
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Joint Placement and Allocation of VNF Nodes With

Budget and Capacity Constraints

Gamal Sallam , Student Member, IEEE, and Bo Ji , Senior Member, IEEE, Member, ACM

Abstract— With the advent of Network Function Virtualization
(NFV), network services that traditionally run on proprietary
dedicated hardware can now be realized using Virtual Network
Functions (VNFs) that are hosted on general-purpose commodity
hardware. This new network paradigm offers a great flexibility
to Internet service providers (ISPs) for efficiently operating their
networks (collecting network statistics, enforcing management
policies, etc.). However, introducing NFV requires an investment
to deploy VNFs at certain network nodes (called VNF-nodes),
which has to account for practical constraints such as the
deployment budget and the VNF-node capacity. To that end,
it is important to design a joint VNF-nodes placement and
capacity allocation algorithm that can maximize the total amount
of network flows that are fully processed by the VNF-nodes
while respecting such practical constraints. In contrast to most
prior work that often neglects either the budget constraint or the
capacity constraint, we explicitly consider both of them. We prove
that accounting for these constraints introduces several new
challenges. Specifically, we prove that the studied problem is
not only NP-hard but also non-submodular. To address these
challenges, we introduce a novel relaxation method such that
the objective function of the relaxed placement subproblem
becomes submodular. Leveraging this useful submodular prop-
erty, we propose two algorithms that achieve an approximation
ratio of 1

2
(1−1/e) and 1

3
(1−1/e) for the original non-relaxed

problem, respectively. Finally, we corroborate the effectiveness
of the proposed algorithms through extensive evaluations using
trace-driven simulations.

Index Terms— Network Function Virtualization (NFV),
resource allocation, submodular optimization.

I. INTRODUCTION

T
HE advent of Network Function Virtualization (NFV)

has made it easier for Internet service providers (ISPs)

to employ various types of functionalities in their networks.

NFV requires the replacement of network functions that tradi-

tionally run on proprietary dedicated hardware with software

modules, called Virtual Network Functions (VNFs), which run

on general-purpose commodity hardware [1]. A wide variety

of network functions (firewalls, intrusion detection systems,

WAN optimizers, etc.) can be applied to flows passing through

network nodes that host VNFs (called VNF-nodes). A flow

must be fully processed at one or multiple VNF-nodes so that

Manuscript received November 25, 2019; revised August 3, 2020 and
December 9, 2020; accepted January 31, 2021; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor J. Llorca. This work was supported
in part by the NSF under Grant CNS-1651947. A preliminary version of this
work has been presented at IEEE INFOCOM 2019. (Corresponding author:
Bo Ji.)

Gamal Sallam is with the Department of Computer and Informa-
tion Sciences, Temple University, Philadelphia, PA 19122 USA (e-mail:
sallam9876@yahoo.com).

Bo Ji is with the Department of Computer Science, Virginia Tech, Blacks-
burg, VA 24061 USA (e-mail: boji@vt.edu).

Digital Object Identifier 10.1109/TNET.2021.3058378

the potential benefits introduced by NFV can be harnessed [2].

The new network paradigm enabled by NFV not only offers

a great flexibility of introducing new network functions, but

it also reduces capital and operational expenditure. Therefore,

major ISPs have already started the process of transforming

their technologies and operations to support NFV [3].

However, such moves often take place in multiple stages

due to the budget limit; in each stage, only a subset of nodes

can be selected for deploying/placing VNFs. Moreover, VNF

instances typically have a limited capacity, which is shared for

processing multiple passing flows. Therefore, given a deploy-

ment budget and capacity limit, it is of critical importance to

choose a best subset of nodes to become VNF-nodes and to

determine the optimal capacity allocation so as to maximize

the amount of network traffic passing through them.

In contrast to most prior work that often neglects either the

budget constraint (e.g., [4], [5]) or the capacity constraint (e.g.,

[2]), we explicitly consider both constraints and formulate a

joint problem of VNF-nodes placement and capacity allocation

(VPCA). The VPCA problem has two main components: VNF-

node placement and VNF-node capacity allocation, which are

tightly coupled with each other. That is, deciding where to

place the VNF-nodes depends on how the capacity of the

VNF-nodes will be allocated; determining an optimal capacity

allocation apparently depends on where the VNF-nodes are

placed. The challenge posed by this problem is two-fold. First,

the placement and capacity allocation subproblems are both

NP-hard. Second, even if we assume that there is an oracle

that can optimally solve the capacity allocation subproblem,

the placement subproblem is non-submodular (a property that

generally leads to efficient solutions for similar problems).

This is in stark contrast to the previously studied problem

without the capacity constraint [2], which has been shown to

be submodular and can be approximately solved using efficient

greedy algorithms.

To that end, we propose a new framework that integrates

a decomposition approach with a novel relaxation method,

enabling us to design efficient algorithms with constant

approximation ratios for the studied VPCA problem. We sum-

marize our key contributions as follows.

• First, we formulate the VPCA problem with budget and

capacity constraints as an Integer Linear Program (ILP).

Then, we provide an in-depth discussion about the new

challenges introduced by the budget and capacity con-

straints. Specifically, we show that the placement and

capacity allocation subproblems are both NP-hard. Further,

we show that the objective function of the placement

subproblem is not submodular.

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 02,2021 at 18:23:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8806-6201
https://orcid.org/0000-0003-0149-7509

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

• To address these challenges, we relax the requirement of

fully processed flows and allow partially processed flows to

be counted. This simple relaxation enables us to prove that

the relaxed placement subproblem is submodular based on

a novel network flow reformulation of the relaxed capacity

allocation subproblem. Leveraging this useful submodular

property, we design two efficient algorithms that achieve an

approximation ratio of 1

2
(1 − 1/e) and 1

3
(1 − 1/e) for the

original (non-relaxed) VPCA problem, respectively. To the

best of our knowledge, this is the first work that exploits

this type of relaxation method to solve a non-submodular

optimization problem with provable performance

guarantees.

• Finally, we evaluate the performance of the proposed

algorithms using trace-driven simulations. The simulation

results show that the proposed algorithms perform very

closely to the optimal solution obtained from an ILP solver

and better than another algorithm that iteratively selects the

node with the highest volume of traffic traversing it [6].

The rest of the paper is organized as follows. First, we posi-

tion our work compared to related work in Section II. Next,

we describe the system model and problem formulation in

Section III and discuss the challenges of the VPCA problem

in Section IV. Then, we introduce the VPCA relaxation

and reformulation in Section V and the proposed algorithms

in Section VI. Then, we present the numerical results in

Section VII. Finally, we conclude the paper and discuss future

work in Section VIII.

II. RELATED WORK

There has been a large body of work that studies the

placement problem in different contexts such as NFV, SDN,

and edge cloud computing. In NFV, a placement is usually

considered at a scale of VNF instances, i.e., where and how

many instances of each network function should be placed

and allocated [4], [7]–[9]. Different objectives are considered

in each of them. The problem of how to meet the demand

from all of the flows with a minimum cost (e.g., in terms

of the number of instantiated instances) is considered in [4],

[10]. An extension of such work considers the setting where

each flow must traverse a chain of network functions, instead

of just one function, along a given route [11]. A similar

problem is also considered in [7], [12] but for an online

setting where flows arrive and leave in an online fashion. The

work in [9] addresses the joint problem of VNF service chain

placement and routing with the objective of minimizing total

communication and computation resource cost. A dynamic

version of this problem is considered in [8], where the goal

is to ensure network stability while minimizing resource cost.

Also, in [13], the authors consider the placement of a minimum

number of nodes to achieve the original maximum flow under

a given service function chaining constraint.

Note that the process of transitioning to NFV typically has

two phases: the planning phase and the production phase. The

planning phase is concerned about deciding where to introduce

NFV to efficiently utilize the limited budget. Since this phase

takes place before the actual deployment of the VNF-nodes,

one can use historical traces to project flow demands across

the network. In the production phase, one can optimize flow

admission and routing schemes decisions to efficiently utilize

the available resources (e.g., [12]). In this work, we are mainly

focused on the planning phase with budget and capacity

constraints and assume that flow routes are fixed.

There are several studies that are highly relevant to our

work. In [2], the authors consider the selection of a set of nodes

to upgrade to SDN. By assuming that the SDN-nodes have an

infinite capacity, they show that the problem is submodular.

However, we show that with a capacity constraint (which

is typically the case in practice), the problem becomes non-

submodular. In addition, due to the capacity constraint, only

a subset of flows traversing a VNF-node can be processed.

Therefore, capacity allocation becomes a crucial component of

the joint problem we consider. Similar to [14], which considers

joint placement and scheduling in the edge clouds, we consider

a new architecture with stateless network functions (see, e.g.,

[15]), which enables a fractional flow assignment over fixed

routes. Similar to our problem, the problem considered in

[14] is not submodular in general. While they can prove

submodularity and provide an approximation algorithm for a

special case, they develop a heuristic algorithm only for the

general case. In contrast, we develop approximation algorithms

for the general problem we consider. Specifically, we propose

a new framework that enables us to address the challenge of

non-submodularity and develop approximation algorithms for

the general case. In [5], instead of considering a budget con-

straint, the authors aim to minimize the number of deployed

middleboxes subject to the constraint that the length of the

shortest path of any flow cannot exceed a certain threshold.

They consider homogeneous flow demands (i.e., each flow

requires one unit of processing capacity), which makes their

capacity allocation subproblem solvable in polynomial time.

In contrast, we consider heterogeneous flow demands, which

renders the problem NP-hard. Moreover, while the objective

function of their placement problem is submodular, ours is

non-submodular. Different from the aforementioned studies,

we consider both capacity and budget constraints that are of

practical importance. Considering these practical constraints

introduces new challenges discussed above.

In [5], the authors also extend their study to the case of het-

erogeneous flow demands. However, their proposed algorithm

achieves a bicriteria approximation ratio only; specifically,

the node capacities may be violated by a constant factor. The

work of [16] considers the problem of joint service placement

and request routing in Mobile Edge Computing networks.

This work shows that the considered problem generalizes

other well-studied problems, including that of [5] when flow

demands are homogeneous. However, it is unclear whether

the generalization applies to the case of heterogeneous flow

demands and VNF-node deployment costs, which become

relevant in the planing phase addressed in this work. Moreover,

the proposed algorithm is based on randomized rounding and

achieves a probabilistic bicriteria approximation ratio. Ran-

domized rounding has also been employed to design bicriteria

approximation algorithms for Virtual Network Embedding

(see, e.g., [17], [18]). Being common in the studies on Virtual

Network Embedding, a pre-determined VNF-node placement

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 02,2021 at 18:23:33 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SALLAM AND JI: JOINT PLACEMENT AND ALLOCATION OF VNF NODES 3

is often assumed. In contrast to these studies, we consider the

problem of joint VNF-node placement and capacity allocation

and present algorithms that achieve constant approximation

ratios and do not violate any constraint.

The concept of submodularity has been extensively studied

in literature, starting with the seminal work in [19]. Submodu-

lar set functions exhibit the diminishing return property, which

means that the value of adding an item to a set decreases as

the size of the set increases. For problems with submodular

objective function, several algorithms can be utilized to solve

them efficiently [19], [20]. For non-submodular problems,

several useful techniques, including weak submodularity [21],

[22] and supermodularity [23], have been developed to address

non-submodularity. As far as weak submodularity is con-

cerned, a parameter γ ∈ (0, 1] is used to quantify how far

the objective function is from being submodular. In such

settings, approximation results have been established when

cardinality constraint [21] or general matroid constraint [22]

is considered; the guaranteed approximation ratios deteriorate

gracefully as γ moves away from 1. Since weak submodularity

is a relatively new concept, the approximation results remain

unexplored when the constraint is of other form, such as knap-

sack. There is another similar concept called supermodularity

[23]; the supermodular degree is proposed to measure the

deviation from submodularity. The work in [23] introduces an

algorithm that can be shown to be effective when the objective

function has a small supermodular degree. Different from these

techniques, we propose a novel framework that enables us to

design efficient algorithms with constant approximation ratios

for the non-submodular problem we consider; the achieved

approximation ratios do not depend on problem parameters,

such as γ in weak submodularity and the supermodular degree.

Recently, we have also extended our framework to more

general settings with multiple network functions and multiple

types of resources [24]. There are additional challenges in such

general settings: it is unclear whether the relaxed placement

subproblem is still submodular; the capacity allocation sub-

problem becomes a multi-dimensional generalization of the

generalized assignment problem with assignment restrictions,

which is much more challenging. Due to these new challenges,

different algorithms and techniques are developed, and the

derived approximation ratios are not constant in general.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a network graph G = (V , E), where V is the set

of nodes, with V = |V|, and E is the set of edges connecting

nodes in G. We have a set of flows F , with F = |F|. We use

λf to denote the traffic rate of flow f ∈ F . A node is called

a VNF-node if it is able to support VNFs. Since ISPs have

a limited budget to deploy VNFs in their networks, they can

only choose a subset of nodes U ⊆ V to become VNF-nodes.

We consider architectures with stateless network functions

(e.g., [15]). A flow’s state is stored in a data store; no matter

where the flow is processed, the state can be accessed from

the data store. Therefore, the traffic rate λf of each flow can

be split and processed at multiple VNF-nodes. We use λv
f to

denote the portion of flow f that is assigned to VNF-node v
and use λ ∈ RF×V to denote the assignment matrix.

We assume that the process of transitioning to NFV goes

through two main phases: the planning phase and the produc-

tion phase. The planning phase is concerned about deciding

where to introduce NFV to efficiently utilize the limited bud-

get. Since this phase takes place before the actual deployment

of the VNF-nodes, we assume that we can utilize historical

traces to project flow demands across the network. Then,

in the production phase, we can employ online flow admission

and routing schemes (e.g., [12]) to dynamically adjust flow

routing to efficiently utilize the available resources. In this

work, we are mainly focused on the planning phase. Therefore,

we assume that the traffic of flow f will be sent along a

predetermined path, which can be obtained from historical

traces. We use Vf to denote the set of nodes along this path.

Alternatively, the nodes along the predetermined path of a flow

can also be viewed as potential locations at which the flow

will be processed, and routing between these nodes can be

dynamically computed in an online fashion. We use FU to

denote the set of all flows whose path has one or more nodes

in a given set U , i.e., FU = {f ∈ F | Vf ∩ U �= ∅}.

As we mentioned earlier, the benefits of processed traffic

can be harnessed from fully processed flows, i.e., flows that

have all of their traffic processed at VNF-nodes. Hence, when a

flow traverses VNF-nodes and there is a sufficient capacity on

these VNF-nodes to process all of its rate, i.e.,
∑

v∈Vf∩U λv
f ≥

λf , then the flow is counted as a processed flow.1 Therefore,

the total processed traffic can be expressed as follows:

J1(U , λ) �
∑

f∈F

λf1{
�

v∈Vf ∩U
λv

f
≥λf}, (1)

where 1{.} is the indicator function. Note that each VNF-node

v has a limited processing capacity, denoted by cv. Hence,

the total traffic rate assigned to a node should satisfy the

following capacity constraint:

{

∑

f∈F λv
f ≤ cv, ∀v ∈ U ,

λv
f = 0, ∀f ∈ F and ∀v /∈ U .

(2)

We assume that the largest traffic rate of any flow is no larger

than the smallest processing capacity of any node.2 Also,

we consider a limited budget, denoted by B, and require that

the total cost of introducing VNF-nodes do not exceed B.

We use bv to denote the cost of making node v a VNF-

node, which includes hardware and/or software installation

cost and may also depend on the processing capacity. Hence,

the total cost of VNF-nodes should satisfy the following

budget constraint:

∑

v∈U

bv ≤ B. (3)

1For some flows, we can gain benefits by even processing a fraction of
its traffic. In such cases, we have a mix of flows that need to be fully
processed and that can be partially processed. The key challenges remain,
and the proposed algorithms can be applicable with minimal modifications.

2While some studies (e.g., [4]) consider the placement of VNF instances
and allow the flow rate to be larger than the capacity of a VNF instance,
we consider the problem of placing VNF-nodes, each of which can host
multiple VNF instances. Therefore, it is reasonable to assume that the capacity
of such a VNF-node is larger than the rate of any flow.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 02,2021 at 18:23:33 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

The above budget constraint limits the number of nodes

that can become VNF-nodes, and we may only have a sub-

set of flows that traverse some VNF-nodes. Accounting for

the above deployment budget and VNF capacity constraints,

we consider a joint problem of VNF-nodes placement and

capacity allocation (VPCA). The objective is to choose a best

subset of nodes to become VNF-nodes and optimally allocate

their capacities so as to maximize the total amount of fully

processed traffic. We provide the mathematical formulation of

the VPCA problem in the following:

maximize
U⊆V,λ

J1(U , λ)

subject to (2), (3). (P1)

IV. CHALLENGES OF VPCA

Here, we will identify the unique challenges of the VPCA

problem formulated in (P1). We first decompose the VPCA

problem into two subproblems: 1) placement: how to select

a subset of nodes to become VNF-nodes and 2) capacity

allocation: for a given set of VNF-nodes with fixed capacities,

how to divide their capacity for processing a subset of flows.

Then, we prove that both subproblems are NP-hard and

that the placement subproblem is non-submodular. This is

very different from similar problems neglecting the capacity

constraint (2) [2], which have been shown to be submodular

and can be approximately solved.

A. NP-Hardness

First, we present the formulations of the two subproblems.

We start with the allocation subproblem because it will be used

in the placement subproblem. For a given set of VNF-nodes

U ⊆ V , let JU
2 (λ) denote the total amount of fully processed

traffic under flow assignment λ. Note that JU
2 (λ) has the same

expression as that of J1(U , λ) in Eq. (1). The superscript U
of JU

2 (λ) is to indicate that it is associated with a given set of

VNF-nodes U . Then, the capacity allocation subproblem for a

given set of VNF-nodes U can be formulated as

maximize
λ:(2) is satisfied

JU
2 (λ). (P2)

Let J3(U) � maxλ:(2) is satisfied JU
2 (λ) denote the optimal value

of problem (P2) for a given set of VNF-nodes U . Then,

the placement subproblem can be formulated as

maximize
U∈V

J3(U)

subject to (3). (P3)

Note that in order to solve problem (P3), we need to solve

problem (P2) to find the optimal λ for a given set of VNF-

nodes U . In the following theorem, we will show that both

subproblems (P2) and (P3) are NP-hard.

Theorem 1: The capacity allocation subproblem (P2) and

the placement subproblem (P3) are both NP-hard.

Proof: See Appendix A. �

Fig. 1. An example to show non-submodularity of J3(U).

B. Non-Submodularity

Note that the objective function J3(U) of the placement

subproblem (P3) is a set function. At first glance, problem

(P3) looks like a submodular maximization problem, which

has been extensively studied in the literature and can be

approximately solved using efficient algorithms [19], [20].

However, we will show that the objective function J3(U)
is generally non-submodular, which makes the placement

subproblem (P3) and the overall problem (P1) much more

challenging. We first give the definition of submodular func-

tions.

Definition 1: For a finite set of elements V , a function H :
2V → R is submodular if for any subset V1 ⊆ V2 ⊆ V and

any element v ∈ V\V2, we have

H(V1 ∪ {v}) − H(V1) ≥ H(V2 ∪ {v}) − H(V2). (4)

The above definition exhibits an important property of

diminishing returns. In our problem, if the VNF-node capacity

is infinite, i.e., there is no capacity constraint (2), then a flow

f can always be fully processed as long as its path has at

least one VNF-node, i.e., Vf ∩ U �= ∅. In this case, the total

processed traffic J1(U , λ) can be rewritten as

J 0
1(U) =

∑

f∈F

λf1{Vf∩U6=∅}, (5)

where the capacity allocation becomes irrelevant as it does not

impact the value of function J 0
1(U). It has been shown in [2]

that the function J 0
1(U) is monotonically nondecreasing and

submodular. In this special case, problem (P1) with objective

function J 0
1(U) can be approximately solved using efficient

greedy algorithms.

However, using the example presented in Fig. 1, we show

that the objective function J3(U) is no longer submodular if

the VNF-nodes have a limited capacity. Consider three flows:

flow f1 with path v1 → v2, flow f2 with path v2 → v3,

and flow f3 with path v3 → v1. Assume that each VNF-node

has a capacity of 3, and each flow has a traffic rate of 2.

If node v3 is the only VNF-node, then it can only support

one flow because its capacity is 3. Therefore, the marginal

contribution of adding node v3 as a VNF-node to the empty

set is J3({v3})−J3(∅) = 2−0 = 2. Now, assume that before

making node v3 a VNF-node, node v2 is already a VNF-node,

which can support one flow. By making node v3 a VNF-node,

all three flows can be fully processed, and hence, the total

processed traffic becomes 6, i.e., the marginal contribution of

adding node v3 to the set {v2} is J3({v2}∪{v3})−J3({v2}) =
6−2 = 4 > J3({v3})−J3(∅) = 2. This violates the definition

of submodular set functions in Eq. (4).

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 02,2021 at 18:23:33 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SALLAM AND JI: JOINT PLACEMENT AND ALLOCATION OF VNF NODES 5

As we mentioned in Section II, there are several useful

techniques that have been developed to handle non-submodular

functions, such as weak submodularity [21], [22] and super-

modularity [23]. When the notion of weak submodularity is

considered, one uses a parameter3 γ ∈ (0, 1] to measure the

deviation of the objective function from being submodular.

A larger value of γ is better. For the example presented

in Fig. 1, we can show that the value of γ is 0.66. However,

the value of γ for function J3(U) could be small in general.

Even if we can show that γ is relatively large, we are still

faced with the following issues that hinder the application

of weak submodularity to solving the VPCA problem. First,

to our best knowledge, the case with knapsack constraint has

not been studied yet in literature. Second, it is hard to analyze

the value of γ in our case. This is due to the fact that the

placement value function is the optimal value to the resource

allocation subproblem, which is NP-hard (see Theorem 1). On

the other hand, the supermodular degree characterizes the level

of violation of submodularity for a set function. For problems

with a bounded supermodular degree, the authors of [23]

propose a greedy algorithm with performance guarantees for

the case with a non-submodular objective function. However,

the proposed greedy algorithm has two main limitations. First,

its approximation ratio is a function of the supermodular

degree, which, in our case, could be as large as the number of

nodes in the network. Second, its complexity is exponential

in the supermodular degree and could be prohibitively high

when the supermodular degree is large.

Therefore, our problem (P1) is much more challenging

than other similar problems studied in prior work, where the

objective function is either submodular or weakly submodular

with a large γ, or there is a bounded supermodular degree.

To that end, in the next section we will address the afore-

mentioned unique challenges by introducing a novel relaxation

and a problem reformulation, which enable us to propose two

algorithms with constant approximation ratios.

V. RELAXATION AND REFORMULATION

In this section, we present a relaxation of the VPCA

problem that allows partially processed flows to be counted.

Further, we introduce a novel network flow reformulation of

the relaxed capacity allocation subproblem. Both of these tech-

niques will be utilized in designing two efficient approximation

algorithms in the next section.

A. Relaxed VPCA Formulation

We first introduce the relaxed VPCA problem, which allows

partially processed flows to be counted. In the relaxed VPCA

problem, any fraction of flow f processed by VNF-nodes in

Vf ∩ U will be counted in the total processed traffic. That is,

the relaxed J1(U , λ) can be expressed as follows:

R1(U , λ) �
∑

f∈F

∑

v∈Vf∩U

λv
f . (6)

3For a finite set of elements V , a function H : 2V → R is γ-weakly
submodular for some γ ∈ (0, 1] if for every two subsets V1,V2 ⊆ V , we have�

v∈V2
H({v}|V1) ≥ γH(V2|V1) [22].

Fig. 2. An example of the constructed graph Z for the network in Fig. 1,
where F = {f1, f2, f3}, V = {v1, v2, v3}, Vf1

= {v1, v2}, Vf2
=

{v2, v3}, and Vf3
= {v1, v3}.

Apparently, the total processed traffic of flow f cannot exceed

λf , i.e., the following constraint needs to be satisfied:
∑

v∈U

λv
f ≤ λf , ∀f ∈ F . (7)

Then, the relaxed version of problem (P1) becomes

maximize
U⊆V,λ

R1(U , λ)

subject to (2), (3), (7). (Q1)

Next, we decompose problem (Q1), in the same way as

we did for problem (P1), into placement and allocation

subproblems. For a given set of VNF-nodes U ⊆ V , let ΛU

be the set of all flow assignment matrices λ that satisfy the

capacity constraint (2) and the flow rate constraint (7), and

let RU
2 (λ) be the total processed traffic, which has the same

expression as that of R1(U , λ) but has U in the superscript

so as to indicate that this function is for a given set of VNF-

nodes U . Then, the capacity allocation subproblem for a given

set of VNF-nodes U can be formulated as

maximize
λ∈ΛU

RU
2 (λ). (Q2)

Now, let R3(U) � maxλ∈ΛU RU
2 (λ) denote the optimal

value of problem (Q2) for a given set of VNF-nodes U . Then,

the placement subproblem can be formulated as

maximize
U⊆V

R3(U)

subject to (3). (Q3)

Note that although the relaxed placement subproblem (Q3)
can still be shown to be NP-hard, we will prove that the

objective function R3(U) is monotonically nondecreasing

and submodular. This useful submodular property allows us

to approximately solve problem (Q3). On the other hand,

the relaxed capacity allocation subproblem (Q2) becomes an

LP, which can be efficiently solved; alternatively, we can also

solve (Q2) using a maximum flow algorithm (discussed at the

end of Section VI-A).

B. Network Flow Formulation

In this subsection, we introduce a novel network flow refor-

mulation of problem (Q2). The purpose of this reformulation

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 02,2021 at 18:23:33 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

is two-fold: i) we will use it to prove that the objective function

of the relaxed placement subproblem (Q3) is submodular; ii)

we will leverage it to develop a combinatorial algorithm for

problem (Q2) based on the efficient maxflow algorithms (e.g.,

[25]), which is also a key component of the approximation

algorithms we will propose for the original VPCA problem.

For problem (Q2), we reformulate a network flow problem

by constructing a directed graph Z = (N ,L) as follows.

The set of vertices N consists of the following: an artificial

source vertex s, set NF consisting of flow-vertices f each

corresponding to flow f ∈ F , set NV consisting of node-

vertices v each corresponding to node v ∈ V , and set NV′

consisting of node-vertices v0 each corresponding to node

v ∈ V . Hence, N = {s}∪NF ∪NV ∪NV′ , where NV consists

of the sinks. Let (x, y) be an edge in L, which is from x ∈ N
to y ∈ N . The set of edges L consists of the following: set L1

consisting of edges (s, f) connecting the source vertex s to

each flow-vertex f ∈ NF , set L2 consisting of edges (f, v0)
connecting each flow-vertex f ∈ NF to each node-vertex

v0 ∈ NV′ corresponding to a node v ∈ Vf , set L3 consisting

of edges (v0, v) connecting each node-vertex v0 ∈ NV′ to its

corresponding node-vertex v ∈ NV . We use c(x, y) to denote

the capacity of edge (x, y). Hence, L = L1∪L2∪L3. An edge

(s, f) ∈ L1 has capacity λf ; an edge (f, v0) ∈ L2 has capacity

λf ; an edge (v0, v) ∈ L3 has capacity cv . Fig. 2 presents an

example of the constructed graph Z for the network in Fig. 1.

Next, we describe flows over graph Z . Consider functions

ϕ(x, y) : N ×N → R+, where R+ is the set of non-negative

real numbers. We define Φ(X ,Y) �
∑

x∈X

∑

y∈Y ϕ(x, y) for

X ,Y ⊆ N . An s-V flow is a function ϕ(x, y) : N ×N → R+

such that the following is satisfied:

1) Capacity constraints: ϕ(x, y) ≤ c(x, y) for all pairs

(x, y) ∈ N ×N . (Note that c(x, y) = 0 if (x, y) /∈ L.)

2) Flow conservation: the net-flow at every non-source non-

sink vertex x ∈ N \({s}∪NV) is zero, i.e., Φ(N , {x})−
Φ({x},N) = 0.

3) Positive incoming flow: the net-flow at the source s is

non-positive, i.e., Φ(N , {s}) − Φ({s},N) ≤ 0.

4) Positive outgoing flow: the net-flow at every sink t ∈ NV

is non-negative, i.e., Φ(N , {t}) − Φ({t},N) ≥ 0.

Let F be the set of all s-V flows over Z .

For a subset of sinks4 U ⊆ NV , we define

F (U) � max
ϕ∈F

(Φ(N ,U) − Φ(U ,N)), (8)

which is the maximum total net-flow at the sinks in U .

The maximum net-flow problem is to find an s-V flow (i.e.,

function ϕ) that achieves the maximum in (8). In Lemma 1,

we show the equivalence between the capacity allocation

subproblem (Q2) and the maximum net-flow problem (8).

Lemma 1: The capacity allocation subproblem (Q2) is

equivalent to the maximum net-flow problem (8). Hence, for

any given U ⊆ V , the optimal value of problem (Q2) is equal

to the maximum total net-flow at the sinks in U ⊆ NV of the

4Note that each node v ∈ V corresponds to a sink in NV . Hence,
by slightly abusing the notations, for any U ⊆ V , we also use U to denote
the corresponding subset of sinks in NV .

Algorithm 1 The RP-MCA and RP-GCA Algorithms

Input: set of nodes V , set of flows F , node capacities, node

costs, flow rates, and budget B.

Output: set of VNF-nodes U , capacity allocation λ.

1: Relaxed Problem: relax function J1(U , λ) to become

R1(U , λ);
2: Placement Subproblem: solve problem (Q3) using the

Submodular Greedy algorithm or the Enumeration-

based Greedy algorithm, described in Section VI-A,

to obtain U .

3: Capacity Allocation: use either the MCA algorithm (Algo-

rithm 2) or the GCA algorithm (Algorithm 3) to obtain

capacity allocation λ.

associated graph Z , i.e.,

R3(U) = F (U). (9)

Proof: See Appendix B. �

VI. PROPOSED ALGORITHMS

In this section, we design two efficient algorithms that can

achieve constant approximation ratios for the VPCA problem

(P1). The main idea is to utilize the relaxation introduced

in the previous section, which allows partially processed

flows to be counted. By doing so, we can show that the

relaxed placement subproblem is submodular based on the

network flow reformulation of the relaxed capacity allocation

subproblem. In this case, the relaxed placement subproblem

can be approximately solved using efficient greedy algorithms.

Moreover, the relaxed allocation subproblem becomes a Linear

Program (LP), which can also be solved efficiently in polyno-

mial time. However, the solution to the relaxed problem is for

the case where any fraction of the processed flows is counted.

In order to obtain a solution for the original VPCA problem

(P1), where only the fully processed flows are counted,

we propose two approximation algorithms by modifying the

solution to the relaxed capacity allocation subproblem: the first

one is based on a maximum flow algorithm, and the second

one is based on a greedy algorithm.

We use RP-MCA and RP-GCA to denote the algorithms

we develop by combining the Relaxed Placement with the

Maximum-flow-based Capacity Allocation and the Greedy

Capacity Allocation, respectively. We show that the RP-MCA

and RP-GCA algorithms achieve an approximation ratio of
1

2
(1 − 1/e) and 1

3
(1 − 1/e), respectively. We describe the

algorithms in a unified framework presented in Algorithm 1.

The difference is in the capacity allocation subproblem (line

3), where RP-MCA algorithm uses a Max-flow-based Capacity

Allocation (MCA) algorithm presented in Algorithm 2, while

RP-GCA algorithm uses a Greedy Capacity Allocation (GCA)

algorithm presented in Algorithm 3.

A. Proposed Placement Algorithms

In this subsection, we first prove in Lemma 2 that the

objective function R3(U) of the relaxed placement subproblem

(Q3) is monotonically nondecreasing and submodular. Then,

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 02,2021 at 18:23:33 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SALLAM AND JI: JOINT PLACEMENT AND ALLOCATION OF VNF NODES 7

using the property of submodularity, we propose two greedy

algorithms for solving the placement subproblem.

Lemma 2: The function R3(U) is monotonically nonde-

creasing and submodular.

Proof: The function R3(U) is monotonically nondecreas-

ing because adding an additional VNF-node does not reduce

the amount of flows that can be fully processed.

Next, we prove that the function R3(U) is submodular. The

proof follows from the network flow reformulation introduced

in Section V-B. Applying Lemma 1 and the max-flow min-cut

theorem (see, e.g., [26, pp. 348–349]) immediately gives

R3(U) = min
X⊆N :s∈X ,U⊆N\X

∑

x∈X

∑

y∈N\X

c(x, y). (10)

One then obtains that R3(U) is submodular (as the partial

minimization of a cut function) [26, p. 230]. �

Because of this useful submodular property, problem (Q3)
can be approximately solved using efficient greedy algorithms.

Next, we consider two cases of problem (Q3): uniform VNF-

node costs (Case I, a special case) and heterogeneous VNF-

node costs (Case II, a general case).

In Case I, the VNF-nodes have uniform costs, i.e., bv = b
for all v ∈ V . Then, the budget constraint (3) can be expressed

as a cardinality constraint, i.e., |U| ≤ k, where k = �B/b
.

In this case, we can use a simple Submodular Greedy (SG)

algorithm to approximately solve problem (Q3). In the SG

algorithm, we start with an empty solution of VNF-nodes U ; in

each iteration, we add a node that has the maximum marginal

contribution to U , i.e., a node that leads to the largest increase

in the value of the objective function. If multiple nodes have

the same marginal contribution, we break ties by selecting a

node uniformly at random. We repeat the above procedure

until k VNF-nodes have been selected. This solution has been

shown to achieve an approximation ratio of (1 − 1/e) [19].

However, this algorithm does not guarantee to have the same

approximation ratio for the case of heterogeneous VNF-node

costs [20].

In Case II, the VNF-nodes have heterogeneous costs,

i.e., the costs of VNF-nodes are different. For this case,

an Enumeration-based Greedy (EG) algorithm has been pro-

posed in [20], which can be shown to achieve the same

approximation ratio of (1 − 1/e), but with a higher running

time complexity compared to the SG algorithm. The EG algo-

rithm has two phases. In Phase I, it samples all node subsets

of cardinality one or two that satisfy the budget constraint,

picks the one with the largest value of the objective function

R3, and stores this temporary solution in U1. In Phase II,

the algorithm samples all node subsets of cardinality three and

augments each of these subsets with nodes that maximize the

relative marginal contribution (R3(V 0∪{u})−R3(V 0))/bu, in a

greedy manner. The budget constraint must also be satisfied

throughout this procedure. Then, it selects the augmented

subset with the largest value of the objective function R3 and

stores it in U2. The final solution will be the better one between

U1 and U2, i.e., the one that achieves a larger value of the

objective function R3.

Note that although the value of function R3(U) can be

obtained using an LP solver, we can alternatively compute

it using the network flow formulation presented in Section V-

B as follows. For the constructed graph Z , we connect all the

sink vertices corresponding to nodes U to an artificial sink

vertex d. Then, the value of R3(U) is the maximum flow

from vertex s to vertex d in graph Z , which can be computed

using several efficient algorithms (see, e.g., [25]). In Lemma 3,

we restate the results of [19], [20] about the approximation

ratio of the SG and EG algorithms.

Lemma 3: Both the SG and EG algorithms achieve an

approximation ratio of (1 − 1/e).
Proof: The proofs can be found in [19] and [20] for the

SG algorithm and the EG algorithm, respectively. �

B. Proposed Capacity Allocation Algorithms

While the solution of problem (Q3) allows partially

processed flows to be counted, only fully processed flows

will be counted in the original problem (P1). To that end,

we propose two algorithms to modify the capacity allocation

of VNF-nodes U so as to ensure fully processed flows and

provide certain performance guarantees. The first algorithm

is based on the network flow formulation, and the second

one is based on a simple greedy approach. We develop these

algorithms by modifying two algorithms for the multiple

knapsack problem with assignment restrictions (MKAR) [27].

However, we want to point out that there is a key difference

between our studied VPCA problem and the MKAR problem:

in the VPCA problem, a flow can be split and assigned to more

than one VNF-node, while in the MKAR problem, an item

(corresponding to a flow in our problem) cannot be split and

must be assigned to at most one knapsack (corresponding to

VNF-node in our problem). Because of this key difference,

an optimal solution for the VPCA problem generally has

a larger value compared to that of the MKAR problem.

Therefore, the algorithms developed for the MKAR problem

need to be modified so as to yield a better performance.

First, we introduce some additional notations for the algo-

rithms that will be described below. We use Uf to denote

the nodes on the path of flow f that are included in U ,

i.e., Uf = Vf ∩ U . Let c0v denote the remaining capacity of

VNF-node v, and let c0Ui
denote the total remaining capacity

of the set of VNF-nodes in Ui, i.e., c0Ui
=

∑

v∈Ui
c0v. In what

follows, we will introduce the MCA algorithm and the GCA

algorithm.

1) Maximum-Flow-Based Capacity Allocation (MCA): We

first present the MCA algorithm (Algorithm 2), a capacity

allocation algorithm based on the network flow formulation.

The MCA algorithm has two phases. In Phase I, MCA makes

allocation decisions by rounding a fractional flow assignment

obtained by solving problem (Q2); in Phase II, the remaining

VNF-node capacities are allocated in a greedy manner.

Phase I: Let λU be a flow assignment obtained from

an optimal basic solution5 of problem (Q2), which can be

obtained by solving a maximum flow problem as discussed

earlier. We use yv
f � λv

f/λf to denote the fraction of flow

f assigned to VNF-node v in the obtained solution λU . The

5A basic feasible solution is a solution that cannot be expressed as a convex
combination of two feasible solutions.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 02,2021 at 18:23:33 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 2 The MCA Algorithm

Input: set of VNF-nodes U , set of flows FU , flow rates,

and VNF-node capacities.

Output: Capacity allocation λ.

Phase I:

1: Obtain a basic optimal solution λU ;

2: yv
f � λv

f/λf , for all λv
f in λU ;

3: Assign each flow f with yv
f = 1 to VNF-node v;

4: Construct G0 for the unassigned flows with positive yv
f ;

5: while G0 is not empty do

6: while there is a singleton VNF-node in G0 do

7: Perform the rounding in Step 1;

8: end while

9: Perform the rounding in Step 2;

10: end while

Phase II:

11: for each flow f in FU that is not assigned yet do

12: if c0(Uf) ≥ λf then

13: Assign flow f to a subset of VNF-nodes in Uf ;

14: end if

15: end for

algorithm begins with a temporary assignment of every flow

f with yv
f = 1 to the corresponding VNF-node v. For the

remaining flows, we do the following. Let G0 = (F 0,V 0, E 0)
be a bipartite graph constructed as follows. For each λv

f ∈ λU ,

if 0 < yv
f < 1, we add a flow vertex f to the set F 0, a VNF-

node vertex v to the set V 0, and an edge, with weight yv
f ,

connecting flow vertex f to VNF-node vertex v, to the set E 0.

Note that graph G0 cannot have a cycle because λU is a basic

feasible solution [27, Lemma 5]. After constructing graph G0,

we repeatedly apply the following two steps to graph G0 until

it becomes empty. As a result, the modified flow assignment

yv
f will become either zero or one.

Step 1: For each VNF-node v ∈ V 0 that has only one

incident flow f (called a singleton VNF-node), we modify

its capacity allocation as follows. Let rv denote the total

amount of flow rates assigned to VNF-node v and let r0v be

the portion of rv contributed by fully assigned flows. Note that

rv = r0v +λv
f . If r0v ≥ λv

f , then we set yv
f to zero. Now, VNF-

node v has no incident edges to it, so we remove it from

G0. In this case, the value of solution λU will be reduced

by λv
f , which is no greater than 1

2
rv . If r0v < λv

f , then we

unassign the flows temporarily assigned to VNF-node v and

assign flow f to VNF-node v instead, i.e., set yv
f to one, and

cancel the other fractions of flow f assigned to other VNF-

nodes. This is feasible because the rate of any flow is assumed

to be no larger than the minimum VNF-node capacity. Then,

we remove VNF-node v, flow f , and the associated edges from

G0. In this case, the value of solution λU will be reduced by at

most r0v , which is no greater than 1

2
rv. We repeat Step 1 until

no singleton VNF-node exists. Then, we go to Step 2.

Step 2: In this step, we will perturb the fractional values

of some edges in G0 to make one of them either zero or one.

The perturbation is designed such that the capacity and

assignment constraints are not violated and the total assigned

Fig. 3. An example of the edges perturbation.

traffic remains the same. We describe the perturbation

procedure in the following. Consider a VNF-node v1 ∈ V 0

that has a degree of at least two. Let (v1, f1) and (v1, fk+1)
denote two of the incident edges to VNF-node v1. Let p1

and p2 denote the longest paths starting from VNF-node

v1 through edges (v1, f1) and (v1, fk+1), respectively; such

paths exist because G0 is a forest. Here, we use yj
i to denote

the fractional value of flow i assigned to VNF-node j and

use λj to denote the rate of flow j. Let y1 = (y1
1 , y

2
1 , . . . , y

k
k)

denote the fractional flow assignment on the edges of

path p1, and let f1, . . . , fk be the flow nodes of path p1.

Similarly, let y2 = (y1
k+1, y

k+1

k+1
, . . . , yk+l−1

k+l) denote the

fractional flow assignment on the edges of path p2, and let

fk+1, . . . , fk+l denote the flow nodes of path p2. We perturb

y1 by adding to it y′

1
= (λk

λ1
ε,−λk

λ1
ε, λk

λ2
ε, . . . ,− λk

λk−1
ε, ε),

and we perturb y2 by adding to it y′

2
=

(− λk

λk+1
ε, λk

λk+1
ε,− λk

λk+2
ε, . . . , λk

λk+l−1
ε,− λk

λk+l
ε). We increase

ε until one fractional value yv
f becomes zero or one, and if

one, i.e., yv
f = 1, then we assign flow f to the corresponding

VNF-node v. An example to illustrate this step is shown

in Fig. 3. In this new solution, at least one edge is removed

from G0. We repeat the perturbation procedure until at least

one VNF-node becomes a singleton, and then we go back to

Step 1. If G0 becomes empty, we start Phase II.

Phase II: We leverage the property that the traffic of a flow

can be split and processed at multiple VNF-nodes. That is,

after Phase I, we pick an unassigned flow f and check if the

total remaining capacity of VNF-nodes Uf is no smaller than

λf . If so, we split flow f so that the remaining capacities of

some VNF-nodes in Uf can be used to fully process flow f
and assign flow f to a subset of these VNF-nodes. We repeat

this procedure until no more flow can be assigned.

We use OPT (Q2,U) to denote the total traffic assigned to

a given set of VNF-nodes U by an optimal solution to problem

(Q2). Also, we use πU
MCA to denote the total traffic assigned

to VNF-nodes U by the MCA algorithm. The approximation

ratio of the MCA algorithm is stated in the following Lemma.

Lemma 4: The MCA algorithm has an approximation ratio

of 1/2, i.e., πU
MCA ≥ 1

2
OPT (Q2,U).

Proof: See Appendix C. �

2) Greedy Capacity Allocation (GCA): While the MCA

algorithm achieves an approximation ratio of 1/2, it has a

relatively high complexity of O(F 2V 2) (refer to Table I for

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 02,2021 at 18:23:33 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SALLAM AND JI: JOINT PLACEMENT AND ALLOCATION OF VNF NODES 9

Algorithm 3 The GCA Algorithm

Input: set of VNF-nodes U , set of flows FU , flow rates,

and VNF-node capacities.

Output: Capacity allocation λ.

1: Sort flows FU in a noincreasing order of their flow rates;

Phase I:

2: for each flow f in the sorted set FU do

3: if there is a VNF-node v in Uf such that c0v ≥ λf then

4: Set λv
f = λf ;

5: Set c0v = c0v − λf ;

6: end if

7: end for

Phase II:

8: for each flow f in the sorted set FU that is not assigned

yet do

9: if c0(Uf) ≥ λf then

10: Assign flow f to a subset of VNF-nodes in Uf ;

11: end if

12: end for

the complexity analysis). This high complexity may render the

MCA algorithm unsuitable for certain scenarios in practice.

To that end, we propose the GCA algorithm, a simple greedy

capacity allocation algorithm that has a much lower complex-

ity of O(FV). A lower complexity of the GCA algorithm is

achieved at the cost of a slightly worse approximation ratio of

1/3 (Lemma 5). However, the approximation ratio of the GCA

algorithm can be improved to 2/5 (cf. Lemma 6 below) if an

additional mild assumption (Assumption 1) holds. The GCA

algorithm has two phases. In Phase I, we sort flows of FU in a

nonincreasing order of their flow rates. Then, we iteratively go

through the sorted list and assign each flow to any VNF-node

in Uf if it has a sufficient capacity. In Phase II, the remaining

capacities of the VNF-nodes can be allocated in a similar way

to Phase II of the MCA algorithm by leveraging the property

that a flow can be processed at multiple VNF-nodes. However,

here the remaining flows need to be considered according to

the order in the sorted list FU . The GCA algorithm is presented

in Algorithm 3.

In Lemma 5, we state the result about the approximation

ratio of the GCA algorithm. We use πU
GCA to denote the total

traffic assigned to VNF-nodes U by the GCA algorithm.

Lemma 5: The GCA algorithm has an approximation ratio

of 1/3, i.e., πU
GCA ≥ 1

3
OPT (Q2,U).

Proof: See Appendix D. �

Further, we show in Lemma 6 that the approximation ratio of

the GCA algorithm can be improved to 2/5 when an additional

mild assumption (Assumption 1) holds.

Assumption 1: Assume that all the VNF-nodes in U have

the same capacity and that every flow f in FU traverses at

least two VNF-nodes in U , i.e., |Vf ∩ U| ≥ 2.

Lemma 6: Suppose that Assumption 1 holds. Then, the GCA

algorithm has an improved approximation ratio of 2/5,

i.e., πU
GCA ≥ 2

5
OPT (Q2,U).

Proof: See Appendix E. �

C. Main Results

We state our main results in Theorems 2 and 3.

Theorem 2: The RP-MCA algorithm has an approximation

ratio of 1

2
(1 − 1/e) for problem (P1).

Proof: The RP-MCA algorithm has two main components:

1) VNF-nodes placement and 2) capacity allocation. For the

relaxed placement subproblem (Q3), we use πU
G to denote the

value of the optimal relaxed allocation for the set of VNF-

nodes U selected by the SG algorithm or the EG algorithm.

Also, we use OPT (P) to denote the optimal value of any

problem (P). We have the following result:

πU
G

(a)

≥ (1 − 1/e)OPT (8)
(b)
= (1 − 1/e)OPT (8)
(c)

≥ (1 − 1/e)OPT (P1), (11)

where (a) is due to Lemma 3, (b) holds because an optimal

capacity allocation is assumed for the objective function of

problem (Q3), and (c) holds because problem (Q1) is a

relaxed version of problem (P1).
The second component of the RP-MCA algorithm is the

capacity allocation using the MCA algorithm for the set of

VNF-nodes U selected by the SG or EG algorithm. We have

the following result:

πU
MCA

(a)

≥
1

2
OPT (Q2,U)

(b)
=

1

2
πU

G

(c)

≥
1

2
(1 − 1/e)OPT (P1), (12)

where (a) comes from the approximation ratio of the MCA

algorithm in Lemma 4, (b) holds because when πU
G is obtained

for problem (Q3) using the greedy algorithms, an optimal

capacity allocation (i.e., an optimal solution to problem (Q2)

associated with the considered U) is assumed for the objective

function, and (c) holds from Eq. (11). Therefore, the result of

Theorem 2 follows. �

Theorem 3: The RP-GCA algorithm has an approximation

ratio of 1

3
(1 − 1/e) for problem (P1).

Proof: The proof follows the same argument as in the

proof of Theorem 2. Since the GCA algorithm achieves

an approximation ratio of 1/3 for the capacity allocation

(Lemma 5), the proof proceeds exactly the same except that

we need to replace 1/2 with 1/3 in Eq. (12). �

Table I summarizes the complexity of our proposed algo-

rithms. In literature on submodular optimization, the complex-

ity of algorithms for submodular functions is often measured

through the number of function evaluations. The function

evaluation itself is usually assumed to be conducted by an

oracle, and thus its complexity is not taken into account [28].

We followed this approach here. Note that we can utilize other

alternative algorithms to the EG algorithm to improve the

running time substantially but with a slightly worse approx-

imation ratio [20], [28]. We provide more discussions about

the complexity analysis in Appendix F.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 02,2021 at 18:23:33 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE I

APPROXIMATION RATIOS AND TIME COMPLEXITIES OF THE PROPOSED

ALGORITHMS. ∗THESE ARE THE APPROXIMATION RESULTS FOR THE

GCA ALGORITHM WHEN ASSUMPTION 1 HOLDS. †THIS IS THE

NUMBER OF FUNCTIO EVALUATIONS USED IN THE SUBMOD-
ULAR OPTIMIZATION

Fig. 4. Evaluation on the Abilene dataset.

VII. NUMERICAL RESULTS

In order to evaluate the performance of the proposed

algorithms, we consider real-world network topologies and

traffic statistics. We compare the proposed algorithms with the

following baselines: 1) optimal solution: we can solve problem

(P1) optimally using Gurobi [29], an ILP solver, for the

presented instances. Recall that the VPCA problem is NP-hard

in general (Theorem 1). Although we are able to obtain the

optimal solution for the problem instances we consider here,

it may take a prohibitively large amount of time to obtain the

optimal solution for some other problem instances. 2) VOL-

MCA [6]: this scheme selects the nodes with the highest traffic

volume that traverses them. For the selected nodes, we allocate

their capacity using the proposed MCA algorithm. We evaluate

the performance of each algorithm based on the percentage of

the processed traffic, which is defined as the ratio between the

total volume of the traffic fully processed by the VNF-nodes

and the total traffic volume. We run the simulations on a PC

with Intel Core i7-7700 processor and 32GB memory.

A. Evaluation Datasets and Simulation Parameters

1) Abilene Dataset: We consider the Abilene dataset [30]

collected from an educational backbone network in North

America. The network consists of 12 nodes and 144 flows.

Each flow rate was recorded every five minutes for 6 months.

The OSPF weights were recorded, which allows us to compute

the shortest path of each flow based on these weights. In our

experiments, we set the flow rate to the recorded value of the

first day at 8:00 pm.

2) SNDlib Datasets: We also consider two datasets from

SNDlib [31]: Cost266 and Ta2. Cost266 has 37 nodes and

1332 flows; Ta2 has 65 nodes and 1869 flows. For Cost266,

the routing cost of each link is available, which can be used

Fig. 5. Evaluation on the Cost266 datasets.

to compute the shortest path of each flow. For Ta2, we use the

hop-count-based shortest path. We set the capacity of each

VNF-node to 1 Gbps as the default value.

B. Evaluation Results

We start with the Abilene dataset, where we set the cost

of a VNF-node to $100K and vary the processing capacity

between 100 Mbps and 1 Gbps. Also, we vary the total budget

between $100K and $900K , with an increment of $100K .

Fig. 4(a) shows the percentage of processed traffic for the

considered algorithms. We can see that both the RP-MCA and

RP-GCA algorithms perform almost the same as the optimal

solution and have up to 20% improvement over the VOL-

MCA algorithm. Note that as the budget increases, the total

processed traffic increases under all the considered algorithms.

However, while the proposed algorithms need a budget of

$500K to process around 95% of the flows, the VOL-MCA

algorithm actually requires around $800K to process the same

amount. While the total amount of processed traffic can be

improved by deploying more VNF-nodes, another option is

to consider provisioning more capacities at each VNF-node.

In other words, we can deploy fewer but more powerful VNF-

nodes, which can improve the percentage of the total processed

traffic as well. We can make this observation in Fig. 4(b),

where we vary the capacity of each VNF-node between 100
Mbps and 1 Gbps. The total processed traffic reaches around

92% and saturates at that point. This happens because the path

of some flows may not contain any of the VNF-nodes placed

by the algorithms we consider.

Furthermore, we evaluate the proposed algorithms on

datasets with a larger number of nodes and flows. We also

set the cost of each VNF-node to $100K and the processing

capacity to 1 Gbps. We start with the Cost266 dataset, which

consists of 37 nodes and 1332 flows. Since we have a

large number of flows, we select flows uniformly at random.

Specifically, we select 1000 flows and repeat each experiment

10 times to gain more statistical significance. We also vary

the budget between $100K and $2.4M with an increment

of $200K . Fig. 5 shows that the proposed algorithms still

exhibit superior performance compared to the VOL-MCA

algorithm and match the performance of the optimal solution.

An interesting observation is that for this specific instance,

we only need to deploy six VNF-nodes to process around 90%
of the traffic. This suggests that we may gradually transition

to the NFV paradigm with a lower total cost and consolidate

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 02,2021 at 18:23:33 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SALLAM AND JI: JOINT PLACEMENT AND ALLOCATION OF VNF NODES 11

Fig. 6. Evaluation on the Ta2 datasets.

the NFV functionalities at a small portion of nodes. The later

point of having a small number of VNF-nodes is advantageous

in terms of reducing the management burden, but that could

increase the risk of having a single point of failure. In our

future work, we will investigate how to adjust the proposed

algorithms to ensure resilience against hardware failures at

the VNF-nodes. Note that VNF-node capacities are not a

bottleneck because flow rates of the Cost266 dataset are

relatively small. Therefore, increasing the capacity of VNF-

nodes shows no impact on the total processed traffic.

Finally, we consider a denser topology Ta2, which consists

of 65 nodes and 1869 flows. Similarly, we select 1500 flows

uniformly at random and repeat each experiment 10 times.

We present the results in Fig. 6(a). The simulation results

show that both RP-MCA and VOL-MCA have a similar

performance, which is also close to the optimal. An interesting

observation is that all the considered algorithms tend to select

the same set of nodes, which results in a similar performance

of the RP-MCA and VOL-MCA as both of them use the same

capacity allocation algorithm. In addition, the GCA algorithm

performs worse than the MCA algorithm for this particular

instance, which results in a worst overall performance under

the RP-GCA algorithm. The maximum total processed traffic

reaches around 92% and saturates at that point. The reason is

that while all the nodes on the paths of the flows have been

selected, they do not have sufficient processing capacity to

process all the flows. In this case, selecting more other nodes

(due to an increased budget) does not help. This motivates

us to study the impact of increasing the VNF-node capacity

in Fig. 6(b). We consider a fixed budget of $2M and vary

the capacity of each node between 1 Gbps and 2.8 Gbps with

an increment of 200 Mbps. We can see that as the capacity

increases, the total processed traffic increases and can reach

around 100% when the capacity is more than 2 Gbps.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of deploying VNF-

nodes and allocating their capacities. We showed how to over-

come the non-submodularity of the problem by introducing a

novel relaxation method. By utilizing a decomposition of the

problem and a novel network flow reformulation, we were able

to prove submodularity of the relaxed placement subproblem

and develop efficient algorithms with constant approximation

ratios for the original problem. Through extensive evaluations

based on trace-driven simulations, we showed that the pro-

posed algorithms have a performance close to the optimal

solution and better than a heuristic algorithm.

Our work also raises several interesting questions that are

worth investigating as future work. First, we would like to

consider the problem of joint placement, routing, and capacity

allocation and investigate the impact of dynamic routing on

the objective function. Despite the expected additional chal-

lenges due to routing, especially with integral resources and

service function chaining as shown in [9], we plan to further

investigate whether our proposed framework can be extended

to more general settings with joint placement and routing.

In this regard, recent work in [32] provides multi-criteria

approximation algorithms for minimum cost joint placement

and integral routing of service function chains under storage,

computation, and communication capacity constraints. Under-

standing if our framework can be used to provide efficient

approximations in similar settings with budget constraints is

of interest for future work. Second, while we have assumed

that each VNF-node has a fixed capacity in this paper, it is

worth studying the optimization of the VNF-node capacity.

A straightforward extension is to consider the setting where

each VNF-node hosts multiple servers, each of which has a

different cost and a different processing capacity. Our proposed

framework can be modified to accommodate the extension:

we consider multiple replications of each node, called virtual

nodes, each of which corresponds to a server with its own cost

and processing capacity. The path of each flow now needs to

be updated to include the corresponding virtual nodes as well.

We further elaborate on the proposed extension and present

some additional simulation results in our online technical

report [33].

APPENDIX A

PROOF OF THEOREM 1

Proof: We start by proving that the allocation subprob-

lem (P2) is NP-hard. The proof is by a reduction from a

special case of the single knapsack (SK) problem, where for

each item the profit and the weight are identical. In the SK

problem, we have a knapsack k and a set of items I. The

knapsack has a capacity W , and each item i ∈ I has a weight

of wi, which is the same as the profit. The objective is to find

a subset of items I 0 ⊆ I that has the maximum total profit and

can be packed in the knapsack without exceeding its capacity.

Given an arbitrary instance A = (k, I) of the SK problem,

we construct an instance D = (V ,F) of the allocation problem

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 02,2021 at 18:23:33 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

(P2). The set V has only one node v1 with a capacity that is

equal to the capacity of the knapsack k. Each flow f ∈ F
corresponds to an item in i ∈ I. A flow f has a traffic rate

λf that is equal to the corresponding item weight wi. Node

v1 is the only VNF-node, and all the flows traverse node v1.

If we can solve the instance D of problem (P2), the subset of

flows assigned to node v1, which has the maximum total traffic

rate, can be mapped to the corresponding items and solve the

instance A of SK problem. Similarly, a solution for instance A
of the SK problem can be mapped to a solution for instance D
by simply mapping the selected items I 0 to the corresponding

flows that solve the instance D of problem (P2).

Next, we prove the NP-hardness of the placement subprob-

lem (P3). The proof is by a reduction from the budgeted

maximum coverage (BMC) problem. In the BMC problem,

we have a set of points M and a set of candidate locations S.

Each point m ∈ M has a weight of wm. Each location s ∈ S
has a cost of bs and covers a subset of points Ms ⊆ M.

The objective is to select a subset of locations S0 ⊆ S
such that the total weight of the points covered by at least

one location in S0 is maximized while the total cost of the

selected locations does not exceed a given budget B. Given an

arbitrary instance A = (M,S, B) of BMC, we will construct

an instance D = (F ,V , B) of problem (P3) as follows. Each

flow f ∈ F corresponds to a point m ∈ M; the rate of a flow

is equal to the weight of the corresponding point. Each node

v ∈ V corresponds to a location s ∈ S; the cost of a node is

equal to that of the corresponding location. The path of a flow

consists of the nodes corresponding to the locations that cover

the point corresponding to this flow. The deployment budget

of the instance D is equal to the budget of the instance A.

All the nodes have an infinite capacity. We will show that a

solution for the instance D exists if and only if a solution for

the instance A exists. If we can solve the instance A of BMC,

the subset of locations S0 ⊆ S that solves A of BMC can be

mapped to the corresponding nodes in V to become VNF-

nodes and solves the instance D of problem (P2). Similarly,

if we solve the instance D, then the obtained set of VNF-nodes

can be mapped to the corresponding subset of locations that

solve the instance A of BMC. �

APPENDIX B

PROOF OF LEMMA 1

Proof: Recall that R3(U) = maxλ∈ΛU RU
2 (λ), where ΛU

is the set of assignments satisfying the capacity constraint

(2) and the flow rate constraint (7). It suffices to show the

following:

(A) for any assignment λ ∈ ΛU , one can construct an s-V
flow ϕ ∈ F such that RU

2 (λ) = Φ(N ,U) − Φ(U ,N);
(B) for any s-V flow ϕ ∈ F , one can construct an assign-

ment λ ∈ ΛU such that RU
2 (λ) = Φ(N ,U)−Φ(U ,N).

Note that Part (A) implies maxλ∈ΛU RU
2 (λ) ≤

maxϕ∈F(Φ(N ,U) − Φ(U ,N)) and Part (B) implies

maxλ∈ΛU RU
2 (λ) ≥ maxϕ∈F(Φ(N ,U) − Φ(U ,N)), which

lead to Eq. (9).

We first show Part (A). For any assignment λ ∈ ΛU ,

we construct a function ϕ ∈ F in the following manner:

(i) set ϕ(s, f) =
∑

v∈Vf
λv

f for each edge (s, f) ∈ L1;

(ii) set ϕ(f, v0) = λv
f for each edge (f, v0) ∈ L2;

(iii) set ϕ(v0, v) =
∑

f∈F λv
f for each edge(v0, v) ∈ L3.

Note that λv
f = 0 for all v /∈ U . It is easy to verify that

constraints (2) and (7) imply that the constructed function ϕ
is an s-V flow. Further, the following is also satisfied:

RU
2 (λ)

(a)
=

∑

f∈F

∑

v∈Vf∩U

λv
f

(b)
=

∑

f∈F

∑

v∈Vf

λv
f

(c)
=

∑

f∈F

ϕ(s, f)

(d)
=

∑

f∈NF

ϕ(s, f)

(e)
= Φ({s},N) − Φ(N , {s})
(f)
= Φ(N ,NV) − Φ(NV ,N)
(g)
= Φ(N ,U) − Φ(U ,N), (13)

where (a) is from the definition of RU
2 (λ), (b) is from λv

f =
0 for all v /∈ U , (c) is from (i), (d) is from the one-to-one

mapping between F and NF , (e) is from the definition of

Φ({s},N) and Φ(N , {s}) = 0, (f) holds because the net-flow

at the source s plus the net-flow at the sinks is equal to zero,

and (g) holds because no flow goes to the sinks in NV \ U .

We now show Part (B). For any s-V flow ϕ ∈ F , we first

obtain another s-V flow ϕ0 ∈ F by deleting all the flow

going to the sinks in NV \ U . Note that this procedure does

not change the net-flow at the sinks in U , i.e., Φ0(N ,U) −
Φ0(U ,N) = Φ(N ,U) − Φ(U ,N), where Φ0 corresponds to

ϕ0. Then, we construct an assignment λ ∈ ΛU by simply

setting λv
f = ϕ0(f, v0) for every f ∈ F and every v ∈

U . It is easy to verify that the definition of the s-V flow

implies that constraints (2) and (7) are satisfied for assignment

λ. Finally, following the same steps in Eq. (13), we can

show RU
2 (λ) = Φ0(N ,U) − Φ0(U ,N), and thus, RU

2 (λ) =
Φ(N ,U) − Φ(U ,N).

Combining Parts (A) and (B) completes the proof. �

APPENDIX C

PROOF OF LEMMA 4

Proof: In Phase I, the algorithm repeatedly alternates

between Step 1 and Step 2. Step 1 will be repeated m times,

where m ≤ |V |. In each repetition of Step 1, the capacity

allocation of a given VNF-node v is modified, and the value

of OPT (Q2,U) is reduced by at most 1

2
rv . In Step 2,

the perturbation does not change the value of the total assigned

traffic. Therefore, the following is satisfied after Phase I:

πU
MCA ≥ OPT (Q2,U) −

1

2

m
∑

i=1

rvi

≥ OPT (Q2,U) −
1

2
OPT (Q2,U)

=
1

2
OPT (Q2,U). (14)

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 02,2021 at 18:23:33 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SALLAM AND JI: JOINT PLACEMENT AND ALLOCATION OF VNF NODES 13

That is, the total traffic assigned to VNF-nodes U after Phase

I is πU
MCA ≥ 1

2
OPT (Q2,U). In Phase II, the total assigned

traffic will either increase or remain the same in the worst

case. Therefore, the result of the Lemma follows. �

APPENDIX D

PROOF OF LEMMA 5

Proof: Let F 0 ⊆ FU denote the set of unassigned flows

after the end of algorithm 3 and U 0 = ∪f∈F ′
U
Uf be the set of

candidate VNF-nodes for the unassigned flows F 0. We remind

the reader that we use cu (resp. cUi
) to denote the capacity

of VNF-node u (resp. VNF-nodes Ui). Similarly, we use ru

(resp. rUi
) to denote the total traffic assigned to VNF-node u

(resp. VNF-nodes Ui). In Lemma 7, we start by showing that

the total assigned traffic to any VNF-node in U 0 is at least

half of its total capacity, i.e., ru ≥ 1

2
cu for any VNF-node u

in U 0, and use that to prove the 1/3 approximation ratio of

Lemma 5.

Lemma 7: After Phase I of the GCA algorithm, it holds that

for any VNF-node u in U 0, ru ≥ 1

2
cu.

Proof: We will prove this by contradiction. Let say, for

the sake of contradiction, that there is an unassigned flow f
for which there is a VNF-node u in Uf such that ru < 1

2
cu.

This means the flows assigned to VNF-node u have traffic rate

less than 1

2
cu. Furthermore, since flow f was not assigned to

VNF-node u, its traffic rate has to be greater than half the

capacity of node u, i.e., λf > 1

2
cu. However, that contradicts

our algorithm where flows with the highest traffic rate are

considered first, and thus flow f would be assigned to VNF-

node u instead of some of the already assigned flows. �

Next, the proof of Lemma 5 proceeds as follows. The

maximum traffic that can be assigned by any algorithm to

VNF-nodes U has the following upper bound:

OPT (Q2,U)
(a)

≤ πU
GCA + cU ′

(b)

≤ πU
GCA + 2rU ′

(c)

≤ πU
GCA + 2πU

GCA

= 3πU
GCA, (15)

where (a) holds because the maximum traffic that can be

assigned by an optimal solution is at most the sum of the

traffic of the assigned flows, which is πU
GCA, and the maximum

possible traffic that can be assigned for the unassigned flows,

which is cU ′ ; (b) holds from Lemma 7 because the total traffic

assigned to VNF-nodes in U 0 by Algorithm 3 is at least half

of their total capacity, i.e., rU ′ ≥ 1

2
cU ′ ; (c) holds because rU ′

is upper bounded by πU
GCA. This completes the proof. �

APPENDIX E

PROOF OF LEMMA 6

Proof: We first present Lemma 8, but before that we repeat

Assumption 1 here to ease the proof navigation.

Assumption 1: Assume that all the VNF-nodes in U have

the same capacity and that every flow f in FU traverses at

least two VNF-nodes in U , i.e., |Vf ∩ U| ≥ 2.

Lemma 8: If Assumption 1 holds, then for any unassigned

flow f ∈ F 0, it holds that for any pair of VNF-nodes (u, v)
in Uf , r{u,v} ≥ 2

3
c{u,v}.

Proof: Since the capacity of all VNF-nodes is the same by

Assumption 1, we will use the symbol c to denote the capacity

of any VNF-node. We prove this lemma by contradiction.

Assume that there is an unassigned flow f for which there is

a pair of VNF-nodes (u, v) in Uf such that r{u,v} < 2

3
c{u,v}.

In this case, the rate of flow f has to be greater than 2

3
c;

otherwise, it would fit on the combined remaining capacities

of VNF-nodes u and v and would be assigned in Phase II of

the algorithm. However, this also means that the flows assigned

to VNF-nodes u and v have a rate that is less than 2

3
c, which

contradicts our algorithm where flows with larger traffic rate

will be considered first, and if possible get assigned. �

The rest of the proof of Lemma 6 follows the same argument

as in the proof of Lemma 5 with the difference that we have

rU ′ ≥ 2

3
cU ′ by Lemma 8. The other parts of the proof are the

same. That is,

OPT (Q2,U) ≤ πU
GCA + cU ′

≤ πU
GCA +

3

2
rU ′

≤ πU
GCA +

3

2
πU

GCA

≤
5

2
πU

GCA. (16)

This completes the proof. �

APPENDIX F

COMPLEXITY ANALYSIS

In this section, we analyze the complexity of the algorithms

presented in Table I. Each of the proposed algorithms has

two sequential components: placement and capacity alloca-

tion. We analyze the complexity of each component in the

following.

Complexity of the Placement Algorithms. We have two

placement algorithms: the SG algorithm and the EG algorithm.

For the SG algorithm, in each iteration, we select a new

node, which requires O(V) functions evaluations. Since we

can select at most k nodes (due to the budget limit), we need

O(kV) function evaluations in total. For the EG algorithm,

we have two phases: in Phase I, we need O(V 2) function

evaluations to evaluate all subsets of size one or two; in Phase

II, we need O(V 5) function evaluations to evaluate all subsets

of size three and augment each subset in a greedy manner.

Hence, the overall complexity of the EG algorithm is O(V 5).
Complexity of the Capacity Allocation Algorithms. We

have two capacity allocation algorithms: the MCA algorithm

and the GCA algorithm. For the MCA algorithm, we have

two phases. In Phase I, we start by solving a maximum

flow problem for a graph with O(F + V) vertices, which

has a complexity of O(F 3) if solved using the Push-relabel

algorithm [25]. Then, the algorithm proceeds by repeatedly

alternating between implementing Step 1 and Step 2. Step 1 is

executed for at most V times; each execution of Step 1 has a

complexity of O(F). Therefore, the overall complexity of Step

1 is O(FV). For Step 2, we remove at least one edge at a time

using the edge perturbation. Since the total number of edges

is at most O(FV), each execution of Step 2 has a complexity

of O(FV). Hence, the complexity of repeating Step 2 for

at most O(FV) edges is O(F 2V 2). The overall complexity

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 02,2021 at 18:23:33 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

of Phase I is O(F 2V 2) as Step 2 dominates. In Phase II,

for each of the (at most F) unassigned flows, the algorithm

tries to assign it to a subset of nodes in V , so Phase II has

a complexity of O(FV). The overall complexity of the MCA

algorithm is O(F 2V 2) as Phase I dominates. For the GCA

algorithm, in Phase I, the sorting operation has a complexity

of O(F log F), and assigning each flow to only one VNF-

node has a complexity of O(FV). Phase II is the same as that

of the MCA algorithm, which has a complexity of O(FV).
Therefore, the complexity of the GCA algorithm is O(FV).

REFERENCES

[1] M. Chiosi et al., “Network functions virtualisation: An introduction, ben-
efits, enablers, challenges and call for action,” in Proc. SDN OpenFlow

World Congress, vol. 48, 2012, pp. 1–16.
[2] K. Poularakis, G. Iosifidis, G. Smaragdakis, and L. Tassiulas, “One step

at a time: Optimizing SDN upgrades in ISP networks,” in Proc. IEEE

Conf. Comput. Commun. (INFOCOM), May 2017, pp. 1–9.
[3] Amdocs, “Bringing NFV to life-technological and operational challenges

in implementing NFV,” White Paper 1, 2016.
[4] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably efficient

algorithms for joint placement and allocation of virtual network func-
tions,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), May 2017,
pp. 1–9.

[5] T. Lukovszki, M. Rost, and S. Schmid, “Approximate and incremental
network function placement,” J. Parallel Distrib. Comput., vol. 120,
pp. 159–169, Oct. 2018.

[6] D. K. Hong, Y. Ma, S. Banerjee, and Z. M. Mao, “Incremental
deployment of SDN in hybrid enterprise and ISP networks,” in Proc.

Symp. SDN Res., Mar. 2016, pp. 1–7.
[7] M. Shi, X. Lin, S. Fahmy, and D.-H. Shin, “Competitive online convex

optimization with switching costs and ramp constraints,” in Proc. IEEE

Conf. Comput. Commun. (INFOCOM), Apr. 2018, pp. 1835–1843.
[8] H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch, “Optimal

dynamic cloud network control,” IEEE/ACM Trans. Netw., vol. 26, no. 5,
pp. 2118–2131, Oct. 2018.

[9] H. Feng, J. Llorca, A. M. Tulino, D. Raz, and A. F. Molisch, “Approx-
imation algorithms for the NFV service distribution problem,” in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), May 2017, pp. 1–9.

[10] Y. Chen, J. Wu, and B. Ji, “Virtual network function deployment in
tree-structured networks,” in Proc. IEEE 26th Int. Conf. Netw. Protocols
(ICNP), Sep. 2018, pp. 132–142.

[11] A. Tomassilli, F. Giroire, N. Huin, and S. Perennes, “Provably efficient
algorithms for placement of service function chains with ordering
constraints,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Apr. 2018, pp. 774–782.

[12] T. Lukovszki and S. Schmid, “Online admission control and embed-
ding of service chains,” in Structural Information and Communication

Complexity. Cham, Switzerland: Springer, 2015, pp. 104–118.
[13] G. Sallam, G. R. Gupta, B. Li, and B. Ji, “Shortest path and maximum

flow problems under service function chaining constraints,” in Proc.

IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2018, pp. 2132–2140.
[14] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s hard

to share: Joint service placement and request scheduling in edge clouds
with sharable and non-sharable resources,” in Proc. IEEE 38th Int. Conf.

Distrib. Comput. Syst. (ICDCS), Jul. 2018, pp. 365–375.
[15] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network

functions: Breaking the tight coupling of state and processing,” in
Proc. 14th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2017,
pp. 97–112.

[16] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Service placement and request routing in MEC networks with storage,
computation, and communication constraints,” IEEE/ACM Trans. Netw.,
vol. 28, no. 3, pp. 1047–1060, Jun. 2020.

[17] M. Rost and S. Schmid, “Virtual network embedding approximations:
Leveraging randomized rounding,” IEEE/ACM Trans. Netw., vol. 27,
no. 5, pp. 2071–2084, Oct. 2019.

[18] B. Nemeth, Y.-A. Pignolet, M. Rost, S. Schmid, and B. Vass, “Cost-
efficient embedding of virtual networks with and without routing flexi-
bility,” in Proc. IFIP Netw. Conf. (Netw.), Jun. 2020, pp. 476–484.

[19] G. L. Nemhauser and L. A. Wolsey, “Maximizing submodular set
functions: Formulations and analysis of algorithms,” in North-Holland

Mathematics Studies. Amsterdam, The Netherlands: Elsevier, 1981,
vol. 59, pp. 279–301.

[20] S. Khuller, A. Moss, and J. Naor, “The budgeted maximum coverage
problem,” Inf. Process. Lett., vol. 70, no. 1, pp. 39–45, Apr. 1999.

[21] A. Das and D. Kempe, “Submodular meets spectral: Greedy
algorithms for subset selection, sparse approximation and
dictionary selection,” 2011, arXiv:1102.3975. [Online]. Available:
http://arxiv.org/abs/1102.3975

[22] L. Chen, M. Feldman, and A. Karbasi, “Weakly submodu-
lar maximization beyond cardinality constraints: Does randomiza-
tion help greedy?” 2017, arXiv:1707.04347. [Online]. Available:
http://arxiv.org/abs/1707.04347

[23] M. Feldman and R. Izsak, “Constrained monotone function maximiza-
tion and the supermodular degree,” 2014, arXiv:1407.6328. [Online].
Available: http://arxiv.org/abs/1407.6328

[24] G. Sallam, Z. Zheng, and B. Ji, “Placement and allocation of virtual
network functions: Multi-dimensional case,” in Proc. IEEE 27th Int.
Conf. Netw. Protocols (ICNP), Oct. 2019, pp. 1–11.

[25] A. V. Goldberg and R. E. Tarjan, “Efficient maximum flow algorithms,”
Commun. ACM, vol. 57, no. 8, pp. 82–89, Aug. 2014.

[26] F. Bach, “Learning with submodular functions: A convex optimization
perspective,” Found. Trends Mach. Learn., vol. 6, nos. 2–3, pp. 145–373,
2013.

[27] M. Dawande et al., “Approximation algorithms for the multiple knapsack
problem with assignment restrictions,” J. Combinat. Optim., vol. 4, no. 2,
pp. 171–186, 2000.

[28] W. Li, “Nearly linear time deterministic algorithms for submod-
ular maximization under knapsack constraint and beyond,” 2018,
arXiv:1804.08178. [Online]. Available: http://arxiv.org/abs/1804.08178

[29] Gurobi. Accessed: Feb. 14, 2021. [Online]. Available: https://www.
gurobi.com/

[30] Abilene Dataset. Accessed: Feb. 14, 2021. [Online]. Available:
https://www.cs.utexas.edu/~yzhang/research/AbileneTM/

[31] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “SNDlib
1.0—Survivable network design library,” Netw., Int. J., vol. 55, no. 3,
pp. 276–286, 2010.

[32] K. Poularakis, J. Llorca, A. M. Tulino, and L. Tassiulas, “Approximation
algorithms for data-intensive service chain embedding,” in Proc. 21st
Int. Symp. Theory, Algorithmic Found., Protocol Design Mobile Netw.

Mobile Comput., Oct. 2020, pp. 131–140.
[33] G. Sallam and B. Ji, “Joint placement and allocation of VNF nodes with

budget and capacity constraints,” 2019, arXiv:1901.03931. [Online].
Available: http://arxiv.org/abs/1901.03931

Gamal Sallam (Student Member, IEEE) received
the B.Sc. degree in information technology and
systems from Cairo University in 2011, the M.Sc.
degree in computer networks from the King Fahd
University of Petroleum and Minerals in 2016, and
the Ph.D. degree in computer science from Temple
University in 2020. His current research interest
includes resource allocation in network function
virtualization. He received the Outstanding Research
Assistant Award from the Department of Computer
and Information Sciences and from the College of

Science and Technology, Temple University, in 2018 and 2019, respectively.

Bo Ji (Senior Member, IEEE) received the B.E. and
M.E. degrees in information science and electronic
engineering from Zhejiang University, Hangzhou,
China, in 2004 and 2006, respectively, and the Ph.D.
degree in electrical and computer engineering from
The Ohio State University, Columbus, OH, USA,
in 2012. He is currently an Associate Professor with
the Department of Computer Science, Virginia Tech,
Blacksburg, VA, USA. Prior to joining Virginia
Tech, he was an Associate/Assistant Professor with
the Department of Computer and Information Sci-

ences, Temple University, from July 2014 to July 2020. He was also a Senior
Member of the Technical Staff with AT&T Labs, San Ramon, CA, USA,
from January 2013 to June 2014. His research interests include modeling,
analysis, control, and optimization of computer and network systems, such
as wired and wireless networks, large-scale IoT systems, high performance
computing systems and data centers, and cyber-physical systems. He is a
member of the ACM. He received the National Science Foundation (NSF)
CAREER Award in 2017 and the NSF CISE Research Initiation Initiative
(CRII) Award in 2017. He was also a recipient of the IEEE INFOCOM
2019 Best Paper Award. He currently serves on the Editorial Board for
the IEEE/ACM TRANSACTIONS ON NETWORKING, IEEE TRANSACTIONS

ON NETWORK SCIENCE AND ENGINEERING, IEEE INTERNET OF THINGS

JOURNAL, and IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 02,2021 at 18:23:33 UTC from IEEE Xplore. Restrictions apply.

