JOURNAL OF COMMUNICATIONS AND NETWORKS

Anti-Aging Scheduling in Single-Server Queues:
A Systematic and Comparative Study

Zhongdong Liu, Liang Huang, Bin Li, and Bo Ji

Abstract: The Age-of-Information (Aol) is a new performance met-
ric recently proposed for measuring the freshness of information in
information-update systems. In this work, we conduct a systematic
and comparative study to investigate the impact of scheduling poli-
cies on the Aol performance in single-server queues and provide
useful guidelines for the design of Aol-efficient scheduling poli-
cies. Specifically, we first perform extensive simulations to demon-
strate that the update-size information can be leveraged for achiev-
ing a substantially improved Aol compared to non-size-based (or
arrival-time-based) policies. Then, by utilizing both the update-size
and arrival-time information, we propose three Aol-based policies.
Observing improved Aol performance of policies that allow ser-
vice preemption and that prioritize informative updates, we fur-
ther propose preemptive, informative, Aol-based scheduling poli-
cies. Our simulation results show that such policies empirically
achieve the best Aol performance among all the considered poli-
cies. However, compared to the best delay-efficient policies (such as
Shortest-Remaining-Processing-Time (SRPT)), the Aol improve-
ment is rather marginal in the settings with exogenous arrivals.
Interestingly, we also prove sample-path equivalence between some
size-based policies and Aol-based policies. This provides an intu-
itive explanation for why some size-based policies (such as SRPT)
achieve a very good Aol performance.

Index Terms: Age-of-Information, scheduling policies, update-size
information, G/G/1 Queues

I. INTRODUCTION

ECENTLY, the study of information freshness has received
increasing attentions, especially for time-sensitive applica-
tions that require real-time information/status updates, such as
road congestion alerts, stock quotes, and weather forecast. In
order to measure the freshness of information, a new metric,
called the Age-of-Information (Aol) is proposed. The Aol is de-
fined as the time elapsed since the generation of the freshest up-
date among those that have been received by the destination [2].
Prior studies reveal that the Aol depends on both the inter-arrival
time and the delay of the updates. Due to the dependency be-
tween the inter-arrival time and the delay, this new Aol metric
exhibits very different characteristics than the traditional delay
metric and is generally much harder to analyze (see, e.g., [2]).
Although it is well-known that scheduling policies play an

This work was supported in part by the NSF under Grants CCF-1657162,
CNS-1651947, and CNS-1717108. A preliminary version of this work was pre-
sented at IEEE INFOCOM 2020 Age of Information Workshop [1].

Zhongdong Liu (zhongdong@vt.edu) and Bo Ji (boji@vt.edu) are with the
Department of Computer Science, Virginia Tech, Blacksburg, VA.

Liang Huang (lianghuang @zjut.edu.cn) is with the College of Computer Sci-
ence and Technology, Zhejiang University of Technology, Hangzhou, China.

Bin Li (binli@uri.edu) is with the Department of Electrical, Computer and
Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island.
Bo Ji is the corresponding author.

Preemptive, informative
Literature

Guideline 3, 5

Preemptive, informative, Aol-based
Section VI
Guideline 3+4+5

Arrival-time-based

Size-based .
(Section IV) Ll'tera.ture)
Guideline 1 Aol-based Guideline 2

(Section V)

Guideline 4

Fig. 1: Our position in the design space of Aol-efficient schedul-
ing policies for a G/G/1 queue

important role in reducing the delay in single-sever queues, it
remains largely unknown how exactly scheduling policies im-
pact the Aol performance. To that end, we aim to holistically
study the impact of various aspects of scheduling policies on
the Aol performance in single-server queues and provide useful
guidelines for the design of scheduling policies that can achieve
a small Aol.

While much research effort has already been exerted to the
design and analysis of scheduling policies aiming to reduce
the Aol, almost all of these policies are only based on the ar-
rival time of updates, such as First-Come-First-Served (FCFS)
and Last-Come-First-Served (LCFS), assuming that the update-
size information is unavailable. Here, the size of an update is
the amount of time required to serve the update if there were
no other updates around. In some applications, such as smart
grid and traffic monitoring, the update-size information can be
obtained or fairly well estimated [3]. It has been shown that
scheduling policies that leverage the size information can sub-
stantially reduce the delay, especially when the system load is
high or when the size variability is large [4]. This motivates
us to investigate the Aol performance of size-based policies in
a G/G/1 queue. Note that the update-size information is “or-
thogonal" to the arrival-time information, both of which could
significantly impact the Aol performance. Therefore, it is quite
natural to further consider Aol-based policies that use both the
update-size and arrival-time information of updates.

In addition, prior work has revealed that scheduling policies
that allow service preemption and that prioritize informative up-
dates (also called effective updates, which are those that lead to a
reduced Aol once delivered; see Section VI.A for a formal def-
inition) yield a good Aol performance [S]-[7]. Intuitively, pre-
emption prevents fresh updates from being blocked by a large
and/or stale update in service; informative policies discard stale
updates, which do not bring new information but may block

1229-2370/18/$10.00 © 2018 KICS

JOURNAL OF COMMUNICATIONS AND NETWORKS

’ Guideline \ Summary \ Representative policies
1 Prioritizing small updates SJF, SJF_P, SRPT
2 Prioritizing recent updates LCFS, LCFS_P
3 Allowing service preemption PS, LCFS_P, SJF_P, SRPT
4 Aol-based designs ADE, ADS, ADM
5 Prioritizing informative updates | Informative version of the above policies

Table 1: Guidelines for the design of Aol-efficient scheduling policies for a G/G/1 queue

fresh updates. To that end, we also consider Aol-based schedul-
ing designs that both allow service preemption and prioritize in-
formative updates.

In Fig. 1, we position our work in the literature by summa-
rizing various design aspects of scheduling policies for a G/G/1
queue. Existing work mostly explores the design based on the
arrival-time information along with considering service preemp-
tion and informative updates. We point out that the size-based
design is an orthogonal dimension of great importance, which
somehow has not received sufficient attentions yet. Unsurpris-
ingly, designing Aol-efficient policies requires the consideration
of all these dimensions. In Table 1, we summarize several use-
ful guidelines for the design of Aol-efficient policies, which are
also labeled in Fig.1. To the best of our knowledge, this is the
first work that conducts a systematic and comparative study to
investigate the design of Aol-efficient scheduling policies for a
G/G/1 queue. In the following, we summarize our key contribu-
tions along with an explanation of Fig. 1 and Table 1.

First, we investigate the Aol performance of size-based
scheduling policies (i.e., the green arrow in Fig. 1), which is
an orthogonal approach to the arrival-time-based design stud-
ied in most existing work. We conduct extensive simulations to
show that size-based policies that prioritize small updates signif-
icantly improve Aol performance. We also explain interesting
observations from the simulation results and summarize useful
guidelines (i.e., Guidelines 1, 2, and 3 in Table 1) for the design
of Aol-efficient policies.

Second, leveraging both the update-size and arrival-time in-
formation, we introduce Guideline 4 and propose Aol-based
scheduling policies (i.e., the blue arrow in Fig. 1). These Aol-
based policies attempt to optimize the Aol at a specific future
time instant from three different perspectives: the Aol-Drop-
Earliest (ADE) policy, which makes the Aol drop the earliest;
the Aol-Drop-to-Smallest (ADS) policy, which makes the Aol
drop to the smallest; the Aol-Drop-Most (ADM) policy, which
makes the Aol drop the most. The simulation results show that
such Aol-based policies indeed have a good Aol performance.

Third, we observe that informative policies can signifi-
cantly improve the Aol performance compared to their non-
informative counterparts, which leads to Guideline 5. Integrat-
ing all the guidelines, we propose preemptive, informative, Aol-
based policies (i.e., the red arrow in Fig. 1). The simulation
results show that such policies empirically achieve the best Aol
performance among all the considered policies.

Finally, we prove sample-path equivalence between some
size-based policies and Aol-based policies. These results pro-
vide an intuitive explanation for why some size-based policies,
such as Shortest-Remaining-Processing-Time (SRPT), achieve

a very good Aol performance.

To summarize, our study reveals that among various aspects
of scheduling policies we investigated, prioritizing small up-
dates, allowing service preemption, and prioritizing informa-
tive updates play the most important role in the design of Aol-
efficient scheduling policies. However, compared to the best
delay-efficient policies (such as SRPT), the Aol improvement
of the preemptive, informative, and Aol-based policies is rather
marginal in the settings with exogenous arrivals. Moreover,
when the Aol requirement is not stringent or the update-size
information is not available, some simple delay-efficient poli-
cies (such as LCFS with preemption (LCFS_P)) are also good
candidates for Aol-efficient policies.

The rest of this paper is organized as follows. We first dis-
cuss related work in Section II. Then, we describe our system
model in Section III. In Section IV, we evaluate the Aol per-
formance of size-based scheduling policies. We further propose
Aol-based scheduling policies in Section V. In addition, we
evaluate the Aol performance of preemptive, informative, Aol-
based policies in Section VI. Finally, we make concluding re-
marks in Section VII.

II. RELATED WORK

The traditional queueing literature on single-server queues is
largely focused on the delay analysis. In [8], the authors prove
that all non-preemptive scheduling policies that do not make use
of job size information have the same distribution of the num-
ber of jobs in the system. The work of [9], [10] proves that
for a work-conserving queue, the SRPT policy minimizes the
number of jobs in the system at any point and is therefore delay-
optimal. The work of [11] derives a formula of the average delay
for several common scheduling polices (which will be discussed
in Section IV).

On the other hand, although the Aol research is still in a
nascent stage, it has already attracted a lot of interests (see [12],
[13] for a survey). Here we only discuss the most relevant work,
which is focused on the Aol-oriented queueing analysis. Much
of existing work considers scheduling policies that are based on
the arrival time (such as FCFS and LCFS). The Aol is intro-
duced in [2], where the authors study the average Aol in the
M/M/1, M/D/1, and D/M/1 queues under the FCFS policy. In
[14], the Aol performance of the FCFS policy in the M/M/1/1
and M/M/1/2 queues is studied, where new arrivals are discarded
if the buffer is full. In [15], the authors study the average Aol
performance of a multi-source FCFS M/G/1 queue. They derive
the exact expression and three approximations of the average
Aol for a special case of an M/M/1 queue and a general case
of an M/G/1 queue, respectively. The average Aol of the LCFS

LIU et al.: ANTI-AGING SCHEDULING IN G/G/1 QUEUES: A SYSTEMATIC AND COMPARATIVE STUDY 3

policy in the M/M/1 queue is also discussed in [14].

There has been some work that aims to reduce the Aol by
making use of service preemption. In [16], the average Aol of
LCEFS in the M/M/1 queue with and without service preemp-
tion is analyzed. The work of [17] is quite similar to [16], but it
considers the average Aol in the M/M/2 queue. In [18], the aver-
age Aol for the M/G/1/1 preemptive system with a multi-stream
updates source is derived. The age-optimality of the preemptive
LCFS (LCFS_P) policy is proved in [5], where the service times
are exponentially distributed.

In addition to taking advantage of service preemption, some
of the prior studies also consider the strategy of prioritizing in-
formative updates for reducing the Aol. The work of [6], [7]
reveals that the Aol performance can be improved by prioritiz-
ing informative updates and discarding non-informative policies
when making scheduling decisions. In [19], the authors consider
a G/G/1 queue with informative updates and derive the station-
ary distribution of the Aol, which is in terms of the stationary
distribution of the delay and the Peak Aol (PAol). With the Aol
distribution, one can analyze the mean or higher moments of
the Aol in GI/GI/1, M/GI/1, and GI/M/1 queues under several
scheduling policies (e.g., FCFS and LCFES).

Recent research effort has also been exerted to understanding
the relation between the Aol and the delay. In [20], the authors
analyze the tradeoff between the Aol and the delay in a single-
server M/G/1 system under a specific scheduling policy without
knowing the service time of each individual update. In [21], the
violation probability of the delay and the PAol is investigated
under an additive white Gaussian noise (AWGN) channel, but
the update size is assumed to be identical.

III. SYSTEM MODEL

In this section, we consider a single-server queueing system
and give the definitions of the Age-of-Information (Aol) and the
Peak Aol (PAol).

We model the information-update system as a G/G/1 queue
where a single source generates updates (which contain current
state of a measurement or observation of the source) with rate
A. The updates enter the queueing system immediately after
they are generated. Hence, the generation time is the same as
the arrival time. We use S to denote the size of an update (i.e.,
the amount of time required for the update to complete service),
which has a general distribution with mean E[S]= 1/u. The
system load is defined as p £ A/pu.

We use #; and #; to denote the time at which the i-th update
was generated at the source and the time at which it leaves the
server, respectively. The Aol at time ¢ is then defined as A(r) =
t — U(1), where U (t) £ max {ti) M t} is the generation time of
the freshest update among those that have been processed by the
server. An example of the Aol evolution under the FCFES policy
is shown in Fig. 2. Then, the average Aol can be defined as

1
A =lim -

A (7t)dr. €))]
t=oo t Jo

In general, the analysis of the average Aol is quite difficult
since it is determined by two dependent quantities: the inter-
arrival time and the delay of updates [2]. We define the inter-
arrival time between the i-th update and (i — 1)-th update as

A

Airq

Aol

t/.; Time

tiq

Fig. 2: An example of the Aol evolution under the FCFS policy

X; = t;—1;_; and define the delay of the i-th update as T; = #/ —t;.
Alternatively, the Peak Aol (PAol) is also proposed as an in-
formation freshness metric [6], which is defined as the maxi-
mum value of the Aol before it drops due to a newly delivered
fresh update. Let A; be the i-th PAol. From Fig. 2, we can see
A; = t/—t;_1. This can be rewritten as the sum of the inter-arrival
time between the i-th update and the previous update (i.e., X;)
and the delay of the i-th update (i.e., T;). Therefore, the PAol
of the i-th update can also be expressed as A; = X; + T, and its
expectation is E[A;] = E[X;] + E[T}].

IV. SIZE-BASED POLICIES

In this section, we investigate the Aol performance of sev-
eral common scheduling policies, including size-based policies
and non-size-based policies, via extensive simulations. Note
that these common scheduling policies may serve the non-
informative updates (which do not lead to a reduced Aol). This
is because in some applications, such as news and social net-
work, obsolete updates are still useful and need to be served [5].
In Section VI, we will discuss the case where obsolete updates
are discarded.

Following [4], we first give the definitions of several common
scheduling policies that can be divided into four types: depend-
ing on whether they are size-based or not, where the size-based
policies use the update-size information (which is available in
some applications, such as smart grid [3]) for making schedul-
ing decisions; depending on whether they are preemptive or not.
The definition of preemption is given below. In this paper, we
do not consider the cost of preemption.

Definition 1. A policy is preemptive if an update may be stopped
partway through its execution and then restarted at a later time
without losing intermediary work.

The first type consists of policies that are non-preemptive and
blind to the update size:
o First-Come-First-Served (FCFS): When the server frees up, it
chooses to serve the update that arrived first if any.
o Last-Come-First-Served (LCFS): When the server frees up, it
chooses to serve the update that arrived last if any.
o Random-Order-Service (RANDOM): When the server frees
up, it randomly chooses one update to serve if any.

The second type consists of policies that are non-preemptive
and make scheduling decisions based on the update size:
o Shortest-Job-First (SJF): When the server frees up, it chooses
to serve the update with the smallest size if any.

JOURNAL OF COMMUNICATIONS AND NETWORKS

12 : : : : : : : 12 P
---FCFS —PS \ --'FCFS —PS ---FCFS —PS R
10l RANDOM ——LCFS_P S TN RANDOM —LCFS_P 1 10} -~ RANDOM —LCFS_P| .~
-~ 'LCFs SRPT / v T LCPS SRPT --LCFS —SJF.P
- - .SJF —SJF P 2 Vv |- --SJF SJF_P - - SJF SRPT
S 8r ‘1 B 81 S 8r 3
< < E . e
(0] () -
g 6 cc’\'j7 6 ? 6 L i demZ - =
§ § 2 bid Lozg=ez7]
< 47 < 47 I 417 =====:==-‘
-‘\
2t 2t 2r T =
ok ; ; ; ; ; ; ; ; ok ; ; ; ; ; ; ; ; o)
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 2 3 4 5 6 7 8 9 10
System load p System load p Squared coefficient of variance c?
(a)Exponential: y =1 (b)Weibull: u = 1 and c?=10 (c)Weibull: ¢ = 1 and p= 0.7
Fig. 3: Comparisons of the average Aol performance under several common scheduling policies
12 12 ne—
\ ---FCFS —Ps ---FCFS —PS - FCFS —ps -
10\ RANDOM —LCFS_P I ol RANDOM —LCFS_P 10ll- - RANDOM —LCFs_P[
y |- -'LCFS SRPT ¢ |- -LCFS SRPT - - .LCFS —SJF P
- - 'SJF SJF_P — ==
_— s sl | 5 gl- = SJF SRPT
< < < ”
o o o Pl
g6 g6 S 6 -
g o s |, -
[[0 (o]
Z 4 z 4 z 4
2r 2F 2t — —
ok ; ; ; ; ; ; ; ; oL ; ; ; ; ; ; ; ; o
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 t 2 3 4 5 6 7 8 9 10

System load p

(a)Exponential: y = 1

System load p
(b)Weibull: 4 = 1 and C?= 10

Squared coefficient of variance c?

(c)Weibull: u = 1 and p= 0.7

Fig. 4: Comparisons of the average PAol performance under several common scheduling policies

The third type consists of policies that are preemptive and
blind to the update size:

o Processor-Sharing (PS): All the updates in the system are
served simultaneously and equally (i.e., each update receives an
equal fraction of the available service capacity).

o Preemptive Last-Come-First-Served (LCFS_P): This is the
preemptive version of the LCFS policy. Specifically, a preemp-
tion happens when there is a new update.

The fourth type consists of policies that are preemptive and
make scheduling decisions based on the update size:

o Preemptive Shortest-Job-First (SJF_P): This is the preemp-
tive version of the SJF policy. Specifically, a preemption hap-
pens when there is a new update that has the smallest size.

o Shortest-Remaining-Processing-Time (SRPT): When the server
frees up, it chooses to serve the update with the smallest remain-
ing size. In addition, a preemption happens only when there is a
new update whose size is smaller than the remaining size of the
update in service.

Previous work (see, e.g., [4, Section VII]) reveals that size-
based policies can greatly improve the delay performance. Due
to such results, we conjecture that size-based policies also
achieve a better Aol performance given that the Aol is domi-
nantly determined by the delay when the system load is high
or when the size variability is large [2]. As we mentioned ear-
lier, it is in general very difficult to obtain the exact expression
of the average Aol except for some special cases (e.g., FCFS
and LCFS) [2], [19]. Therefore, we attempt to investigate the

Aol performance of size-based policies through extensive simu-
lations.

In Figs. 3 and 4, we present the simulation results of the aver-
age Aol and PAol performance under the scheduling policies we
introduced above, respectively. There are three commonly used
methods to conduct the simulation: Independent Replications,
Batch Means, and Regeneration. Here, we use the Independent
Replications for the following reasons: (i) the replication means
are independent; (ii) it allows to start the individual replications
in different initial states such that various different sample paths
of the underlying stochastic process can be observed. Specifi-
cally, we conduct 50 simulation runs and take the average val-
ues. In each simulation run, we consider a total number of 10°
updates to ensure that the steady state is reached. All the random
numbers are generated using the default pseudorandom number
generator (i.e., the Mersenne Twister) in the Python standard li-
brary. Here, we assume that a single source generates updates
according to a Poisson process with rate A, and the update size
is independent and identically distributed (i.i.d.). In Fig. 3(a),
we assume that the update size follows an exponential distribu-
tion with mean 1/u = 1. In Figs. 3(b) and 3(c), we assume
that the update size follows a Weibull distribution! with mean
1/u = 1. We define the squared coefficient of variation of the
update size as C 2 £ Var(S) /E[S]?, i.e., the variance normalized

!"The Weibull distribution is a heavy-tailed distribution with pdf f(x;a,B) =
%(%)"‘le‘()‘/ﬁ)d for x > 0, where @ > 0 is the shape parameter and 8 > 0 is the
scale parameter.

LIU et al.: ANTI-AGING SCHEDULING IN G/G/1 QUEUES: A SYSTEMATIC AND COMPARATIVE STUDY 5

by the square of the mean [4]. Hence, a larger C?> means a larger
variability. In Fig. 3(b), we fix C? = 10 and change the value of
system load p, while in Fig. 3(c), we fix system load p = 0.7 and
change the value of C2. Note that throughout the paper, these
simulation settings are used as default settings unless otherwise
specified. In addition, the 95% confidence intervals of Figs. 3
and 4 are also provided in our online technical report [22], in
which we observe that the margin of error is only a very small
portion of the average (about 1%).

In the following, we will discuss key observations from the
simulation results and propose useful guidelines for the design
of Aol-efficient policies.

Observation 1. Size-based policies achieve a better average
Aol/PAol performance than non-size-based policies in both non-
preemptive and preemptive cases.

In Fig. 3, we can see that for the non-preemptive case, SJF
has a better average Aol performance than FCFS, RANDOM,
and LCFS in various settings. Similarly, for the preemptive case,
SJF_P and SRPT have a better average Aol performance than PS
and LCFS_P. Similar observations can be made for the average
PAolI performance in Fig. 4.

Observation 2. Under preemptive, size-based policies, the av-
erage Aol/PAol decreases as the system load increases.

In Figs. 3(a) and 3(b), we can see that under SJF, SJF_P, and
SRPT, the average Aol decreases as the system load p increases.
There are two reasons. First, when p increases, there will be
more updates with small size arriving to the queue. Therefore,
size-based policies that prioritize updates with small size lead to
more frequent Aol drops. Second, preemption operations pre-
vent fresh updates from being blocked by a large or stale update
in service. Similar observations can be made for the average
PAol performance in Figs. 4(a) and 4(b).

Observations 1 and 2 lead to the following guideline:

Guideline 1. When the update-size information is available,
one should prioritize updates with small size.

However, in certain application scenarios, the update-size in-
formation may not be available or is difficult to estimate. Hence,
the scheduling decisions have to be made without the update-
size information. In such scenarios, we make the following ob-
servations from Figs. 3 and 4.

Observation 3. LCFS and LCFS_P achieve the best average
Aol performance among non-preemptive, non-size-based poli-
cies and preemptive, non-size-based policies, respectively.

Observation 4. Under LCFS_P, the average Aol/PAol de-
creases as the system load increases.

Observations 3 and 4 have also been made in previous
work [5], [14], [23]. It is quite intuitive that when the update-
size information is unavailable, one should give a higher prior-
ity to more recent updates. This is because while all the updates
have the same expected service time, the most recent update ar-
rives the last and thus leads to the smallest Aol once delivered.
Therefore, Observations 3 and 4 lead to the following guideline:

Guideline 2. When the update-size information is unavailable,
one should prioritize recent updates.

A®) A

Aol

Ai+1A
C A

4 X
R

R WL .
¢t r_ Tim
Lit; Liyaliyr ¢
o
Lit1 tiy2

211
S

tisq ;4

Fig. 5: An example of the Aol/PAol evolution where the inter-
arrival time has a large variability

Note that Observations 2 and 4 also suggest that under pre-
emptive policies, the average Aol/PAol decreases as the system
load p increases. This is because preemptions prevent fresh up-
dates from being blocked by a large or stale update in service.
In addition, we have also observed the following nice properties
of preemptive policies.

Observation 5. Not only do preemptive policies achieve a bet-
ter average Aol/PAol performance than non-preemptive poli-
cies, but they are also less sensitive when the update-size vari-
ability changes, i.e., they are more robust.

In Figs. 3(a) and 3(b), we can see that preemptive policies
(e.g., LCFS_P, SJF_P, and SRPT) generally have a better av-
erage Aol performance than non-preemptive ones (e.g., FCES,
RANDOM, LCFS, and SJF), especially when the system load
is high. In Fig. 3(c), we can see that the advantage of pre-
emptive policies becomes larger as the update-size variability
(i.e., C?) increases. Moreover, the Aol performance of preemp-
tive policies is only very slightly impacted when the update-size
variability changes, while that of non-preemptive policies varies
significantly. Therefore, Observations 2, 4, and 5 lead to the
following guideline:

Guideline 3. Service preemption should be employed when it is
allowed.

Note that above observations not only hold for the M/G/1
queue, but also can be made for the G/G/1 queue. More sim-
ulation results for the G/G/1 queue (i.e., Figs. 16-23) can be
found in Appendix .A and our technical report [22]. In addi-
tion, we make the following interesting observations regarding
the average PAol and Aol in a G/G/1 queue.

Observation 6. The average PAol could be much smaller than
the average Aol when the interarrival time has a large variabil-

ity.

In Figs. 16(a) and 17(a), we can see that the average PAolI is
much smaller than the average Aol for all the common schedul-
ing policies we considered. This is due to the interarrival time
has a large variability. We present an example in Fig. 5 to il-
lustrate that this phenomenon comes from the large variability

of the interarrival time. We consider three updates: the i-th,
the (i + 1)-st and (i + 2)-nd updates, which are served in se-
quence during (¢/_,,;,,). Their interarrival times are as follows:
ti —ticy = 30, tiyy — t;, = 1, and t;4p — t;;; = 1; and their
system times are as follows: #; —#; = 1, | —t;y; = 1, and
ti,, —tix2 = 1. In addition, we also assume #_; —#; - = 1. There-
fore, the average Aol and the average PAol during (¢/_,,;,,) are

% ~ 15.09 and w ~ 11.67, respectively. In this
case, the average PAol is indeed smaller than the average Aol.

The importance of Observation 6 can be summarized as fol-
lows. First, in certain settings (e.g., where the interarrival
time has a large variability), the average Aol can actually be
higher than the average PAol. This observation is counterintu-
itive, given that the computation of the average PAol includes
the peak values of the Aol only. Second, given that the average
Aol and the average PAol exhibit different relationships in dif-
ferent settings, an Aol-efficient scheduling policy may not nec-
essarily achieve a desired PAol performance, and vice versa. In
other words, one must carefully study the design of Aol-efficient
scheduling policies with different goals in mind (i.e., minimiz-
ing the average Aol or the average PAol).

Observation 7. While the average Aol performance of several
non-preemptive policies (such as RANDOM, LCFS, and SJF) is
sensitive to the update-size variability, their average PAol per-
formance is not.

In Fig.4(c), we observe that while the average PAol perfor-
mance of FCFS is sensitive to the update-size variability, under
several non-preemptive policies (such as RANDOM, LCFS, and
SJF), the average PAol performance is much less sensitive. An
explanation for this observation is the following.

First, we explain why the average PAol under FCFS is still
sensitive to the update-size variability. Note that a key difference
between FCFS and other non-preemptive policies is that under
FCFS, every update leads to an Aol drop and thus corresponds
to an Aol peak®. When a large update is in service, it will block
all the following updates that are waiting in the queue, which
results in a large delay for all such updates and thus a large PAol
corresponding to these updates. In contrast, under RANDOM,
LCFS, and SJF, the impact of such a blocking issue is minimal
for the updates that lead to an Aol drop.

Next, we explain why under RANDOM, LCFS, and SJF,
while the average Aol is sensitive to the update-size variability,
the average PAol is not. We first consider LCFS. In the setting
we consider, there is a high chance that the newest update has
a small size. Serving such small-size updates leads to a small
PAol. When the newest update has a large size, the correspond-
ing PAol would also be large. However, this happens less often.
Therefore, the Aol trajectory would consist of a smaller percent-
age of large Aol peaks with many small Aol peaks in between.
As the update-size variability increases, there will be fewer but
larger Aol peaks. In such cases, while the average Aol is sensi-
tive to the large Aol peaks (which comes from the large update-
size variability), the average PAol is much less sensitive. To

2Consider a non-preemptive policy, the LCES policy, as an example. Under
LCFS, there may be older updates waiting in the queue when a new update is
being served. After this new update finishes service, those older updates waiting
in the queue become outdated, and the delivery of any of these older updates
will not lead to an Aol drop.

JOURNAL OF COMMUNICATIONS AND NETWORKS

A(t)
S n-
< o
n
f—‘*
i 1 _%} 1 {w] :

Time

Fig. 6: An example of the Aol/PAol evolution where the service
time has a large variability

illustrate this fact, we provide an example in Fig. 6, where there
is a large update of size n — 1, immediately followed by n small
updates of size 1. In this case, we can compute the average Aol
as A=[1x (5 - 5 +nx (T - 5)|/ (-1 +n) = B2l =
O(n) and compute the average PAol as A = % = n% = 0(3).
This example shows that a larger update-size variability (i.e., a
larger n in this example) results in a larger average Aol but only
minimally affects the average PAol. A similar explanation also

applies to SJF and RANDOM.

V. AOI-BASED POLICIES

In Section IV, we have demonstrated that size-based policies
achieve a better average Aol/PAol performance than non-size-
based policies. However, size-based policies do not utilize the
arrival-time information, which also plays an important role in
reducing the Aol. In this section, we propose three Aol-based
scheduling policies, which leverage both the update-size and
arrival-time information to reduce the Aol. Our simulation re-
sults show that these Aol-based policies outperform non-Aol-
based policies.

We begin with the definitions of three Aol-based policies that
attempt to optimize the Aol at a specific future time instant from
three different perspectives:

o Aol-Drop-Earliest (ADE): When the server frees up, it
chooses to serve an update such that once it is delivered, the
Aol drop as soon as possible.

o Aol-Drop-to-Smallest (ADS): When the server frees up, it
chooses to serve an update such that once it is delivered, the
Aol drops to a value as small as possible.

« Aol-Drop-Most (ADM): When the server frees up, it chooses
to serve an update such that once it is delivered, the Aol drops
as much as possible.

If all updates waiting in the queue are obsolete, then the above
policies choose to serve an update with the smallest size.

Although all of these Aol-based policies are quite intuitive,
they behave very differently. In order to explain the differences
of these Aol-based policies, we present an example in Fig. 7 to
show how the Aol evolves under these policies. Suppose that
when the (i — 1)-st update is being served, three new updates
(i.e., the i-th, (i + 1)-st, and (i +2)-nd updates) arrive in sequence
at times #;, f;1.1, and #;;,, respectively. The sizes of these updates

LIU et al.: ANTI-AGING SCHEDULING IN G/G/1 QUEUES: A SYSTEMATIC AND COMPARATIVE STUDY 7

A(D)

Aol

s
),
e N
e
P
g
A

I
S 1
l
I
I

o '/ // / | |
tiq t tiv1tiy tl 1t t1+1

ti’+2 Time

Fig. 7: The Aol evolution under three Aol-based policies: ADE
(red), ADS (blue), and ADM (green)

satisfy S; < S;41 < Si12. When the server frees up after it fin-
ishes serving the (i — 1)-st update at time #;_,, ADE, ADS, and
ADM choose to serve the i-th, (i + 1)-st, and (i + 2)-nd updates,
respectively. This is because serving the i-th update leads to the
earliest Aol drop at time ¢, (following the red curve), serving the
(i+ 1)-st update leads to the Aol dropping to the smallest at time
t;,, (following the blue curve), and serving the (i + 2)-nd update
leads to the largest Aol drop at time ¢/, (following the green
curve). Clearly, ADE, ADS and ADM aim to optimize Aol at
a specific future time instant (i.e., the future delivery time of
chosen update) with different myopic goals. Note that at first
glance, ADS and ADM may look the same. Indeed, they would
be equivalent if the events of Aol drop have happened at the
same time instant. However, these two policies are different as
the time instants at which the Aol drops are not necessarily the
same (e.g., t;,, vs. t/, in Fig. 7). In addition, ADE and SJF
may also look the same at first glance. Indeed, these two poli-
cies would make the same decision (i.e., choose the smallest
update to serve) when the smallest update leads to an Aol drop.
However, they make different decisions when the smallest up-
date does not lead to an Aol drop. An example is provided in
Fig. 8 to illustrate the key difference. In Fig. 8, after the (i — 1)-
st update completes service at time ¢;_,, there are two updates
waiting to be served: the (n — 2)-nd update and the i-th update.
Suppose that the update size and the arrival time of these two
updates satisfy the following: S;» < S;and #;, < ;) < t;.
Clearly, ADE chooses to serve the i-th update that leads to an
earlier Aol drop (see Fig. 8(a)), while SJF chooses to serve the
(i — 2)-nd update that has a smaller size (see Fig. 8(b)).

Next we conduct extensive simulations to investigate the Aol
performance of these Aol-based policies. In Fig. 9, we present
the simulation results of the average Aol performance of the
Aol-based policies compared to a representative arrival-time-
based policy (i.e., LCFS) and a representative size-based-policy
(i.e., SJF). All the policies considered here are non-preemptive;
the preemptive cases will be discussed in Section VI.

In Fig. 9(a), we observe that most Aol-based policies are
slightly better than non-Aol-based policies, although their per-
formances are very close. Among the Aol-based policies, ADE
is the best, ADM is the worst, and ADS is in-between. This is
not surprising that ADM is the worst: although ADM has the

A(t) A()
A1 4,
- e
E | =
Ll I
AT
, i VO
D Vo N I - .
tiatiq titi_q titi_, Time tiz2ti1 t;t; 4t; ,t; Time
(2)ADE (b)SJE

Fig. 8: An example of the Aol evolution under ADE and SJF

largest Aol drop, this is at the cost that it may have to wait un-
til the Aol become large first. ADE being the best suggests that
giving a higher priority to small updates (so that the Aol drops as
soon as possible) is a good strategy. In Figs. 9(b) and 9(c), sim-
ilar observations can be made for update size following Weibull
distributions.

The above observations lead to the following guideline:

Guideline 4. Leveraging both the update-size and arrival-time
information can further improve the Aol performance. However,
the benefit seems marginal.

VI. PREEMPTIVE, INFORMATIVE, AOI-BASED
POLICIES

In Section IV, we have observed that preemptive policies have
several advantages and perform better than non-preemptive poli-
cies. In this section, we first demonstrate that policies that prior-
itize informative updates (i.e., those that can lead to Aol drops
once delivered) perform better than non-informative policies.
Then, by integrating the guidelines we have, we consider pre-
emptive, informative, Aol-based policies and evaluate their per-
formances through simulations.

A. Informative Policies

As far as the Aol is concerned, there are two types of up-
dates: informative updates and non-informative updates [24].
Informative updates lead to Aol drops once delivered while non-
informative updates do not. In some applications, such as au-
tonomous vehicles and stock quotes, it is reasonable to discard
non-informative updates (which do not help reduce the Aol but
may block new updates). In this subsection, we introduce the
“informative” versions of various policies, which prioritize in-
formative updates and discards non-informative updates. Then,
we use simulation results to demonstrate that informative poli-
cies generally have a better average Aol/PAol performance than
the original (non-informative) ones. Furthermore, we rigorously
prove that in a G/M/1 queue, the informative version of LCFS is
stochastically better than the original LCFS policy.

We use 7_I to denote the informative version® of policy 7.
All the scheduling policies we consider have their informative
versions. In some cases, the informative version is simply the
same as the original policy (e.g., FCFS and LCFS_P).

3For simplicity, we omit the additional “_" in the policy name if policy 7 is a
preemptive policy ending with “_P". For example, we use LCFS_PI to denote
the informative version of LCFS_P.

JOURNAL OF COMMUNICATIONS AND NETWORKS

——ADM - - -LCFS ——ADM - - -LCFS
ADS - - ‘SJF ADS - - ‘SJF
101 \|—ADE 5 [l—ADE
< gl < <
2 g 2
g S g
[} 6F [0 [}
z z z
3l
4t 4]l—ADM - - -LCFs
ADS - - ‘SJF 9
, , |==n0E B G A £ AR RN RN NN A AR AR AR
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 2 3 4 5 6 7 8 9 10
System load p System load p Squared coefficient of variation c?
(a)Exponential: y = 1 (b)Weibull: 4 = 1 and C%= 10 (c)Weibull: ¢ = 1 and p= 0.7
Fig. 9: Comparisons of the average Aol performance: Aol-based policies vs. non-Aol-based policies
12 — 12 — : : : 6 : : : : : : : : :
——ADM - - -LCFS \ ——ADM - - :LCFS 4
ADS - - -SJF \ |—ADE - -'SJF -
100 \ | —ADE] 101\ ADS 5. 39F-
_ - T 5
E‘Cj ol g ol 4.1 R 2 3.8
[© 4F== 0,40 9 T |
= = 3.9 © /’/;————'_?’-6—-
o 6f o 6f 08 { -
3l]
——ADM - - -LCFS
4r 4r] —ADE - - ‘SJF
ADS
N S T T Ty S oo
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 3 5 6 8 9 10

System load p

(a)Exponential: y =1

System load p
(b)Weibull: 4 = 1 and C%= 10

Squared coefficient of variation c?
(c)Weibull: ¢ = 1 and p= 0.7

Fig. 10: Comparisons of the average PAol performance: Aol-based policies vs. non-Aol-based policies

In Fig. 11, we show the simulation results of the average Aol
performance of several informative policies compared to their
non-informative counterparts. In order to evaluate the benefit of
informative policies, we plot the informative Aol gain, which is
the ratio of the difference between the average Aol of the non-
informative version and the informative version to the average
Aol of the non-informative version. Hence, a larger informa-
tive gain means a larger benefit of the informative version. One
important observation from Fig. 11 is as follows.

Observation 8. Informative policies achieve a better average
Aol performance than their non-informative counterparts. The
informative gain is larger for non-preemptive policies and in-
creases as the system load increases.

Intuitively, informative policies are expected to outper-
form their non-informative counterparts because serving non-
informative updates cannot reduce the Aol but may block new
updates. The simulation results verify this intuition as the infor-
mative Aol gain is always non-negative. Second, we can see that
most non-preemptive policies (e.g., RANDOM, LCFS, and SJF)
benefit more from prioritizing informative updates. Third, as the
system load p increases, the informative Aol gain increases un-
der most considered policies, especially those non-preemptive
ones. This is because as the system load increases, the number
of non-informative updates also increases, which has a larger
negative impact on the Aol performance for non-preemptive,
non-informative policies.

Observation 8 leads to the following guideline:

Guideline 5. The server should prioritize informative updates
and discard non-informative updates when it is allowed.

Based on Observation 8, we conjecture that an informative
policy is as least as good as its non-informative counterpart. As
a preliminary result, we prove that this conjecture is indeed true
for LCFS in a G/M/1 queue. In the following, we introduce the
stochastic ordering notion, which will be used in the statement
of Proposition 1.

Definition 2. Stochastic Ordering of Stochastic Processes [25,
Ch.6.B.7]: Let {X(t),t € [0,00)} and {Y(¢),t € [0,)} be two
stochastic processes. Then, {X(t),t € [0,00)} is said to be
stochastically less than {Y(t),t € [0, 00)}, denoted by {X(?),t €
[0, c0)}<s{Y(2), ¢ € [0, 00)}, if, for all choices of integer n and
t) <t < -+ < t,in[0,00), the following holds for all upper
sets* SU C R":

PX esY)y<P(esY), Q)

where X 2 (X(t1), X(ta), ..., X(t,)) and ¥ £ (Y (1)), Y(ta), . .., Y(t)).

Stochastic equality can be defined in a similar manner and is de-
noted by {X(t),t € [0, c0)}=.{Y (), 1 € [0, 00)}.

Roughly speaking, Eq. (2) implies that X is less likely than

Y to take on large values, where “large” means any value in

4A set SU C R” is an upper set if ¥ € SU whenever ¥ > ¥and ¥ € SV, where

X=(x1,...,xp)and ¥ = (y1,...,y,) are two vectors in R* and ¥ > Xif y; > x;
foralli=1,2,...,n.

LIU et al.: ANTI-AGING SCHEDULING IN G/G/1 QUEUES: A SYSTEMATIC AND COMPARATIVE STUDY 9

0.15, : : ‘ ‘ ‘ ‘ — 0.15 — : : ‘ 05 —————————
RANDOM —— SRPT 4 / RANDOM —— SRPT
- - SJF —SJF_P A / 04l |- —'LCFS —SJFP
£ - --LCFS K £ 4 £ - - s0F
T 2 (] , o
S 0.1} e S 0.1 b
S 7 S 5 03]
: i E i RANDOM —— SRPT f) _
2 /’ 2 o ---sUF —SJFP| 202 e e
2005t . £ 0.05" . - --LCFs g b0 ammmTT
S P S o S0if_ .-="
c . c 4 c ”
= gt E IS
2) - 'l
- - PR - O L
0 or P e s e e]
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 it 2 3 4 5 6 7 8 9 10

System load p

(a)Exponential: y = 1

System load p
(b)Weibull: 4 = 1 and C%= 10

Squared coefficient of variation c?

(c)Weibull: u = 1 and p= 0.7

Fig. 11: Comparisons of the average Aol performance: informative policies vs. non-informative policies

0.15

0.15

RANDOM ——SRPT ’
---LCFS —SJF.P ‘,
- - SJF

04} 2

0.1f

0.05 * 0.05¢ ’

Informative PAol gain
>
Informative Aol gain

o
3

/ RANDOM ——SRPT
| |--'LcFs —sJF.P
- - SJF

o
IS

o
w

RANDOM ——SRPT
---SJF —SJFP
- - -LCFs

o
o

Informative PAol gain
o
n
A

o

(s or

01 02 03 04 05 06 07 08 09
System load p

(a)Exponential: y =1

01 02 03 04 05 06 07 08 09 2 3 4 5 6 7 8 9 10
System load p
(b)Weibull: 4 = 1 and C%= 10

Squared coefficient of variation c?

(c)Weibull: ¢ = 1 and p= 0.7

Fig. 12: Comparisons of the average PAol performance: informative policies vs. non-informative policies

an upper set SY. We also use A,(#) to denote the Aol process
under policy n. Furthermore, we define a set of parameters
I = {n, ()%}, where n is the number of updates and ¢; is the
generation time of update i. Having these definitions and nota-
tions, we are now ready to state Proposition 1.

Proposition 1. In a G/M/I queue, for all I, the Aol under
LCFS_I is stochastically smaller than that under LCFS, i.e.,

[{ALcrs_1 (), 1 € [0, 00)} [T]<u[{ALcrs (1) . 1 € [0,00)} [T]. (3)

Proof. Recall that we use ¢; and] to denote the arrival time and
the delivery time of the i-th update, respectively. In addition, we
use s; to denote the service start time of the i-th update.

We define the system state at time ¢ under policy 7 as S ,(¢) =
U,(t), where U, () is the largest arrival time of the updates that
have been served under policy 7 by time 7. Let {S ;(¢), f € [0, c0)}
be the state process under policy n. By the definition of Aol,
Eq. (3) holds if the following holds:

[{Srers 1(0), 1 € [0,)} T 124 [{SLers (D), £ € [0,00)} [I]. (4)

Next, we prove Eq. (4) by contradiction through a cou-
pling argument. Suppose that stochastic processes S‘LCFS_[63)
and S1cps (7) have the same stochastic laws as Stcrs_1(f) and
Sicrs (1), respectively. We couple S’LCFSJ () and Sycps (1) in
the following manner: If an update i is delivered at ¢; in S Lces (D),
then the update j being served at ¢/ (if any) in S Lcrs_1(?) is also

delivered at the same time. This coupling is reasonable because:
(1) the updates served in S Lcrs_1(#) are not chosen based on up-
date size; (ii) the service time of an update in both S Lcrs_1 ()
and S crs (7) is exponentially distributed and has the memory-
less property. By Theorem 6.B.30 in [25], Eq. (4) holds if the
following holds:

P(Stcrs1 (6) = Sicrs (1), 1 € [0,00)|7) = 1. ®)

In the following, we want to show that S Lers 1 (?) 2 Sicrs ()
holds conditionally on an arbitrary sample path 7, which triv-
ially implies Eq. (5). We prove it by contradiction. For the sake
of contradiction, suppose that S Lcrs_1(f) < S Lcrs(?) does hap-
pen and that it happens for the first time at time 7, (see Fig. 13
for illustration). Let m and n be the index of the served updates
with the largest arrival time by fy in S Lcrs_1(7) and S Lces(?), re-
spectively. Then, we have Uy cgs 1(fo) = #,, and Urcps(to) = #,.
Note that we also have 1, < t, due to S Lers_1(fo) < S Lcrs(fo)
(i-e., Urcrs_1(to) < Urcrs(fp)). Since ty is the first time when
S’LCFS_I(Z) < SLCFS(I) happens, a crucial observation is that #,
must be immediately after an update is delivered in S Lces (D).
Hence, we have 7y = (#,)*, where (#/)* denotes the time imme-
diately after 7.

Due to the coupling between Sicrs(?) and S Lcrs_1(7), there
are two cases in S’LCFSJ(Z): 1) the server is being idle at ¢,; 2)
an update is delivered at 7, too. We discuss these two cases
separately and show that there is a contradiction in both cases.

Case 1): The server in S Lcrs_1(?) is being idle at #, (see

Siers(t) th Sn ty .
40—0—ﬁ—>
5 i
Stersi(®) tm Sm tm | .
T >
to
(a)Case 1): The server in §LCFS_I (¢) is being idle at 1,
Siers(©) ot Sn
A ! "t
~ ! I
Stersa(t) tm Smi trl .
o .ﬁto

(b)Case 2a): The m-th update is delivered at ¢, in S Lcrs_1(?), and the server in
S1crs(d) is idle at time s,

Sters () .

§LCFS_1(t)

1 >t

(c)Case 2b): The m-th update is delivered at #;, in ﬁLch_I(l), and the server in
Sicrs(?) is busy at time s,

Fig. 13: Part of sample path of S Lcrs_1(f) and S Lces(?) in differ-
ent cases

Fig. 13(a)). Then, the most recently delivered update in
SLCFS_I(t) (i.e., the m-th update) must be delivered before .
Hence, we have #,, < t,, and that the server in S‘LCFSJ(Z) stays in
the idle state during (z,,, #;]. Then, the server in S Lcrs_1(7) could
have started serving a newer update that arrives later than the m-
th update immediately after ¢,,. (Such a newer update must exist
as the n-th update is a valid candidate due to #,, < t,.) This re-
sults in a contradiction with the server being idle during (z,,, #,].

Case 2): An update is delivered at 7, in S Lcrs_1(7). This deliv-
ered update is the m-th update. Note that we must have s,, < t,.
This is because if s, > #,, then the server in § Lcrs_1(f) would
have chosen to serve the n-th update or a fresher update that ar-
rives later than 7, at time s, since this selected update is a newer
update (due to 7, < t,,). There are two subcases for the server in
S Lcrs(?) at time s,,: 2a) idle; 2b) busy. Again, we discuss these
two subcases separately and show that there is a contradiction in
both cases.

Case 2a): The server in S Lces(?) is idle at time s, (see
Fig. 13(b)). In this case, the m-th update must have already
been delivered by time s, in S'chs(t). Otherwise, the server in
S Lcrs(f) would have started serving the m-th update (or a newer
update) at or before s,,. This implies that S Lers_1(?) < S1crs(d)
happens before s,,, which results in a contradiction with that £,
is the first time at which Sy cps_1(f) < Scrs(f) happens.

Case 2b): The server in Spcps(f) is busy at time s, (see
Fig. 13(c)). Assume that the /-th update is being served at s, in
S Lcrs(?). In this case, the /-th update must be delivered by time
Sy in SLCFs(t). This is because the n-th update starts service at
sp in SLcrs (#). Then, the m-th update must also be delivered by

JOURNAL OF COMMUNICATIONS AND NETWORKS

time s, in §ch571(t), due to the coupling between S1crs(?) and
S Lcrs_1(?). This results in a contradiction that the m-th update is
delivered at 7,

Combining all the cases, we show that S cps 1 (£) = Stcrs ()
holds conditionally on an arbitrary sample path 7. This triv-
ially implies Eq. (5), which further implies Eq. (4) by Theo-
rem 6.B.30 in [25]. This completes the proof. O

B. Preemptive, Informative, Aol-based Policies

So far, we have demonstrated the advantages of preemptive
policies, Aol-based policies, and informative policies. In this
subsection, we want to integrate all of these three ideas and pro-
pose preemptive, informative, Aol-based policies.

We first consider preemptive, informative version of three
Aol-based policies: ADE_PI, ADS_PI, and ADM_PI. Interest-
ingly, we can show equivalence between ADE_PI and SRPT _I
(i.e., the informative version of SRPT) and between ADE_I and
SJE_I (i.e., the informative version of ADE and SJF, respec-
tively) in the sample-path sense. These results are stated in
Propositions 2 and 3.

Proposition 2. ADE_PI and SRPT_I are equivalent in every
sample path.

Proof. We use strong induction to prove that under the same
sample path, ADE_PI and SRPT_I always choose the same up-
date to serve at the same time. In the following, we only con-
sider informative updates since non-informative updates are dis-
carded under both ADE_PI and SRPT_I.

Suppose that when ADE_PI needs to choose the n-th update
to serve at time fapg _py(n), it chooses the update with index
dapg_pr (n). Similarly, SRPT_I chooses the update with index
dsrpr 1 (n) as its n-th update to serve at tsrpr 1 (1).

Claim: ADE _PI and SRPT_I always serve the same
update at the same time, i.e., (dapg_pi(n), fape_pi(n)) =
(dsrpr_1(n), tsrpr_1(n)) for all n.

Base case: When n = 1, both ADE PI and SRPT I
serve the first update when it arrives. Hence, we have
(dape_p1 (1), tape_p1 (1)) = (dsrpr_1 (1), fsrpr_1 (1)).

Induction step: Suppose that for n = k (k > 1), we
have (dape_p1 (M) , tape_p1 (m)) = (dsrpr_1 (M), tsrpr 1 (M) for
the m-th update for all 1 < m < k. We want to show that
(dape_p1 (), tape_p1 (1)) = (dsrer_1(n),tsrer (1)) still holds
for n = k + 1. Note that there are two cases for the (k + 1)-
st update: 1) the (k + 1)-st update preempts the k-th update; 2)
the (k + 1)-st update does not preempt the k-th update, i.e., the
(k+ 1)-st update starts service from the idle state or immediately
after the k-th update is delivered. We discuss these two cases
separately and show that (dapg pr1(k+ 1),tapg pr(k+1)) =
(dSRPT_l k+1), ISRPT 1 (k+ 1)) holds in both cases.

Case 1): The (k + 1)-st update preempts the k-th update. Dur-
ing the service of the k-th update, the (k + 1)-st update arrives.
Under ADE_PI, in order to make Aol drop as early as possi-
ble, the server compares the remaining service time of the k-
th update with the original service time of the (k + 1)-st up-
date and chooses to serve the update with a smaller remain-
ing service time. This is exactly the same as what SRPT_I
does. Therefore, we have (dapg pr(k + 1), tapg p1(k + 1)) =
(dsrpr 1 (k + 1), tsrpr 1 (k + 1)).

LIU et al.: ANTI-AGING SCHEDULING IN G/G/1 QUEUES: A SYSTEMATIC AND COMPARATIVE STUDY 11

12 T T T T T T T 12 T T T T T T T T 5
- - 'SJF_I(=ADE_l) —SJF_PI \ |- = SJF_I(=ADE_|) —SJF_PI = = SJF_I(=ADE_I) —SJF_PI
1oL \ =~ "SRPT ——SRPT_I(=ADE_Pl) | 101 \\ -~ SRPT ——SRPT_I(=ADE_PI) -~ ‘SRPT ——SRPT_I(=ADE_Pl)] _ .-
4l = -
L 16450 - __ _ __ et
28 28\ 164 | 32, Bl el
> > S |-
g 6 g6 8 el fo
2 S N T T ee s o N g2r i
< 4t < 4t <
186 ===~~~ /
1 1.855
2r 2r 185
9
o- : : : : : : : : oL : : : : : : : : O
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 2 3 4 5 6 7 8 9 10
System load p System load p Squared coefficient of variation c?
(a)Exponential: y = 1 (b)Weibull: 4 = 1 and C%= 10 (c)Weibull: ¢ = 1 and p= 0.7
Fig. 14: Comparisons of the average Aol performance: preemptive, informative, Aol-based policies vs. others
12 : : 12 — 5 : : : : : : : :
- - ‘SJF_I(=ADE_l) —SJF_PI - - ‘SJF_I(=ADE_I) —SJF_PI - - ‘SJF_I(=ADE_I) —SJF_PI
10t - - SRPT ——SRPT_I(=ADE_PI)|{ 10+t - - ‘SRPT —SRPT_I(=ADE_PI) al - - SRPT —SRPT_I(=ADE_PI)

Average PAol
(o2}
Average PAol
(2]

w

Average PAol

-
N
o o
> N

N
P

2.05
L L L L L L 9 L L L L
o o 0
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 t 2 3 4 5 6 7 8 9 10
System load p System load p Squared coefficient of variation c?
(a)Exponential: y =1 (b)Weibull: 4 = 1 and C%= 10 (c)Weibull: ¢ = 1 and p= 0.7

Fig. 15: Comparisons of the average PAol performanc

Case 2): The (k + 1)-st update does not preempt the k-th
update. On the one hand, if the (k + 1)-st update starts ser-
vice from the idle state, then by the induction hypothesis, both
ADE_PI and SRPT_I finish serving the k-th update at the same
time and then go through a period of being idle. Therefore,
ADE_PI and SRPT_I will also serve the same (k + 1)-st up-
date at the same time, i.e., (dapg pr (k+ 1), tapg p1(k + 1)) =
(dSRPT_l k+1), ISRPT 1 (k + 1)) On the other hand, if the
(k + 1)-st update starts service immediately after the ser-
vice of k-th update, then by the induction hypothesis,
ADE_PI and SRPT_I will start service at the same time,
ie., TADE_PI k+1) =ISRPT_I (k+1). SRPT_I will select the
(k + 1)-st update with the shortest remaining size. How-
ever, this selected (k + 1)-st update must have not been
served before. Otherwise, this update is no longer infor-
mative it was preempted by other update. Thus, SRPT_I
ends up choosing an update with the shortest original
size, which will also be selected by ADE_PI. This im-
plies dapg pr(k+1) = dsrpri(k+1). Therefore, we have
(dapg_p1 (k + 1), tapg_p1 (k + 1)) = (dsrpr_1 (k + 1), tsrpr 1 (K + 1

O

Proposition 3. ADE_I and SJF_I are equivalent in every sam-
ple path.

Proof. Similar to the proof of Proposition 2, we use strong in-
duction to show that under the same sample path, ADE_I and
SJF_I always choose the same update to serve at the same time.
Here, we also only consider the informative updates.

e: preemptive, informative, Aol-based policies vs. others

Suppose that when ADE_I needs to choose the n-th update
to serve at time fopg 1 (n), it chooses the update with index
dapg 1 (n). Similarly, SJF_I chooses the update with index
dsjr 1 (n) as its n-th update to serve at tsjr 1 ().

Claim: ADE_I and SJF_I always serve the same update at the
same time, i.e., (dape_1(n), fape_1(n)) = (dsir_1(n), tsyr_1(n)) for
all n.

Base case: When n = 1, both ADE_I and SJF_I serve the first
update when it arrives. Hence, we have (dapg 1 (1), fapg_1 (1)) =
(dsyr_1 (1), tsyr_1 (1)).

Induction step: Suppose that for n = k (k > 1), we have
(dape_1 (m) , tape_1 (m)) = (dsyr_1(m), tsye 1 (m)) for the m-th
update for 1 < m < k. We want to show that (dapg_1(n),
tape_1(n)) = (dsyr_1(n), tsye_1(n)) still holds for n = k + 1. Note
that there are two cases for the (k + 1)-st update: 1) the (k + 1)-
st update starts service from the idle state; 2) the (k + 1)-st
update starts service immediately after the k-th update is de-
livered. We discuss these two cases separately and show that
(dapgx(k+ 1), tape 1 (k+1)) = (dsipa(k+ 1), 155k 1 (k+ 1))

))-holds in both cases.

Case 1): The (k + 1)-st update starts service from the idle
state. By the induction hypothesis, both ADE_I and SJF_I
finish serving the k-th update at the same time and then go
through a period of being idle. Therefore, ADE_I and SJF_I
will also serve the same (k + 1)-st update at the same time, i.e.,
(dape_1 (k+ 1), tapg_1 (k + 1)) = (dsyp1 (k + 1), ts5p 1 (K + 1)).

Case 2): The (k + 1)-st update starts service immediately
after the k-th update is delivered. By the induction hypothe-

sis, ADE_I and SJF_I will start service at the same time, i.e.,
tapg 1 (k + 1) =tsjp 1 (k + 1). SJF_I will choose the (k + 1)-st up-
date that has the smallest update size, which will also be se-
lected by ADE_I since this update can make Aol drop earliest.
This implies dapg_p1 (k + 1) = dgjr 1 (k + 1). Therefore, we have

(dape_r(k+ 1), tape 1k + 1)) = (dsjp1(k+ 1), tsp 1 (k + 1)).
o

Propositions 2 and 3 imply that although SRPT_I and SJF_I
do not explicitly follow an Aol-based design, they are essen-
tially Aol-based policies. This provides an intuitive explanation
for why size-based policies, such as variants of SRPT and SJF,
have a good empirical Aol performance.

In Fig. 14, we present the simulation results for the aver-
age Aol performance of the preemptive, informative, Aol-based
policies (ADE_PI) compared to several other policies. We ob-
serve that in various settings we consider, ADE_PI achieves
the best Aol performance. However, compared to the best
delay-efficient policies (such as SRPT), the Aol improvement
of the preemptive, informative, and Aol-based policies is rather
marginal in the settings with exogenous arrivals.

VII. CONCLUSION

In this paper, we systematically studied the impact of various
aspects of scheduling policies on the Aol performance and pro-
vided several useful guidelines for the design of Aol-efficient
scheduling policies. Our study reveals that among various as-
pects of scheduling policies we investigated, prioritizing small
updates, allowing service preemption, and prioritizing informa-
tive updates play the most important role in the design of Aol-
efficient scheduling policies. It turns out that common schedul-
ing policies like SRPT and SJF_P and their informative variants
can achieve a very good Aol performance, although they do not
explicitly make scheduling decisions based on the Aol. This can
be partially explained by the equivalence between such size-
based policies and some Aol-based policies. Moreover, when
the Aol requirement is not stringent or the update-size informa-
tion is not available, some simple delay-efficient policies (such
as LCFS_P) are also good candidates for Aol-efficient policies.

Our findings also raise several interesting questions that are
worth investigating as future work. One important direction is to
pursue more theoretical results beyond the simulation results we
provided in this paper. For example, it would be interesting to
see whether one can rigorously prove that any informative pol-
icy always outperforms its non-informative counterpart, which
is consistently observed in the simulation results.

Appendix
A. Additional Simulation Results for the G/G/1 Queue

We present additional simulation results for the G/G/1 queue
in Figs. 16-23. For all these simulations, we assume that the in-
terarrival time follows a Weibull distribution with C> = 10. In
subfigure (a), we assume that the update size follows an Expo-
nential distribution with mean 1/¢ = 1; in subfigures (b) and
(c), we assume that the update size follows a Weibull distribu-
tion with mean 1/u = 1. Note that in subfigures (a) and (b),
we change the value of the system load p; in subfigure (c), we

JOURNAL OF COMMUNICATIONS AND NETWORKS

change the value of C? for the update size while fixing the sys-
tem load at p = 0.7. Observations 1-8 can also be made for the
setting of G/G/1 queue.

REFERENCES

[1] Z.Liu, L. Huang, B. Li, and B. Ji, “Anti-aging scheduling in single-server
queues: A systematic and comparative study,” in [EEE INFOCOM 2020 -
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2020, pp. 309-316.

[2] S. Kaul, R. Yates, and M. Gruteser, ‘“Real-time status: How often should
one update?” in 2012 Proceedings IEEE INFOCOM, 2012, pp. 2731-
2735.

[3] S.Wu, X.Ren, S. Dey, and L. Shi, “Optimal scheduling of multiple sensors
with packet length constraint,” IFAC-PapersOnLine, vol. 50, no. 1, pp.
14430-14 435, 2017.

[4] M. Harchol-Balter, Performance modeling and design of computer sys-
tems: queueing theory in action. Cambridge University Press, 2013.

[S] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Optimizing data freshness,
throughput, and delay in multi-server information-update systems,” in
2016 IEEE International Symposium on Information Theory (ISIT), 2016,
pp. 2569-2573.

[6] M. Costa, M. Codreanu, and A. Ephremides, “Age of information with
packet management,” in 2014 IEEE International Symposium on Informa-
tion Theory, 2014, pp. 1583-1587.

[71 N. Pappas, J. Gunnarsson, L. Kratz, M. Kountouris, and V. Angelakis,
“Age of information of multiple sources with queue management,” in
2015 IEEE International Conference on Communications (ICC), 2015, pp.
5935-5940.

[8] M. E. Crovella, R. Frangioso, and M. Harchol-Balter, “Connection
scheduling in web servers,” Boston University Computer Science Depart-
ment, Tech. Rep., 1999.

[9] L. Schrage, “A proof of the optimality of the shortest remaining processing

time discipline,” Operations Research, vol. 16, no. 3, pp. 687-690, 1968.

D. R. Smith, “A new proof of the optimality of the shortest remaining

processing time discipline,” Operations Research, vol. 26, no. 1, pp. 197-

199, 1978.

M. Harchol-Balter, “Queueing disciplines,” Wiley Encyclopedia of Opera-

tions Research and Management Science, 2010.

A. Kosta, N. Pappas, and V. Angelakis, Age of Information: A New Con-

cept, Metric, and Tool, 2017.

Y. Sun, I. Kadota, R. Talak, and E. Modiano, Age of Information: A New

Metric for Information Freshness, 2019.

M. Costa, M. Codreanu, and A. Ephremides, “On the age of information

in status update systems with packet management,” IEEE Transactions on

Information Theory, vol. 62, no. 4, pp. 1897-1910, 2016.

M. Moltafet, M. Leinonen, and M. Codreanu, “On the age of informa-

tion in multi-source queueing models,” IEEE Transactions on Communi-

cations, vol. 68, no. 8, pp. 5003-5017, 2020.

S. K. Kaul, R. D. Yates, and M. Gruteser, “Status updates through queues,”

in 2012 46th Annual Conference on Information Sciences and Systems

(CISS), 2012, pp. 1-6.

C. Kam, S. Kompella, and A. Ephremides, “Effect of message transmis-

sion diversity on status age,” in 2014 IEEE International Symposium on

Information Theory, 2014, pp. 2411-2415.

E. Najm and E. Telatar, “Status updates in a multi-stream m/g/1/1 preemp-

tive queue,” in IEEE INFOCOM 2018 - IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), 2018, pp. 124-129.

Y. Inoue, H. Masuyama, T. Takine, and T. Tanaka, “A general formula for

the stationary distribution of the age of information and its application to

single-server queues,” arXiv preprint arXiv:1804.06139, 2018.

R. Talak and E. Modiano, “Age-delay tradeoffs in single server systems,”

arXiv preprint arXiv:1901.04167, 2019.

R. Devassy, G. Durisi, G. C. Ferrante, O. Simeone, and E. Uysal-

Biyikoglu, “Delay and peak-age violation probability in short-packet

transmissions,” in 2018 IEEE International Symposium on Information

Theory (ISIT), 2018, pp. 2471-2475.

Z. Liu, L. Huang, B. Li, and B. Ji, “Anti-Aging Scheduling in Single-

Server Queues: A Systematic and Comparative Study,” arXiv e-prints, p.

arXiv:2003.04271, Oct. 2020.

R. D. Yates and S. K. Kaul, “The age of information: Real-time status

updating by multiple sources,” IEEE Transactions on Information Theory,

vol. 65, no. 3, pp. 1807-1827, 2019.

C. Kam, S. Kompella, and A. Ephremides, “Age of information under

random updates,” in 2013 IEEE International Symposium on Information

Theory, 2013, pp. 66-70.

M. Shaked and J. G. Shanthikumar, Stochastic orders.

& Business Media, 2007.

[10]

(1]
[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25] Springer Science

LIU et al.: ANTI-AGING SCHEDULING IN G/G/1 QUEUES: A SYSTEMATIC AND COMPARATIVE STUDY

50 T

‘ 50y e
--'FCFS —Ps ---FCFS —Ps J
RANDOM —LCFS_P . RANDOM —LCFS_P !
40 --'LCFS ——SRPT / 40t --LCFS ——SRPT ’]
- - SJF —SJF.P A - - SJF —SJF_P i
S S
<30 <30|]
[(0]
(=2} (=)
© o
220 o201]
< <<
10 10F]
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

(a)Interarrival time: Weibull (C2= 10); Update size:

Exponential (u = 1)

20

System load p

System load p

(b)Interarrival time: Weibull (C2= 10); Update size:

Weibu

11 (u = 1 and C%= 10)

T T 20 T T T T
--'FCF§ —Ps /) --'FCFS —Ps K
RANDOM —LCFS P| RANDOM —LCFS_P| ,

. --.LCFS —SRPT | 15|77 LOFS ——SRPT |
_"® --SF —SJFP |’ _B--sF —skpP
[=] Q
& x
S10r 210 i
g g
[[
> >
2 z

5r 5]

ol ‘ Lo ‘ ‘

01 02 03 04 05 06 07 08 09

(a)Interarrival time: Weibull (C2= 10); Update size:

Exponential (u = 1)

System load p

01 02 03 04 05 06 07 08 09

System load p

(b)Interarrival time: Weibull (C2= 10); Update size:
Weibull (4 = 1 and C2= 10)

Fig. 17: Comparisons of the average PAol performances of several common scheduling policies under different distributions

50 - : : : : ‘ ‘ : : 50 - : : : : ‘ ‘ : :
——ADM - - -LCFS ——ADM - - -LCFS
——ADS - - 'SJF ——ADS - - ‘SJF
40 —ADE 401 —ADE b
3 i N——— 3 122
3 30 gl =" =--- 2307 12 1
& [N s & 1.8
[= [
8.4 L]
220 Z20
10 10 1
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

(a)Interarrival time:

System load p

Weibull (C2= 10); Update

size: Exponential (u = 1)

System load p

(b)Interarrival time: Weibull (C%= 10); Update
size: Weibull (¢ = 1 and C2= 10)

‘—ADl‘\/l - "LCFS I I I I 14 ——ADM - - 'LCFS‘ ‘ ‘ ‘ ‘
|\ |[—ADS - - -sJF | L\\ [ADS ---SJF 1
120 \\| A 12 \ _ e
S0} 1 S0t]
o o
S 8t g S 8t i
© o
] 9]
26l - 26 |
4t] 4t]
2 2
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

System load p

(a)Interarrival time: Weibull (C2= 10); Update size:

Exponential (u = 1)

System load p

(b)Interarrival time: Weibull (C2= 10); Update size:

Weibull

(u=1and C?= 10)

Squared coefficient of variance c?

13
Ne——————————————
--'FCFS —PS
o5 ||~ - ‘RANDOM ——LCFS_P BRPS et
--LCFS —SRPT | __--"~
-= —SJF_P
< 20 2= "SIF . SUF_ |
< L--
%15—’]
q>; fmmmmmm==—
L10fzmmee=====-="""]
5l J
ob—
12 3 4 5 6 7 8 9 10

(c)Interarrival time: Weibull (C2= 10); Update size:
Weibull (u =1 and p = 0.7)

Fig. 16: Comparisons of the average Aol performances of several common scheduling policies under different distributions

Average PAol

30 =
--'FCFS —FPS

25/~ -~ RANDOM —LCFS_P -
--'lCFS —SRPT | ___-~

oo ll- = SUF —_SUFP |

5 b= = s 4

107 1

5

P 0 0 0 AR R
1t 2 3 4 5 6 7 8 9 10

Squared coefficient of variance c?

(c)Interarrival time: Weibull (C2= 10); Update size:
Weibull (u = 1 and p = 0.7)

Average Aol

o

15

o

—ADM---tCFS|
——ADS - - -SJF
—ADE /
20—
11.5/
9
1 2 3 4 5 6 7 8 9 10

Squared coefficient of variation c?

(c)Interarrival time: Weibull (C?= 10); Update
size: Weibull (u = 1 and p = 0.7)

Fig. 18: Comparisons of the average Aol performance under different distributions: Aol-based policies vs. non-Aol-based policies

Average PAol

10

——ADM - - 'LCFS
——ADS - - SJF
[|—ADE 1
7%7
51— |
L 5 1
49— |
L L L L L L 9 L L L L
1 2 3 4 5 6 7 8 9 10

Squared coefficient of variation c?

(c)Interarrival time: Weibull (C2= 10); Update size:
Weibull (u =1 and p = 0.7)

Fig. 19: Comparisons of the average PAol performance under different distributions: Aol-based policies vs. non-Aol-based policies

0.15 7

- = ‘RANDOM ——SRPT '

--LCFS —SJF_P Iy
£ - - 'SJF '
© /
> 0.1t y 1
?) !
< y
® ’ L.
£005¢ 1 P
8 . L%
IS . P

0 - = 4

01 02 03 04 05 06 07 08 09
System load p
(a)Interarrival time: Weibull (C2= 10); Update size:
Exponential (u = 1)

0.15 7 v
7 ,I ,/
/l 1 -
£ ’ , :
S)/ ,’|- - RANDOM —SRPT
_Z’ 0.1 + ,?,4--LCFs —SJFP
< S0, s osoF
4 7

K L 0,07 |
£005 "
c z
- ¢

ok |

01 02 03 04 05 06 07 08 09

System load p
(a)Interarrival time: Weibull (C2= 10); Update size:
Exponential (u = 1)

0.15

7 7
7 /I'
/I ",
£ ;L
© ’ ,'
> 01 TR 1
(=}
<< // oli
[LR 4
= ;.
o 4
2o05" 7,¢ |-~ RaNDOM —sRPT |{
S ¢ |- S —SJF_P
= 27 - - 'LCFS
L=
_"’
0[== 1

01 02 03 04 05 06 07 08 09
System load p

(b)Interarrival time: Weibull (C2= 10); Update size:
Weibull (= 1 and C2= 10)

0.15 =
x4 /,
x4 7
< /" |- - RANDOM —SRPT
g o S, |--cFs —sJFP||
s O 4o - - SJF
< /!
o /.
/ ’
B I
© . i
goosr %
ke %
£ 47
0 |

01 02 03 04 05 06 07 08 09
System load p

(b)Interarrival time: Weibull (C2= 10); Update size:
Weibull (1 = 1 and C%= 10)

Fig. 21: Comparisons of the avg. PAol performance under different distributions: informative policies vs. non-informative policies

50 50
- - ‘SJF_I(=ADE_l) —SJF_PI — = 'SJF_I(=ADE_I) —SJF_PI
- - ‘SRPT ——SRPT_I(=ADE_PI) - - ‘SRPT ——SRPT_I(=ADE_PI)
40 1 40 1
S S
<301 8 1 <301 1
(o] Q
(o)) {o]
[)
0201 75— 1 2201 1
< 0.8 \ <
10]] 107
ol | i I | I I | I ol | i I | i I | i
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

System load p

(a)Interarrival time: Weibull (C2= 10); Update size:
Exponential (u = 1)

System load p

(b)Interarrival time: Weibull (C2= 10); Update size:
Weibull (i = 1 and C%= 10)

Fig. 22: Comparisons of the avg. Aol performance under different distributions: preemptive, informative, Aol-based policies vs.

others
15 ‘ 15 ‘ ‘ : : : : : ‘
- = 'SJF_I(=ADE_|) —SJF_PI ‘ - - “SJF_I(=ADE_|) —SJF_PI
W\ =~ 'SRPT ——SRPT_I(=ADE_PI) \|- - ‘SRPT ——SRPT_I(=ADE_PI)

21o0r 1 g1or
o o
(0] (0]
[=2] (=)
© o
[} [0
Z 51 | z 5|

ol ‘ ‘ ol ‘ ‘

01 02 03 04 05 06 07 08 09
System load p

(a)Interarrival time: Weibull (C2= 10); Update size:
Exponential (u = 1)

01 02 03 04 05 06 07 08 09
System load p

(b)Interarrival time: Weibull (C2= 10); Update size:

Weibull (4 = 1 and C2= 10)

JOURNAL OF COMMUNICATIONS AND NETWORKS

Informative Aol gain

e
- - ‘RANDOM —SJF_P
1/~ - LOFS —SRPT]
- - SJF
08}]
o8ttt
04" [R ----
02 /____________..ﬁﬁ

1 2 3 4 5 6 7 8 9
Squared coefficient of variance c?

(c)Interarrival time: Weibull (C2= 10); Update size:
Weibull (u = 1 and p = 0.7)

Fig. 20: Comparisons of the avg. Aol performance under different distributions: informative policies vs. non-informative policies

Informative PAol gain

v
- - ‘RANDOM —SJF_P
i - - LCFS ——SRPT |{
- - SUF
08, ioemmemmmeee |
el |
04t |
oolo----"7° |
e R AR RIS A]

1 2 3 4 5 6 7 8 9
Squared coefficient of variance c?

(c)Interarrival time: Weibull (C2= 10); Update size:
Weibull (u =1 and p = 0.7)

Average Aol

12

- - ‘SJF_I(=ADE_I) —SJF_PI
——SRPT_I(=ADE_PI)

- - ‘SRPT

| —
81051 o - - - - /

i 8.1 |
8.095 ————

1 2 3 4 5 6 7 8 9 10
Squared coefficient of variation c?

(c)Interarrival time: Weibull (C2= 10); Update size:
Weibull (u =1 and p = 0.7)

Average PAol

5 ‘ ‘
- - -SJF_I(=ADE_l) —SJF_PI
- - -SRPT ——SRPT_|(=ADE_PI)
L Y SRR R R RR N AR RN NR RN N RRARERRA RRNER AR AN R 1
. \ 1
Ay
J
2r 25] / 1
17 245 — | 1
9
oL ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

1 2 3 4 5 6 7 8 9

10
Squared coefficient of variation c?

(c)Interarrival time: Weibull (C2= 10); Update size:

Weibull (x = 1 and p = 0.7)

Fig. 23: Comparisons of the avg. PAol performance under different distributions: preemptive, informative, Aol-based policies vs.

others

LIU et al.: ANTI-AGING SCHEDULING IN G/G/1 QUEUES: A SYSTEMATIC AND COMPARATIVE STUDY 15

Zhongdong Liu is a PhD student in the Department
of Computer Science at Virginia Tech. He received
his B.S. degree in Mathematics and Applied Mathe-
matics with honor from Northeast Forestry University
in 2016. His research interests are in the modeling,
analysis, control, and optimization of complex net-
work systems.

Liang Huang received the BEng degree in com-
munications engineering from Zhejiang University,
Hangzhou, China, in 2009, and the PhD degree in
information engineering from The Chinese Univer-
sity of Hong Kong in 2013. He is currently an asso-
ciate professor with the College of Computer Science
and Engineering, Zhejiang University of Technology,
China. His research interests include in the areas of
queueing and scheduling in communication systems
and networks.

Bin Li received his B.S. degree in Electronic and In-
formation Engineering in 2005, M.S. degree in Com-
munication and Information Engineering in 2008,
both from Xiamen University, China, and Ph.D. de-
gree in Electrical and Computer Engineering from
The Ohio State University in 2014. Between 2014
and 2016, he worked as a Postdoctoral Researcher in
the Coordinated Science Laboratory at the University
of Illinois at Urbana-Champaign. He is currently an
Assistant Professor in the Department of Electrical,

Computer, and Biomedical Engineering at the Univer-
sity of Rhode Island. His research focuses on the intersection of networking, ma-
chine learning, and system developments, and their applications in networking
for virtual/augmented reality, mobile edge computing, mobile crowd-learning,
and Internet-of-Things. He is a senior member of the IEEE and a member of
the ACM. He received both the National Science Foundation (NSF) CAREER
Award and Google Faculty Research Award in 2020, and ACM MobiHoc 2018
Best Poster Award.

Bo Ji received his B.E. and M.E. degrees in Infor-
mation Science and Electronic Engineering from Zhe-
jiang University, Hangzhou, China, in 2004 and 2006,
respectively, and his Ph.D. degree in Electrical and
Computer Engineering from The Ohio State Univer-
sity, Columbus, OH, USA, in 2012. Dr. Ji is an As-
sociate Professor in the Department of Computer Sci-
ence at Virginia Tech, Blacksburg, VA, USA. Prior to
joining Virginia Tech, he was an Associate/Assistant
Professor in the Department of Computer and Infor-
mation Sciences at Temple University from July 2014
to July 2020 He was also a Senior Member of the Technical Staff with AT&T
Labs, San Ramon, CA, from January 2013 to June 2014. His research interests
are in the modeling, analysis, control, and optimization of computer and net-
work systems, such as wired and wireless networks, large-scale IoT systems,
high performance computing systems and data centers, and cyber-physical sys-
tems. He currently serves on the editorial boards of the IEEE/ACM Transactions
on Networking, IEEE Transactions on Network Science and Engineering, IEEE
Internet of Things Journal, and IEEE Open Journal of the Communications So-
ciety. Dr. Jiis a senior member of the IEEE and a member of the ACM. He
is a National Science Foundation (NSF) CAREER awardee (2017) and an NSF
CISE Research Initiation Initiative (CRII) awardee (2017). He is also a recipient
of the IEEE INFOCOM 2019 Best Paper Award.

