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Abstract—This paper considers a two-dimensional persistent
monitoring problem by controlling movements of second-order
agents to minimize some uncertainty metric associated with
targets in a dynamic environment. In contrast to common
sensing models depending only on the distance from a target, we
introduce an active sensing model which considers the distance
between an agent and a target, as well as the agent’s velocity. We
propose an objective function which can achieve a collision-free
agent trajectory by penalizing all possible collisions. Applying
structural properties of the optimal control derived from the
Hamiltonian analysis, we limit agent trajectories to a simpler
parametric form under a family of 2D curves depending on
the problem setting, e.g. ellipses and Fourier trajectories. Our
collision-free trajectories are optimized through an event-driven
Infinitesimal Perturbation Analysis (IPA) and gradient descent
method. Although the solution is generally locally optimal, this
method is computationally efficient and offers an alternative
to other traditional time-driven methods. Finally, simulation
examples are provided to demonstrate our proposed results.

Index Terms—persistent monitoring, second-order agents, two-
dimensional space, obstacle avoidance, collision-free trajectory.

I. INTRODUCTION

N recent years, attention has been drawn to persisten-

t monitoring because of its wide range of applications
such as ocean sampling [1], [2], city surveillance [3], [4],
and traffic monitoring [5], [6]. Persistent monitoring often
arises in a large dynamically changing environment which
requires agents to move to cover the monitoring region. The
fundamental problem of persistent monitoring is to design
suitable motion strategies for agents to meet the monitoring
requirements cooperatively. Up to now, there have been many
studies on persistent monitoring in both 1D [7], 2D [8] and
3D [9] spaces. For the 1D problems, [10] recently addresses a
1D persistent monitoring problem which only involves a finite
number of targets and designed optimal trajectories for agents.
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Moreover, [11] solves the 1D persistent monitoring utilizing
second-order agents with physical constraints, e.g. bounded
acceleration and velocity.

Compared with the 1D problems, the 2D monitoring prob-
lems find more practical applications; the control strategies
are more complicated; and the optimal solutions are more
challenging to obtain. [12] restricts agent trajectories to el-
lipses and proved that they outperform the linear ones un-
der certain conditions in a 2D mission space. [13] studies
monitoring finite stationary targets distributed nearby a given
closed trajectory in 2D space. And [14] presents optimal speed
controllers along a given closed path to stabilize a changing
environment.

Different from 1D and 2D problems, the key to solving
3D monitoring is not to focus on trajectories of agents, but
to model it as a scheduling or visiting problem. [15] casts a
persistent surveillance problem as a Vehicle Routing Problem
with Time Windows, and develops a locally optimal path
within a set time horizon, which then is executed repeatedly.
[16] designs an optimal scheduling scheme for one robot
tasked to monitor several events that are occurring at different
locations.

The aforementioned literature deals with the persistent mon-
itoring problem without obstacles in the mission space. How-
ever, in many applications, the existence of obstacles restricts
the movements of agents, thus exacerbating the complexity of
the problem. [11] proposes a collision avoidance algorithm by
repeatedly adjusting the designed agent trajectories. And [17]
solves collision problems in 2D monitoring through stopping
policies on given closed paths. Further, in related research
on coverage control [18], there are some results involving
avoiding obstacles. Specifically, [19] achieves collision avoid-
ance through a bounded repulsive avoidance control law. [20]
keeps robots at a safety distance from obstacles through speed
functions. However, such methods of avoiding obstacles are
not applicable in persistent monitoring. Thus the design of
collision-free trajectories is still an open question.

Motivated by the above discussion, we will first introduce
the persistent monitoring problem using second-order agents
and then consider all possible collisions (agent to agent, agent
to obstacle). Our goal is to ¢) find a solution to an optimal
control problem for second-order agents visiting targets with
different weights, while also avoiding all possible types of col-
lisions. Through standard optimal control theoretic techniques
[21], we show that agents move with maximal accelerations;
i1) translate the optimal control problem into a tractable
parametric optimization problem. Inspired by [12], we rep-
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Fig. 1. Persistent monitoring mission space. Blue areas are obstacles. Red
stars represent target points. The curves s,, and s, represent feasible agent
trajectories.

resent agent trajectories using various families of parametric
curves. #i¢) determine optimal parametric agent trajectories
under the parametric families used. IPA [10] is utilized for
the gradient evaluation and the gradients are then used for
optimization through gradient descent methods. Moreover, the
IPA gradient is updated in an event-driven manner, hence
not requiring continuous time-driven updates. Note that our
algorithm optimizes the agent trajectories while ensuring agent
safety by penalizing all possible collisions.

The main contributions of this paper can be summarized as
follows:

« Second-order agents are utilized to execute 2D monitor-
ing task, which brings our treatment of persistent moni-
toring one step closer to realistic applications. Moreover,
bounds with respect to agent accelerations and velocities
are both considered.

o Targets with different weight coefficients are considered,
which is different from [12] where all targets are homo-
geneous.

e« A new sensing model is constructed, which is quite
different from those limited to dependence only on the
distance between an agent and a target in [7], [10]-[12].
Our sensing model depends not only on relative distances
between agents and targets but also on agents’ velocities
[22], [23], and finds use in applications such as vision-
based monitoring [24], [25].

o Obstacles in the mission space are considered. Thus,
we propose a novel objective function which leads to
a collision-free solution by penalizing all possible colli-
sions.

The rest of the paper is organized as follows. In Section II,
an optimal control formulation for the persistent monitoring
problem is proposed. In Section III, some preliminary insights
about the solution are given through Hamiltonian analysis.
Section IV parameterizes the agent trajectories under a select-
ed family of 2D parametric curves and optimize the parameters
using an IPA-based gradient descent algorithm. Section V
provides simulations and Section VI concludes the paper.

II. PERSISTENT MONITORING PROBLEM FORMULATION

Consider a 2D rectangular mission space Q = [0, Lq] X
[0, Ls] C R? as shown in Fig. 1. Select {z; = [z¥,27] €
Q,i=1,.., M} as target points to be monitored. Note that
some target points may be located within obstacles. We assume

sensors can monitor these points without going into obstacles.

This can model, for example, sensors located outside buildings
which can detect targets inside the buildings.

A. Agent Dynamics

We consider N cooperating agents assigned to monitor
stationary target points over the time horizon [0,7]. The
dynamics of agent n can be described by

. 0 I 0
Ty (t) = f(Tn, Un) = 22 ° Ty (1) + >? Un(?)
022 0292 I
(1)
where n = 1,..., N, 025 is a 2 X 2 zero matrix, I is a

2 x 2 identity matrix and U, is the control input. The state
Tn(t) = [5,(t),v,(t)]T, where s,(t) = [s2(t),s%(t)]" and
vn(t) = [vZ(t),vY(t)] " represents the position and the veloc-
ity of the agent n at time ¢ respectively. In addition, we define
the control input U, (t) = [un(t) cos 0, (t), u,(t)sin 6, ()] T,
where u,,(t) is the magnitude of the acceleration and 6,,(t) is
the agent’s heading that satisfies 0 < 6,,(¢) < 27. Without loss
of generality, we assume that the velocity and the acceleration
of each agent are bounded such that
0 < lvn®)] <vpr**, m=1,..,N

n

2
0 < Jun(®)]| < w™®, n=1,..N @

where v]'** is subject not only to the maximum power
constraint [11], but also to the performance of the sensor
aboard the agent (which will be mentioned in the following).
Remark 1. Note that the control input w,(t) here is the
acceleration of the agent n as opposed to the velocity in [12].
Moreover, as will be seen in the next section, following the
centralized determination of optimal trajectories, the monitor-
ing task is executed in an open-loop fashion by each agent.

B. Agent Sensing Model

According to [22], [23], the detection probability of a
sensor is inversely proportional to the movement velocity.
Thus, here we assume that the actual sensing strength of a
sensor is determined by the distance between a sensor and a
target, as well as its velocity. Specifically, a closer distance
and a smaller velocity lead to higher sensing strength. The
sensing effectiveness is zero when the distance exceeds a
finite sensing range r, or the velocity of the agent exceeds
a certain threshold 5, (> v]'** to avoid meaningless agent
movements). Define a function p,(z;) which represents the
probability that an event at location z; = [z, 2}] is detected
by agent n. In addition to those properties of the sensing
model considered in [12], p,,(z;) is also monotonically non-
increasing function in the agent’s velocity.

(1 21— L),

if D2, 80) < 1 and [[vn ]| < Bn

pn(zi) = 3)

0,if D(z;, 8n) > rp or ||Upn] > Bn

where D(z;, s,,) = ||zi—sn|| is the Euclidean distance between
the agent n and the target position z;, and v, is the agent
velocity (we assume that targets are stationary).



Since there may be multiple agents, the joint probability
that an event occurring at z; is detected, denoted by P;(x(t)),
is given by

N
Pi(x(t)) = 1= ][ = pal20)] S
n=1
where x(t) = [s(t),v(t)]" with s(t) = [s1(t), ..., sn(t)] and
v(t) = [v1(t), ..., vn (t)].

C. Target Dynamics

We associate an uncertainty function R;(t) with every target
point z;, which possesses similar properties to the model in
[12]: (i) R;(t) increases with a prespecified rate A; if P;(t) =
0, i.e. there is no agent detecting target z;; (ii) R;(t) decreases
with a fixed rate B if P;(t) = 1; (iii) the decrease of R;(t) is
proportional to the joint probability P;(x(t)); (iv) R;(t) > 0
for all ¢. Thus, the dynamics of R;(t) are

A; — BP;(x(t)), otherwise

We further assume that initial conditions R;(0),7i =1,..., M,
are given and that B > A; > 0 for stability.

D. Optimal Control Problem

Our goal is to minimize the uncertainty accumulated across
all target points. We define J;(t) to be the weighted sum of
target uncertainties:

M
Ji(t) = oiRi(t) (6)
=1

The weight coefficients o; are set to capture the relative
importance of different targets. Note that the problem setting
in [12], where 0; = 1, for ¢ = 1,..., M, is a special case of
our setting here.

Moreover, in contrast to [12] where each agent is rep-
resented as a point mass and collisions among agents are
ignored, we will consider the sizes of agents in this work.
Note that to avoid collisions in persistent monitoring settings,
any two agents cannot share the same location at the same
time instant. Considering the size of each agent, for agent n
we define a safety radius p,, > 0, and the corresponding safety
disk Qn, = {z € Q| ||z — s,(t)|| < pn}. We consider that a
collision occurs between agents p and ¢ at some location only
if Q,NQ, # 0. Obviously, to avoid agent collisions, we must
ensure that the Euclidean distance d,q(t) = ||s,(t) — s4(2)| >
Pp + pq at all times. To capture the collisions among agents,
we define

Ay (t) = min(0, dpg(t) — pp — pq) @)
First, d;q(t) < 0 for all ¢ € [0,7]. Second, a collision-
free trajectory satisfies d, (t) = 0 for all ¢. Considering

all possible collisions among agents, we define the agent
collision avoidance component J,(t) of the objective function

as follows:
N N-1

To(t) =Y > dpy(t) )

g=p+1p=1

In addition, the presence of obstacles in the mission space
(as shown in Fig. 1) usually restricts the feasible trajectories.
This brings another level of difficulty to the optimization
problem. For simplicity, we ignore shapes of the obstacles by
covering them using circumscribed circles (shown as dashed
circles in Fig. 1) whose centers are denoted by w; = [w], w]]
and radii by r;,l = 1, ..., L. Conservatively, we can ensure the
safety of agent n by letting the Euclidean distance d;,,(t) =
lwr = sn(t)|| = 71 + pp- Similar to (7), we define

dp, (t) = min(0, dp, (t) — 1 — pn) )

Note that d;, () < 0 for all ¢t € [0,7]. Similar to (7),
a collision-free trajectory satisfies d, (¢f) = 0 for all ¢.
Considering all agents and obstacles, we define the obstacle
collision avoidance component J5(t) of the objective function
as follows:

N L
Ts(t) =D dy, ()

n=1l=1

(10)

Now we are ready to formulate the optimal persistent
monitoring problem to obtain collision-free agent trajectories
so that the cumulative uncertainty over all weighted target
points {z1,...,za} in the mission space is minimized over
a fixed time horizon T\ Let u(t) = [uy(t),...,un(t)]" and
O(t) = [01(t),...,0n(t)]". Then the optimal control problem
P1 is formulated as follows:

1 T
Pl: min J= —/ (Jl (1) + MaJo(t) + M3J3(t))dt
v o) T Jo
Y
where My and M3 are large negative numbers.

Remark 2. The objective function is designed on the basis
of imposing collisions penalties [26]. Along a collision-free
trajectory both J5(t) and J5(t) are zeros. The large negative
numbers Ms and M3 penalize all forms of collision (agent to

agent, agent to obstacle) along the agent trajectory.

III. OPTIMAL CONTROL SOLUTION

In this section, we use optimal control theory [21] to derive
necessary conditions for the optimal solutions of P1. We define
the state vector

y () =[s7(t), 51 (1), ., s (), 53y (1), 07 (1), 0V (), -,

(12)
0% (), 0% (t), Ry(t), ooy Ras(t)] T
and the associated costate vector
A(t) :P‘f(t)a )‘71!(15)3 ey )‘?V(t)v AZJ/\[(t) /L%(t), ,u?i(t)a E) (13)

13 () 1 (071 (8), s ar (]

In addition, we introduce n = [11(t),...,nn(t)] " to handle
the inequality constraint on the state variable v, (¢) such that

o > 0, i on (0] = v} (14)

n

{ M = 0, 3f [l (8)[| < v7”



The Hamiltonian is given by

= (&) + Maa(t) + Mo Js(8)) + Z%

N
+ ) Nt

n=1

N
+ 316 0)un) o)

+ Znn (lon (O = v **)
o as)
and the costate equations can be obtained through A = —%—I;.
For the case u¥(t) = 0, we get
H= (Jl(t) + My Jo(t) + M3 Js(t ) + Z’Yz
N N
+ Z)\ﬁ(t)v t) + ZAz(t)w t

+ Zun Jun(t) cos 0, (t) + Znn )(lvn (B = v"*)

(16)

For the case p¥ (t) # 0, after some trigonometric operations
on (15), we get

H= <J1(t) + My Ja(t) + M3 Js(t ) Z%
N N
£SO + A

N
3 sen(a (6))un (1) (5 (1)2 + (ut(1))?

y lsgnwz(t»uz(w costn(t) | |uf(t)]sin (1) ]
V2 + )2 g 0)? + (uh(D)?

+ Znn
(17)

where sgn(-) represents the sign function. Combining the
trigonometric function terms, we obtain

+

|| _ vmax)

([[vn(t

H = (Jl(t) + My Jo(t) + M3 Js(t ) + Z%
N N
Y XL BUEE) + > A(HvL()
n;l n=1
+ ngn(u%(t))u
)+ Znn

n=1

(O (2(0)? + (h(2))? sin (0 (2)

maw)

||’Un Un

(18)

where U, (t) is defined so that tan ¥, (¢) = % for p¥(t) #
0. In the following discussion, we assume that any ‘“‘singular
interval” where both p7(t) = 0 and p¥(t) = 0 is excluded.

Note that the initial states of this problem are given but the
terminal states are free. Thus, the terminal costate are v;(7T) =
0,i=1,..., M, Xo(T) = N(T) =0 and pZ(T) = p¥(T) =
0,7 =1,..., N. According to [21], the minimal solution can be
obtained by solving the Two Point Boundary Value Problem.
Applying the Pontryagin Minimum Principle to (16) and (18)
with w¥(t), 0%(t), t € [0,T) denoting the optimal controls,
we have

H(y*, \*,u*,0%) :u(?)un( )H(y,A u,0) (19)

The necessary conditions for the optimal controls are:
Jun (O] = up (20)

and

sin(65 (t) + U, () =1, if p2(t) <0
sin(07 (t) + U, () = —1, if p¥(t)>0
cos @ (t) =1, if p(t)=0 and ur(t) <0
cos O (t) = —1, if p¥(t)=0 and p(¢) (>2?)

Remark 3. Unlike the 1D persistent monitoring analysis in
[11] where u}(t) depends absolutely on the sign of the costate
Ay, (t),in 2D uy (t) = u;'** and the orientation 6, (¢) depends
on the sign of costate variables.

Note that in (2) and (14), if ||v, ()| = v*®, then 0, (t) =
0. In particular, as long as the agent n reaches its maximal
velocity, it will keep the maximal velocity moving.

Revisiting the Hamiltonian in (15) and according to [21],
0% (t) can be obtained by solving:

ZTH = — . () un (t) sin 0, (t) + p (t)un(t) cos 0, (t) =0
! (22)
from which we obtain
. 14 (t)
tan @) (t) = (23)
0= e

So far, we know w’(t) = u/"®® and there is only 0 (t)
left to be evaluated. This can be accomplished by solving
a standard Two Point Boundary Value Problem (TPBVP),
which involves a forward integration of the states and a
backward integration of the costates. However, solving the
TPBVP problem is computationally intractable as numbers of
agents and targets increase. Furthermore, the switches on the
state dynamics and the presence of obstacles exacerbate the
computational complexity. Therefore, we will search alterna-
tives in the next section.

IV. AGENT TRAJECTORY PARAMETERIZATION AND
OPTIMIZATION

The result of [12] indicates that under some assumptions
an elliptical trajectory outperforms a linear one when using
the average uncertainty metric as a comparison criterion. In
fact, elliptical trajectories degenerate to linear ones when the
minor axis of the ellipse becomes zero. Based on the result
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Fig. 2. Tllustrations of the parametric form of an elliptical trajectory.

that elliptical trajectories are smooth and periodic, and are
more suitable for 2D monitoring [12], we also select them
for agents to execute the monitoring task. Under the optimal
control derived in Section III, the agent first accelerates along
the elliptical trajectory with the maximal acceleration u)'**.
Ever since it reaches the maximal velocity, it maintains the
maximal velocity along the monitoring task.

A. Elliptical Trajectories

We assign each agent an elliptical trajectory parameterized
by center coordinate, major axis, minor axis, and orientation
and rewrite P1 as a parametric optimization problem.

Define an elliptical trajectory such that the agent position
Sn(t) = [sE(t), s¥(t)] follows the general parametric form of
the ellipse:

sp(t)
sn(t)
24)

As illustrated in Fig. 2, [X,,, Y},] is the center of the ellipse, a.,
and b,, are the radii of the major and minor axes respectively,
¢n € [0,27) is the orientation, and ¢,,(¢) is the eccentric
anomaly. Upon initializing its position at the starting point,
the agent always moves along the ellipse.

Taking the derivatives of (24), we obtain the velocity
information of the agent as follows,

= X, + ay, cos o, (t) cos ¢, — by, sin @y, () sin ¢,
=Y, + a, cos @, (t) sin ¢, + by, sin ¢, (t) cos ¢y,
(

2 (t) = —@n(t) (an sin gy, (t) cos ¢r, + by, cos ¢y, (t) sin ¢y, )
$Y(t) = —@n(t) (an sin ¢, (t) sin ¢y, — by, cos @, (t) cos ¢n)
(25)
Again, taking the derivatives of (25), we get the acceleration
information of the agent as follows,

5T (t) = — ap cos ¢y, (cpn( ) sin oy, (t) + ¢n(t)? cos cpn(t))
— by sin (bn (Son COS Yn (t) - @n (t)2 sin Son t))
§Y(t) = — ap sin ¢y, (Pn (t) sin g, (t) + &n (t)2 cos @ (t)

+ by, €08 ¢ (G (£) COS @y (1) — @ (1) sin oy, (t))

(26)
Since the agent moves with constant acceleration «,'*** on
the elliptical trajectory (if not at the maximal Velocity), we
have

507 + 307 = (o)
(1) + 500 = Jon (0

for some ¢t € [0, T'], where v,,(t) is the current velocity of agent
n. Applying (26) to (27) and (25) to (28), we can obtain ¢, (t)
and ¢, (t), respectively.

27
(28)

Once the agent reaches the maximal velocity, it will main-
tain this maximal velocity thereafter and we have

OGRS

for some t € [0, T]. Applying (25) to (29), we obtain ¢y, (t).

Based on these processes, ¢, (t),t € [0,T], can be obtained
through iterations, thus the complete trajectory of the agent on
the ellipse can be obtained.

N2
(7e2)

(29)

B. Optimal Trajectory Design

The trajectories of all agents can be parameterized by © =
[O1,...,0n]" with ©,, = [X,,, Yy, an, by, dn],n = 1,..., N.
Therefore, the objective function (11) can be rewritten as
J(©). We seek to obtain ©* = [0%,...,0%]" by minimizing
J(©). We use the standard gradient descent method [27] as
follows,

@h _ @h—l _

a"vJyeht (30)

where o is a suitable step size and V.J(©"~1) is the gradient
of J with respect to © = [O1,...,0y]". The trajectory
parameters can be optimized iteratively through (30) and the
terminal condition is given by

J(e") —J©O" ) <e 31)

where € > 0 is a prespecified constant.

C. Gradient Calculation

1) Infinitesimal Perturbation Analysis. Now we briefly
review Infinitesimal Perturbation Analysis (IPA) as applied
in [10]. IPA calculates the gradient of the objective function
for a hybrid dynamic system which contains events leading
to possible discontinuities on the gradient. Denote the con-
tinuous states of the hybrid system by x(¢), the k-th event
time by pi and the controllable parameter by ®. For each
[Pk, pr-+1), the state dynamics is continuous and can be written
as x = fr(x,©,t). The events at p; can be classified into
three categories:

« Exogenous events. These events will cause a discrete state
transition and there exists % =

o Endogenous events. These events occur when a continu-
ous differentiable guarding function g (©,x) = 0.

o Induced events. These events are triggered by another

event occurring at an earlier time.

Let x/(t) = 9% and p}, = 22 The IPA shows that X’(t)
satisfies:

4 iy = W iy 4 OFk
X (t)= I X'(t) 29 '€ [Pks Pre+1) (32)
with boundary condition:
X' (0f) = X' (o) + [fu-1(pi) = fulpOlp - (33)

If the event at pj, is exogenous, then pjc = 0. Otherwise, if the
event at py is endogenous, then pj, satisfies

—[g—g;fw;)]_ (28 ggk

X)) 6w

Pk



TABLE 1
OPTIMIZATION PROBLEM EVENT SET
Event Set Illustration
1.&0 R;(t) hits 0, for s = 1,..., M
2. {Z.Jr R;(t) leaves 0, fori =1,..., M
3. ul up (t) switches from u*** to 0, forn = 1,..., N
4. ¢Y, dpg(t) hits 0, forp=1,..,N—1,g=p+1,...,N
5. Cpg dpg(t) leaves 0, forp=1,...,.N—-1,g=p+1,...,N
6.2 d;, (t) hits 0, for l =1,..,L,n=1,..,N
7.0, d;, (t) leaves O, for I =1,...,L,n=1,..,N

as long as %L;fk(p;) # 0. Then for ¢ € [pk, pr+1), X' (t) can
be determined by
¢

X' (t) :x’(pf{)+/ %X’(t)dt

Recalling Section II, we summarize all events which may
trigger the state transitions in our optimization problem in TA-
BLE I. The superscript 0 indicates an event causing a variable
to change from a non-zero value to zero; the superscript +
indicates an event causing a variable to change from zero to a
positive value; and the superscript — indicates an event causing
a variable to change from zero to a negative value). Define £
as a set of “event types” that can be associated with either an
agent or a target. We use e(px) € FE to represent the event
happened at time py.

2) Gradient computation using IPA. We write the para-
metric form of the objective function in (11) as

(35)

1 (T
J(©) = T/ (Jl(@) + M Jo(©) +M3J3(G)))dt (36)
0
Define a time sequence {px(0),k=1,..., K} (withpy = 0
and px+1 = T) to describe all switching instants. Then
VJ(O) can be written as
K
1 Pr+1(O)
vI©) = 23| / (vh©)
k=0 Y Pr(©) 37

+ MyVJs(©) + Mgwg(@))dt]

The evaluation of V.J(©) therefore depends entirely on
VJ1(©), VJ2(0) and VJ3(0©). Note that there may be
discontinuities in these derivatives and the effects of such
discontinuities can be captured by IPA. Next we will focus on
seeking V.J1(0,,), VJ2(0,,) and V.J3(0,,) for every agent n.
Referring to (6), (8) and (10), we can get

M

VJ1(0,) = 0iVR(t) (38)

=1
VJ2(0,) = > Vd,, (1) (39)

p#n,pe{l,....,N}

L
VJ3(On) =Y Vd, (1) (40)

=1

We need to calculate VR, (t) = [65;25? ORi(t) ORi(t) ORi(t)

’ 9Y, ' Oan ' Obp, ?
OR; ()T — _od,,(t) od,(t) od,, (t) od,,(t)
9on ) > V() = 7557 3%, Ban + ob,

ad, (t) T — __0d; (t) od; (t) od; (t) 0od; (t)
35— and Vd,, (t) = [F% =, % == >
ody, (DT

a¢n 3
2.1) Calculate VR;(t). From (5) and (35), for ¢t €
[0k, PE+1), We can obtain

fptk %VRi(t)dt, otherwise
(4D
where the integral term calculated by (32) gives
%VRN) = —BVP(x(t)) (42)
From (4), we can get
VPi(x(t)) = D52 (1) Vi (t) 3s0(0) Vs (t) -
ORX(1)) Gy OPACXE)
WWN) T el Vup(t)

where the derivative terms in (43) can be easily obtained
from (4). Then, Vs?(t), Vs¥(t), VuZ(t) and Vv¥(t) can be
obtained from (24) and (25) as follows,

Isp(t) Isp(t)
ax, —© Da, cos @, (t) cos ¢y,
s (t) 0sZ(t) . .
o = n = — 44
oy, 0, b, sin ¢, (t) sin ¢y, (44)
a;;(t) = —ay, €O8 @, (t) sin ¢, — by, sin @, (t) cos ¢y,
asy(t) osy(t) .
X, 0, 90, oS @y, (t) sin ¢y,
0s¥(t) 0s¥(t) )
n _ n —a . 4
aYn ? 8bn Sm gﬁn(t) CO8 (bn ( 5)
y
a;z)(t) = @y, COS p (t) cOS Py, — by, SN, (t) sin @y,
ovE(t) dup(t) | .
ox, 0, 9o, &n(t) sin @, (t) cos ¢,
ovE(t) ovE(t) L .
oy, —0 g = @n(t) cos @y (t) sin ¢y,
P () (ansin )5 6, — b c0s (1) 055
9 (") v (t) o
Y (t v (t o . .
0X, , 90, On () sin @, () sin ¢y,
avy(t) avp(t) .
oy, =% o~ Pn(t) cos gy (t) cos ¢y,
y
D) 1) (ansin (1) 08 6 + by cos pn(0) s 0,

(47)
Remark 4. Note that the calculations of (44)-(47) depend
on ¢, (t) and ¢, (t). When the agent n is not at the maximal
velocity, ¢, (t) and ¢, (t) can be obtained by solving (27)
and (28). When the agent n is at the maximal velocity, i.e.
the event {ul} in TABLE I occurs, they can be obtained by
solving (29).
The following proposition derives the value of VRi(pz') in
(41) after the event time ¢t = pg. Note that the calculation of
VR;(p{) only involves the first two events in TABLE 1.
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Proposition 1. If an event occurs at ¢ =
derivative VR;(p;) satisfies:

Pk, the state

B 0, ife(pr) =28
VR;(py) —{ VRi(py), if e(pr) =&

Proof. Due to the space limitation, please see [28] for the
detailed proof. ]

2.2) Calculate Vd,,(t). This involves the derivative of
the min function in (7). For a given pair of agents p and n,
following the definition of d, () in (7),

(48)

if t € [ ol

— _ O’
Vdpn(t) - {v“sp(t) —_ Sn(t)Ha lft S (Cp_nv gn)

2.3) Calculate Vd,, (t). This involves the derivative of the
min function (9). For a given pair (I, n) defined by obstacle [
and agent n, Vd,, (t) can be calculated as follows:

(49)

if €[00, 67,)
if t € (5;,,00,)

in>

0,
Vit { Vil (t) — sa(t)]
Based on the above analysis, the procedure for obtaining
optimal elliptical trajectories is summarized in Algorithm 1,
which is an off-line centralized algorithm. From Algorithm
1, we can get optimal parameters for every agent. Then each
agent will execute the monitoring task in an open-loop manner,
which has been mentioned in Remark 1. In addition, the flow

chart of the algorithm is presented in Fig. 3.

(50)

V. SIMULATION EXAMPLES

In this section, simulations are provided to illustrate the
results obtained by Algorithm 1.

In the following examples, the mission space is 2 =
[0,10]x[0,5] C R?. Note that in our work, the event excitation
problem discussed in [10] may be caused by two situations
including initial agent trajectories not visiting any targets and
targets with large weights being not monitored. In either case,
the performance metric gradients may not be excited, resulting
in zero values that prevent the iterative algorithm (30) from
converging to an optimum. This problem can be overcome by
introducing a “potential field” as detailed in earlier work [10].
Here, to avoid the occurrence of event excitation problem,

Algorithm 1: IPA-based iteration algorithm

Input: The initial parametric trajectory
oL =X,V al, bl ¢L], maximal acceleration
uy'®®, maximal velocity v]'**, sensing range 7y,
velocity threshold ,, for effective monitoring,
safety radius p,, initial values of uncertainty for
all targets R;(0), positions of obstacles, terminal
condition ¢, iterative index h = 1, and J(©°) = 0.
Output: Optimal parameters [ X, Y,*, ax, by, o7 ].
while |J(©") — J(©"1)| > £ do
Compute agent trajectory s, (t), t € [0,T] defined by
(X0, Y, ap, b, o] through (24)-(29);
fori=1:M do
Calculate R;(t) according to (5);
if R;(t) switches then
| Compute VR;(t) according to (48);
else
| Compute VR;(t) according to (41);

Compute V.J; according to (38);

for agent p # n do

Calculate d,,,,(t) according to (7);

if d,,(t) = dpn(t) — pp — pn then
Calculate Vd,,, () using Vs, (t) through (44)
and (45);

else

| Vd,,(t) =0;

pn

Compute V.J, according to (39);
for(=1:L do
Calculate d;, (t) according to (9);
if dl_n (t) = din (t) —r; — pn then
Calculate Vd,, (t) using Vs, (t) through (44)
and (45);
else
| Vd,(t) =0;

Compute V.J3 according to (40);

Compute the overall gradient VJ using (37);

Update [X" Y al b ¢! through (30);
Set h=h+1;

return [ X, V.Y, arn,bn, 00 = (X0, V)0 an, b, 0

select {z; = [2F,2Y],2F =0,1,..,10,2¢ =0,1,..,5} as the
target points, which are uniformly distributed in the mission
space. The initial values of uncertainty for these points are
R;(0) = 0,i = 1,...,66. In addition, the effective sensing
range for all agents is r, = 2, the velocity threshold for
effective monitoring is §, = 5, the maximal acceleration is
up'®® = 1 and the maximal velocity is v;*** = 1.5. Moreover,
the safety radius p, is 0.2 for any agent n. Further, for
avoiding slight collisions, i.e. M2J2(t) and M3J3(t) ending
up as small numbers, we set an extra safety distance as 0.02
in the simulation. Ms and M3 are selected as -30000.

Case A. One agent case. In this one agent case, we
use both the elliptical trajectory and the Fourier trajectory



(Detailed derivation of the results can be found in [28]) to
illustrate the effectiveness of Algorithm 1 respectively. Since
the objective function J is non-convex, there may be many
local optima depending on initial trajectories. Therefore, we
apply multiple initial parameters and select the best. Then
on the basis of elliptical trajectory, we further give some
examples of comparison with two cases, i.e. monitoring with
no obstacles and monitoring with the existing sensing model
in [12], to illustrate the effectiveness of our collision avoidance
method and of the new sensing model. The time horizon
is set as 40s. Let all target points have equal importance
such that o; = 1,72 = 1,...,66. The increasing rate is
A; =1,i=1,...,66 and the decreasing rate is B = 15.

From (24), the positions of agent n come down to the
calculation of ¢, (). Further, since the ellipse is a curve, we
take the discrete way to calculate the positions. Denote At as
a small time interval. When the agent n is not at the maximal
velocity, o, (t) can be determined by repeatedly calculating
on(m+1) = gpn(m)Jrgbn(m)AtJr%gbn (m)At?, where ¢, (m)
can be obtained by solving 5% (t)* + 8% (£)* = v, (t)* (v, (t) is
the current velocity) and ¢, (m) can be obtained by solving
(27). When the agent n is at the maximal velocity, i.e. the event
{u8} in TABLE I occurs, @, (m + 1) = ¢, (m) + ¢, (m)At,
where ¢,,(m) can be obtained by solving (29). Through all
these processes, we can obtain ¢, (t), ¢, (t) and s,,(t) for all ¢.
Therefore, the derivatives from (44) to (47) can be calculated.

Example 1. Illustration example of Algorithm 1.

In Fig. 4, there is a persistent monitoring task with obstacles
executed by one agent moving on an elliptical trajectory and
we show the best from multiple elliptical results. In Fig.
4(a), the mission space is given where there exist obstacles
covered by yellow circular areas whose centers are [3,3],
[9,2.5], respectively and radii are both 1. Agent 1 moves
counterclockwise on the trajectory with the pentagram as the
starting point (subsequent results are the same). Fig. 4(b)
indicates that the performance metric decreases as the number
of iterations increases and ultimately converges, which verifies
the effectiveness of our IPA-based iteration algorithm. As we
can see, there is a very abrupt drop in the first several iterations
and after it the performance metric decreases with a relatively
slow rate, which indicates that the initial trajectory with obsta-
cle collisions has a very large cost and Agent 1 will continue
to search for a better monitoring trajectory after avoiding
obstacles. The final performance metric J(©3%) = 662.6 and
|J(©35) — J(©3%)] < & = 0.01. According to Fig. 4(c), we
can intuitively observe that distances between Agent 1 and
obstacles are greater than 1.2 all the time, which indicates
that there are no collisions in the monitoring task. Actually, all
simulaion results ultimately have no collisions, which shows
the correctness of our objective function setting. Furthermore,
detailed velocity components of this work and of [12] are
shown in Fig. 4(d) and Fig. 4(e), respectively. Compared with
Fig. 4(e) where the agent starts with a certain velocity, the
result in Fig. 4(d) can better mimic agent behavior in practice.

With the same setting as the elliptical example, simulation
results of the Fourier trajectory example with one agent can be
seen in Appendix A. Furthermore, the final numerical results
of the two trajectories are presented in TABLE II, and the final

costs of collisions (agent to agent, agent to obstacle), i.e. JJ
and J3, are zero, which indicates that we achieve collision-free
monitoring.
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Fig. 4. Elliptical trajectory: persistent monitoring task with obstacles using
the IPA-based iteration algorithm for one agent.

TABLE 11
RESULT COMPARISON FOR CASE A
Method J* J3 J3
Elliptical | 662.6 0 0
Fourier 654 0 0

Example 2. Comparison with the case without obstacles.



n

Longitudinal axis
S

I
e

0 2 4 6 8 10
Transverse axis

(a) Green ellipse: initial trajectory. Blue ellipse: final

trajectory. Red *: target points. Black pentagrams: starting

points.

@ @
I 3
=] =)

Performance metric J
&
3

0 10 20 30 40 50
Number of iterations

(b) The evolution of performance metric J.

Fig. 5.  Elliptical trajectory: persistent monitoring task without obstacles
using the IPA-based iteration algorithm for one agent.

In this example, we set an idealized mission space like [12]
for agents, namely, without obstacles. With the same initial
conditions as in Fig. 4 of Example 1 except that there are no
obstacles, the results are shown in Fig. 5. Fig. 5(a) presents
the optimal elliptical trajectory obtained by Algorithm 1. Due
to the potential slight collisions, it is unreasonable to use the
final trajectory in Fig. 5(a) to execute the persistent monitoring
task with obstacles. From Fig. 5(b), the performance metric
converges to J(©%7) = 634 and |J(©*") — J(©%)| < ¢ =
0.01. Compared with the performance metric in Fig. 4(b),
our method can avoid collisions at the expense of some
monitoring, which is quite practical in monitoring tasks where
collisions with obstacles are strictly prohibited.

Example 3. Comparison with the existing sensing model.

In this example, we use the existing sensing model in
[12], which depends only on the relative distance between
an agent and a target. Intuitively, we expect a better result
than Example 1, owing to the negative effect of moving
agents in order to monitor targets. With the same initial
conditions as in Fig. 4 of Example 1, the results using
the sensing model in [12] are shown in Fig. 6. Note that

the final ellipse [4.7291,2.2391,4.2087,1.6230, 0.0321]
in Fig. 6(a) is different from the final ellipse
[3.8791,2.4675, 3.8994,1.8926, —0.0066] in Fig. 4(a),

which is due to the influence of the new sensing model
on the final optimal trajectory. In addition, the value of the
performance metric in Fig. 6(b) is less than that in Fig. 4(b).
In Fig. 4(b), the new sensing model is used which includes
the effect of velocity on the quality of sensing. In Fig. 6(b)
the original sensing model from [12] is used. This ignores
agent movements, therefore, it gives a more “optimistic”
result in the sense that the average uncertainty metric is lower
than it ought to be with velocity taken into account. Actually,
since the influence of the agent’s velocity on sensing strength
cannot be ignored, such result may be not achievable in
practice. In addition, Fig. 6(c) can still verify that collisions
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Fig. 6. Elliptical trajectory: persistent monitoring task with obstacles using
the IPA-based iteration algorithm for one agent (using the the sensing model
in [12]).

are avoided through our method. Furthermore, we use the
final ellipse in Fig. 6(a) to execute the monitoring task using
the sensing model in this work, and the performance metric
is J = 662.6, which is only slightly different from the result
in Fig. 4(b).

Case B. Two agents case.

In this case, we carry out multiple simulation experiments
and show the best results of two agents using the elliptical
trajectory and the Fourier series trajectory to execute the
monitoring task. The time horizon is set as 30s. Suppose there
are four targets [5,1],[5,2],[5,3],[5,4] with larger weights
039 = 033 = 034 = 035 = 2 such that they require more
attention than others. Moreover, obstacles in the mission space
are covered by yellow circular areas whose centers are (3, 3.8],
[8.5,1.5], respectively and radii are both 1.

Fig. 7(a) shows the optimal elliptical trajectories obtained by
Algorithm 1. In Fig. 7(b), the performance metric decreases
as the number of iterations with the final value J(©4%) =
338.4 and |J(©1?) — J(©%)| < & = 0.01. Moreover, we
show distances between agents and obstacles in Fig. 7(c). It
is obvious that distances between agents and obstacles are
always greater than 1.2. Fig. 7(d) shows the distance between
Agent 1 and Agent 2, which is always greater than 0.4. In
other words, there are no potential collisions (agent to agent,
agent to obstacle) in the final optimal trajectories.

Moreover, with the same setting as the elliptical example,
simulation results of the Fourier trajectory example with two
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Fig. 7. Elliptical trajectory: persistent monitoring task with obstacles using
the IPA-based iteration algorithm for two agents.

agents can be seen in Appendix A. And the final numerical
results of the two trajectories are presented in TABLE III, and
the final costs of collisions (agent to agent, agent to obstacle),
ie. J3 and J3j, are zero, which indicates that we achieve
collision-free monitoring.

TABLE III
RESULT COMPARISON FOR CASE B
Method J* Jy | J3
Elliptical | 338.4 0 0
Fourier 305.9 0 0

VI. CONCLUSION

We have studied a 2D persistent monitoring problem using
second-order agents. We have proposed a new and more prac-
tical sensing model which takes the effects of both distances
between agents and targets and agents’ velocities into account.
In particular, we have considered no-collision constraints (both

agent to agent and agent to obstacle). Through parameterizing
agent trajectories and utilizing IPA-based gradient algorithm,
our method provides collision-free optimal (locally) trajecto-
ries.

In addition, decentralizing the controller is particularly
challenging in persistent monitoring. We have been working
on this problem and report results in [7]. And we show that
it is possible to achieve an “almost decentralized” solution
based exclusively on using local information. We also quantify
the “price of decentralization” in the sense of losing some
performance. Thus, imposing a decentralized solution to the
persistent monitoring problem is of course possible but not
without some (quantifiable) performance degradation. Future
research will focus on escaping the local optimal solution, de-
veloping decentralized solutions, developing nonconservative
ways of dealing with obstacles and exploiting on-line strate-
gies of dealing with unexpected events for the 2D persistent
monitoring problems with potential collisions.

APPENDIX A
SIMULATIONS OF FOURIER TRAJECTORIES

With the same setting as the elliptical trajectory, the simu-
lation results of the Fourier trajectory are shown in Fig. 8 and
Fig. 9, respectively.

In Fig. 8, there is a persistent monitoring task with obstacles
executed by one agent moving on a Fourier series trajectory
and we select the best from multiple Fourier results. Because
of the complexity and variability of this trajectory, we used

¢ =TY = 2 for simplicity. From Fig. 8(a), there is an inter-
esting difference between the initial and final trajectory, which
reflects the unpredictability of this trajectory. In Fig. 8(b),
the performance metric decreases as the iteration progresses
and ultimately converges, thus the effectiveness of Algorithm
1 applied to a Fourier series trajectory is verified. The final
performance metric J(©3!) = 654 and |J(©3!) — J(©3Y)] <
€ = 0.01. From the distances between Agent 1 and obstacles
in Fig. 8(c), we can observe that Agent 1 safely completed the
monitoring task.

In Fig. 9, there is a persistent monitoring task with obstacles
executed by two agents moving on Fourier series trajectories.
We set I'Y = T'Y = T'% = Ty = 2 for simplicity. Fig. 9(a)
shows the interesting changes between the initial and final
trajectories, which is due to agents tending to avoid obstacles.
In Fig. 9(b), the performance metric decreases as the iteration
progresses with J(©2%!) = 305.9 and |J(©2%!) — J(©%)| <
€ = 0.01. From Fig. 9(c), we can observe that the two agents
both can safely execute the monitoring task. And in Fig. 9(d),
the distance between Agent 1 and Agent 2 is always greater
than 0.4, i.e. this is a safe monitoring task.
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