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Abstract— A complete solution to a decentralized optimal
merging problem for Connected and Automated Vehicles
(CAVs) was provided in earlier work, based on a First In
First Out (FIFO) assumption over a given Control Zone (CZ).
In this paper, we relax the FIFO assumption and propose a
decentralized Optimal Dynamic Resequencing (ODR) algorithm
to further improve the performance of all merging CAVs
in terms of time and energy. Specifically, we introduce a
Resequencing Zone (RZ) prior to the CZ within which every
CAV can execute the ODR algorithm. We determine the latest
possible time for triggering ODR so as to minimally affect
the CAV’s operation. Simulation results show significant ODR
benefits in CAV travel times and energy consumption over the
merging and main roads, outperforming earlier results under
different resequencing schemes.

I. INTRODUCTION

Traffic management at merging points (usually, highway
on-ramps) is one of the most challenging problems in trans-
portation systems in terms of safety, congestion, and energy
consumption, in addition to being a source of stress for
many drivers [1], [2], [3]. The emergence of Connected and
Automated Vehicles (CAVs) has the potential to drastically
reduce accidents, energy consumption, air pollution, and
congestion. An overview of automated intelligent vehicle-
highway systems was provided in [4]. For the merging
control problem in particular, a number of centralized or
decentralized mechanisms has been proposed [5], [6], [7],
[8], [2], [9], [10], [11]. In the case of decentralized control,
all computation is performed on board each vehicle and
shared only with a small number of other vehicles which
are affected by it. Optimal control problem formulations are
used in some of these approaches, while Model Predictive
Control (MPC) techniques are employed to account for
additional constraints. The objectives specified for optimal
control problems may target the minimization of acceleration
as in [9] or the maximization of passenger comfort as in [5],
[12]. MPC approaches have been used in [6], [8], as well as
in [5] when inequality constraints are added to the originally
considered optimal control problem.

In [13], we formulated the merging problem in a decen-
tralized optimal control framework where the objective is
to jointly minimize the travel time and energy consumption
of each CAV subject to a hard speed-dependent safety
constraint, as well as speed and acceleration constraints. We
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derived explicit solutions for the unconstrained case with
extensions to optimal trajectories with active constraints and
coupled active constraints. From an on-line implementation
standpoint, we found that the on-board derivation of such
trajectories is very fast (typically, much less than 1sec) in
the unconstrained case, but may become more demanding
when one or more constraints become active. Thus, when a
CAV arrives at the entrance of a Control Zone (CZ) where
its optimal trajectory is derived, it is extremely useful to
have simple-to-check conditions ensuring that no constraint
will become active in the CZ. When these conditions hold,
the unconstrained optimal trajectory, derived with minimal
computational cost, is guaranteed to also be feasible. A
condition of this type was derived in [13], and stronger easy
to check conditions for both safety and speed constraints are
provided in [14]. Further, to simplify computation while also
taking into account the effect of noise in the CAV dynamics,
a robust control barrier function method [15] is used in [16],
[17].

The work above has been carried out under the assumption
that CAVs maintain a First In First Out (FIFO) order upon
entering the CZ. This assumption is relaxed in [18] for a
4-way signal-free traffic intersection in which a dynamic
resequencing algorithm is implemented whenever a new
CAV enters the CZ. This approach has shown significant
improvement in travel time when the lengths of CZs from
different roads are unbalanced or the traffic flows consider-
ably differ. This comes at the expense of additional energy
consumption, as well as driver comfort as it adds jerk (sudden
acceleration changes) to those CAVs affected by resequenc-
ing; this is because such CAVs are already in the CZ and
under optimal control, which resequencing must necessarily
disrupt. The coordination of CAVs was formulated as a
non-linear programming problem in [19], and thus is time
consuming when a lot of CAVs are involved. To address
the computational issue, a grouping method was proposed
in [20] that introduces a tradeoff between computation and
performance.

In this paper, we consider an objective function which
combines both travel time and energy consumption as the
criterion for resequencing, as opposed to just the travel time
in [18]. In addition, we introduce a Resequencing Zone
(RZ) before the CZ within which CAVs can collect relevant
information from a coordinator located in the merging point.
In the RZ, our goal is to determine conditions for triggering
an Optimal Dynamic Resequencing (ODR) mechanism for
each CAV, where optimality is in the sense of minimally
affecting the CAV’s operation which we will show implies
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triggering ODR as late as possible. The presence of the RZ
also allows all CAVs to obtain their optimal controls in the
CZ in advance, which has the benefit of causing no additional
jerk (i.e., no discontinuity in the controllable acceleration)
to CAVs affected by ODR. An additional benefit is that this
provides extra time to derive optimal controllers since, as
mentioned above, such derivation may no longer be fast when
one or more safety and control constraints becomes active.
Finally, we develop a decentralized algorithm to implement
ODR for each CAV based on the aforementioned trigger
conditions in the RZ. The ODR algorithm shows significant
improvement when traffic condtions are imbalanced over the
main and merging roads.

II. PROBLEM FORMULATION

In this section, we extend the problem formulation in
[13] so as to relax the First-In-First-Out (FIFO) rule to the
merging problem. The merging problem arises when traffic
must be joined from two different roads, usually associated
with a main road and a merging road as shown in Fig. 1. We
consider the case where all traffic consists of CAVs randomly
arriving at the two roads joined at the Merging Point (MP)
M where a collision may occur. The segment from the origin
O or O′ to the merging point M has a length L for both
lanes, and is called the Control Zone (CZ). Two connection
points C and C ′ are chosen according to the connection
capability of a coordinator for the main and merging lanes,
respectively. The segment from the connection point C (or
C ′) to the origin O (or O′) has a length Lc for both lanes,
and is called the Resequencing Zone (RZ). We assume that
CAVs do not overtake each other within the RZ or CZ.

A coordinator is associated with the MP whose function
is to maintain RZ and CZ queues of all CAVs regardless
of road based on their arrival time at the connection point
C (or C ′) and the origin O (or O′) and to enable real-time
communication with the CAVs that are in the RZ and CZ,
as well as the last one leaving the CZ.

Let Sc(t) be the set of indices for CAVs in the RZ at
time t and let Nc(t) be the cardinality of Sc(t). This set is
updated in FIFO order when a new CAV arrives at connection
point C or C ′. In addition, it is updated whenever a CAV
is resequenced based on the conditions discussed in the next
section. If a CAV arrives at C or C ′ at time t, it is assigned
index Nc(t) + 1. All CAV indices in Sc(t) decrease by one
when the first CAV crosses over to the CZ by passing through
the associated origin O or O′, and the first CAV is dropped
from Sc(t).

Let S(t) be the set of the arrival-time-ordered indices of
all CAVs located in the CZ at time t along with the CAV
(whose index is 0 as shown in Fig.1) that has just left the
CZ. Let N(t) be the cardinality of S(t). Thus, if a CAV
arrives at O or O′ at time t, all CAV indices in the CZ are
resequenced by their arrival time at M . All CAV indices in
S(t) decrease by one when a CAV passes over the MP and
the vehicle whose index is −1 is dropped.

The vehicle dynamics for each CAV i ∈ S(t) along the

road to which it belongs takes the form[
ẋi(t)
v̇i(t)

]
=

[
vi(t)
ui(t)

]
, (1)

where xi(t) denotes the distance to the origin O (O′) along
the main (merging) road if CAV i is located in the main
(merging) road, vi(t) denotes the velocity, and ui(t) denotes
the control input (acceleration). We consider two objectives
for each CAV subject to three constraints, as detailed next.

Objective 1 (Minimize travel time): Let t0i and tmi denote
the time that CAV i ∈ S(t) arrives at the origin O or O′ and
the merging point M , respectively. We wish to minimize the
travel time tmi − t0i for CAV i.

Objective 2 (Minimize energy consumption): We also
wish to minimize the energy consumption for each CAV
i ∈ S(t) expressed as

Ji(ui(t)) =

∫ tmi

t0i

C(ui(t))dt, (2)

where C(·) is a strictly increasing function of its argument.
Constraint 1 (Safety constraints): Let ip denote the index

of the CAV which physically immediately precedes i in the
CZ (if one is present). We require that the distance zi,ip(t) :=
xip(t) − xi(t) be constrained by the speed vi(t) of CAV
i ∈ S(t) so that

zi,ip(t) ≥ ϕvi(t) + δ, ∀t ∈ [t0i , t
m
i ], (3)

where ϕ denotes the reaction time (as a rule, ϕ = 1.8
is used, e.g., [21]). If we define zi,ip to be the distance
from the center of CAV i to the center of CAV ip, then
δ is a constant determined by the length of these two CAVs
(generally dependent on i and ip but taken to be a constant
over all CAVs for simplicity).

Constraint 2 (Safe merging): There should be enough safe
space at the MP M for a merging CAV to cut in, i.e.,

z1,0(t
m
1 ) ≥ ϕv1(tm1 ) + δ. (4)

Constraint 3 (Vehicle limitations): Finally, there are con-
straints on the speed and acceleration for each i ∈ S(t):

vmin ≤ vi(t) ≤ vmax, ∀t ∈ [t0i , t
m
i ],

umin ≤ ui(t) ≤ umax, ∀t ∈ [t0i , t
m
i ],

(5)

where vmax > 0 and vmin ≥ 0 denote the maximum and
minimum speed allowed in the CZ, while umin < 0 and
umax > 0 denote the minimum and maximum control input,
respectively.

The common way to minimize energy consumption is by
minimizing the control input effort u2i (t). By normalizing
travel time and u2i (t), and using α ∈ [0, 1], we construct a
convex combination as follows:

min
ui(t)

J1
i (ui(t)) =

∫ tmi

t0i

(
α+

(1− α) 1
2
u2
i (t)

1
2
max{u2

max, u
2
min}

)
dt. (6)

If α = 1, then we solve (6) as a min time problem.
Otherwise, by defining β :=

αmax{u2
max,u

2
min}

2(1−α) , we obtain
a simplified form:

min
ui(t)

J1
i (ui(t)) := β(tmi − t0i ) +

∫ tmi

t0i

1

2
u2i (t)dt, (7)
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Fig. 1. The merging problem.

where β ≥ 0 denotes a weight factor that can be adjusted to
penalize travel time relative to the energy cost.

Our first goal is to determine a control law for each CAV to
achieve Objectives 1, 2 subject to Constraints 1-3. Formally,
he have:

Problem 1: For each CAV i ∈ S(t) governed by dynam-
ics (1), determine a control law such that (7) is minimized
subject to (1), (3), (4), (5). The initial time t0i and the initial
and terminal conditions xi(t0i ) = 0, xi(tmi ) = L, and vi(t0i )
are given.

Our second goal is to determine an optimal sequence
within the RZ queue:

Problem 2: Determine the resequencing trigger condi-
tions for each i ∈ Sc(t) so as to minimize any effect on the
state of i, and subsequently determine the optimal arriving
order at the merging point M for all CAVs in the RZ queue.

III. OPTIMAL DYNAMIC RESEQUENCING

In this section, we first discuss how to solve Problem 2,
including a precise way to quantify how we minimize any
resequencing effect on the state of CAV i, and then review
how to solve Problem 1 following the approach from [13]
(so as to make this paper as self-contained as possible).

A. ODR Trigger Conditions

We first address Problem 2 which consists of two parts:
first, determine a trigger condition for performing resequenc-
ing and then determine the optimal CAV arriving order at the
merging point M . Starting with the first part, when a new
CAV enters the RZ, it is ready to be resequenced according to
certain criteria leading to an Optimal Dynamic Resequencing
(ODR) algorithm. However, an optimal sequence is likely to
change if the initial speed v0i (at O or O′) of a CAV changes.
When this happens after the resequencing time, the current

optimal sequence and optimal control profiles of all CAVs
(which are already evaluated prior to the resequencing time)
affected in the RZ will no longer be optimal. This motivates
us to impose the following constraint:

Assumption 1: Let tri be the time instant when CAV
i ∈ Sc(t) performs ODR. Then, its speed is constant until it
reaches the CZ, i.e., vi(t) = vi(t

r
i ) ∀t ∈ [tri , t

0
i ].

Assumption 1 provides the motivation for seeking to delay
resequencing in the RZ as long as possible so as not to
affect a CAV’s speed prior to the CZ. Thus, we formulate an
optimization problem which defines the triggering condition
for invoking ODR. To formulate this problem, let Si(t) ⊆
Sc(t) denote the index set of all possible CAVs that could
be surpassed by i and let tci denote the time when i arrives
at the connection point C so as to enter the RZ. Recall that
ip is the index of the CAV that immediately precedes CAV
i if such a CAV exists; if such a CAV does not exist, we set
ip = 0, otherwise clearly ip < i. Since i cannot surpass ip
(if it exists), Si(t) is given by

Si(t) := {ip + 1, . . . , i− 1}. (8)

Note that every j ∈ Si(t) has already performed ODR,
therefore its speed is constant and any other information
related to it (such as its position xj(t) within its road in the
RZ) is also known. Therefore, the optimal control problem
solution described in Section III-C may now be obtained as
soon as a CAV i is resequenced at tri rather than waiting
until it reaches O or O′ at t0i > tri .

We now seek to minimize the position −xi(tri ) for each
CAV i when it performs ODR, i.e., we formulate the first
part of Problem 2 as follows:

min
tri∈[tci ,t0i ]

−xi(tri ) ≡ J2
i (t

r
i ), (9)
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subject to
xj(t

r
i ) ≤ 0, ∀j ∈ Si(t),

where xj(t) denotes the position of CAV j ∈ Si(t) along its
road and is known to the coordinator.

Recall that t0ip+1 (known by Assumption 1) denotes the
time instant when the (ip + 1)th CAV (the first when ip =
0) in the RZ arrives at the origin O or O′. The following
theorem offers the optimal solution of the objective (9) while
guaranteeing that an optimal sequence for all CAVs in the
CZ can be determined.

Theorem 1: The optimal solution for ODR trigger con-
dition is given by

tr∗i = t0ip+1, (10)

such that the optimal sequence is guaranteed to be found.
Proof: Since we have assumed that all CAVs in the CZ and

RZ cannot overtake each other, then CAV i cannot overtake
ip. In terms of CAV ip, there are two cases: (i) CAV i does
not have an ip in the RZ (i.e., ip = 0), in which case all CAVs
in the RZ are in the road which does not include i, hence
CAV i may overtake all of them. Thus, CAV i minimizes
−xi(tri ) when the first vehicle in the RZ arrives at origin
O or O′ such that the optimal sequence is guaranteed to be
found while also satisfying Assumption 1. (ii) CAV i does
have an ip in the RZ (i.e., ip > 0). In this case, CAV i can
only overtake CAV j such that i < j < ip, and −xi(tri ) is
minimized when CAV ip + 1 arrives at the origin O or O′.

We have thus shown that the ODR trigger condition is
given by t = tr∗i = t0ip+1. �

B. Decentralized ODR

Let Lri := −xi(tri ), i ∈ Sc(t). Under Assumption 1, we
know the arrival times of all ODR-affected CAVs and their
inital speeds at the origin O or O′, i.e.,

t0j = trj + Lrj/v
0
j , v0j = vj(t

r
j), j ∈ Si(t)

are known constants. When an ODR command is triggered
for CAV i ∈ Sc(t), i.e. t = tr∗i , the coordinator will inform
all CAVs that are affected by ODR in the RZ to re-evaluate
their optimal trajectories in the CZ according to a given
updated sequence and return their optimal objective function
values to the coordinator; the coordinator will then send
all these optimal objective function values to CAV i which
determines the optimal sequence.

Let Ni denote the cardinality of Si (where we omit time
arguments for simplicity) and observe that

Ni = i− ip − 1. (11)

Then, we want to find the optimal number k, 0 ≤ k ≤ Ni, of
CAVs that i wishes to surpass in order to obtain the optimal
sequence. Since every ODR-affected CAV depends on k,
then the objective (7) depends on k if we do ODR, i.e., we
have that J1

j (k, t
0
j , v

0
j ), for j ∈ Si(t) (i.e., Problem 1) is also

a function of k. Therefore, the second part of Problem 2 can

be reformulated as a minimization of the overall objective
function Ji(k) given by

min
k
Ji(k) =

i−1∑
j=i−Ni

J1
j (k, t

0
j , v

0
j ). (12)

subject to 0 ≤ k ≤ Ni.
The following lemma establishes the convexity of Ji(k)

which will subsequently facilitate the solution of this prob-
lem.

Lemma 1: If every CAV j ∈ Si(t) has a unique optimal
control solution in the CZ, then Ji(k) is a convex function
of k.

Proof: Since the optimal solution in the CZ for CAV
j ∈ Si(t) is obtained by taking derivatives of the Hamil-
tonian function and every CAV has a unique optimal control
solution, it follows that J1

j (k, t
0
j , v

0
j ) is a convex function of

the number k of CAVs to be surpassed. Since the summation
of convex functions is also a convex function, it follows that
Ji(k) is a convex function of k. �

Once we know that Ji(k) is a convex function of k, there
is no need to consider all possible k (as done in [18] for
an intersection problem). Instead, we can use the main idea
of fast sorting (the best among sort algorithms) to find the
optimal k. Specifically, we set k = Ni/2 in the first iteration,
and then determine Ji(k), Ji(k − 1), Ji(k + 1). If Ji(k −
1) < Ji(k) < Ji(k + 1), then we set k = Ni/4, and if
Ji(k−1) > Ji(k) > Ji(k+1), we set k = 3Ni/4, otherwise,
k = Ni/2 is the optimal solution. We continue this process
until we determine the optimal J∗i (k

∗). The resulting ODR
procedure is shown in Algorithm 1.

The complexity of Algorithm 1 is O(Ni), i.e., a CAV j ∈
Si(t) may need to have O(Ni) processes for determining an
optimal solution for each ODR trigger.

C. Optimal Control in CZ

Recall that ip is the index of the CAV that immediately
(in the same road) precedes CAV i ∈ S(t). We need to
distinguish between the following two cases:

• (i) ip = i−1, i.e., ip is the CAV immediately preceding
i in the CZ queue (such as CAVs 3 and 5 in Fig. 1),
and

• (ii) ip < i− 1 (such as CAVs 2 and 4 in Fig.1), which
implies CAV i− 1 is in a different lane from i.

We can solve Problem 1 for all i ∈ S(t) in a decentralized
way, in the sense that CAV i can solve it using only its
own local information (position, velocity and acceleration)
along with that of its “neighbor” CAVs i − 1 and ip (in
case (ii) only). Observe that if ip = i − 1, then (4) is a
redundant constraint. Otherwise, we need to consider (3) and
(4) independently.

Assuming that (3) and (5) remain inactive over [t0i , t
m
i ], we

can obtain the unconstrained optimal solution as described
next.
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Algorithm 1: Fast ODR algorithm
Input: Lr∗i or tr∗i , Sc(tr∗i )
Output: S∗c (tr∗i )
k∗ = −1;
ODR-affected CAV number Ni = i− ip − 1;
k search space is in S0 := {0, 1, . . . , Ni};
CAV surpassing number k ← Ni/2;
S0 is partitioned into S1 := {0, 1, . . . , k − 1} and
S2 := {k + 1, . . . , Ni};

while k 6= k∗ do
Ni ← Ni/2;
Find Ji(k), Ji(k − 1), Ji(k + 1);
if Ji(k − 1) < Ji(k) < Ji(k + 1) then

S0 ← S1;
S0 is equally partitioned into S1 and S2,
k ← Ni/2;

else
if Ji(k − 1) > Ji(k) > Ji(k + 1) then

S0 ← S2;
S0 is equally partitioned into S1 and S2,
k ← k +Ni/2;

else
k∗ = k

end
end
if k = 0 or k = Ni then

k∗ = k;
end

end
Resequence Sc(tr∗i ) according to k∗ and get S∗c (t

r∗
i );

1) Unconstrained optimal control: Since the constraints
(3) and (5) are assumed to be inactive in the CZ, it follows
from the analysis in [13] that the unconstrained optimal
solution is

u∗i (t) = ait+ bi,

v∗i (t) =
1

2
ait

2 + bit+ ci,

x∗i (t) =
1

6
ait

3 +
1

2
bit

2 + cit+ di

(13)

where ai, bi, ci and di are integration constants. The four
constants ai, bi, ci, di and the optimal terminal time tmi in (7)
in the case i− 1 = ip are obtained by solving the following
five nonlinear algebraic equations:

1

2
ai · (t0i )2 + bit

0
i + ci = v0i ,

1

6
ai · (t0i )3 +

1

2
bi · (t0i )2 + cit

0
i + di = 0,

1

6
ai · (tmi )3 +

1

2
bi · (tmi )2 + cit

m
i + di = L,

ait
m
i + bi = 0,

β +
1

2
a2i · (tmi )2 + aibit

m
i + aici = 0.

(14)

In the case i− 1 > ip, CAV ip, which physically precedes
i ∈ S(t), is different from i−1 and is, therefore, in a different
lane from i. This implies that we need to consider the safe

merging constraint (4) at t = tmi . Following the analysis
in [13], we obtain the same optimal solution as in (13),
where ai, bi, ci, di and tmi are now determined by another
five nonlinear algebraic equations (more complicated than
(14), and are skipped).

Since we aim for the solution to Problem 1 to be obtained
on-board each CAV, it is essential that the computational cost
of solving (14) (or another five nonlinear algebraic equations
in the case i − 1 > ip) be minimal. If MATLAB is used,
it takes less than 1 second to get the solution (Intel(R)
Core(TM) i7-8700 CPU @ 3.2GHz×2).

2) Constrained optimal control: When the constraints (3),
(4), (5) become active, a complete OC solution can still be
obtained [13], [22], but the computation time varies between
3 and 30 seconds depending on whether ip is also safety-
constrained or not.

IV. IMPLEMENTATION AND CASE STUDY

We have implemented the proposed ODR algorithm in
MATLAB. The CAVs randomly arrive following Poisson
processes at both roads. We studied two different cases:
equal arrival rates at both roads; a 3:1 arrival rate ratio
for the merging road relative to the main road. In addition,
we studied different optimal trade-off parameter α values
in (6). The model parameters used in the simulated system
are ϕ = 1.8s, δ = 9m,L = 400m,Lc = 200m, vmax =
30m/s, vmin = 0m/s, umax = −umin = 3.924m/s2.

We compared the results from this paper, with those of the
dynamic resequencing (DR) approach in [18], as well as the
results based on a FIFO queue from [13]. The comparison
results are shown in Tab. I.

As expected, the ODR method has the best average objec-
tive function value in all cases among these three approaches,
as shown in Tab. I. The times that CAVs do resequencing
(i.e., k∗ 6= 0 in Algo. 1) are also improved compared with the
DR approach [18] in all cases. In order to also demonstrate
the dramatic improvement in jerk (hence, improved comfort)
for CAVs which are affected by dynamic reseqencing, the
control profiles of an example CAV under the ODR approach
in this paper and the DR approach in [18] are shown in Fig.
2. As seen in this figure, it is obvious that the control of this
CAV affected by resequencing experiences a jump under the
DR approach, thus causing significant jerk to it.

Fig. 2. Control profile comparisons between DR [18] and ODR for one
example CAV in the 3:1 arrival ratio case under trade-off α = 0.01.
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TABLE I
COMPARISONS BETWEEN THE RESULTS FROM THIS PAPER, THE RESULTS WITH DR FROM [18] AND THE RESULTS WITH FIFO FROM [13]

Method Arrival α Avg. obj. Avg. time Avg. energy Reseq./total Merg.: Reseq./ total
FIFO

Equal arrival

0.25

36.4909 17.0472 4.9069 0/91 0/45
DR 36.3887 16.9230 5.0893 5/91 5/45

ODR 36.3592 16.9190 5.0603 9/91 6/45
FIFO

3:1 ratio

36.7389 17.0559 5.2152 0/90 0/27
DR 36.6471 16.8652 5.5822 4/90 3/27

ODR 36.6135 16.8663 5.5346 5/90 4/27
FIFO

0.01

2.0631 25.4881 0.1015 0/90 0/27
DR 1.9699 24.9176 0.0518 12/90 9/27

ODR 1.9626 24.8991 0.0458 15/90 10/27
FIFO 3:1 ratio, merg. 4m/s

higher in avg. v0i

2.2915 24.8383 0.3828 0/90 0/27
DR 1.9176 23.9250 0.0761 17/90 17/27

ODR 1.9106 24.0227 0.0615 18/90 18/27

The computation time in MATLAB (Intel(R) Core(TM) i7-
8700 CPU @ 3.2GHz×2) under the FIFO approach for each
CAV is around 1 second (unconstrained optimal), and is the
smallest one among these three approaches. The computation
time when using the ODR is better than DR due to Lemma
1 and the use of the fast search algorithm in Algo. 1.

Finally, the ODR approach also has the advantage of
computing an optimal solution to the merging problem for
each CAV in advance, i.e., before the CAV enters the CZ.
This is because the CAV’s arrival time and speed upon
arriving at the origin O or O′ are now already known at time
tri < t0i . This is important when the solution involves one or
more active constraints which require a longer computation
time than the unconstrained case.

V. CONCLUSIONS

We have proposed an optimal dynamic resequencing
framework in order to relax the FIFO assumption made in
earlier work which may diminish the performance attainable
by all CAVs in a traffic merging problem. This is especially
true when the traffic conditions are unbalanced over the main
and merging road. The introduction of a RZ allows all CAVs
to obtain their associated optimal merging controllers before
they enter the CZ, minimizes the effect of resequencing on
the state of a CAV (hence, its normal operation), and it
improves performance for all CAVs compared with FIFO-
based operation or earlier dynamic resequencing approaches.
Future work will focus on multi-road merging problems that
can further improve CAV performance.
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