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a b s t r a c t

We consider the problem of determining the optimal composition of a heterogeneous multi-agent
team for coverage problems by including costs associated with different agents and subject to an
upper bound on the maximal allowable number of agents. We formulate a resource allocation problem
without introducing additional non-convexities to the original problem. We develop a distributed
Projected Gradient Ascent (PGA) algorithm to solve the optimal team composition problem. To deal
with non-convexity, we initialize the algorithm using a greedy method and exploit the submodularity
and curvature properties of the coverage objective function to derive novel tighter performance bound
guarantees on the optimization problem solution. Numerical examples are included to validate the
effectiveness of this approach in diverse mission space configurations and different heterogeneous
multi-agent collections. Comparative results obtained using a commercial mixed-integer nonlinear
programming problem solver demonstrate both the accuracy and computational efficiency of the
distributed PGA algorithm.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Cooperative multi-agent systems are pervasive in a number
of applications, including but not limited to, surveillance (Cas-
tanedo, García, Patricio, & Molina, 2010), search and rescue
missions (Luo, Espinosa, Pranantha, & De Gloria, 2011), consen-
sus (Zheng, Ma, & Wang, 2018) and agriculture (Balmann, 2000).
One of the most basic tasks such a system can perform that has
seen a wide range of applications is coverage. The fundamen-
tal multi-agent optimal coverage problem has been extensively
studied in the literature, e.g., Breitenmoser, Schwager, Metzger,
Siegwart, and Rus (2010), Caicedo-Nunez and Zefran (2008), Cas-
sandras and Li (2005) and Meguerdichian, Koushanfar, Potkonjak,
and Srivastava (2001) . In this problem, agents are deployed to
“cover” as much of a given mission space as possible in the sense
that the team aims to optimally jointly detect events of interest
(e.g., data sources) that may randomly occur anywhere in this
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space. The coverage performance is measured by an appropriate
metric, which is normally defined as the joint event detection
probability. The optimal coverage problem is particularly chal-
lenging due to the generally non-convex nature of this metric and
of the mission space itself due to the presence of obstacles which
act as constraints on the feasible agent locations that constitute
a solution to the problem.

Thus far, the analysis of the optimal coverage problem has
been carried out based on the assumption that there exists a fixed
number N of agents to be deployed. However, this number is
often limited by cost constraints, leading to a natural trade-off
between coverage performance (which is normally monotoni-
cally increasing in N) and total system cost. In such a setting,
an additional aspect of the problem is that of managing a set
of heterogeneous agents: when agents fall into different classes
characterized by different properties such as sensing capacity,
range, attenuation rate, and cost, then the problem becomes one
of determining the optimal cooperative team composition in terms
of the number of agents selected from each class so as to optimize
an appropriate metric capturing the performance-cost trade-off.
Clearly, it is possible that a certain team composition can achieve
the same coverage performance as another, but with a lower cost
due to the heterogeneity of agents. The purpose of this paper
is to address the optimal coverage problem in the presence of
heterogeneous agents under cost constraints.

As mentioned above, the optimal coverage problem is already
challenging due to its non-convex nature. Heuristic algorithms
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(e.g., genetic algorithms Davis, 1996), are often used and may lead
to empirically near-global optimality, but they are prohibitively
inefficient for on-line use. On the other hand, on-line algorithms
sacrifice potential optimality to achieve efficiency; this includes
distributed gradient-based algorithms (Cassandras & Li, 2005;
Gusrialdi & Zeng, 2011; Zhong & Cassandras, 2011) and Voronoi-
partition-based algorithms (Breitenmoser et al., 2010; Cortes,
Martinez, Karatas, & Bullo, 2004; Gusrialdi, Hirche, Hatanaka, &
Fujita, 2008) which lead to generally locally optimal solutions.
Methods for efficiently escaping such local optima using a “boost-
ing function” approach were proposed in Sun, Cassandras, and
Gokbayrak (2014) and Welikala and Cassandras (2020), while
a decentralized control law in Schwager, Bullo, Skelly, and Rus
(2008) seeks a combination of optimal coverage and exploration.

A parallel effort to deal with the difficulty of finding a globally
optimal solution for the basic coverage problem is by exploiting
the submodularity properties of the coverage performance func-
tions. This is accomplished in Sun, Cassandras, and Meng (2019)
by using a greedy algorithm to initialize the state of the system
(i.e., the locations of the agents), followed by a conventional
gradient ascent technique to obtain an improved (still locally
optimal) solution. Due to submodularity, the ratio f G/f ∗, where
f G and f ∗ correspond to the objective function values under a
greedy solution and the globally optimal solution respectively,
has a lower bound L ≤ f G/f ∗ which is shown to be L = 1/2
in Fisher, Nemhauser, and Wolsey (1978) . When the objective
function f is monotone submodular (which applies to coverage
metrics), then it has been shown that L = (1 −

1
e ) (Nemhauser,

Wolsey, & Fisher, 1978) and becomes L = (1−(1−
1
N )

N ) when the
allowable maximum number of agents is constrained to N . Recent
work (Conforti & Cornuéjols, 1984; Liu, Chong, & Pezeshki, 2018;
Wang, Moran, Wang, & Pan, 2016) has further improved these
performance bounds by exploiting the curvature properties of
the specific objective function. By using these improved bounds,
the solutions to a variety of optimal coverage problems in Sun,
Cassandras et al. (2019) have been shown to often approach
L = 1, i.e., to yield almost globally optimal solutions.

Our contributions in this paper are threefold. First, we formu-
late the problem of determining an optimal team composition
under a heterogeneous set of agents as a resource allocation
problem without introducing additional non-convexity features
to it. In our problem formulation, instead of imposing a hard car-
dinality constraint, an l1 norm penalty in the objective function is
employed to induce sparsity and prevent any new non-convexity
from being introduced. Secondly, for the coverage component of
the objective function (i.e., without the aforementioned penalty
term), a greedy algorithm is used and two new improved per-
formance bounds are derived based on the concepts of partial
curvature (Liu et al., 2018), total curvature, and greedy curvature
(Conforti & Cornuéjols, 1984). Finally, we propose a distributed
projected gradient ascent algorithm to solve the overall optimal
team composition problem. The key to this algorithm is the
proper selection of an initial condition which is characterized by
a provable lower bound. Thus, we first use a greedy method to
generate a candidate solution to the underlying coverage com-
ponent of the problem which always contains all the available
agents. This is used as the initial condition for a distributed
projected gradient ascent scheme whose final solution recovers
both the integer and real variables associated with the problem
which respectively define the optimal team composition and the
optimal agent locations.

A crucial difference in this work compared to Sun, Cassandras
et al. (2019) and Zhong and Cassandras (2011) is that we do
not assume that a given number of agents is to be deployed;
rather, we seek to determine the number of agents (subject to an
upper bound constraint) and optimal team composition (not only

Fig. 1. Mission space with obstacles.

the optimal agent locations), which is a combinatorial NP-hard
problem. In addition, two new tighter performance bounds are
derived compared to those in Sun, Cassandras et al. (2019).

The rest of the paper is organized as follows. The optimiza-
tion problem for determining the optimal team composition is
formulated in Section 2. Then, to obtain a good initial condition to
solve this optimization problem, a greedy algorithm is presented
in Section 3, along with some performance bound guarantees.
Subsequently, to completely solve the formulated optimization
problem, a distributed projected gradient ascent process is pro-
posed in Section 4, along with some theoretical results regarding
the nature of its terminal solution. Numerical results are included
in Section 5 to validate the effectiveness of the proposed solution
technique. Finally, Section 6 concludes the paper.

2. Problem formulation

We begin with a brief review of the multi-agent coverage
problem (see Caicedo-Nunez & Zefran, 2008; Cortes et al., 2004;
Zhong & Cassandras, 2011). The mission space Ω ⊆ R2 is modeled
as a convex compact polygon. For non-convex polygons Ω1, such
as the self-intersecting ones, we make Ω the convex hull of Ω1,
while Ω \ Ω1 defines obstacles that agents have to avoid. Let
R(x) : R2

→ R be an event density function such that R(x) ≥

0, ∀x ∈ Ω and
∫

Ω
R(x)dx < ∞ such that R(x) represents the

relative importance of a point x ∈ Ω . Obstacles present in the
mission space can both limit the movement of agents and in-
terfere with their sensing capacities. Such obstacles are modeled
as non-intersecting polygons M1, . . . ,Mm and their interiors are
forbidden regions for the agents. As a result, the feasible (safety)
region is F = Ω \ (M̊1 ∪ · · · ∪ M̊m), where M̊ is the interior of M .

With N as the maximum possible number of agents, we have
s = [sT1, . . . , s

T
N ]

T
∈ RN×2 denoting the locations of the N agents

with each si ∈ R2, ∀i = 1, . . . ,N . Then, the following sensing
model is adopted. For any point x ∈ Ω and a certain agent at
si, there are two issues affecting if the agent can detect an event
occurring at x. First, the agent is characterized by a sensing region
defined as Ωi = {x|∥x − si∥ ≤ δi}, where δi is the sensing range.
Secondly, obstacles prevent a signal at x from reaching si. This
is described by the condition ηsi + (1 − η)x ∈ F , η ∈ [0, 1],
i.e., the segment connecting x and si must be contained in the
feasible region. Then, the visibility set of si is defined as V (si) =

Ωi ∩ {x|ηsi + (1 − η)x ∈ F} and the invisibility set V̄ (si) is the
complement of V (si) in F , i.e., V̄ (si) = F \ V (si). An illustration of
V (si) is shown in Fig. 1. The probability that agent i detects an
event at x in an unconstrained environment is given by

pi(x, si) = pi0e−λi∥x−si∥ (1)
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where pi0 ∈ (0, 1] is the agent’s sensing capacity and λi > 0 is a
sensing decay (attenuation) factor. Different pi(x, si) specified by
pi0, δi and λi will lead to a heterogeneous multi-agent system. In a
mission space with constraints, the agent’s detection probability
becomes:

p̂i(x, si) =

{
pi(x, si) if x ∈ V (si),
0 otherwise.

(2)

Finally, assuming detection independence among the N agents,
the joint detection probability of an event at x is given by P̂(x, s)
= 1 − ΠN

i=1(1 − p̂i(x, si)). As formulated in Zhong and Cassandras
(2011), the optimal multi-agent coverage problem is

max
s

H(s) =

∫
Ω

R(x)P̂(x, s)dx (3)

s.t. si ∈ F , i = 1, . . . ,N,

where the number of agents N is a predetermined constant. When
N is in fact an additional decision variable constrained by the
cost of agents, we proceed by capturing the trade-off between
improved performance, which monotonically increases with N ,
and agent cost as follows. Letting N be the maximum possible
number of agents to consider, we formulate a resource (sensing
capacity) allocation problem:

max
s,t

H(s, t) =

∫
Ω

R(x)P(x, s, t)dx − β

N∑
i=1

ti (4)

s.t. si ∈ F , ti ∈ {0, 1}, i = 1, . . . ,N,

with P(x, s, t) = 1−ΠN
i=1(1−tip̂i(x, si)). In (4), t = [t1, t2, . . . , tN ]

T

and ti is a binary decision variable associated with agent i. The
term β

∑N
i=1 ti denotes the cost of deploying N agents, where

β ≥ 0 is a weight capturing the cost of each agent (assumed to be
the same in this formulation). In order to ensure a properly nor-
malized objective function, β must be selected to be consistent
with the following convex combination of objectives: H̃(s, t) =

w1
1∫

Ω R(x)dx

∫
Ω
R(x)P(x, s)dx− (1−w1) 1

N

∑N
i=1 ti, where w1 ∈ (0, 1]

(resp. 1−w1) and
∫

Ω
R(x)dx (resp. N) are weights associated with

the coverage performance metric (resp. cost function). Observing
that each component above is properly normalized in [0, 1], we
can adopt (4) as long as β is selected so that β =

1−w1
w1

∫
Ω R(x)dx

N .

Note that with ti ∈ {0, 1}, the agent heterogeneity in p̂i (which
depends on the values of pi0 and λi in (1) and on the sensing
range δi) is not included in the formulation (4). In order to capture
this aspect of the problem, we relax the binary nature of ti by
allowing it to be a continuous variable ti ∈ [0, 1]. We then rewrite
the detection probability in (1) as tipi0e−λi∥x−si∥ so that ti acts as
a discount factor for the sensing capacity pi0. Accordingly, (2) is
modified to

p̄i(x, si, ti) =

{
tipi0e−λi∥x−si∥ if x ∈ V (si),
0 otherwise.

(5)

and the definition of the joint detection probability in becomes
P̄(x, s, t) = 1 − ΠN

i=1(1 − p̄i(x, si, ti)). With P̄(x, s, t) as defined
above, we now extend (4) to

max
s,t

∫
Ω

R(x)P̄(x, s, t)dx − β

N∑
i=1

ti (6)

s.t. si ∈ F , ti ∈ [0, 1], i = 1, . . . ,N.

However, this formulation still does not capture the fact that
agents with different sensing parameter values pi0, δi and λi
have different costs. Therefore, let γi(pi0, λi, δi) denote the cost
of agent i and let us still keep β as a weight indicating the
overall importance of cost relative to the coverage performance

expressed by the first term in the objective function. Omitting the
dependence of γi on the sensing parameters, we now formulate
the problem:

max
s,t

H(s, t) =

∫
Ω

R(x)P̄(x, s, t)dx − β

N∑
i=1

γiti (7)

s.t. si ∈ F , ti ∈ [0, 1], i = 1, . . . ,N.

Clearly, heterogeneity here is captured in two ways: first, by
imposing a different cost γi to each agent and second by as-
sociating a different sensing capacity tipi0 in (5) to each agent,
assuming that such capacity is adjustable. More importantly,
while the binary constraint in (4) is removed, the l1 norm used
in (7) is a regularization term which is well known to induce
sparsity (Tibshirani, 1996). The implication is that solutions of
this problem will tend to include values ti = 0 for several
agents in seeking cost-effective team compositions. This is both
theoretically proven in Theorem 2 and experimentally validated
in Section 5.

As in the case of (4), the objective function in (7) needs to
be properly normalized. To accomplish this while also providing
a physical interpretation to the cost coefficients γi, recall that
Ωi = {x|∥x−si∥ ≤ δi} represents the sensing region of agent i and
define the sensing capability of this agent as κi =

∫
Ωi

p̂i(x, si)dx,
where si ∈R2 can be any point in the boundless and obstacle-
free space, hence κi is independent of si; it depends only on the
sensing parameters pi0, λi, and δi. In fact, for the exponential
sensing function given in (1), a closed-form expression for κi can
be obtained as κi =

2πpi0
λ2i

[1 − (1 + λiδi)e−λiδi ]. Now, assuming

the cost γi associated with agent i is proportional to its sensing
capability κi, we write γi = w2iκi, where w2i ∈ (0, 1] is a
prespecified agent cost weight. Finally, we update the definition
of the normalization factor β in (4) as follows:

β =
1 − w1

w1

∫
Ω
R(x)dx∑N
i=1 γi

. (8)

With that, we can compute all the parameters/coefficients in (7),
when the agent sensing capabilities and weights are given.

3. Greedy algorithm and submodularity theory for coverage
problems

In order to obtain an initial solution to problem (7), we first
consider problem (3) where the objective is limited to maximiz-
ing the coverage using all the available agents. We adopt the
generic greedy method proposed in Sun, Cassandras et al. (2019)
and seek to improve the performance bounds provided in Sun,
Cassandras et al. (2019) by exploiting the curvature concepts
proposed in Conforti and Cornuéjols (1984) and Liu et al. (2018).

In order to take advantage of the submodular structure of
H(s) in (3), we first uniformly discretize the continuous feasible
space F to form a ground-set FD

= {x1, x2, . . . , xn} with each
xi ∈ F . These xi values can be thought of as feasible points
where an agent can be placed. Note that the cardinality |FD

| of
the ground-set is |FD

| = n. Next, a set-variable is defined as
S = {s1, s2, . . .} to represent the initial placement for each agent.
And a set-constraint S ∈ I , where I = {A : A ⊆ FD, |A| ≤ N} is
introduced to convey that each si ∈ S should be chosen from FD

and agent team size |S| should be constrained to N . Typically, a
set-constraint of this form is called a uniform matroid constraint
of rank N where the pair M = (FD, I ) is known as a uniform
matroid. Finally, we approximate the coverage objective function
H(s) in (3) by a set-function H(S), where H : I → R and

H(S) =

∫
Ω

R(x)(1 −

∏
si∈S

[
1 − p̂i(x, si)

]
)dx. (9)
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Therefore, H(S) now represents the coverage objective value
achieved by the agent placement defined by the set-variable S.
In this new framework, a set-function version of the original
coverage problem in (3) can be written as

max
S

H(S) s.t. S ∈ I . (10)

Greedy algorithm. Due to the combinatorial search space size, an
exact solution to (10) is challenging to obtain. However, a can-
didate solution can be obtained using a simple greedy algorithm
(see Alg. 1) and is referred to as a greedy solution.

The marginal gain in the coverage objective due to adding a
new agent at xi ∈ FD to an existing agent set A is defined as
∆H(xi|A) ≜ H(A ∪ {xi}) − H(A). It can be shown that

∆H(xi|A) =

∫
F
R(x)pi(x, si)

∏
sj∈A

[
1 − p̂j(x, sj)

]
dx, (11)

using (9). As the next step, properties of the problem (10) are
used to derive several bounds to quantify how close the greedy
solution is to the globally optimal solution.

Performance bounds. The performance ratio of the greedy solution
SG (of (10) given by Alg. 1) is defined as H(SG)

H(S∗) where S∗ is the
globally optimal solution (of (10), generally unknown). A perfor-
mance bound L is a theoretically imposed lower bound to the
performance ratio. Therefore,

L ≤
H(SG)
H(S∗)

≤ 1. (12)

It was proven in Sun, Cassandras et al. (2019) that the set-
function H(S) has two important properties: submodularity and
monotonicity. Hence, following the seminal paper (Nemhauser
et al., 1978), the greedy solution of (10) is characterized by L = LC ,
referred to as the conventional performance bound:

LC = (1 − (1 −
1
N
)N ). (13)

3.1. Incorporating curvature information

For the class of coverage problems, it is shown in Sun, Cas-
sandras et al. (2019) that tighter performance bounds (i.e., per-
formance bounds which are closer to 1 than LC ) can be obtained
using the curvature information of the objective function H(S).
Typically, any measure of curvature of a set function f (A) pro-
vides additional information about the nature of its growth when
new elements are added to the set-variable A. For example, the
marginal gain of a coverage objective set-function H(S) (rep-
resented by ∆H(·|S)), can drastically drop when elements are
added to the set S. Due to this reason, curvature information can
yield vital information about the effectiveness of greedy methods
(more details can be found in Sun, Welikala and Cassandras,
2019).

Total curvature. The concept of total curvature for generic sub-
modular monotone set-functions was introduced in Conforti and
Cornuéjols (1984). For the coverage problem in (10), it is denoted
by αT ,

αT = max
xi:xi∈FD

[
1 −

∆H(xi|FD
\xi)

∆H(xi|∅)

]
. (14)

Here ∅ and “\” denote the empty set and the set-subtraction op-
eration respectively. Using (11), (9), and the knowledge of FD, the
total curvature αT (14) of the set-function H(S) can be explicitly
evaluated. In Conforti and Cornuéjols (1984), it is shown that
when maximizing a submodular monotone set function with a to-
tal curvature αT , the greedy solution will follow the performance

Algorithm 1 Greedy Method for Solving (10)

1: Inputs: N, FD, I ; Outputs: Greedy solution SG.
2: S := ∅; i := 1;
3: while i ≤ N do
4: si := argmax{xi:(S∪{xi})∈I } (∆H(xi|S));
5: S := S ∪ {si};
6: end while
7: SG := S; Return;

bound L = LT =
1
αT

[1 − (N−αT
N )N ]. This total curvature measure

has been used in Sun, Cassandras et al. (2019) to establish better
performance bounds compared to the conventional bound LC
in the context of the coverage control problem in (10). Next,
we propose another curvature concept to obtain even tighter
performance bounds than LT .

Partial curvature. In Liu et al. (2018), the concept of partial
curvature is proposed for submodular monotone set functions
which are defined under uniform matroid constraints. Adopting
this new concept, the partial curvature measure associated with
the coverage objective set-function H(S) can be expressed as αP
where

αP = max
(A,xi):xi∈A∈I

[
1 −

∆H(xi|A\xi)
∆H(xi|∅)

]
. (15)

As discussed in Liu et al. (2018), the partial curvature delivers a
better characterization of the monotonicity of any generic set-
function compared to the total curvature. This improvement is
due to the fact that only the information obtained from the
domain of the considered set-function is used, which can be
considerably smaller due to the uniform matroid constraint. The
importance of the partial curvature concept in the context of our
coverage problem can be explained as follows. For coverage prob-
lems, evaluating H(FD) so as to compute the total curvature in
(14) and then to impose the performance bound LT is problematic
because the domain of H(·) in the original optimization problem
(10) is actually limited to size N sets (i.e., by the constraint
S ∈ I ). This issue is critical when we consider heterogeneous
agents (in terms of sensing capabilities) and a finite set of agents
at our disposal to achieve the maximum coverage. In such sit-
uations, H(FD) is ill-defined and, therefore, the total curvature
and the respective performance bound LT cannot be evaluated.
However, the definition of the partial curvature in (15) will still
hold as it only requires evaluations of H(·) over the same domain
(i.e., S ∈ I ).

Using (11), (9) and the knowledge of I , the partial curva-
ture αP in (15) can be computed for the coverage problem. The
corresponding performance bound is L = LP =

1
αP

[1 − (N−αP
N )N ].

Greedy curvature. This curvature concept is proposed in Conforti
and Cornuéjols (1984) as an on-line method of estimating a per-
formance bound. The resulting performance bound depends on
the greedy solution SG itself. Note that the performance bounds
discussed thus far are not dependent on the obtained greedy
solution but only the objective function parameters (such as λi, δi
for all i) and N , as well as the feasible space FD. If the greedy
algorithm given in Alg. 1 produces the solution sets ∅ = S0 ⊆

S1 ⊆ S2 ⊆ · · · ⊆ SN during the course of execution (where
SN = SG), then, the greedy curvature metric αG is

αG = max
0≤i≤N−1

[
max
xj∈F i

(
1 −

∆H(xj|S i)
∆H(xj|∅)

)]
, (16)

where F i
= {xj : xj ∈ FD

\S i, (S i ∪ {xj}) ∈ I } is the set of valid
points considered for the placement of the (i+ 1)th agent during
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Fig. 2. Different problem settings and their greedy solutions for N = 10. Red
dots are greedy agent locations, black dots represent the ground set. Darker
colored areas have greater coverage, and green colored shapes are obstacles.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

the (i + 1)th greedy iteration. Therefore, αG can be computed in
parallel with the greedy method (without performing any addi-
tional computations) unlike the previously discussed two cases.
The corresponding performance bound is L = LG = 1−αG(1−

1
N ).

The main idea behind the greedy curvature concept is that
the solution sets generated during the greedy algorithm itself can
be used to characterize the monotonicity of the considered set-
function and then to establish a performance bound based on that
information. Therefore, similar to the feasibility of using the total
curvature-based performance bound LT for a heterogeneous set
of agents, the definition of the greedy curvature measure in (16)
and the performance bound LG will still hold in such cases.

The overall performance bound L. Considering all the performance
bounds LC , LT , LP and LG defined above, an overall performance
bound L satisfying (12) can be established as

L = max {LC , LT , LP , LG}. (17)

Generally, LC ≤ LT ≤ LP (Liu et al., 2018). Also, when het-
erogeneous agents are involved, LC = 0.5 and LT and LG are
undefined.

3.2. Numerical results for greedy method

We now investigate the behavior of the proposed partial cur-
vature and greedy curvature-based performance bounds LP , LG
compared to the total curvature and conventional performance
bounds LC , LT . Four different representative problem settings
were considered as shown in Fig. 2. Under each of these set-
tings, LP , LG, LT and LC were evaluated for different values of the
total allowable number of agents N . From the obtained results
shown in Fig. 3, it is evident that the proposed use of partial
curvature always delivers better bounds than the total curvature
approach (Conforti & Cornuéjols, 1984). Similarly, the proposed
use of greedy curvature provides better bounds than the total
curvature approach (Conforti & Cornuéjols, 1984) when N takes
moderate values (i.e., N is around 2 − 20). Moreover, LG is use-
ful for computation-limited settings, as it does not require any
additional computations compared to evaluating LT or LP .

As pointed out earlier, the performance bound LT is ill-defined
when considering heterogeneous agents. To avoid this problem,
the experiments reported above were limited to a homogeneous
set of agents. However, it should be emphasized that the defini-
tions of the proposed performance bounds LP and LG are robust
to agent heterogeneity, the situation considered in Section 5.
Therefore, in such heterogeneous situations, using LP and/or LG
will be the only way to obtain an improved performance bound
compared to the conventional bound LC . Note that in such sit-
uations, the greedy algorithm given will require an additional
inner loop to determine the optimal type of the agent to be

Fig. 3. Performance bounds (as a function of N): (i) Conventional LC , (ii) Total
curvature LT , (iii) Partial curvature LP , and (iv) Greedy curvature LG , for the four
problem settings in Fig. 2.

deployed at each main greedy iteration. We conclude this section
by reminding the reader that the greedy process detailed above
is needed so as to generate an initial condition to the main
optimization problem in (7).

4. A gradient based algorithm for heterogeneous multi-agent
coverage problems

The greedy algorithm (Alg. 1) is limited to discrete environ-
ments and a fixed predetermined agent number. Its value in
solving the actual problem of interest in (7) is twofold: (i) Provide
a reasonable initial condition for a gradient-based algorithm used
to solve (7) which can significantly overcome the local-optimality
limitation of such an algorithm, and (ii) Provide a lower bound
for the ultimate coverage performance we obtain. In this section,
we propose a distributed gradient-based algorithm similar to that
in Zhong and Cassandras (2011) aimed at solving (7). We first
derive the derivatives of the objective function H(s, t) with regard
to the variables (s, t) for the gradient ascent update. Setting
si = (six, siy), we begin with ∂H(s,t)

∂six
whose derivation was given

in (Zhong & Cassandras, 2011):

∂H(s, t)
∂six

=

∫
V (si)

R(x)Φi(x)
∂ p̄i(x, si, ti)

∂six
dx +

∑
j∈Γi

[
(18)

sgn(nijx)
sin(θij)
Dij

∫ Zij

0
R(ρ(r))Φi(ρ(r))p̄i(ρ(r), si, ti)rdr

]
,

where Φi(x) = Πk∈Bi [1 − p̄k(x, sk, tk)], Dij = ∥vij − si∥,
∂ p̄i(x,si,ti)

∂six
=

−λip̄i(x, si, ti)
(si−x)x
∥si−x∥ , and ρ(r) = ρij(r) =

vij−si
Dij

· r + vij. In
(18), sgn(·) represents the signum function and the subscript x is
used to represent the x-component of a two dimensional vector.
The second term in (18) is due to the linear shaped boundary
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segments of the sensing region V (si) formed due to the obstacle
vertices vij ∈ V (si). Such linear segments are lumped into a
set Γi = {Γi1, Γi2, . . .} where each linear segment Γij can be
characterized by four parameters: (i) end point Zij, (ii) angle θij,
(iii) obstacle vertex vij, and, (iv) unit normal direction nij. There-
fore, Γij can be thought of as a four-tuple Γij = (Zij, θij, vij, nij). All
these geometric parameters (for a generic setting) are illustrated
in Fig. 2. Note that we assume: (i) obstacles are polygonal, and,
(ii) sensing power at the edge of the sensing region is negligible.
More detailed definitions and derivations are omitted for brevity,
and interested readers are referred to Zhong and Cassandras
(2011). A similar expression can be obtained for ∂H(s,t)

∂siy
. As detailed

in Zhong and Cassandras (2011), the agent locations are assumed
not to coincide with a reflex vertex, a polygonal inflection, or a
bi-tangent where H(s, t) is not differentiable (if such points have
to be taken into consideration, then a subgradient can be used as
an alternative to the gradient).

Additionally, the derivative ∂H(s,t)
∂ti

is obtained as follows:

∂H(s, t)
∂ti

=

∫
V (si)

R(x)Φi(x)pi(x, si)dx − βγi. (19)

Here, the integration and differentiation are interchangeable since
P(x, s) is a continuous differentiable function of ti. The first term
in (19) represents a local coverage level achieved by the agent i
in its sensing region V (si). This local coverage level depends on
the state variables (s, t) and is always positive. The second term
in (19) represents a local cost resulting from agent cost γi and
the normalization factor β . Note that this local cost value is a
predefined positive constant for each agent. This multi-objective
interpretation of (19) can be used to conclude that when the
aforementioned local coverage level is less than the (fixed) local
cost, the state variable ti should be decreased to improve the
global objective H(s, t), and vice versa.

Algorithm 2 is a Projected Gradient Ascent (PGA) algorithm
for solving (7) which utilizes the gradients derived in (18) and
(19). As seen in Algorithm 2, a gradient ascent update is first
implemented in (Eq. (20)), where η

(k)
s > 0, η

(k)
t > 0 are the step

sizes chosen based on standard technical conditions (Bertsekas,
2016) (more application-specific details on the step size selection
can be found in Welikala & Cassandras, 2020). Subsequently, the
projection mechanisms are applied to guarantee the satisfaction
of all constraints. The projection ΠA(x) of x ∈Rn onto a set A ⊆Rn

is formally defined as ΠA(x) ≜ argminy∈A ∥x − y∥2. For si ∈ F ,
if the update direction (i.e., ∂H(s,t)

∂si
) is pointing directly into an

obstacle’s boundaries, then the update direction is projected onto
the boundary itself and thus prevents violation of the obstacle
constraint. As for the bound constraint for ti, a projection onto
the convex set [0, 1] is simply a truncation.

Coverage performance of the PGA solution sPGA. For the initializa-
tion of the PGA algorithm given in Alg. 2, we use the greedy
solution s(0) = [SG] obtained from Alg. 1 using: (i) The pre-
specified discretized feasible space FD, and, (ii) The complete
set of agents (all N of them). The overall performance bound
obtained using (17) under this initial configuration is L1 ≤

H({s(0)})
H(S∗) .

Therefore, L1 does not convey any information about the coverage
performance of the obtained PGA solution. This issue is addressed
as follows (using the notation [·] and {·} to represent a conversion
from a set to an array and vice versa).

Once the PGA solution (sPGA, tPGA) is obtained using Alg. 2, it
yields information on: (i) optimal agent locations (i.e., sPGA), and,
(ii) optimal agent team composition (i.e., tPGA). This allows us
to update the discretized feasible space FD into FD2 by inserting
the agent coordinates found in sPGA such that FD2 ≜ FD

∪ {sPGA}.
Next, we re-evaluate the greedy algorithm considering only the
agents in the optimal team and using the modified discretized

Algorithm 2 Projected Gradient Ascent (PGA) Algorithm for
solving the problem in (7).
1: Inputs: Ω, F , N, εs, εt ; Outputs: sPGA, tPGA.
2: Initialize: s0 := [SG] (From Alg. 1), t0 ∈ Rn.
3: for k = 0, 1, 2, . . . do
4: Compute: At (s, t) = (s(k), t (k)) the gradients:

∂H(s,t)
∂si

and ∂H(s,t)
∂ti

, ∀i ∈ {1, . . . ,N}. ▷ Using (18), (19).
5: Update: (s(k), t (k)), by, ∀i ∈ {1, . . . ,N},

ŝ (k+1)
i = s(k)i + η

(k)
s

∂H(s,t)
∂si

; t̂ (k+1)
i = t (k)i + η

(k)
t

∂H(s,t)
∂ti

; (20)

6: Project: to get (s(k+1), t (k+1)), ∀i ∈ {1, . . . ,N},

s(k+1)
i = ΠF (ŝ

(k+1)
i ); t (k+1)

i = Π[0,1](t̂
(k+1)
i );

7: if ∥s(k+1)
− s(k)∥ ≤ εs & ∥t (k+1)

− t (k)∥} ≤ εt then
8: (sPGA, tPGA) := (s(k+1), t (k+1)); Return;
9: end if ▷ εs and εt are positive tolerances.

10: end for

feasible space FD2. Now, if the corresponding greedy solution is
SG2 and the overall performance bound is L2 (obtained from (17)),
following (12) we can write L2 ≤

H(SG2)
H(S∗) . This relationship together

with H({sPGA}) can then be used to impose a lower bound to the
ratio H({sPGA})

H(S∗) as follows:

L′ ≜ L2 ·
H({sPGA})
H(SG2)

≤
H({sPGA})
H(S∗)

. (21)

Hence L′ is used as a performance bound on the final coverage
level achieved by the chosen optimal team of agents.

Characterization of optimal ti values given by PGA. We consider
two agents i and j to be neighbors if their sensing regions overlap
(i.e., V (si) ∩ V (sj) ̸= ∅). The set of neighbors of agent i is denoted
by Bi = {j : j ̸= i, V (si) ∩ V (sj) ̸= ∅} and the closed neighborhood
of agent i is defined as B̄i = Bi ∪ {i}. Using these neighborhood
concepts, we define the following state variable compositions
to go along with (si, ti): (i) The neighbor state variables: (s̄ci , t̄

c
i ),

where s̄ci = [{sj : j ∈ Bi}] and t̄ci = [{tj : j ∈ Bi}]; (ii) The
neighborhood state variables: (s̄i, t̄i), where s̄i = [{sj : j ∈ B̄i}]

and t̄i = [{tj : j ∈ B̄i}]; (iii) The complementary state variables:
(sci , t

c
i ), where sci = [{sj : ∀j ̸= i}] and tci = [{tj : ∀j ̸= i}]. Using

this notation, we now establish the following lemma.

Lemma 1. The objective function H(s, t) in (7) can be decomposed
as,

H(s, t) = tiHi(s̄i, t̄ci ) + Hc
i (s

c
i , t

c
i ) (22)

where Hi(s̄i, t̄ci ) =
∫
V (si)

R(x)Φi(x)pi(x, si)dx − βγi, and Hc
i (s

c
i , t

c
i ) =∫

Ω
R(x)

[
1 − Π∀l̸=i(1 − p̄l(x, sl, tl))

]
dx − β

∑
∀l̸=i γltl.

Proof. H(s, t) as given in (7) can be expanded as H(s, t) =∫
Ω
R(x)(1 − (1 − p̄i(x, si, ti))

∏
∀l̸=i(1 − p̄l(x, sl, tl)))dx − βγiti −

β
∑

∀l̸=i γltl. Now, using the following relationships (directly ob-
tained from (5), (2), and from the definition of the neighbor set
Bi): (i) p̄i(x, si, ti) = tipi(x, si), ∀x, si ∈ Ω, ∀ti ∈ [0, 1], (ii) pi(x, si)
= 0, ∀si ∈ Ω, x ̸∈ V (si), (iii) pi(x, si)(1 − pj(x, sj)) = pi(x, si), ∀x ∈

Ω, ∀j, ̸∈ Bi, we can write, for all x, si, sl ∈ Ω and ti, tl ∈ [0, 1],
p̄i(x, si, ti)

∏
∀l̸=i(1 − p̄l(x, sl, tl)) = tipi(x, si)

∏
l∈Bi

(1 − p̄l(x, sl, tl)).
Using these two main results, the relationship in (22) can be
obtained. ■

We can now establish the following theorem which character-
izes the nature of t∗i , the ti values given by the PGA Alg. 2.
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Table 1
Different classes of agents.
Class Index Sensing Para. Case I Case II

Range Decay w2i = 1, γi = 30 175,
i (δi) (λi) Cost (γi) Weight (w2i)

1 1 ∼ 5 200 0.012 30175 1.000
2 6 ∼ 10 100 0.008 18772 1.607

Theorem 2. For any agent i, the values obtained from the PGA
algorithm satisfy

t∗i =

{
0 when Hi(s̄∗i , t̄

c∗
i ) < 0,

1 when Hi(s̄∗i , t̄
c∗
i ) > 0.

(23)

Moreover, when Hi(s̄∗i , t̄
c∗
i ) = 0, the optimal objective function value

H(s∗, t∗) is invariant to t∗i .

Proof. Using the decomposition shown in Lemma 1, we get
∂H(s,t)

∂ti
= Hi(s̄i, t̄ci ), where Hi(s̄i, t̄ci ) is independent of ti. Therefore,

when Hi(s̄i, t̄ci ) ̸= 0, it is clear that the PGA cannot terminate the
ti update process in (Eq. (20)) until ti hits a constraint boundary
given by ti ∈ [0, 1]. The update direction depends on the sign of
Hi(s̄i, t̄ci ) and update process in (Eq. (20)) will become stationary
when ti satisfies (23). To prove the second statement, consider
the case where Hi(s̄∗i , t̄

c∗
i ) = 0 with t∗i ∈ (0, 1). Since Hi(s̄i, t̄ci ) is

independent of ti, if t∗i is perturbed to a value ti = t∗i + ∆ ∈

[0, 1], the optimality condition Hi(s̄∗i , t̄
c∗
i ) = 0 still holds true.

Further, using this relationship with Lemma 1, we can see that
H(s, t) is insensitive to a perturbation t∗i + ∆ ∈ [0, 1] when at
(s, t) = (s∗, t∗). This means that if the PGA converges to a value
ti = t∗i ∈ (0, 1), perturbing ti towards either 0 or 1 will not affect
the objective function value. ■

In conclusion, the proposed PGA ensures that the resulting
optimal ti values are either 0 or 1. Hence, despite the relaxation
of the binary variable ti to ti ∈ [0, 1], it provides a solution to the
mixed integer non-linear programming problem version of (7),
where, for all i, ti is constrained to ti ∈ {0, 1}. We conclude this
section by observing that Lemma 1 makes it clear that in order
for an agent to compute the gradients, it only needs the neigh-
borhood state information (s̄i, t̄i). Therefore, in executing the PGA,
agents have the capability to perform all required computations
(and subsequent actuations) in a distributed manner.

5. Numerical results

In this section, we provide several numerical results obtained
from the proposed PGA (Alg. 2) initialized with the solution pro-
vided by the greedy Alg. 1 discussed in Section 3. The PGA method
is evaluated under four different mission space configurations
named: (i) General, (ii) Room, (iii) Maze, and, (iv) Narrow, as
shown in Figs. 4a, 4b, 4c and 4d, respectively. The mission space
is a square of size 600 × 600 units with an event density function
R(x) assumed to be uniform (i.e., R(x) = 1, ∀x ∈ F ). All simula-
tions are initialized with ten agents (i.e., N = 10) and each agent’s
nominal sensing capacity is selected as pi0 = 1. For the use of the
greedy algorithm, the ground set FD is constructed by uniformly
placing 100 points in the mission space. All reported simulation
results and execution times have been obtained by executing the
algorithms on a standard desktop computer with 8.0 GB RAM and
a 3.61 GHz AMD eight-core processor. For convenience, we define
the cost component of the overall objective function H(s, t) as
C(t) = β

∑N
i=1 γiti. Therefore, H(s, t) = H(s) − C(t) where H(s)

represents the coverage component of H(s, t).

Fig. 4. Comparison of initial greedy solution (left) and projected gradient
ascent (PGA) algorithm solution (right) under different mission spaces for the
heterogeneous agent case.

The heterogeneous agent case (Case I). In this case, agents differ
from each other in terms of both sensing parameters (i.e., sensing
range δi and sensing decay λi) and cost parameters (i.e., agent
cost γi). To create such a heterogeneous agent configuration, we
first assume that the initially available 10 agents belong to two
classes (5 agents per each class) as given in Table 1. Then, we set
the agent cost weights to w2i = 1 ∀i. Based on (2), under each
adopted agent class, sensing parameters δi and λi will determine
the agent cost γi values as shown in Table 1 under the “Case I”
column. The normalization weight used is w1 = 0.58. To make
the problem meaningful, the agent classes have been chosen so
that they have complementary sensing properties.

The results obtained from the PGA algorithm are summarized
in Table 2 and the corresponding optimal agent team deploy-
ments are shown in Fig. 4, both at the initial greedy step and
at the final PGA solution. We can see a significant improvement
achieved in H(s, t) by the PGA steps compared to the initial
greedy solution. It is noteworthy that the PGA algorithm has
chosen agents from both classes to form the optimal agent team.
Also note that, with the help of the initial greedy step, the PGA
method has been capable of placing agents in appropriate mission
space regions well suited for their specific sensing properties (see
agent 6 in Fig. 4a).

The coverage performance bounds L′ (defined in (21)) achieved
by the optimal agent teams are shown in Table 4. From those
results, we can conclude that, on average, the optimal agent
team provides more than 75% of the attainable maximum cov-
erage level (slightly less than the average bound observed for the
homogeneous agent case).

Sensing-wise heterogeneous agent case (Case II ). Our purpose here
is to highlight the importance of having different agent costs
γi when the sensing parameters of the agents are different. We
also stress the importance of using the sensing capability (i.e., κi)
dependent agent costs as proposed in (2). Unlike the previously
discussed heterogeneous agent case, here we use a fixed agent
cost γi = 30 175 across all agent classes. To achieve this under
(2), we manipulate the agent cost weight w2i parameters in each
agent class, as given in Table 1 column “Case II”. As a result of
this manipulation, despite the differences in sensing parameters
over different agents, the agent costs γi across all agents become
identical. The normalization weight used is w1 = 0.58.

Since all the other problem settings are identical to the pre-
viously discussed heterogeneous agent Case I, the initial greedy
step of the PGA algorithm will yield the same agent deployment.
However, the associated total agent cost C(t) is different due to
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Table 2
Results of the proposed PGA for the heterogeneous agent case.
Mission space Initial greedy solution Final PGA solution Fig.

N = 10 H(s) C(t) H(s, t) Agent team H(s) C(t) H(s, t)

General 10 152,272 177,140 −22,868 {1, 2, 4, 5}, {6, 7, 8} 124,194 128,174 −3980 4a
Room 10 142,859 177,140 −34,281 {1, 2, 3}, {7, 10} 94,417 92,781 1635 4b
Maze 10 146,175 177,140 −30,965 {1, 2, 4}, {6, 7, 10} 96,889 106,355 −9465 4c
Narrow 10 179,478 177,140 2337 {1, 2, 3, 4, 5}, {6, 7} 145,963 136,420 9543 4d

Table 3
Results of the proposed PGA for the sensing-wise heterogeneous agent case.
Mission space Initial greedy solution Final PGA solution Fig.

N H(s) C(t) H(s, t) Agent team H(s) C(t) H(s, t)

General 10 156,142 177,140 −20,997 {1, 2, 3, 4, 5}, {} 97,398 88,671 8726 5a
Room 10 145,848 177,140 −31,292 {1, 2, 3, 5}, {} 79,771 70,972 8798 5b
Maze 10 146,175 177,140 −30,975 {1, 2, 3, 4, 5}, {} 83,261 88,671 −5410 5c
Narrow 10 179,478 177,140 2337 {1, 2, 3, 4, 5}, {} 120,374 88,671 31,703 5d

Table 4
Performance bound guarantees (i.e., L′ in (21)) on the final coverage level
achieved by the optimal agent team for the heterogeneous agent case.
Mission space Agent team H(SG2) L2 L′

General {2, 3, 4, 5}, {6, 9, 10} 117,923 0.703 0.740
Room {1, 2, 3}, {7, 10} 86,534 0.853 0.931
Maze {1, 2, 4}, {6, 7, 10} 91,203 0.703 0.747
Narrow {1, 2, 3, 4, 5}, {6, 7} 144,852 0.651 0.656

Table 5
Performance bound guarantees (i.e., L′ in (21)) on the final coverage level
achieved by the optimal agent team for the sensing-wise heterogeneous agent
case.
Mission space Agent team H(SG2) L2 L′

General {1, 2, 3, 4, 5}, {} 95,633 0.729 0.742
Room {1, 2, 3, 5}, {} 73,864 0.813 0.878
Maze {1, 2, 3, 4, 5}, {} 82,957 0.703 0.706
Narrow {1, 2, 3, 4, 5}, {} 117,231 0.651 0.668

the modification of agent cost parameters w2i and γi compared
to that of the heterogeneous agent case. The numerical results
obtained are summarized in Table 3 and the optimal agent team
deployments are shown in Fig. 5. The coverage performance
bounds L′ (defined in (21)) achieved by the optimal agent team
are tabulated in Table 5. As expected, when identical agent costs
are used despite their differences in sensing capabilities, the
resulting PGA solution gives preference to agents with higher
sensing capabilities. Thus, the optimal agent team is inherently
biased towards Class 1 agents (see Table 3 and notice κ1 > κ2 due
to the δi, λi values i = 1, 2). Clearly, in real-world applications
one expects more capable sensors to have higher costs.

Comparison with a commercial optimization solver. In comparing
the solutions given by the proposed PGA method to those of
a commercially available optimization problem solver, there are
two constraining factors to consider: (i) The coverage component
of the objective function in (7) is non-convex, non-linear, and
discontinuous. As a result, even though the original version of
(7) is a mixed-integer non-linear program (MINLP) (where ti ∈

{0, 1}, ∀i), we were constrained to using a generic non-linear
program (NLP) solver. Therefore, in order to find the optimal
binary decision variables (i.e., t), we applied the NLP solver ex-
haustively over all possible integer values (we refer to this as
the “brute force” method). (ii) When obstacles are present in the
mission space, the feasible space for each agent becomes non-
convex (in our case, this complicates the objective function as
well). Since representing such constraints and feeding them to
a generic optimization problem solver is difficult, we confine our
study to an obstacle-less (blank) mission space.

Fig. 5. The obtained final PGA solution under different mission spaces for the
sensing-wise heterogeneous agent case.

The NLP solver used is the interior point method implemented
under the fmincon command in MATLAB R⃝. The available agents
and their sensing capabilities are given in Table 1. In the brute
force approach, each iteration considers a specific agent team
and computes the optimal coverage solution. Two brute force
methods (BF1 and BF2) were used depending on the agent ini-
tialization in order to highlight the effect of such initialization.
Specifically, in BF1, agents are initialized randomly and in BF2,
agents are initialized in a corner of the mission space such that
the lth agent (∀l) is placed at sl = (5+5l, 5+5l). Note that when
the normalization weight is w1 = 1 (see (8), (7)), the PGA method
basically solves the optimal coverage problem. This enables a
direct comparison of the performance of the PGA method (when
w1 = 1) with that of single iterations of BF1 and BF2. This
comparison is shown in Fig. 6 and it confirms that the proposed
PGA method: (i) Delivers better coverage levels, and, (ii) Shows
extremely low execution times compared to BF1 or BF2. Another
conclusion is that the random initialization has helped the BF1
method to achieve better coverage and execution times compared
to that of BF2.

Under the information in Table 1, there are 35 possible agent
team configurations. Therefore, 35 brute force iterations were
required to determine the optimal agent configuration. As the
next step, the agent cost related parameters β and γi were com-
puted using the prespecified weights w1 and w2i. Then, the best
agent team composition, which maximizes the overall objective
H(s, t), is identified from simply searching through the previously
generated results. A comparison of the obtained results in terms
of the coverage H(s) and the overall objective H(s, t) when the
weight w1 is varied is shown in Fig. 7. The average value of the
execution times observed in each method is given in Table 6.

Our main conclusions from this comparison are: (i) The PGA
method delivers better coverage levels H(s) across all w1 val-
ues used, and, (ii) As w1 increases, the PGA method performs
better than brute force methods in terms of H(s, t), and, most
importantly, (iii) The average execution time required for the PGA
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Table 6
Observed average execution times.
Method PGA BF1 BF2
Average execution time (s) 4.56 4328.13 8845.83

Fig. 6. Optimal agent configurations, coverage levels, and execution times
obtained for the multi-agent coverage problem (see (3)) with 10 heterogeneous
agents (see Table 1) in a blank mission space using (a) PGA algorithm, (b) Brute
force method 1 (BF1), and, (c) Brute force method 2 (BF2).

Fig. 7. Comparison of coverage performance H(s) and overall performance
H(s, t) for different normalization weights w1 in (8).

method is extremely low compared to brute force approaches (by
a factor of 10−3). Finally, we also emphasize the scalability that
the PGA method offers due to its distributed nature.

6. Conclusions

We address the multi-agent coverage problem where the
number of agents to be used is flexible and the available agents
are both heterogeneous and have an associated cost value. We
have addressed this optimal agent team composition problem by
constructing an objective function combining the overall agent
team cost with the coverage level delivered by the agent team.
This problem is then solved using a projected gradient ascent
(PGA) algorithm initialized through a greedy algorithm and
shown to recover the integer-valued variables that were origi-
nally relaxed. Further, based on submodularity theory, we have
derived tighter performance bounds showing that the PGA al-
gorithm can often lead to near-global-optimal solutions. The ef-
fectiveness and computational efficiency of the PGA algorithm in
diverse mission spaces and heterogeneous multi-agent scenarios
has been validated.
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