h�) condi-

tionally on Xn
1 is

Ĉk,� := 1

n

n∑

i=1

{U (r−1)
n−1,−i (δXi hk)−Un(hk)}{U (r−1)

n−1,−i (δXi h�)−Un(h�)}

= 1

n

n∑

i=1

U (r−1)
n−1,−i (δXi hk)U

(r−1)
n−1,−i (δXi h�)−Un(hk)Un(h�)

= 1

n

n∑

i=1

{U (r−1)
n−1,−i (δXi hk)− Pr−1hk(Xi )}{U (r−1)

n−1,−i (δXi h�)− Pr−1h�(Xi )}

+ 1

n

n∑

i=1

{U (r−1)
n−1,−i (δXi hk)− Pr−1hk(Xi )}Pr−1h�(Xi )

+ 1

n

n∑

i=1

{U (r−1)
n−1,−i (δXi h�)− Pr−1h�(Xi )}Pr−1hk(Xi )

+ 1

n

n∑

i=1

(Pr−1hk(Xi ))(P
r−1h�(Xi ))−Un(hk)Un(h�).

Recall that gk = Pr−1hk for each k. Replacing hk by hk−Prhk in the above expansion,
we have

∣∣Ĉk,� − P(gk − Pgk)(g� − Pg�)
∣∣

�
[
1

n

n∑

i=1

{U (r−1)
n−1,−i (δXi hk)− Pr−1hk(Xi )}2

]1/2

[
1

n

n∑

i=1

{U (r−1)
n−1,−i (δXi h�)− Pr−1h�(Xi )}2

]1/2

+
[
1

n

n∑

i=1

{U (r−1)
n−1,−i (δXi hk)− Pr−1hk(Xi )}2

]1/2 [
1

n

n∑

i=1

{g�(Xi )− Pg�}2
]1/2

+
[
1

n

n∑

i=1

{U (r−1)
n−1,−i (δXi h�)− Pr−1h�(Xi )}2

]1/2 [
1

n

n∑

i=1

{gk(Xi )− Pgk}2
]1/2

+ n−1/2|Gn ((gk − Pgk)(g� − Pg�)) | + |(Un(hk)− Prhk)(Un(h�)− Prh�)|,

where we have used the Cauchy–Schwarz inequality. Since n−1∑n
i=1{g(Xi )− Pg}2

is decomposed as P(g− Pg)2 + n−1/2
Gn((g− Pg)2) and the supremum of the latter

123



1138 X. Chen, K. Kato

on G is bounded by σ 2
g + n−1/2‖Gn‖Ğ·Ğ , we have

�n := max
1�k,��N

∣∣Ĉk,� − P(gk − Pgk)(g� − Pg�)
∣∣

� ϒn + 2σgϒ
1/2
n + 2n−1/4ϒ

1/2
n ‖Gn‖1/2Ğ·Ğ + n−1/2‖Gn‖Ğ·Ğ + ‖Un(h)− Prh‖2H

� 2ϒn + 2σgϒ
1/2
n + 2n−1/2‖Gn‖Ğ·Ğ + ‖Un(h)− Prh‖2H,

where the second inequality follows from the inequality 2ab � a2 + b2 for a, b ∈ R.
Now, Condition (9) ensures that

ϒn

∨
(σgϒ

1/2
n )

∨
‖Un(h)− Prh‖2H

� Cγ−1σg

{
σhK

1/2
n n−1/2 + νhKnn

−3/4+1/q + (σhbh)
1/2K 3/4

n n−3/4

+ bhK
3/2
n n−1+1/q + χn

}

on the event E , so that

�n � Cγ−1
[
(bg ∨ σh)σgK

1/2
n n−1/2 + b2gKnn

−1+2/q

+ σg

{
νhKnn

−3/4+1/q + (σhbh)
1/2K 3/4

n n−3/4 + bhK
3/2
n n−1+1/q + χn

} ]

=: �n .

Therefore, the Gaussian comparison inequality of [15, Theorem 3.2] yields that on the
event E ,

P|Xn
1
(Z 
,εn ∈ B) � P(Z̃ ε ∈ Bη)+ Cη−1�

1/2
n K 1/2

n ∀B ∈ B(R), ∀η > 0.

Step 6: Conclusion Let

δ(2)n := 1

γ 1/2

{ {(bg ∨ σh)σgK
3/2
n }1/2

n1/4
+ bgKn

n1/2−1/q + (σgνh)
1/2Kn

n3/8−1/(2q)

+ σ
1/2
g (σhbh)1/4K

7/8
n

n3/8
+ (σgbh)1/2K

5/4
n

n1/2−1/(2q)
+ σ

1/2
g χ

1/2
n K 1/2

n

}
.

Then, from Steps 1–5, we have for every B ∈ B(R) and η > 0,

P|Xn
1
(Z 
n ∈ B) � P|Xn

1
(Z 
,εn ∈ BCδ(1)n )+ n−1

� P(Z̃ ε ∈ BCδ(1)n +η)+ Cη−1δ(2)n + n−1

� P(Z̃ ∈ BCδ(1)n +η+CbgK
1/2
n n−1/2

)+ Cη−1δ(2)n + 2n−1.
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Choosing η = γ−1δ
(2)
n leads to the conclusion of the theorem. ��

It remains to prove the inequality (32).

Proof of the inequality (32) For a Pr−1-integrable symmetric function f on Sr−1,
U (r−1)
n−1,−i ( f ) is a U -statistic of order r − 1 and its first projection term is

r − 1

n − 1

n∑

j=1,�=i

{Pr−2 f (X j )− Pr−1 f } =: Sn−1,−i ( f ).

Consider the following decomposition:

1

n

n∑

i=1

{U (r−1)
n−1,−i (δXi h)− Pr−1h(Xi )}2

� 2

n

n∑

i=1

{Sn−1,−i (δXi h)}2

+ 2

n

n∑

i=1

{U (r−1)
n−1,−i (δXi h)− Pr−1(δXi h)− Sn−1,−i (δXi h)}2.

(37)

Consider the second term. ByCorollaryA.4, for given x ∈ S, δxH = {δx x : h ∈ H}
isVC typewith characteristics (A, v) for envelope δx H . Hence,we applyCorollary 5.6
conditionally on Xi and deduce that

E

[
E

[∥∥∥U (r−1)
n−1,−i (δXi h)− Pr−1(δXi h)− Sn−1,−i (δXi h)

∥∥∥
2

H

∣∣∣ Xi

]]

� C
r−1∑

k=2

n−k
E

[
‖Pr−k−1(δx H)‖2Pk ,2|x=Xi

]
Kk
n = C

r−1∑

k=2

n−k‖Pr−k−1H‖2Pk+1,2K
k
n .

Since
∑r−1

k=2 n
−k‖Pr−k−1H‖2

Pk+1,2
Kk
n =∑r

k=3 n
−(k−1)‖Pr−k H‖2

Pk ,2
Kk−1
n � Cχ2

n ,
the expectation of the supremum on H of the second term on the right hand side of
(37) is at most Cχ2

n .
For the first term, observe that

n−1
n∑

i=1

{Sn−1,−i (δXi h)}2

= (r − 1)2

n(n − 1)2

n∑

i=1

∑

j �=i

∑

k �=i

{
(Pr−2h)(Xi , X j )(P

r−2h)(Xi , Xk)

− (Pr−2h)(Xi , X j )(P
r−1h)(Xi )

− (Pr−2h)(Xi , Xk)(P
r−1h)(Xi )+ (Pr−1h)2(Xi )

}
.
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1140 X. Chen, K. Kato

Let F = {Pr−2h : h ∈ H} and F = Pr−2H , and observe that for f ∈ F ,

n∑

i=1

∑

j �=i

∑

k �=i

{
f (Xi , X j ) f (Xi , Xk)− f (Xi , X j )(P f )(Xi )

− f (Xi , Xk)(P f )(Xi )+ (P f )2(Xi )
}

= n(n − 1){P2 f 2 − P(P f )2}
+

∑

(i, j)∈In,2

{
f 2(Xi , X j )− 2 f (Xi , X j )(P f )(Xi )+ (P f )2(Xi )

− P2 f 2 + P(P f )2
}

+
∑

(i, j,k)∈In,3

{
f (Xi , X j ) f (Xi , Xk)− f (Xi , X j )(P f )(Xi )

− f (Xi , Xk)(P f )(Xi )+ (P f )2(Xi )
}
.

Since P2 f 2−P(P f )2 � σ 2
h , we focus on bounding the suprema of the last two terms.

The second term is proportional to a non-degenerate U -statistic of order 2, and the
third term is proportional to a degenerate U -statistic of order 3. Define the function
classes

F1 :=
{
(x1, x2) �→ f 2(x1, x2)− 2 f (x1, x2)(P f )(x1)+ (P f )2(x1) : f ∈ F

}
,

F0
2 :=

{
(x1, x2, x3) �→

{
f (x1, x2) f (x1, x3)− f (x1, x2)(P f )(x1)

− f (x1, x3)(P f )(x1)+ (P f )2(x1)

}
: f ∈ F

}
,

F2 :=
{
(x2, x3) �→ E[ f (X1, x2, x3)] : f ∈ F0

2

}
,

F3 :=
{
(x1, x2, x3) �→ f (x1, x2, x3)− E[ f (X1, x2, x3)] : f ∈ F0

2

}
,

together with their envelopes

F1(x1, x2) := F2(x1, x2)+ 2F(x1, x2)(PF)(x1)+ (PF)2(x1),

F0
2 (x1, x2, x3) := F(x1, x2)F(x1, x3)+ F(x1, x2)(PF)(x1)

+ F(x1, x3)(PF)(x1)+ (PF)2(x1),

F2(x2, x3) := E[F0
2 (X1, x2, x3)],

F3(x1, x2, x3) := F0
2 (x1, x2, x3)+ F2(x2, x3),

respectively. Lemma 5.4 yields that F is VC type with characteristics (4
√
A, 2v)

for envelope F , and Corollary A.1 (i) in [14] together with Lemma 5.4 yield that
F1,F2,F3 are VC type with characteristics bounded by CA,Cv for envelopes
F1, F2, F3, respectively. Functions in F1 are not symmetric, but after symmetriza-
tion we may apply Corollaries 5.5 and 5.6 for k = 1 and k = 2, respectively. Together
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Jackknife multiplier bootstrap for U-processes 1141

with the Jensen and Cauchy–Schwarz inequalities, we deduce that

E[‖U (2)
n ( f )− P2 f ‖F1 ]

� C

{
sup
f ∈F

‖ f 2‖P2,2K
1/2
n n−1/2 + ‖F2‖P2,q/2Knn

−1+2/q + ‖F2‖P2,2Knn
−1

}

� C
(
σhbhK

1/2
n n−1/2 + b2hKnn

−1+2/q
)
,

where we have used ‖Pr−2h‖4
P2,4

� σ 2
hb

2
h for h ∈ H by Condition (MT).

Next, observe that‖U (3)
n ( f )‖F0

2
� ‖U (2)

n ( f )‖F2+‖U (3)
n ( f )‖F3 . Since for f ∈ F0

2 ,
E[ f (x1, X2, X3)] = E[ f (X1, x2, X3)] = E[ f (X1, X2, x3)] = E[ f (x1, X2, x3)] =
E[ f (x1, x2, X3)] = 0 for all x1, x2, x3 ∈ S, both U (2)

n ( f ), f ∈ F2 and U
(3)
n ( f ), f ∈

F3 are completely degenerate. So, applying Corollary 5.5 to F2 and F3 after sym-
metrization, combined with the Jensen and Cauchy–Schwarz inequalities, we deduce
that

E[‖U (3)
n ( f )‖F0

2
] � C

{
sup
f ∈F

‖ f �2‖P2,2Knn
−1 + ‖F�2‖P2,q/2K

2
n n

−3/2+2/q

+ sup
f ∈F

‖ f 2‖P2,2K
3/2
n n−3/2 + ‖F2‖P2,q/2K

3
nn

−2+2/q
}

� C

{
sup
f ∈F

‖ f �2‖P2,2Knn
−1 + ‖F�2‖P2,q/2K

2
n n

−3/2+2/q

+ σhbhK
3/2
n n−3/2 + b2hK

3
nn

−2+2/q
}

where recall that f �2(x1, x2) := f �2
P (x1, x2) := ∫

f (x1, x) f (x, x2)dP(x) for a
symmetric measurable function f on S2. For f ∈ F , observe that by the Cauchy–
Schwarz inequality,

‖ f �2‖2P2,2 =
∫∫ (∫

f (x1, x) f (x, x2)dP(x)

)2
dP(x1)dP(x2)

�
(∫∫

f 2(x1, x2)dP(x1)dP(x2)

)2
= ‖ f ‖4P2,2 � σ 4

h .

On the other hand, ‖F�2‖P2,q/2 = ν2h by the definition of νh. Therefore, we conclude
that

E

[∥∥∥∥∥n
−1

n∑

i=1

{Sn−1,−i (δXi h)}2
∥∥∥∥∥
H

]

� C
{
σ 2
hKnn

−1 + ν2hK
2
n n

−3/2+2/q + σhbhK
3/2
n n−3/2 + b2hK

3
nn

−2+2/q + χ2
n

}
.
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1142 X. Chen, K. Kato

This completes the proof. ��
Proof of Corollary 3.2 This follows from the discussion before Theorem 3.1 combined
with the anti-concentration inequality (Lemma A.1), and optimization with respect to
γ . It is without loss of generality to assume that ηn � σ

1/2
g since otherwise the result

is trivial by taking C or C ′ large enough, and hence Condition (9) is automatically
satisfied. ��
Acknowledgements The authors would like to thank the anonymous referees and an Associate Editor for
their constructive comments that improve the quality of this paper.

Appendix A. Supporting lemmas

This appendix collects some supporting lemmas that are repeatedly used in the main
text.

Lemma A.1 (An anti-concentration inequality for the Gaussian supremum) Let
(S,S, P) be a probability space, and let G ⊂ L2(P) be a P-pre-Gaussian class
of functions. Denote by WP a tight Gaussian random variable in �∞(G) with mean
zero and covariance function E[WP (g)WP (g′)] = CovP (g, g′) for all g, g′ ∈ G
where CovP (·, ·) denotes the covariance under P. Suppose that there exist constants
σ , σ > 0 such that σ 2 � VarP (g) � σ 2 for all g ∈ G. Then for every ε > 0,

sup
t∈R

P

{∣∣∣∣∣supg∈G
WP (g)− t

∣∣∣∣∣ � ε

}
� Cσ ε

{
E

[
sup
g∈G

WP (g)

]
+√1 ∨ log(σ/ε)

}
,

where Cσ is a constant depending only on σ and σ .

Proof See Lemma A.1 in [14]. ��
Lemma A.2 Let F be a class of real-valued measurable functions on a measurable
space (X ,A) with finite measurable envelope F. Then for any probability measure R
on (X ,A) such that RF2 < ∞, we have

N (F , ‖ · ‖R,2, 4ε‖F‖R,2) � sup
Q

N (F , ‖ · ‖Q,2, ε‖F‖Q,2)

for every 0 < ε � 1, where supQ is taken over all finitely discrete distributions on X .

Proof This follows from approximating R by a finitely discrete distribution. See Prob-
lem 2.5.1 in [53]. ��
Lemma A.3 Let (X ,A), (Y, C) be measurable spaces and let F be a class of real-
valued jointly measurable functions on X × Y with finite measurable envelope F.
Let R be a probability measure on (Y, C) and for a jointly measurable function f :
X × Y → R, define f : X → R by f (x) := ∫

f (x, y)dR(y) whenever the latter
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integral is defined and finite for every x ∈ X . Suppose that F is everywhere finite and
let F = { f : f ∈ F}. Then, for every r , s ∈ [1,∞),

sup
Q

N (F, ‖ · ‖Q,r , 2ε‖F‖Q,r ) � sup
Q′

N (F , ‖ · ‖Q′,s, ε
r‖F‖Q′,s/4)

where supQ and supQ′ are taken over all finitely discrete distributions onX andX×Y ,
respectively.

Proof This follows from Lemma A.2 in [25] combined with Lemma A.2. ��
If R = δy for some y ∈ Y , then ‖δy f ‖rQ,r = ‖ f ‖rQ×δy ,r (with δy f (x) = f (x, y))

and Q × δy is finitely discrete if Q is so. Hence, we have the following corollary.

Corollary A.4 Under the setting of Lemma A.3, for every y ∈ Y and r ∈ [1,∞),

sup
Q

N (δy F, ‖ · ‖Q,r , ε‖δy F‖Q,r ) � sup
Q′

N (F , ‖ · ‖Q′,r , ε‖F‖Q′,r ).

Lemma A.5 Let F and G be function classes on a set X with finite envelopes F and
G, respectively. If F · G stands for the class of pointwise products of functions from
F and G, then for any r ∈ [1,∞),

sup
Q

N (F · G, ‖ · ‖Q,r , 2ε‖FG‖Q,r )
� sup

Q
N (F , ‖ · ‖Q,r , ε‖F‖Q,r ) sup

Q
N (G, ‖ · ‖Q,r , ε‖G‖Q,r ),

where supQ is taken over all finitely discrete distributions on X .

Proof See Lemma A.1 in [25] or [53, Section 2.10.3]. ��

Appendix B. Strassen–Dudley theorem and its conditional version

In this appendix, we state the Strassen–Dudley theorem together with its condi-
tional version due to [42]. These results play fundamental roles in the proofs of
Proposition 2.1 and Theorem 3.1. In what follows, let (S, d) be a Polish metric
space equipped with its Borel σ -field B(S). For any set A ⊂ S and δ > 0, let
Aδ = {x ∈ S : inf y∈A d(x, y) � δ}. We first state the Strassen–Dudley theorem.

Theorem B.1 (Strassen–Dudley) Let X be an S-valued random variable defined on
a probability space (�,A,P) which admits a uniform random variable on (0, 1)
independent of X. Let α, β > 0 be given constants, and let G be a Borel probability
measure on S such that P(X ∈ A) � G(Aα)+ β for all A ∈ B(S). Then there exists
an S-valued random variable Y such that L(Y )(:= P ◦ Y−1) = G and P(d(X ,Y ) >
α) � β.

For a proof of the Strassen–Dudley theorem, we refer to [20]. Next, we state a
conditional version of the Strassen–Dudley theorem due to [42, Theorem 4].
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1144 X. Chen, K. Kato

Theorem B.2 (Conditional version of Strassen–Dudley) Let X be an S-valued random
variable defined on a probability space (�,A,P), and let G be a countably generated
subσ -field ofA. Suppose that there is a uniform randomvariable on (0, 1) independent
of G ∨ σ(X), and let � × B(S) � (ω, A) �→ G(A | G)(ω) be a regular conditional
distribution given G, i.e., for each fixed A ∈ B(S), G(A | G) is measurable with
respect to G and for each fixed ω ∈ �, G(· | G)(ω) is a probability measure on B(S).
If

E
∗
[

sup
A∈B(S)

{P(X ∈ A | G)− G(Aα | G)}
]

� β,

then there exists an S-valued random variable Y such that the conditional distribution
of Y given G is identical to G(· | G), and P(d(X ,Y ) > α) � β.

Remark B.1 (i) The map (ω, A) �→ P(X ∈ A | G)(ω) should be understood as a
regular conditional distribution (which is guaranteed to exist since X takes values in
a Polish space). (ii) E∗ denotes the outer expectation.

For completeness, we provide a self-contained proof of Theorem B.2, since [42]
do not provide its direct proof.

Proof of Theorem B.2 Since G is countably generated, there exists a real-valued ran-
dom variable W such that G = σ(W ). For n = 1, 2, . . . and k ∈ Z, let
Dn,k = {k/2n � W < (k + 1)/2n}. For each n, {Dn,k : k ∈ Z} forms a parti-
tion of �. Pick any D from {Dn,k : n = 1, 2, . . . ; k ∈ Z}; let PD = P(· | D)
and G(· | D) = ∫

G(· | G)dPD . Then, the Strassen–Dudley theorem yields that
there exists an S-valued random variable YD such that PD ◦ Y−1

D = G(· | D) and
PD(d(X ,YD) > α) � ε(D) := supA∈B(S){PD(X ∈ A)− G(Aα | D)}.

For each n = 1, 2, . . . , let Yn =∑k∈Z YDn,k1Dn,k , and observe that

P(d(X ,Yn) > α) =
∑

k

PDn,k (d(X ,YDn,k ) > α)P(Dn,k) �
∑

k

ε(Dn,k)P(Dn,k).

Let M be any (proper) random variable such that M � supA∈B(S){P(X ∈ A | G) −
G(Aα | G)}, and observe that

PD(X ∈ A)− G(Aα | D) = E
PD [P(X ∈ A | G)− G(Aα | G)] � E

PD [M],

where the notation E
PD denotes the expectation under PD . So,

∑

k

ε(Dn,k)P(Dn,k) �
∑

k

E
PDn,k [M]P(Dn,k) = E[M],

and taking infimum with respect to M yields that the left hand side is bounded by β.
Next, we shall verify that {L(Yn) : n � 1} is uniformly tight. In fact,

P(Yn ∈ A) =
∑

k

P({YDn,k ∈ A} ∩ Dn,k) =
∑

k

PDn,k (YDn,k ∈ A)P(Dn,k)
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=
∑

k

G(A | Dn,k)P(Dn,k) = E[G(A | G)],

and since any Borel probability measure on a Polish space is tight by Ulam’s theo-
rem, {L(Yn) : n � 1} is uniformly tight. This implies that the family of joint laws
{L(X ,W ,Yn) : n � 1} is uniformly tight and hence has a weakly convergent subse-
quence by Prohorov’s theorem. LetL(X ,W ,Yn′)

w→ Q (the notation
w→ denotes weak

convergence), and observe that the marginal law of Q on the “first two” coordinates,
S × R, is identical to L(X ,W ).

We shall verify that there exists an S-valued random variable Y such that
L(X ,W ,Y ) = Q. Since S is polish, there exists a unique regular conditional dis-
tribution, B(S) × (S × R) � (A, (x, w)) �→ Qx,w(A) ∈ [0, 1], for Q given the
first two coordinates. By the Borel isomorphism theorem [20, Theorem 13.1.1], there
exists a bijective map π from S onto a Borel subset of R such that π and π−1 are
Borel measurable. Pick and fix any (x, w) ∈ S × R, and observe that Qx,w ◦ π−1

extends to a Borel probability measure onR. Denote by Fx,w the distribution function
of Qx,w ◦π−1, and let F−1

x,w denotes its quantile function. LetU be a uniform random
variable on (0, 1) (defined on (�,A,P)) independent of (X ,W ). Then F−1

x,w(U ) has

law Qx,w ◦ π−1, and hence Y = π−1 ◦ F−1
X ,W (U ) is the desired random variable.

Now, for any bounded continuous function f on S, observe that, whenever N �
n, E[ f (YN )1Dn,k ] = ∫

Dn,k

∫
f (y)G(dy | G)dP, which implies that the conditional

distribution of Y given G is identical to G(· | G). Finally, the Portmanteau theorem
yields P(d(X ,Y ) > α) � lim infn′ P(d(X ,Yn′) > α) � β. This completes the proof.

��

Appendix C. Additional proofs for themain text

C.1. Proof of Lemma 6.1

We begin with noting that G is VC type with characteristics 4
√
A and 2v for envelope

G. The rest of the proof is almost the same as that of Theorem2.1 in [15]with B( f ) ≡ 0
(up to adjustments of the notation), but we now allow q = ∞. To avoid repetitions,
we only point out required modifications. In what follows, we will freely use the
notation in the proof of [15, Theorem 2.1], but modify Kn to Kn = v log(A ∨ n), and
C refers to a universal constant whose value may vary from place to place. In Step
1, change ε to ε = 1/n1/2. For this choice, log N (F , eP , εb) � C log(Ab/(εb)) =
C log(A/ε) � CKn , and Dudley’s entropy integral bound yields that E[‖GP‖Fε

] �
Cεb

√
log(Ab/(εb)) � Cb

√
Kn/n (there is a slip in the estimate ofE[‖GP‖Fε

] in [15],
namely, “Ab/ε” inside the log should read “Ab/(εb)”, which of course does not affect
the proof under their definition of Kn). Combining the Borell-Sudakov-Tsirel’son
inequality yields that P{‖GP‖Fε

> Cb
√
Kn/n} � 2n−1. In Step 3, Corollary 5.5

in the present paper (with r = k = 1) yields that E[‖Gn‖Fε
] � C(b

√
Kn/n +

bKn/n1/2−1/q) � CbKn/n1/2−1/q , which is valid even when q = ∞. Then, instead
of applying their Lemma 6.1, we apply Markov’s inequality to deduce that
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P

{
‖Gn‖Fε

> CbKn/(γ n
1/2−1/q)

}
� γ.

In Step 4, instead of their equation (14), we have

P(Z ε ∈ B) � P(Z̃ ε ∈ BC7δ)+ C

(
bσ 2K 2

n

δ3
√
n

+ Mn,X (δ)K 2
n

δ3
√
n

+ 1

n

)
∀B ∈ B(R)

whenever δ � 2cσ−1/2(log N )3/2 · (log n) for some universal constant c (C7 comes
from their Theorem 3.1 and is universal). Finally, in Step 5, take

δ = C ′
{
(bσ 2K 2

n )
1/3

γ 1/3n1/6
+ 2bKn

γ n1/2−1/q

}

for some large but universal constant C ′ > 1. Under the assumption that K 3
n � n, this

choice ensures that δ � 2cσ−1/2(log N )3/2 · (log n), and

bσ 2K 2
n

δ3
√
n

� 1

(C ′)3n
.

It remains to bound Mn,X (δ). For finite q, their Step 4 shows that

Mn,X (δ)K 2
n

δ3
√
n

� 2qbq K 2
n (log N )

q−3

δqnq/2−1 .

Since log N � C ′′Kn for some universal constant C ′′, the right hand side is bounded
by

γ q(C ′′)q−3

(C ′)q Kn
.

Since Kn is bounded from below by a universal positive constant (by assumption),
and γ ∈ (0, 1), by taking C ′ > C ′′, the above term is bounded by γ up to a universal
constant.

Now, consider the q = ∞ case. In that case, max1� j�N |X̃1 j | � 2b almost surely
and δ

√
n/ log N � 2C ′b/(C ′′γ ) > 2b provided that C ′ > C ′′. Hence Mn,X (δ) = 0

in that case. These modifications lead to the desired conclusion. ��

C.1. Proofs for Sect. 4

We first prove Theorem 4.2 and Corollary 4.3, and then prove Lemma 4.1 and Theo-
rem 4.4.

Proof of Theorem 4.2 In what follows, the notation � signifies that the left hand
side is bounded by the right hand side up to a constant that depends only on
r ,m, ζ, c1, c2,C1, L . We also write a � b if a � b and b � a. In addition, let c,C,C ′

123



Jackknife multiplier bootstrap for U-processes 1147

denote generic constants depending only on r ,m, ζ, c1, c2,C1, L; their values may
vary from place to place. We divide the rest of the proof into three steps.

Step 1 Let

S
n := sup
ϑ∈�

bm/2n

cn(ϑ)
√
n

n∑

i=1

ξi

[
U (r−1)
n−1,−i (δDi hn,ϑ )−Un(hn,ϑ )

]
.

In this step, we shall show that the result (15) holds with Ŝn and Ŝ
n replaced by Sn
and S
n , respectively.

We first verify Conditions (PM), (VC), (MT), and (5) for the function class

Hn =
{
bm/2n cn(ϑ)

−1hn,ϑ : ϑ ∈ �
}

with a symmetric envelope

Hn(d1:r ) = b−(r−1/2)m
n c−1

1 ‖L‖r
Rmϕ(v1:r )

r∏

i=1

1X ζ/2(xi )

∏

1�i< j�r

1[−2,2]m (b−1
n (xi − x j )).

Condition (PM) follows from our assumption. For Condition (VC), that Hn is VC
type with characteristics (A′, v′) satisfying log A′ � log n and v′ � 1 follows from a
slight modification of the proof of Lemma 3.1 in [25]. The latter part follows from our
assumption. Condition (VC) guarantees the existence of a tight Gaussian random vari-
ableWP,n(g), g ∈ Pr−1Hn =: Gn in �∞(Gn)withmean zero and covariance function
E[WP,n(g)WP,n(g′)] = CovP (g, g′) for g, g′ ∈ Gn . LetWP,n(ϑ) = WP,n(gn,ϑ ) for
ϑ ∈ �where gn,ϑ = bm/2n cn(ϑ)−1Pr−1hn,ϑ . It is seen thatWP,n(ϑ), ϑ ∈ � is a tight
Gaussian random variable in �∞(�) with mean zero and covariance function (14).

Next, we determine the values of parameters σg, σg, bg, σh, bh, χn, νh for the
function classHn . We will show in Step 3 that we may choose

σg � 1, σg � 1, bg � b−m/2
n , σh � b−m/2

n , bh � b−3m/2
n , (38)

and bound νh and χn as

νh � b−m(1−1/q)
n , χn � (log n)3/2/(nb3m/2n ). (39)

Given these choices and bounds, Corollaries 2.2 and 3.2 yield that

sup
t∈R

∣∣P(Sn � t)− P(S̃n � t)
∣∣ � Cn−c and

P

{
sup
t∈R

∣∣∣P|Dn
1
(S
n � t)− P(S̃n � t)

∣∣∣ > Cn−c
}

� Cn−c.
(40)
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1148 X. Chen, K. Kato

Step 2 Observe that

|Ŝn − Sn| � sup
ϑ∈�

∣∣∣∣
cn(ϑ)

ĉn(ϑ)
− 1

∣∣∣∣ ‖
√
nUn‖Hn and

|Ŝ
n − S
n| � sup
ϑ∈�

∣∣∣∣
cn(ϑ)

ĉn(ϑ)
− 1

∣∣∣∣ ‖U
n‖Hn . (41)

We shall bound supϑ∈� |cn(ϑ)/̂cn(ϑ)− 1|, ‖√nUn‖Hn , and ‖U
n‖Hn .
Choose n0 by the smallest n such that C1n−c2 � 1/2; it is clear that n0 depends

only on c2 and C1. It suffices to prove (15) for n � n0, since for n < n0, the result
(15) becomes trivial by taking C sufficiently large. So let n � n0. Then Condition
(T8) ensures that with probability at least 1 − C1n−c2 , infϑ∈� ĉn(ϑ)/cn(ϑ) � 1/2.
Since |a−1 − 1| � 2|a − 1| for a � 1/2, Condition (T8) also ensures that

P

{
sup
ϑ∈�

∣∣∣∣
cn(ϑ)

ĉn(ϑ)
− 1

∣∣∣∣ > Cn−c
}

� Cn−c. (42)

Next, we shall bound ‖√nUn‖Hn and ‖U
n‖Hn . Given (38) and (39), and in view
of the fact that the covering number of Hn ∪ (−Hn) := {h,−h : h ∈ Hn} is at most
twice that ofHn , applying Corollaries 2.2 and 3.2 to the function classHn ∪ (−Hn),
we deduce that

sup
t∈R

∣∣P(‖√nUn‖Hn � t)− P(‖WP,n‖Gn � t)
∣∣ � Cn−c and

P

{
sup
t∈R

∣∣∣P|Dn
1
(‖U
n‖Hn � t)− P(‖WP,n‖Gn � t)

∣∣∣ > Cn−c
}

� Cn−c.

(Theorem 3.7.28 in [29] ensures that the Gaussian process WP,n extends to the sym-
metric convex hull of Gn in such a way thatWP,n has linear, bounded, and uniformly
continuous (with respect to the intrinsic pseudometric) sample paths; in particular,
{WP,n(g) : g ∈ Gn ∪ (−Gn)} is a tight Gaussian random variable in �∞(Gn ∪ (−Gn))
with mean zero and covariance function E[WP,n(g)WP,n(g′)] = CovP (g, g′) for
g, g′ ∈ Gn ∪ (−Gn) and supg∈Gn∪(−Gn)

Wn(g) = ‖WP,n‖Gn .) Dudley’s entropy inte-
gral bound and the Borell-Sudakov-Tsirel’son inequality yield that P{‖WP,n‖Gn >

C(log n)1/2} � 2n−1, so that

P{‖√nUn‖Hn > C(log n)1/2} � Cn−c and

P

{
P|Dn

1
{‖U
n‖Hn > C(log n)1/2} > Cn−c

}
� Cn−c.

(43)

Now, the desired result (15) follows from combining (40)–(43) and the anti-
concentration inequality (LemmaA.1). In fact, the anti-concentration inequality yields

sup
t∈R

P(|S̃n − t | � Cn−c) � C ′n−c(log n)1/2. (44)
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Jackknife multiplier bootstrap for U-processes 1149

Hence, combining the bounds (40)–(44), we have for every t ∈ R,

P(Ŝn � t) � P(Sn � t + Cn−c)+ Cn−c

� P(S̃n � t + Cn−c)+ Cn−c

� P(S̃n � t)+ Cn−c,

and likewise P(Ŝn � t) � P(S̃n � t)− Cn−c. Similarly, we have

P

{
sup
t∈R

∣∣∣P|Dn
1
(Ŝ
n � t)− P(S̃n � t)

∣∣∣ > Cn−c
}

� Cn−c.

Step 3 It remains to verify (38) and (39). First, that we may choose σg � 1 follows
from Conditions (T6) and (T7). For ϕ ∈ � and k = 1, . . . , r − 1, let

ϕ[r−k](v1:k, xk+1:r ) = E[ϕ(v1:k, Vk+1:r ) | Xk+1:r = xk+1:r ]
r∏

j=k+1

p(x j ),

and define ϕ[r−k] similarly. Then, for k = 1, . . . , r ,

(Pr−khn,ϑ )(d1:k) =
⎛

⎝
k∏

j=1

Lbn (x − x j )

⎞

⎠
∫

[−1,1]m(r−k)
ϕ[r−k](v1:k, x − bnxk+1:r )

⎛

⎝
r∏

j=k+1

L(x j )

⎞

⎠ dxk+1:r ,

where x − bnxk+1:r = (x − bnxk+1, . . . , x − bnxr ). Likewise, we have

(Pr−k Hn)(d1:k) � b−(k−1/2)m
n

(
k∏

i=1

1X ζ/2(xi )

)⎛

⎝
∏

1�i< j�k

1[−2,2]m (b−1
n (xi − x j ))

⎞

⎠

×
∫

[−2,2]m(r−k)
ϕ[r−k](v1:k, x1 − bnxk+1:r )dxk+1:r .

Suppose first that q is finite and let � ∈ [2, q]. Observe that by Jensen’s inequality,

‖Pr−khn,ϑ‖�Pk ,�
� C�b−(�−1)mk

n

∫

[−1,1]mr
E

[
ϕ�(V1:r ) | X1:r = x − bnx1:r

]

⎛

⎝
k∏

j=1

p(x − bnx j )

⎞

⎠ dx1:r

� C�b−(�−1)mk
n

∫

[−1,1]mr
E

[
ϕ�(V1:r ) | X1:r = x − bnx1:r

]
dx1:r

� C�b−(�−1)mk
n ,
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1150 X. Chen, K. Kato

so that suph∈Hn
‖Pr−kh‖Pk ,� � b−m[(k−1/2)−k/�]

n . Hence, we may choose σg � 1

and σh � b−m/2
n . Similarly, Jensen’s inequality and the symmetry of ϕ yield that

‖Pr−k Hn‖�Pk ,�
� C�b−(k−1/2)m�+m(k−1)

n ×
∫

X ζ/2×[−2,2]m(r−1)

E

[
ϕ�(V1:r ) | X1 = x1, X2:r = x1 − bnx2: j

]
p(x1)

k∏

j=2

p(x1 − bnx j )dx1:r

� C�b−(k−1/2)m�+m(k−1)
n

∫

X ζ/2×[−2,2]m(r−1)

E

[
ϕ�(V1:r ) | X1 = x1, X2:r = x1 − bnx2: j

]
dx1:r

� C�b−(k−1/2)m�+m(k−1)
n ,

so that ‖Pr−k Hn‖Pk ,� � b−m[(1−1/�)k−(1/2−1/�)]
n . Hence,wemay choose bg � b−m/2

n ,

bh � b−3m/2
n , and bound χn as

χn �
r∑

k=3

n−(k−1)/2(log n)k/2b−mk/2
n � (log n)3/2

nb3m/2n

.

Similar calculations yield that

‖(Pr−2Hn)
�2‖q/2

P2,q/2
� Cqb−m(q−1)

n

∫

X ζ/2×[−2,2]m(r−1)

E
[
ϕq(V1:r ) | X1 = x1, X2:r = x1 − bnx2: j

]
dx1:r

� Cqb−m(q−1)
n .

Hence, νh � b−m(1−1/q)
n .

It is not difficult to verify that (38) and (39) hold in the q = ∞ case as well under
the convention that 1/q = 0 for q = ∞. This completes the proof. ��
Proof of Corollary 4.3 Let ηn := Cn−c where the constants c,C are those given in
Theorem 4.2. Denote by qS̃n (α) the α-quantile of S̃n . Define the event

En :=
{
sup
t∈R

∣∣∣P|Dn
1
(Ŝ
n � t)− P(S̃n � t)

∣∣∣ � ηn

}
,

whose probability is at least 1 − ηn . On this event,

P|Dn
1

{
Ŝ
n � qS̃n (α + ηn)

}
� P

{
S̃n � qS̃n (α + ηn)

}− ηn

= α + ηn − ηn = α,
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Jackknife multiplier bootstrap for U-processes 1151

where the second equality follows from the fact that the distribution function of S̃n is
continuous (cf. Lemma A.1). This shows that the inequality q

Ŝ
n
(α) � qS̃n (α + ηn)

holds on the event En , so that

P

{
Ŝn � q

Ŝ
n
(α)
}

� P
{
Ŝn � qS̃n (α + ηn)

}+ P(Ec
n )

� P
{
S̃n � qS̃n (α + ηn)

}+ 2ηn

= α + 3ηn .

The above discussion presumes that α + ηn < 1, but if α + ηn � 1, then the last

inequality is trivial. Likewise, we have P
{
Ŝn � q

Ŝ
n
(α)
}

� α − 3ηn . This completes

the proof. ��

Proof of Lemma 4.1 We begin with noting that

∣∣∣∣
ĉn(ϑ)

cn(ϑ)
− 1

∣∣∣∣ �
∣∣∣∣
ĉ2n(ϑ)

c2n(ϑ)
− 1

∣∣∣∣ �
1

n

n∑

i=1

[
{U (r−1)

n−1,−i (δDi h̆n,ϑ )−Un(h̆n,ϑ )}2 − 1
]
,

where h̆n,ϑ = bm/2n cn(ϑ)−1hn,ϑ . We note that VarP (Pr−1h̆n,ϑ ) = 1 by the definition
of cn(ϑ). Recall from the proof of Theorem 4.2 that the function class Hn = {h̆n,ϑ :
ϑ ∈ �} is VC type with characteristics (A′, v′) satisfying log A′ � log n and v′ � 1
for envelope Hn . Now, from Step 5 in the proof of Theorem 3.1 applied withH = Hn ,
we have for every γ ∈ (0, 1), with probability at least 1 − γ − n−1,

∥∥∥∥∥
1

n

n∑

i=1

[
{U (r−1)

n−1,−i (δDi h)−Un(h)}2 − 1
]∥∥∥∥∥

Hn

� Cγ−1
[
(bg ∨ σh)σgK

1/2
n n−1/2 + b2gKnn

−1+2/q

+ σg

{
νhKnn

−3/4+1/q + (σhbh)
1/2K 3/4

n n−3/4 + bhK
3/2
n n−1+1/q + χn

} ]

for some constant C depending only on r . The desired result follows from the choices
of parameters σg, bg, σh, bh, χn , and νh given in the proof of Theorem 4.2 together
with choosing γ = n−c for some constant c sufficiently small but depending only on
r ,m, ζ, c1, c2,C1, L . ��

Proof of Theorem 4.4 The proof follows from similar arguments to those in the proof
of Theorem 4.2, so we only highlight the differences. Define the function class

Hn =
{
bm/2cn(ϑ, b)

−1hϑ,b : ϑ ∈ �, b ∈ Bn

}
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1152 X. Chen, K. Kato

with a symmetric envelope

Hn(d1:r ) = b−(r−1/2)m
n c−1

1 ‖L‖r
Rmϕ(v1:r )

r∏

i=1

1X ζ/2(xi )

∏

1�i< j�r

1[−2,2]m (b
−1
n (xi − x j )).

Recall that we assume q = ∞ in this theorem. In view of the calculations in the proof
of Theorem 4.2, we may choose

σg � 1, σg � 1, bg � κm(r−1)
n b−m/2

n , σh � b−m/2
n , bh � κm(r−2)

n b−3m/2
n ,

and bound νh and χn as

νh � κ
m/2
n b−m

n , χn � κ
m(r−2)
n (log n)3/2

nb3m/2n

.

Given these choices and bounds, the conclusion of the theorem follows from repeating
the proof of Theorem 4.2. ��

Appendix D. Conditional UCLT for JMB

In this section we prove the conditional UCLT for the JMB when the function classH
and the distribution P are independent of n under a metric entropy condition. We obey
the notation used in Sects. 2 and 3 but sincewe consider a limit theoremwe assume that
the probability space is (�,A,P) = (SN,SN, PN) × (�, C, R) and X1, X2, . . . are
the coordinate projections of (SN,SN, PN). To formulate the conditional UCLT, recall
that weak convergence in �∞(H) is “metrized” by the bounded Lipschitz distance: for
arbitrarymapsXn : � → �∞(H) and a tight Borel measurable mapX : � → �∞(H),
Xn converge weakly to X if and only if

dBL(Xn,X) := sup
f ∈BL1

|E∗[ f (Xn)] − E[ f (X)]| → 0,

where BL1 = { f : �∞(H) → R : | f | � 1, | f (x) − f (y)| � ‖x − y‖H ∀x, y ∈
�∞(H)}; see [53, p. 73]. If the function class G = Pr−1H = {Pr−1h : h ∈ H} is
P-pre-Gaussian, then there exists a tight Gaussian random variableWP in �∞(G)with
mean zero and covariance function E[WP (g)WP(g′)] = CovP (g, g′). Set WP (h) =
WP ◦ Pr−1(h), which is a tight Gaussian random variable in �∞(H) with mean zero
and covariance function E[WP (h)WP (h′)] = CovP (Pr−1h, Pr−1h′). We will show
that conditionally on X∞

1 = {X1, X2, . . . },U
n converges weakly toWP in probability
in the sense that

dBL|X∞
1
(U
n,WP ) := sup

f ∈BL1

|E|X∞
1

[ f (U
n)] − E[ f (WP )]|

123



Jackknife multiplier bootstrap for U-processes 1153

converges to zero in outer probability under regularity conditions (E|X∞
1

denotes

the conditional expectation given X∞
1 ). Since the map (ξ1, . . . , ξn) �→ n−1/2∑n

i=1

ξi [U (r−1)
n−1,−i (δXi ·)− Un(·)] is continuous from R

n into �∞(H), the multiplier process

U


n induces a Borel measurable map into �∞(H) for fixed X∞

1 . For an arbitrary map
Y : � → R, let Y ∗ denote the measurable cover [53, lemma 1.2.1].

Theorem D.1 (Conditional UCLT for JMB) Let H be a fixed pointwise measurable
class of symmetric measurable functions on Sr with symmetric envelope H ∈ L2(Pr )

such that
∫ 1
0

√
λ(ε)dε < ∞ with λ(ε) = supQ log N (H, ‖ · ‖Q,2, ε‖H‖Q,2). Then

G = Pr−1H = {Pr−1h : h ∈ H} is P-pre-Gaussian, dBL(Un/r ,WP ) → 0, and

dBL|X∞
1
(U



n,WP )

∗ P→ 0 as n → ∞.

Theorem D.1 should be compared with Theorem 2.1 in [5] that establishes a con-
ditional UCLT for the empirical bootstrap for a non-degenerate U -process under
the same metric entropy condition. Interestingly, however, our moment condition
on the envelope H is weaker than their condition (2.3), which, if r = 2, requires
E[H(X1, X1)] < ∞ in addition to E[H2(X1, X2)] < ∞. This comes from the differ-
ence in how to estimate the Hajék projection; our JMB estimates the Hajék projection
by a jackknife U -statistic, while the empirical bootstrap estimates it by a V -statistic
(see Remark 3.1).

If we are interested in suph∈H Un(h)/r , then the result of Theorem D.1 implies
that

sup
t∈R

∣∣∣∣∣P
(
sup
h∈H

Un(h)/r � t

)
− P

(
sup
g∈G

WP (g) � t

)∣∣∣∣∣→ 0 and

sup
t∈R

∣∣∣∣∣P|X∞
1

(
sup
h∈H

U


n(h) � t

)
− P

(
sup
g∈G

WP (g) � t

)∣∣∣∣∣
P→ 0

as long as the distribution function of supg∈G WP (g) is continuous, which is true
if infg∈G VarP (g) > 0 (cf. Lemma A.1). When the function class H is centrally
symmetric (i.e., −h ∈ H whenever h ∈ H) so that suph∈H Un(h) = ‖Un‖H,
supg∈G WP (g) = ‖WP‖G , and suph∈H U



n(h) = ‖U
n‖H, then the distribution

function of ‖WP‖G is continuous under a much less restrictive assumption that
VarP (g) > 0 for some g ∈ G. Indeed, from Theorem 11.1 in [17], the distribution
of ‖WP‖G is (absolutely) continuous on (�0,∞) with �0 � 0 being the left endpoint
of the support of ‖WP‖G , but from [37, p. 57–58], �0 = 0. This implies that, unless
‖WP‖G = 0 almost surely, the distribution function of ‖WP‖G does not have a jump
at �0 = 0 (as P(‖WP‖G = 0) = 0) and so is everywhere continuous on R.

Proof of TheoremD.1 The first two results are essentially implied by the proof of The-
orem 4.9 in [4] but we include their proofs for completeness. By changing H to
H ∨ 1 if necessary, we may assume ‖G‖P,2 > 0 (recall G = Pr−1H ), which implies
‖H‖P,2 > 0. By Jensen’s inequality, ‖Pr−1h‖P,2 � ‖h‖Pr ,2 and so we have

N (G, ‖ · ‖P,2, τ‖H‖Pr ,2) � N (H, ‖ · ‖Pr ,2, τ‖H‖Pr ,2).
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The right hand side is bounded by supQ N (H, ‖ · ‖Q,2, τ‖H‖Q,2/4) by Lemma A.2.
Conclude that

∫ 1

0

√
log N (G, ‖ · ‖P,2, τ‖H‖Pr ,2)dτ < ∞,

which implies by Dudley’s criterion for sample continuity that G is P-pre-Gaussian
(to be precise we have to verify

∫ 1
0

√
log N ({g − Pg : g ∈ G}, ‖ · ‖P,2, τ )dτ < ∞

but this is immediate). The convergence of marginals ofUn/r toWP follows from the
multidimensional CLT forU -statistics. To conclude dBL(Un/r ,WP ) → 0, it suffices
to show the asymptotic equicontinuity condition

lim
δ↓0 lim sup

n→∞
P

(
sup

‖h−h′‖Pr ,2<δ‖H‖Pr ,2
|Un(h − h′)| > η

)
= 0 (45)

holds for every η > 0. We defer the proof of (45) after the proof of the theorem.
To prove the last result of the theorem, let eP (h, h′) = ‖Pr−1(h − h′)‖P,2 and

for given δ > 0 let {h1, . . . , hN (δ)} be a (δ‖G‖P,2)-net of (H, eP ). Let πδ : H →
{h1, . . . , hN (δ)} be a map such that for each h ∈ H, eP (h, πδ(h)) � δ‖G‖P,2. Define

U


n,δ := U



n ◦ πδ and WP,δ := WP ◦ πδ . For any f ∈ BL1, we have

|E|X∞
1

[ f (U
n)] − E[ f (WP )]| � |E|X∞
1

[ f (U
n)] − E|X∞
1

[ f (U
n,δ)]|
+ |E|X∞

1
[ f (U
n,δ)] − E[ f (WP,δ)]|

+ |E[ f (WP,δ)] − E[ f (WP )]|.
(46)

The third term on the right hand side of (46) is bounded by E[2 ∧ ‖WP,δ − WP‖H]
and by constructionWP has sample paths almost surely uniformly eP -continuous, so
that E[2 ∧ ‖WP,δ − WP‖H] → 0 as δ ↓ 0 by the dominated convergence theorem.
Since U
n,δ can be identified with a Gaussian vector of dimension N (δ) conditionally
on X∞

1 , by Lemma 3.7.46 in [29], the second term on the right hand side of (46) is
bounded by

c(δ) max
1� j,k�N (δ)

|Ĉ j,k − CovP (P
r−1h j , P

r−1hk)|1/3

for some constant c(δ) that depends only on δ, where

Ĉ j,k = n−1
n∑

i=1

{U (r−1)
n−1,−i (δXi h j )−Un(h j )}{U (r−1)

n−1,−i (δXi hk)−Un(hk)}.

From Step 5 of the proof of Theorem 3.1 and using the notation in the proof, we have

max
1� j,k�N (δ)

|Ĉ j,k − CovP (P
r−1h j , P

r−1hk)|
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� 2ϒn + 2‖G‖P,2ϒ
1/2
n + 2n−1/2‖Gn‖Ğ·Ğ + ‖Un(h)− Prh‖2H.

From the UCLT for the U -process established in the first paragraph, the last term on
the right hand side is oP(1). The function class Ğ · Ğ is weak P-Glivenko-Cantelli
by Lemmas A.3 and A.5 together with Theorem 2.4.3 in [53], which implies that
n−1/2‖Gn‖Ğ·Ğ = oP(1). From Lemma D.3 below, we also have ϒn = oP(1).

Finally, the first term on the right hand side of (46) is bounded by

ε + 2P|X∞
1
(‖U
n‖Hδ

> ε)

for any ε > 0, where Hδ = {h − h′ : h, h′ ∈ H, eP (h, h′) < 2δ‖G‖P,2}. Let
�n,δ := ‖n−1∑n

i=1{U (r−1)
n−1,−i (δXi h)−Un(h)}2‖Hδ

. By Markov’s inequality,

P|X∞
1
(‖U
n‖Hδ

> ε) �
E|X∞

1
[‖U
n‖Hδ

]
ε

.

From Step 5 of the proof of Theorem 3.1,

N (Hδ, d, 2τ‖H‖PIn,r ,2
) � N 2(H, ‖ · ‖PIn,r ,2

, τ‖H‖PIn,r ,2
)

with d(h, h′) = {E|X∞
1

[{U
n(h)− U


n(h′)}2]}1/2. Hence by Dudley’s entropy integral

bound, we have

E|X∞
1

[‖U
n‖Hδ
] �

∫ �
1/2
n,δ

0

√
1 + λ(τ/‖H‖PIn,r ,2

)dτ

up to a constant independent of n and δ, and ‖H‖2
PIn,r ,2

= |In,r |−1∑
In,r H

2(Xi1 , . . . ,

Xir ) = ‖H‖2Pr ,2 + oP(1) by the law of large numbers for U -statistics [18, Theorem
4.1.4]. From Step 4 of the proof of Theorem 3.1,

�n,δ � 8(δ‖G‖P,2)
2 + 8n−1/2‖Gn‖Ğ·Ğ + 8ϒn,

and the last two terms on the right hand side are oP(1) while the first term can be
arbitrarily small by taking δ sufficiently small. This implies that for any η > 0,

lim
δ↓0 lim sup

n→∞
P

(
P|X∞

1
(‖U
n‖Hδ

> ε) > η
)

= 0.

Putting everything together, we conclude dBL|X∞
1
(U



n,WP )

∗ P→ 0, completing the
proof. ��
Lemma D.2 Under the assumption of Theorem D.1, the asymptotic equicontinuity
condition (45) holds.
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Proof of LemmaD.2 For δ ∈ (0, 1], let H′
δ = {h − h′ : ‖h − h′‖Pr ,2 < δ‖H‖Pr ,2}.

By Markov’s inequality, it suffices to show that

lim
δ↓0 lim sup

n→∞
E[‖Un‖H′

δ
] = 0.

We use Hoeffding’s averaging [49, Section 5.1.6] to bound the expectation. Let

S f (x1, . . . , xn) = 1

m

m∑

i=1

f (x(i−1)r+1, . . . , xir ) with m = 
n/r�.

Then we have

Un(h) = 1

n!
∑

j1,..., jn

Sh(X j1, . . . , X jn ),

where
∑

j1,..., jn are taken over all permutations j1, . . . , jn of 1, . . . , n. By Jensen’s
inequality, E[‖Un‖H′

δ
] is bounded by

√
nE[‖Sh(X1, . . . , Xn)− Prh‖H′

δ
]. Since

Sh(X1, . . . , Xn)− Prh = 1

m

m∑

i=1

(h(X(i−1)r+1, . . . , Xir )− Prh)

and since (X(i−1)r+1, . . . , Xir ), i = 1, . . . ,m are i.i.d., we can apply Theorem 5.2 in
[14] to conclude that

E[‖Un‖H′
δ
] � ‖H‖Pr ,2 J (δ,H′

δ, 2H)+ ‖Mr‖P,2 J 2(δ,H′
δ, 2H)

δ2
√
m

up to a constant that dependsonlyon r ,whereMr = max1�i�m H(X(i−1)r+1, . . . , Xir )

and the J function is defined in [14]. From a standard calculation, J (δ,H′
δ, 2H) �

J (δ,H, H) = ∫ δ0
√
1 + λ(τ)dτ up to a universal constant and ‖Mr‖P,2 = o(

√
m) by

H ∈ L2(Pr ) [53, Problem 2.3.4]. Hence we conclude

lim sup
n→∞

E[‖Un‖H′
δ
] � ‖H‖Pr ,2 J (δ,H, H)

up to a constant that depends only on r , and by the dominated convergence theorem
the right hand side is o(1) as δ ↓ 0. This completes the proof. ��
Lemma D.3 Under the assumption of Theorem D.1, we have E[ϒn] = O(n−1) where
ϒn is defined in (31).

Proof of LemmaD.3 We begin with noting that

E[ϒn] � E

[
E

[∥∥∥U (r−1)
n−1,−n(δXn h)− Pr−1(δXn h)

∥∥∥
2

H

∣∣∣ Xn

]]
.
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By Hoeffding’s averaging [49, Section 5.1.6],

U (r−1)
n−1,−n( f ) = 1

(n − 1)!
∑

j1,..., jn−1

T f (X j1 , . . . , X jn−1),

where
∑

j1,..., jn−1
is taken over all permutations j1, . . . , jn−1 of 1, . . . , n − 1, and

T f (x1, . . . , xn−1)= 1

m

m∑

i=1

f (x(i−1)(r−1)+1, . . . , xi(r−1)) with m = 
(n − 1)/(r − 1)�.

By Jensen’s inequality,

E

[∥∥∥U (r−1)
n−1,−n(δXn h)− Pr−1(δXn h)

∥∥∥
2

H

∣∣∣ Xn

]

� E

[∥∥∥TδXnh (X1, . . . , Xn−1)− Pr−1(δXn h)
∥∥∥
2

H

∣∣∣ Xn

]
.

By Corollary A.4 and the condition of Theorem D.1, for given x ∈ S,

∫ 1

0

√
sup
Q

log N (δxH, ‖ · ‖Q,2, τ‖δx H‖Q,2) �
∫ 1

0

√
λ(τ)dτ < ∞.

Hence, applying Theorem 2.14.1 in [53] conditionally on Xn , we have

E

[∥∥∥TδXn h(X1, . . . , Xn−1)− Pr−1(δXn h)
∥∥∥
2

H

∣∣∣ Xn

]
� n−1‖δXn H‖2Pr−1,2

up to a constant independent of n. Since E[‖δXn H‖2
Pr−1,2

] = ‖H‖2Pr ,2, we obtain the
desired conclusion by Fubini’s theorem. ��

Appendix E. Gaussian approximation for suprema of U-processes
indexed by general function classes

In this section we derive Gaussian approximation error bounds for the U -process
supremum indexed by general function classes.We obey the notation used in Sects. 2, 3
and 5.Wemake the following assumptions on the function classH and the distribution
P .

(A1) The function classH is pointwise measurable.
(A2) The envelope H satisfies that H ∈ L3(Pr ).
(A3) The class G = Pr−1H = {Pr−1h : h ∈ H} is P-pre-Gaussian, i.e., there exists

a tight Gaussian random variable Wp in �∞(G) with mean zero and covariance
function E[WP (g)WP(g′)] = Cov(g(X1), g′(X1)) for all g, g′ ∈ G.
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1158 X. Chen, K. Kato

Conditions (A1)–(A3) are parallel with the corresponding conditions in [14]. Con-
dition (A1) is the same as Condition (PM) in Sect. 2. Condition (A3) is a high-level
assumption that is implied by Condition (VC) in Sect. 2.

For ε > 0, define Nn(ε) = log(N (G, ‖ · ‖P,2, ε‖G‖P,2) ∨ n) with G = Pr−1H .
Under Condition (A3), G is totally bounded for the intrinsic pseudometric induced by
‖ · ‖P,2 andNn(ε) is finite for every ε ∈ (0, 1]. In addition, the Gaussian process WP

extends to the linear hull of G in such a way thatWP has linear sample paths (see e.g.,
Theorem 3.7.28 in [29]). For ε ∈ (0, 1], γ ∈ (0, 1), and κ > 0, define

�n(ε, γ, κ) := γ−1
E[‖Gn‖Gε ] + E[‖WP‖Gε ]

+ √
log(1/γ )ε‖G‖P,2 + n−1/6γ−1/3κN 2/3

n (ε)

+ n−1/4γ−1/2(E‖Gn‖Ğ·Ğ)
1/2N 1/2

n (ε)

+ n1/2γ−1
r∑

k=2

E[‖U (k)
n (πkh)‖H],

δn(ε, γ, κ) := 1

5
P
[
(Ğ/κ)31(Ğ/κ > cγ−1/3n1/3Nn(ε)

−1/3)
]
,

where Gε = {g− g′ : g, g′ ∈ G, ‖g− g′‖P,2 < 2ε‖G‖P,2}, Ğ · Ğ = {gg′ : g, g′ ∈ Ğ},
Ğ = {g, g − Pg : g ∈ G}, and Ğ = G + PG. Here c > 0 is some universal constant.
Below is an abstract (yet general) version of the Gaussian coupling bound.

Proposition E.1 (Abstract Gaussian coupling bound) Let Zn = suph∈H Un(h)/r . Sup-
pose that Conditions (A1)–(A3) hold. Let κ > 0 be any positive constant such that
κ3 � E[‖n−1∑n

i=1 |g(Xi ) − Pg|3‖G]. Then, for every n � r + 1, ε ∈ (0, 1],
and γ ∈ (0, 1), one can construct a random variable Z̃n = Z̃n,ε,γ,κ such that
L(Z̃n) = L(supg∈G WP (g)) and

P
(|Zn − Z̃n| > C1�n(ε, γ, κ)

)
� γ {1 + δn(ε, γ, κ)} + C2 log n

n
,

where C1 = C1,r is a constant depending only on r and C2 is a universal constant.

The proposition should be considered as an extension of Theorem 2.1 in [14] to the
U -process. To apply the above proposition, we need to derive bounds on

E[‖Gn‖Gε ], E[‖WP‖Gε ], E
⎡

⎣
∥∥∥∥∥n

−1
n∑

i=1

|g(Xi )− Pg|3
∥∥∥∥∥
G

⎤

⎦ ,

E[‖Gn‖Ğ·Ğ], and E[‖U (k)
n (πkh)‖H, k = 2, . . . , r ,

(47)

which can be derived under some moment conditions on H and by using the uniform
entropy integrals Jk(δ), k = 1, . . . , r defined in (19) (cf. Lemma 2.2 in [14] and our
Theorem 5.1), where the latter can be simplified in terms of the VC characteristics
(A, v) for a VC type function class (cf. the proof of Corollary 5.3).
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Proof of Proposition E.1 The proof is based on a modification to that of Theorem 2.1 in
[14]. In this proof C denotes a generic universal constant; the value of C may change
from place to place. Let {gk}Nk=1 be a minimal ε‖G‖P,2-net of (G, ‖ · ‖P,2) with N :=
N (G, ‖·‖P,2, ε‖G‖P,2). By the definition ofG, each gk corresponds to a kernel hk ∈ H
such that gk = Pr−1hk . Recall the Hoeffding decompositionUn(h) = rGn(Pr−1h)+√
n
∑r

k=2

(r
k

)
U (k)
n (πkh), where Gn(Pr−1h) = n−1/2∑n

i=1(P
r−1h(Xi ) − Prh). Let

Ln = supg∈G Gn(g) and Rn = ‖r−1√n
∑r

k=2

(r
k

)
U (k)
n (πkh)‖H. Then |Zn − Ln| �

Rn . Define

Lεn = max
1� j�N

Gn(g j ), Z̃ = sup
g∈G

WP (g), Z̃ ε = max
1� j�N

WP (g j ).

We note that |Ln − Lεn| � ‖Gn‖Gε and |Z̃ − Z̃ ε| � ‖WP‖Gε . By Corollary 4.1 in [14],
we have for every B ∈ B(R) and δ > 0,

P(Lεn ∈ B)− P(Z̃ ε ∈ B16δ) � Cδ−2{T1 + δ−1(T2 + T3)Nn(ε)}Nn(ε)+ Cn−1 log n,

where

T1 = n−1

E

[
max

1� j,k�N

∣∣∣∣∣

n∑

i=1

(g j (Xi )−Pg j )(gk(Xi )−Pgk)−P(g j−Pg j )(gk − Pgk)

∣∣∣∣∣

]
,

T2 = n−3/2
E

[
max

1� j�N

n∑

i=1

|g j (Xi )−Pg j |3
]
,

T3 = n−1/2

E

[
max

1� j�N
|g j (X1)− Pg j |3 · 1

(
max

1� j�N
|g j (X1)− Pg j | > δ

√
nNn(ε)

−1
)]

.

Observe that T1 � n−1/2
E[‖Gn‖Ğ·Ğ], T2 � n−1/2κ3, and T3 � n−1/2P[Ğ31(Ğ >

δ
√
nNn(ε)

−1)]. Thus choosing

δ � C max
{
γ−1/2n−1/4(E[‖Gn‖Ğ·Ğ])1/2N 1/2

n (ε), γ−1/3n−1/6κN 2/3
n (ε)

}
,

we have

P(Lεn ∈ B) � P(Z̃ ε ∈ B16δ)+ 2γ

5
+ γ

5
κ−3P[Ğ31(Ğ > δ

√
nNn(ε)

−1)] + C log n

n
.

Since δ � cγ−1/3n−1/6κN 2/3
n (ε), we have

P[Ğ31(Ğ > δ
√
nNn(ε)

−1)] � P[Ğ31(Ğ/κ > cγ−1/3n1/3Nn(ε)
−1/3)].

123



1160 X. Chen, K. Kato

Conclude that with ηn = (γ /5)P[(Ğ/κ)31(Ğ/κ > cγ−1/3n1/3Nn(ε)
−1/3)],

P(Lεn ∈ B) � P(Z̃ ε ∈ B16δ)+ 2γ

5
+ ηn + C log n

n
.

Next, we will bound ‖Gn‖Gε and ‖WP‖Gε . By Markov’s inequality, with probability
at least 1 − γ /5,

‖Gn‖Gε � 5γ−1
E[‖Gn‖Gε ] =: a.

Further, by the Borell–Sudakov–Tsirel’son inequality (see Theorem 2.5.8 in [29]),
with probability at least 1 − γ /5, we have

‖WP‖Gε � E[‖WP‖Gε ] + 2ε‖G‖P,2
√
2 log(5/γ ) =: b.

Therefore, for every B ∈ B(R),

P(Zn ∈ B) �P(Ln ∈ B5γ−1
E[Rn ])+ γ

5
� P(Lεn ∈ Ba+5γ−1

E[Rn ])+ 2γ

5

�P(Z̃ ε ∈ Ba+16δ+5γ−1
E[Rn ])+ 4γ

5
+ ηn + C log n

n

�P(Z̃ ∈ Ba+b+16δ+5γ−1
E[Rn ])+ γ + ηn + C log n

n
.

The conclusion of the proposition follows from the Strassen–Dudley theorem (see
Theorem B.1). ��

Appendix F. Alternative tests for concavity/convexity andmonotonic-
ity of regression functions

We will obey the setting of Example 4.2.

F.1. Alternative tests for concavity/convexity of regression function f

Instead of the original localized simplex statistic (11) proposed in [1], wemay consider
the following modified version:

Ũn(x) = 1

|In,m+2|
∑

(i1,...,im+2)∈In,m+2

ϕ̃(Vi1 , . . . , Vim+2)

m+2∏

k=1

Lbn (x − Xik ),

where ϕ̃(v1, . . . , vm+2) = 1{(x1, . . . , xm+2) ∈ D}w(v1, . . . , vm+2), and test concav-
ity or convexity of f if the scaled supremum or infimum of Ũn is large or small,
respectively. These alternative tests will work without the symmetry assumption on
the conditional distribution of ε, which is maintained in [1]. Our results below also
cover these alternative tests.
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F.2. Alternative tests for monotonicity of regression function f

Chetverikov [16] considers testing monotonicity of the regression function f without
the assumption that the error term ε is independent of X . Chetverikov [16] studies, e.g.,
U -statistics given by replacing sign(Y j−Yi ) in (12) by Y j−Yi , and the test statistic
defined by taking the maximum of such U -statistics over a discrete set of design
points and bandwidths whose cardinality may grow with the sample size (indeed, the
cardinality canbemuch larger than the sample size).His analysis is conditional on Xi ’s,
and he cleverly avoids U -process machineries and applies directly high-dimensional
Gaussian and bootstrap approximation theorems developed in [12]. It should be noted
that [16] considers more general test statistics and studies multi-step procedures to
improve on powers of his tests.

Another related test for regression monotonicity is based on the local linear rank
statistics [21]. Let Rmk(i) = ∑k

j=m+1 1(Y j � Yi ) be the local rank of Yi among
Ym+1, . . . ,Yk . In [21], Dümbgen considers a test for monotone trend of f (with fixed
design points X1, . . . , Xn) via the local linear rank statistics

Tmk =
k∑

i=m+1

β

(
i − m

k − m + 1

)
q

(
Rmk(i)

k − m + 1

)
, 0 � m < k � n,

where β and q are functions on (0, 1) such that: 1) β(1−u) = −β(u) and q(1−u) =
−q(u) for u ∈ (0, 1); 2) β(·) and q(·) are nondecreasing on (0, 1). Then [21] proposes
the multiscale test statistic

T = max
0�m<k�n

(sk−m |Tmk | − ck−m),

where si and ci are properly chosen nonnegative numbers. For the special case of the
Wilcoxon score function q(u) = 2u − 1 and β(u) = q(u), one can write

Tmk = 2

(k − m + 1)2
∑

m<i< j�k

( j − i)sign(Y j − Yi ).

The statistic Tmk is related to our test statistic Ǔn(x) with L(u) = 1(u ∈ [−1, 1]),
namely Tmk and Ǔn(x) are (local) U -statistics with kernels ( j − i)sign(Y j − Yi ) and
sign(Xi −X j )sign(Y j −Yi ), respectively. Thus for a given sequence of bandwidths bn ,
our monotonicity test based on the U -process Ǔn(x) can be viewed as a single-scale
test Tmk with (k−m)/n = 2bn in Dümbgen’s sense. In particular, both T0n and Ǔn(x)
with bn = 1 quantify the monotonicity on the global scale. In addition, the “uniform-
in-bandwidth” type results for our U -process approach in Sect. 4.1 can be viewed as
the multiscale analog T of Tmk with the Wilcoxon score function. Nevertheless, since
[21] considers the fixed design points, Tmk is a local U -statistic on Yi ’s and Ǔn(x) is
a local U -statistic on (Xi ,Yi )’s. Our analysis (which requires a Lebesgue density on
X ) is not directly applicable for the local linear rank statistics of [21].
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