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Abstract— We address the problem of multiple local optima
arising in cooperative multi-agent optimization problems with
non-convex objective functions. We propose a systematic ap-
proach to escape these local optima using boosting functions.
These functions temporarily transform a gradient at a local
optimum into a “boosted” non-zero gradient. Extending a prior
centralized optimization approach, we develop a distributed
framework for the use of boosted gradients and show that
convergence of this distributed process can be attained by
employing an optimal variable step size scheme for gradient-
based algorithms. Numerical examples are included to show
how the performance of a class of multi-agent optimization
systems can be improved.

I. INTRODUCTION

A cooperative multi-agent system is a collection of in-
teracting subsystems (also called agents), where each agent
controls its local state so as to collectively optimize a
common global objective subject to various constraints. In
a distributed optimization approach, each agent controls its
state using only locally available information. The goal is
to drive all agents to a globally optimal set of states. This
can be a challenging task depending on the nature of: (i)
the agents (which may be sensor nodes, vehicles, robots,
supply sources, or processors of a multi-core computer),
(ii) the constraints on their decision space, (iii) the inter-
agent interactions, and, (iv) the global objective function.
Therefore, a large number of optimization methods can
be found in the literature specifically developed to address
different classes of multi-agent systems.

Cooperative multi-agent system optimization arises in
coverage control [1], formation control [2], monitoring [3],
flocking [4], resource allocation [5], learning [6], consensus
[7], transportation [8] and smart grid [9]. In these applica-
tions, gradient-based techniques are typically used due to
their simplicity (see the survey paper [10]). However, more
computationally complex schemes, e.g., using the Alternat-
ing Direction Method of Multipliers (ADMM) [11], are also
gaining popularity due to their greater generality.

In some multi-agent systems, properties of the associ-
ated objective function, such as convexity, can be exploited
to achieve a global optimum. For example, the Relaxed-
ADMM approach in [11] converges to the global optimum
for convex objective functions. On the other hand, there
are many settings where the objective function takes a non-
convex form making it difficult to attain a global optimum
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[1], [12]. In such situations, one often resorts to global
optimization techniques such as simulated annealing [13],
genetic algorithms [14], or particle swarm algorithms [15].
The common feature in these approaches is to introduce an
element of randomness in the process of controlling agents.
These methods are computationally intensive and usually
infeasible for on-line optimization.

The issue of non-convexity in the objective functions has
recently attracted renewed attention for specific classes of
multi-agent systems by exploiting properties that the objec-
tive function may possess. For example, when the objective
function is submodular, tight performance bound guarantees
may be found [16]. Methods like local optima smoothing
[17] and balanced detection [1] trade-off local approxima-
tions and global exploration of the objective function to
achieve a better optimum. In [12], the concept of a “boosting
function” is used to escape local optima and seek better ones
through an exploration of the search space which exploits
the objective function’s structure. However, none of these
methods so far is designed to function in a distributed multi-
agent setting and convergence guarantees are lacking.

In this paper, we propose a distributed approach to
solve general non-convex multi-agent optimization problems,
based on the centralized boosting function approach in [12].
The key idea is to temporarily alter the local objective
function of an agent whenever an equilibrium is reached, by
defining a new auxiliary local objective function. This is done
indirectly by transforming the local gradient (of the local
objective) to get a new boosted gradient (which corresponds
to the gradient of the unknown auxiliary local objective).
Therefore, a boosting function, formally, is a transformation
of the local gradient, whenever it becomes zero; the result
of the transformation is a non-zero boosted gradient. After
following the boosted gradient, when a new equilibrium point
is reached, we revert to the original objective function and
the gradient-based algorithm converges to a new (potentially
better and never worse) equilibrium point. In contrast to
randomly perturbing the gradient components (e.g., [13]),
boosting functions provide a systematic way to force each
agent to move in a well-chosen direction that further explores
the feasible space based on structural properties of the
objective function and on knowledge of both the feasible
space and of the current agent states. Details on the design of
boosting functions and their use in the proposing distributed
optimization framework of this paper are given in [18].

The contribution of this paper is to first provide a formal
analysis of the original centralized boosting scheme [12] so
as to establish convergence and then develop a distributed
scheme whereby each agent may asynchronously switch
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between a boosting and a normal mode independent of other
agents. We show that the latter scheme also converges, i.e.,
the asynchronous boosting processes reach a terminal point
where a new (generally local but improved) optimum is
reached. Central to this process is a method for selecting
optimal variable step sizes in the underlying distributed
gradient-based optimization algorithm.

II. PROBLEM FORMULATION

We consider cooperative multi-agent optimization prob-
lems of the general form,

s∗ = argmax
s∈F

H(s), (1)

where, H : RmN→R is the global objective function and s =
[s1,s2, . . . ,sN ] ∈ RmN is the controllable global state. Here,
for any i∈ {1,2, . . . ,N}, si ∈Rm represents the local state of
agent i. Further, F ⊆ RmN represents the feasible space for
s. In this work, linearity or convexity-related conditions are
not imposed on the global objective function H(s).

In order to model the inter-agent interactions, an undi-
rected graph denoted by G = (V ,A ) is used where V =
{1,2, . . . ,N} is a set of N agents, and, A is the set of com-
munication links between those agents. The set of neighbors
of an agent i∈ V is denoted by Bi = { j : j ∈ V , (i, j)∈A }.
The closed neighborhood of agent i is defined as B̄i =Bi∪{i}
and |B̄i| denotes the cardinality of the set B̄i. It is assumed
that each agent i shares its local state information si with its
neighbors in Bi. As a result, agent i has knowledge of its
neighborhood state s̄i = {s j : j ∈ B̄i}.

In this problem setting, an agent i is also assumed to
have a local objective function Hi(s̄i) where Hi : Rm|B̄i| →
R. Note that Hi(s̄i) only depends on agent i’s neighbor-
hood state s̄i. The relationship between local and global
objective functions is not restricted to any specific form.
For example, two common possibilities are the additive
form [11] H(s) = ∑

N
i=1 Hi(s̄i) and the separable form [12]

H(s) = Hi(s̄i) + Hc
i (s

c
i ) with HC

i : Rm(N−1) → R and sc
i =

[s1,s2, . . . ,si−1,si+1, . . . ,sN ]. The latter includes a large class
of common multi-agent problems studied in [1].

Due to the versatile nature of H and F in (1), applica-
ble solving techniques are limited to global optimization
methods. Even-though many such techniques are available
[15], in this paper we consider a simple gradient-ascent
scheme so as to take advantage of its simplicity in terms of
analysis, computation, and on-line implementation, despite
the obvious limitation of attaining only local optima. We are
also interested in solving (1) through distributed schemes so
that each agent i updates its local state si according to

si,k+1 = si,k +βi,kdi,k, (2)

where, βi,k ∈R is a step size, and di,k =
∂Hi(s̄i,k)

∂ si
∈Rm denotes

the locally available gradient.
A. Escaping local optima using boosting functions

Converging to a local optimum is the main drawback of
using a gradient-based method like (2), when the global
objective function H is non-convex and/or the feasible space
F is non-convex. In [12], this problem has been addressed by

introducing the concept of boosting functions as an effective
systematic method of escaping local optima.

Boosting functions. The main idea here is to temporarily
alter the local objective function Hi(s̄i) whenever an equi-
librium is reached with a newly defined auxiliary objective
function Ĥi(s̄i). However, we are interested in the boosted
gradient d̂i,k =

∂ Ĥi(s̄i)
∂ si

rather than Ĥi(s̄i). A boosted gradient
is a transformation of the associated local gradient di taking
place at an equilibrium point (where its value is zero); the
result of the transformation is a non-zero d̂i 6= 0 which,
therefore, forces the agent to move in a direction determined
by the boosting function and to further explore the feasible
space. When a new equilibrium point is reached, we revert
to the original objective function and then the gradient-based
algorithm converges to a new (potentially better and never
worse) equilibrium point.

The key to boosting functions is that they are selected
to exploit the structure of the objective functions H(s) and
Hi(s̄i), of the feasible space F, and of the agent state trajecto-
ries. Unlike various forms of randomized state perturbations
away from their current equilibrium [13], boosting functions
provide a formal rational systematic transformation process
of the form d̂i = f (di, s̄i) where the boosting function f de-
pends on the specific problem type. More details on boosting
functions including a generic set of guidelines on selecting
them are given in [18]. As an example, in coverage control
problems local optima arise when a cluster of agents provides
high-quality local coverage in a region while ignoring other
regions; in this case, a boosting function that enhances
separation between close neighbors is an intuitive choice that
has been shown to be effective [12].

Boosting scheme. When an agent i is following the
boosted gradient direction d̂i,k, it is said to be in the Boosting
Mode and its state updates take the form

si,k+1 = si,k +βi,kd̂i,k. (3)

Similarly, when an agent i is following the “normal” gradient
direction di,k as in (2), it is said to be in the Normal Mode.
When developing an optimization scheme to solve (1), we
need a proper mechanism, referred to as a Boosting Scheme,
to switch the agents between normal and boosting modes.
A centralized boosting scheme (CBS) is outlined in Fig. 1,
where the normal mode is denoted by N and the boosting
mode is denoted by B. In a CBS, all agents are synchronized
to operate in the same mode. In Fig. 1, H denotes the global
objective function value which is initially stored by all agents
the first time mode B is entered when di = 0 for all i ∈ V .
After d̂i = 0 for all i ∈ V , the agents re-enter mode N and,
when a new equilibrium is reached, the new post-boosting
value of the global objective function H(s) is denoted by HB.
If HB >H, an improved equilibrium point is attained and the
process repeats by re-entering mode B with the new value
HB. The process is complete when this centralized controller
fails to improve H(s), i.e., when HB ≤ H.

This CBS was used in [12] with appropriately defined
boosting functions in mode B to obtain improved perfor-
mance for a variety of multi-agent coverage control prob-
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Fig. 1: A centralized boosting scheme (CBS)

Fig. 2: A distributed boosting scheme (DBS) asynchronously
applied by each agent i = 1, . . . ,N

lems. However, there has been no formal proof to date that
this process actually converges. Moreover, our goal is to
develop a Distributed Boosting Scheme (DBS) where each
agent can independently switch between modes B and N
at any time. Such a scheme (i) improves the scalability of
the system, (ii) eliminates the requirement of a centralized
controller, (iii) reduces computational and communication
costs, and, (iv) can potentially improve convergence times.
Furthermore, in problems such as coverage control [1], the
original problem is inherently distributed and makes a DBS
a natural approach.

A DBS version of Fig. 1 is shown in Fig. 2 where local use
of the global objective H is now replaced by a local estimate
of H, denoted by H̃i, which will be formally introduced
later (in (10)). Additional implementation details of the DBS
(including their algorithmic constructions) are discussed in
[18]. However, they do not affect the convergence analysis
that follows. Note that the notion of convergence involves
not only the existence of equilibria such that di = 0 or
d̂i = 0, but also a guarantee that the condition HB ≤ H is
eventually satisfied. We will show that a key to guaranteeing
convergence is a process for optimally selecting a variable
step size βi,k in (2) and (3).

Convergence criteria. When a DBS is considered, unlike
the case of a CBS in Fig. 1, the decentralized nature
of agent behavior causes agents to switch between modes
(normal/boosting) independently and asynchronously from
each other. As a result, at a given time instant, a subset
of the agents will be in normal mode (following (2)) while
others are in boosting mode (following (3)). This partition of
the complete agent set V leads to two agent sets henceforth
denoted by N and B respectively. For any agent i ∈ V , the
following conditions are defined as the convergence criteria:

lim
k→∞

di,k = 0 when B̄i ⊆N , (4)

lim
k→∞

di,k = 0 when i ∈N ,Bi∩B 6= /0, (5)

lim
k→∞

d̂i,k = 0 when i ∈B,Bi∩B 6= /0. (6)

Since each agent i, irrespective of its neighbors’ modes,
continuously switches between the normal and boosting
modes, boosting will only continue as long as there is a

gain from the boosting stages (i.e., H̃B
i > H̃i in Fig. 2). It is

then clear how these criteria can guarantee convergence.
Upon termination (i.e., all agents reached “End Boosting”)

of the boosting scheme, achieving di,k = 0, ∀i ∈ V is guar-
anteed by the criterion (4). In this work, it is assumed that
the relationship between H(s) and Hi(s̄i), i ∈ V is such that
di,k = 0,∀i ∈ V =⇒ ∇H(sk) = 0. Clearly this assumption
holds for any problem with a separable form where H(s) =
Hi(s̄i)+Hc

i (s
c
i ) and for most problems of interest with an

additive form where H(s) = ∑
N
i=1 Hi(s̄i) (more details can be

found in [18]). Therefore, achieving (4)-(6) directly implies
that ∇H(sk) = 0 and convergence to a solution of (1) (again,
not necessarily a global optimum) is obtained.

III. CONVERGENCE ANALYSIS THROUGH OPTIMAL
VARIABLE STEP SIZES

As a means of enforcing convergence for a general prob-
lem of the form (1), a variable step size scheme is next
proposed and shown to guarantee (4)-(6). Due to space
limitations, this section focuses only on addressing the
unconstrained version of (1) and all proofs are omitted but
can be found in [18]. Our main results depend on a few
assumptions, starting with the following conditions on the
nature of the local objective functions.

Assumption 1: Any local objective function Hi(s̄i), i∈ V ,
satisfies the following conditions:

1) Hi(·) is continuously differentiable and its gradient
∇Hi(·) is Lipschitz continuous (i.e., ∃K1i such that
∀x,y ∈ Rm|B̄i|, ‖∇Hi(x)−∇Hi(y)‖ ≤ K1i‖x− y‖).

2) Hi(·) is a non-negative function with a finite upper
bound HUB, i.e., Hi(x)< HUB < ∞, x ∈ Rm|B̄i|.

We begin by developing an optimal variable step size
scheme for agents i ∈ V such that B̄i ⊆N (i.e., all neigh-
boring agents are also in normal mode - following (2)). The
respective convergence criterion for this case is (4).

A. Convergence of agent i when B̄i ⊆N

For notational convenience, let qi = {1,2, . . . ,qi} with
qi = |B̄i| represent an ordered (re-indexed) version of the
closed neighborhood set B̄i. For this situation, agent i’s
neighborhood state update equation can be expressed as
s̄i,k+1 = s̄i,k + β̄i,kd̄i,k by combining (2) for all j ∈ B̄i. Here,
s̄i,k+1, s̄i,k and d̄i,k are mqi-dimensional column vectors;
equivalently, they may be thought of as qi×1 block-column
matrices with their jth block (of size Rm×1, and j ∈ qi) being,
s j,k+1, s j,k and d j,k respectively. Accordingly, β̄i,k is a qi×qi
block-diagonal matrix, where its jth block on the diagonal
(of size m×m and j ∈ qi) is β j,kIm; Im is the m×m identity
matrix and β j,k ∈ R is the (scalar) step size of agent j.

For a function f : Rn → R, if the Lipschitz continuity
constant of ∇ f is L, the descent lemma [19] applies, and, its
ascent version (Lemma 1 in [18]) is: ∀x,y ∈ Rn, f (x+ y)≥
f (x) + yT ∇ f (x)− L

2‖y‖
2. Thus, under Assumption 1, the

ascent lemma can be applied to a local objective function
Hi(s̄i,k) for the state update s̄i,k+1 = s̄i,k + β̄i,kd̄i,k as:

Hi(s̄i,k+1)≥ Hi(s̄i,k)+(β̄i,kd̄i,k)
T

∇Hi(s̄i,k)−
K1i

2
‖β̄i,kd̄i,k‖2.
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Therefore,
Hi(s̄i,k+1) ≥ Hi(s̄i,k)+ ∑

j∈B̄i

∆ ji,k, (7)

∆ ji,k , β j,kdT
j,kd ji,k−

K1i

2
β

2
j,k‖d j,k‖2 ∈ R, (8)

d ji,k , ∇ jHi(s̄i,k) =
∂Hi(s̄i,k)

∂ s j
∈ Rm. (9)

The term d ji,k in (9) gives the sensitivity of agent i’s local
objective Hi to the local state s j of agent j ∈ B̄i. Also, K1i
is the Lipschitz constant corresponding to ∇Hi. Note that
the term ∆ ji,k in (8) depends on the step size β j,k which
is selected by agent j ∈ B̄i. In (7), each ∆ ji,k term can be
thought of as a contribution coming from neighboring agent
j to agent i, so as to improve (increase) Hi. However, in
order for an agent i to know its contribution to agent j ∈ B̄i
(i.e., ∆i j,k) the following assumption is required.

Assumption 2: Any agent i ∈ V has knowledge of the
cross-gradient terms {di j,k, j ∈ B̄i}, neighbor objective func-
tion values {H j, j ∈ B̄i} and the local Lipschitz constants
{K1 j, j ∈ B̄i} at the kth update instant.

This assumption is consistent with our concept of neigh-
borhood, where neighbors share information through com-
munication links. Thus, any agent i has access to the pa-
rameters it requires: di j,k(= ∂H j/∂ si),H j and K1 j from all
its neighbors j ∈ B̄i. Note that when the form of the local
objective functions Hi is identical and all pairs (Hi,H j),
j ∈ Bi, have a symmetric structure, Assumption 2 holds
without any need for additional communication exchanges.
Many cooperative multi-agent optimization problems have
this structure including the class of multi-agent coverage
control problems as shown in [18].

We now define a neighborhood objective function H̃i for
any i ∈ V , where H̃i : Rm|B̃i|→ R and B̃i = ∪ j∈B̄i

B j, as
H̃i,k = ∑

j∈B̄i

H j(s̄ j,k). (10)

This neighborhood objective function value can be viewed
as agent i’s estimate of the total contribution of agents in
B̄i towards the global objective function. Note that it can be
computed locally (i.e., at i) under Assumption 2.

Remark 1: The neighborhood objective functions play an
important role in a DBS because a distributed scheme comes
at the cost of each agent losing the global information H(s).
In contrast, in the CBS of Fig. 1 H(s) plays a crucial role in
the “HB >H” block. As a remedy, in a DBS each agent i uses
a neighborhood objective function H̃i as a means of locally
estimating the global objective function value. However, as
seen in the ensuing analysis, the form of H̃i is not limited to
(10) - it can take any appropriate form (see [18] for details).

By writing (7) for an agent j gives H j(s̄ j,k+1)≥H j(s̄ j,k)+

∑l∈B̄ j
∆l j,k. Summing both sides of this relationship over all

j ∈ B̄i and using the definition in (10) yields
H̃i,k+1 ≥ H̃i,k +(∆̃i,k +Qi,k), (11)

∆̃i,k , ∑
j∈B̄i

∆i j,k, (12)

Qi,k , ∑
j∈Bi

(∆ j j,k +∆ ji,k + ∑
l∈B j−{i}

∆l j,k). (13)

Note that ∆̃i,k in (12) is a function of terms ∆i j,k (and
not ∆ ji,k) which are locally available to and controlled by
agent i, i.e., βi,k, di,k and di j,k,∀ j ∈ B̄i. In contrast, agent i
does not have any control over Qi,k in (13), as this strictly
depends through (8) on the step sizes of agent i’s extended
neighborhood, i.e., β j,k,∀ j ∈ B̃i−{i}.

Nonetheless, (11) implies that the neighborhood objective
function H̃i,k can be increased by at least (∆̃i,k +Qi,k) at any
update instant k. Thus, to maximize the gain in H̃i,k, agent i’s
step size βi,k is selected according to the auxiliary problem:

β
∗
i,k = argmax

βi,k

∆̃i,k

subject to ∆̃i,k > 0.
(14)

Lemma 1: The solution to the auxiliary problem (14) is

β
∗
i,k =

1
∑ j∈B̄i

K1 j

dT
i,k ∑ j∈B̄i

di j,k

‖di,k‖2 . (15)

Let us denote the optimal objective function value of (14)
as ∆̃∗i,k. It is easy to show that β ∗i,k in (15) is feasible (i.e.,
∆̃∗i,k > 0) as long as β ∗i,k 6= 0. The extreme situation where
β ∗i,k = 0 occurs when ∑ j∈B̄i

di j,k = 0. However, since this
“pathological situation” can be detected by agent i, if it
occurs, the agent can consider to use a reduced neighborhood
B̄1

i ⊂ B̄i to calculate β ∗i,k so that β ∗i,k 6= 0, hence ∆̃∗i,k > 0.
To establish the convergence proof in Theorem 1, we need

the following two assumptions.
Assumption 3: Consider the sum,

Q̃i,k =
k

∑
l=k−Ti

Qi,l , (16)

such that 0≤ Ti ≤ k. Then, ∃Ti < ∞ such that Q̃i,k ≥ 0.
When the graph G (V ,A ) is complete, Assumption 3 is

immediately satisfied with Ti = 1,∀i ∈ V (see also [18]).
Assumption 4: For all i ∈ V , there exists a function Ψi,k

such that 0 < Ψi,k and{
0≤Ψi,k‖di,k‖2 ≤ ∆̃

∗
i,k + Q̃i,k, when 0 < ∆̃

∗
i,k + Q̃i,k, (17)

0≤Ψi,k‖di,k‖2 ≤ ∆̃
∗
i,k, when 0 < ∆̃

∗
i,k. (18)

This assumption is trivial because whenever the optimal
step size in (15) is used, 0 < ∆̃∗i,k, hence, for some 1 <

K2, Ψi,k = ∆̃∗i,k/(K2‖di,k‖2) is always a candidate function
for Ψi,k. And when 0 < ∆̃∗i,k + Q̃i,k occurs, Ψi,k = (Q̃i,k +

∆̃∗i,k)/(K2‖di,k‖2) can be used as a candidate function.
Theorem 1: For all i ∈ V such that B̄i ⊆ N , under

Assumptions 1,2,3, and 4, the step size selection in (15)
guarantees the convergence criterion (4), i.e., limk→∞ di,k = 0.

B. Convergence of agent i when Bi∩B 6= /0

In this case, at least some of the agents in B̄i are in
boosting mode, following (3). Following the same approach
as in Section III-A, we seek an optimal variable step size
selection scheme similar to (15) so as to ensure the con-
vergence criteria given in (5) and (6). Compared to (7) the
ascent lemma relationship for Hi(s̄i,k) takes the form:

Hi(s̄i,k+1)≥ Hi(s̄i,k)+ ∑
j∈B̄i∩N

∆ ji,k + ∑
j∈B̄i∩B

∆̂ ji,k, (19)
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where ∆ ji,k for j ∈N is the same as (8) and we set

∆̂ ji,k = β j,kd̂T
j,kd ji,k−

K1i

2
β

2
j,k‖d̂ j,k‖2 ∈ R. (20)

Then, the ascent lemma for neighborhood objective function
H̃i,k can be expressed as: H̃i,k+1 ≥ H̃i,k +(∆̃i,k +Qi,k) with

∆̃i,k , 1{i∈N }[ ∑
j∈B̄i

∆i j(k)]+1{i∈B}[ ∑
j∈B̄i

∆̂i j(k)], (21)

Qi,k , ∑
j∈Bi

(1{ j∈N }[∆ j j,k +∆ ji,k]+1{ j∈B}[∆̂ j j,k

+ ∆̂ ji,k]+ ∑
l∈{B j−{i}}

[1{l∈N }∆l j,k +1{l∈B}∆̂l j(k)]),
(22)

where 1{·} is the usual indicator function. Under this new
∆̃i,k in (21), the same auxiliary problem as in (14) is used
to determine the step size β ∗i,k to optimally increase the
neighborhood cost function H̃i,k.

Lemma 2: The solution to the auxiliary problem (14) with
∆̃i,k given in (21) is

β
∗
i,k =


1

∑ j∈B̄i
K1 j

dT
i,k(∑ j∈B̄i

di j,k)

‖di,k‖2
when i ∈N ,

1
∑ j∈B̄i

K1 j

d̂T
i,k(∑ j∈B̄i

di j,k)

‖d̂i,k‖2
when i ∈B.

(23)

Note that the result in (23) is a generalization of (15).
To establish the convergence criteria (5) and (6), Assump-

tions 1, 2, 3 and 4 are still required. However, note that
Assumption 3 should now be considered under the new
expression for Qi,k in (22) and di,k terms used in Assumption
4 should now be replaced by [1{i∈N }di,k +1{i∈B}d̂i,k].

Theorem 2: Under Assumptions 1,2,3, and 4, the step
size selection in (23) guarantees the convergence conditions
stated in (4)-(6): if i∈N , then limk→∞ di,k = 0, and, if i∈B,
then limk→∞ d̂i,k = 0.

Remark 2: The following issues are addressed and ex-
tensively discussed in [18]: (i) Extending the proposed
technique to handle time varying neighborhoods, (ii) Use of
projections to handle the feasible space (F) constraint (and
its convergence), and, (iii) Advantages of using the proposed
variable step sizes (23) compared to using fixed step sizes.

IV. AN APPLICATION EXAMPLE

In this section, we will apply the DBS shown in Fig. 2
combining (2) and (3) with step sizes given through (23) to a
class of multi-agent systems with an objective function H(s)
in (1) of the form

H(s) =
∫

F
R(x)P(x,s)dx. (24)

where F ⊂ R2 is a (generally non-convex) feasible region.
The function R : F → R provides a “value” assigned to
each point x ∈ R2 with the properties: R(x) = 0 if x /∈ F ,
R(x) ≥ 0 if x ∈ F and

∫
F R(x)dx < ∞. The function P(x,s)

captures the reward incurred when the system under state
s = [s1,s2, . . . ,sN ] ∈ RmN interacts with x ∈ R2 (e.g., the
reward from collecting data from x if this corresponds to a
data source.) It is easy to see that many problems of interest
involving multi-agent systems can be expressed in the form
(24), including coverage control and a variety of consensus-
based problems [1]. Here, we limit ourselves to coverage

control problems, so that R(x) is an event density function
(R(x) = 1,∀x ∈ F if events occur uniformly over F) and
P(x,s) is the joint probability of detecting an event occurring
at x∈ F . Assuming independently detecting agents, P(x,s) =
1−∏

N
i=1[1− p̂i(x,si)] with p̂i(x,si) = 1{x∈Vi}pi(x,si) where

Vi = {x : ‖x− si‖ ≤ δi,∀λ ∈ (0,1],(λx+(1− λ )si) ∈ F} is
the visibility region of agent i limited by its sensing range δi
and physical obstacles (see Fig. 3) and pi(x,si) represents the
probability that agent i (with local state si) senses an event at
x∈F . In this setting, we view si ∈F as simply the location of
the agent in a two-dimensional “mission space.” It is assumed
that pi(x,si) is a differentiable and monotonically decreasing
function in Di = ‖x− si‖. Note that p̂i(x,si) is discontinuous
w.r.t. x or si because of the presence of obstacles.

In [12], for H(s) in (24), it is shown that H(s)
has a decomposable form H(s) = Hi(s̄i) + Hc

i (s
c
i ) with

Hi(s̄i) =
∫

Vi
R(x)∏ j∈Bi [1− p̂ j(x,s j)] pi(x,si)dx and Hc

i (s
c
i ) =∫

F R(x){1−∏ j∈V −{i} [1− p̂ j(x,s j)]}dx. Note that Hi(s̄i) de-
pends only on the closed neighborhood of agent i and Hc

i (s
c
i )

is independent of si as sc
i contains only states in the set

{s j : j ∈ V −{i}}. The gradient di in (2) is a vector di =
[diX ,diY ]

T ∈ R2. Using the Leibniz rule [20] and following
some algebra (details are given in [18]), we can derive diX
(and, similarly, diY ) as

diX =
∫

Vi

wi1(x, s̄i)
(x− si)X

‖x− si‖
dx

+ ∑
Γi j∈Γi

sgn(ni jX )
sinθi j

‖vi j− si‖

∫ Zi j

0
wi2(ρir(r), s̄i)rdr

+ ∑
Θi j∈Θi

δi cosθ

∫
θi j2

θi j1

wi3(ρiθ (θ), s̄i)dθ ,

(25)

where sgn(·) is the signum function, ρir(r) =
vi j−si
||vi j−si|| r+ vi j

and ρiθ (θ) = si+δi[cosθ sinθ ]T . The last two terms of (25)
arise due to the boundary ∂Vi of the sensing region which
depends on δi (the sensing range) and obstacle vertices vi j.
Note that the presence of polygonal obstacles is assumed
and all associated geometric parameters can be seen in Fig.
3. The segments of ∂Vi affecting (25) consist of two sets:
Θi = {Θi1,Θi2, . . .} representing circular arc segments (due
to δi), and Γi = {Γi1,Γi2, . . .} representing linear segments
(due to vi j’s). Each Θi j term is a pair (θi j1,θi j2) with
starting angle θi j1 and ending angle θi j2. Similarly, each
Γi j term is a 4-tuple (Zi j,θi j,vi j,ni j) with the geometric
parameters: end point Zi j, angle θi j, obstacle vertex vi j, and
unit normal direction ni j as seen in Fig. 3. Finally, setting
Φi(x) = ∏ j∈Bi [1− p̂ j(x,s j)], gives the weight functions as,

wi1(x, s̄i) =−R(x)Φi(x)
d pi

dDi
, wil(x, s̄i) = R(x)Φi(x)pi(x,si),

with l = 1,2. Ignoring the details leading to (25), the crucial
observation is that its three terms can be viewed as “forces”
acting on agent i (located at si) and generated by points
x ∈Vi. The weight function wi1(x, s̄i) represents an attraction
force towards point x ∈Vi. The weight function wi2(x, s̄i) is
the magnitude of a force generated in a direction lateral to
the line Γi j (towards the interior of Vi) by a point x ∈ Γi j.
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Fig. 3: Mission space with one agent.

(a) 120,343 (b) 144,211
(Incr.= 19.8%)

(c) 101,976 (d) 129,542
(Incr.= 27.0%)

Fig. 4: Coverage improvement due to distributed boosting.
((a),(c)): Gradient ascent, ((b),(d)): Distributed Φ-boosting.
Red dot locations show s∗. Captions give H∗ and percentage
coverage improvement due to boosting.

Similarly, wi3(x, s̄i) represents the magnitude of an attraction
force generated by a point x ∈Θi j. Recalling that a boosting
function is a transformation d̂i = f (di, s̄i), we can now
systematically define such transformations through

ŵi j(x, s̄i) = αi j(x, s̄i)wi j(x, s̄i)+ηi j(x, s̄i), j = 1,2,3 (26)

where αi j,ηi j : R2×R2|B̄i|→R are transformation functions
we can select, typically nonlinear in their arguments. Thus,
the boosted gradient constructed when di,k = 0 in (2) is
some d̂i,k 6= 0 obtained from (25) by applying (26) to the
original weights. Note that di,k = 0 occurs when all the
aforementioned virtual forces add up to a resultant force
with zero magnitude. Thus, the boosted weights ŵi j(x, s̄i),
j = 1,2,3, alter these forces in a way controlled by αi j,ηi j
and note that when αi j(x, s̄i) = 1 and ηi j(x, s̄i) = 0, the
boosted gradient d̂i reduces to the normal gradient di. Clearly,
the linear form in (26) could be generalized.

Our purpose here is only to illustrate the use of the DBS
in Fig. 2. Thus we limit ourselves to the Φ-Boosting function
method introduced in [12] which uses,

ηi j(x, s̄i) = 0, and, αi1(x, s̄i) = κΦi(x)γ . (27)

Note that Φi(x) indicates the extent to which point x is not
covered by neighbors Bi. Thus, Φ-Boosting forces agent i
to move towards regions of Vi which are less covered by
its neighbors. A conventional gradient ascent method (which
simply uses (2)) is compared with the distributed Φ-Boosting
method (which uses both (2) and (3) according to the DBS
in Fig. 2) in Fig. 4 in terms of s∗ and H∗ achieved for two
different obstacle arrangements. Several more simulation re-
sults can be found in [18]. The reader is invited to reproduce
these results and explore other boosting functions at http://
www.bu.edu/codes/simulations/shiran27/CoverageFinal/.

V. CONCLUSION

The concept of boosting provides systematic ways to
overcome the problem of multiple local optima arising in

cooperative multi-agent optimization problems with non-
convex objective functions. An optimal step size selection
scheme is developed to guarantee convergence in a dis-
tributed (or centralized) framework for such general multi-
agent optimization problems. The new distributed boosting
scheme is illustrated in simulation examples showing that
boosting can considerably improve performance without sig-
nificantly affecting the computational cost involved. Ongoing
research aims to explore the generality of boosting functions
to be used regardless of the intended application.
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