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Anti-Aging Scheduling in Single-Server Queues:
A Systematic and Comparative Study

Zhongdong Liu, Liang Huang, Bin Li, and Bo Ji

Abstract: The Age-of-Information (AoI) is a new performance met-

ric recently proposed for measuring the freshness of information in

information-update systems. In this work, we conduct a systematic

and comparative study to investigate the impact of scheduling poli-

cies on the AoI performance in single-server queues and provide

useful guidelines for the design of AoI-efficient scheduling poli-

cies. Specifically, we first perform extensive simulations to demon-

strate that the update-size information can be leveraged for achiev-

ing a substantially improved AoI compared to non-size-based (or

arrival-time-based) policies. Then, by utilizing both the update-size

and arrival-time information, we propose three AoI-based policies.

Observing improved AoI performance of policies that allow ser-

vice preemption and that prioritize informative updates, we fur-

ther propose preemptive, informative, AoI-based scheduling poli-

cies. Our simulation results show that such policies empirically

achieve the best AoI performance among all the considered poli-

cies. However, compared to the best delay-efficient policies (such as

Shortest-Remaining-Processing-Time (SRPT)), the AoI improve-

ment is rather marginal in the settings with exogenous arrivals.

Interestingly, we also prove sample-path equivalence between some

size-based policies and AoI-based policies. This provides an intu-

itive explanation for why some size-based policies (such as SRPT)

achieve a very good AoI performance.

Index Terms: Age-of-Information, scheduling policies, update-size

information, G/G/1 Queues

I. INTRODUCTION

R
ECENTLY, the study of information freshness has received

increasing attentions, especially for time-sensitive applica-

tions that require real-time information/status updates, such as

road congestion alerts, stock quotes, and weather forecast. In

order to measure the freshness of information, a new metric,

called the Age-of-Information (AoI) is proposed. The AoI is de-

fined as the time elapsed since the generation of the freshest up-

date among those that have been received by the destination [2].

Prior studies reveal that the AoI depends on both the inter-arrival

time and the delay of the updates. Due to the dependency be-

tween the inter-arrival time and the delay, this new AoI metric

exhibits very different characteristics than the traditional delay

metric and is generally much harder to analyze (see, e.g., [2]).

Although it is well-known that scheduling policies play an
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Fig. 1: Our position in the design space of AoI-efficient schedul-

ing policies for a G/G/1 queue

important role in reducing the delay in single-sever queues, it

remains largely unknown how exactly scheduling policies im-

pact the AoI performance. To that end, we aim to holistically

study the impact of various aspects of scheduling policies on

the AoI performance in single-server queues and provide useful

guidelines for the design of scheduling policies that can achieve

a small AoI.

While much research effort has already been exerted to the

design and analysis of scheduling policies aiming to reduce

the AoI, almost all of these policies are only based on the ar-

rival time of updates, such as First-Come-First-Served (FCFS)

and Last-Come-First-Served (LCFS), assuming that the update-

size information is unavailable. Here, the size of an update is

the amount of time required to serve the update if there were

no other updates around. In some applications, such as smart

grid and traffic monitoring, the update-size information can be

obtained or fairly well estimated [3]. It has been shown that

scheduling policies that leverage the size information can sub-

stantially reduce the delay, especially when the system load is

high or when the size variability is large [4]. This motivates

us to investigate the AoI performance of size-based policies in

a G/G/1 queue. Note that the update-size information is “or-

thogonal" to the arrival-time information, both of which could

significantly impact the AoI performance. Therefore, it is quite

natural to further consider AoI-based policies that use both the

update-size and arrival-time information of updates.

In addition, prior work has revealed that scheduling policies

that allow service preemption and that prioritize informative up-

dates (also called effective updates, which are those that lead to a

reduced AoI once delivered; see Section VI.A for a formal def-

inition) yield a good AoI performance [5]–[7]. Intuitively, pre-

emption prevents fresh updates from being blocked by a large

and/or stale update in service; informative policies discard stale

updates, which do not bring new information but may block

1229-2370/18/$10.00 © 2018 KICS
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Guideline Summary Representative policies

1 Prioritizing small updates SJF, SJF_P, SRPT

2 Prioritizing recent updates LCFS, LCFS_P

3 Allowing service preemption PS, LCFS_P, SJF_P, SRPT

4 AoI-based designs ADE, ADS, ADM

5 Prioritizing informative updates Informative version of the above policies

Table 1: Guidelines for the design of AoI-efficient scheduling policies for a G/G/1 queue

fresh updates. To that end, we also consider AoI-based schedul-

ing designs that both allow service preemption and prioritize in-

formative updates.

In Fig. 1, we position our work in the literature by summa-

rizing various design aspects of scheduling policies for a G/G/1

queue. Existing work mostly explores the design based on the

arrival-time information along with considering service preemp-

tion and informative updates. We point out that the size-based

design is an orthogonal dimension of great importance, which

somehow has not received sufficient attentions yet. Unsurpris-

ingly, designing AoI-efficient policies requires the consideration

of all these dimensions. In Table 1, we summarize several use-

ful guidelines for the design of AoI-efficient policies, which are

also labeled in Fig.1. To the best of our knowledge, this is the

first work that conducts a systematic and comparative study to

investigate the design of AoI-efficient scheduling policies for a

G/G/1 queue. In the following, we summarize our key contribu-

tions along with an explanation of Fig. 1 and Table 1.

First, we investigate the AoI performance of size-based

scheduling policies (i.e., the green arrow in Fig. 1), which is

an orthogonal approach to the arrival-time-based design stud-

ied in most existing work. We conduct extensive simulations to

show that size-based policies that prioritize small updates signif-

icantly improve AoI performance. We also explain interesting

observations from the simulation results and summarize useful

guidelines (i.e., Guidelines 1, 2, and 3 in Table 1) for the design

of AoI-efficient policies.

Second, leveraging both the update-size and arrival-time in-

formation, we introduce Guideline 4 and propose AoI-based

scheduling policies (i.e., the blue arrow in Fig. 1). These AoI-

based policies attempt to optimize the AoI at a specific future

time instant from three different perspectives: the AoI-Drop-

Earliest (ADE) policy, which makes the AoI drop the earliest;

the AoI-Drop-to-Smallest (ADS) policy, which makes the AoI

drop to the smallest; the AoI-Drop-Most (ADM) policy, which

makes the AoI drop the most. The simulation results show that

such AoI-based policies indeed have a good AoI performance.

Third, we observe that informative policies can signifi-

cantly improve the AoI performance compared to their non-

informative counterparts, which leads to Guideline 5. Integrat-

ing all the guidelines, we propose preemptive, informative, AoI-

based policies (i.e., the red arrow in Fig. 1). The simulation

results show that such policies empirically achieve the best AoI

performance among all the considered policies.

Finally, we prove sample-path equivalence between some

size-based policies and AoI-based policies. These results pro-

vide an intuitive explanation for why some size-based policies,

such as Shortest-Remaining-Processing-Time (SRPT), achieve

a very good AoI performance.

To summarize, our study reveals that among various aspects

of scheduling policies we investigated, prioritizing small up-

dates, allowing service preemption, and prioritizing informa-

tive updates play the most important role in the design of AoI-

efficient scheduling policies. However, compared to the best

delay-efficient policies (such as SRPT), the AoI improvement

of the preemptive, informative, and AoI-based policies is rather

marginal in the settings with exogenous arrivals. Moreover,

when the AoI requirement is not stringent or the update-size

information is not available, some simple delay-efficient poli-

cies (such as LCFS with preemption (LCFS_P)) are also good

candidates for AoI-efficient policies.

The rest of this paper is organized as follows. We first dis-

cuss related work in Section II. Then, we describe our system

model in Section III. In Section IV, we evaluate the AoI per-

formance of size-based scheduling policies. We further propose

AoI-based scheduling policies in Section V. In addition, we

evaluate the AoI performance of preemptive, informative, AoI-

based policies in Section VI. Finally, we make concluding re-

marks in Section VII.

II. RELATED WORK

The traditional queueing literature on single-server queues is

largely focused on the delay analysis. In [8], the authors prove

that all non-preemptive scheduling policies that do not make use

of job size information have the same distribution of the num-

ber of jobs in the system. The work of [9], [10] proves that

for a work-conserving queue, the SRPT policy minimizes the

number of jobs in the system at any point and is therefore delay-

optimal. The work of [11] derives a formula of the average delay

for several common scheduling polices (which will be discussed

in Section IV).

On the other hand, although the AoI research is still in a

nascent stage, it has already attracted a lot of interests (see [12],

[13] for a survey). Here we only discuss the most relevant work,

which is focused on the AoI-oriented queueing analysis. Much

of existing work considers scheduling policies that are based on

the arrival time (such as FCFS and LCFS). The AoI is intro-

duced in [2], where the authors study the average AoI in the

M/M/1, M/D/1, and D/M/1 queues under the FCFS policy. In

[14], the AoI performance of the FCFS policy in the M/M/1/1

and M/M/1/2 queues is studied, where new arrivals are discarded

if the buffer is full. In [15], the authors study the average AoI

performance of a multi-source FCFS M/G/1 queue. They derive

the exact expression and three approximations of the average

AoI for a special case of an M/M/1 queue and a general case

of an M/G/1 queue, respectively. The average AoI of the LCFS
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policy in the M/M/1 queue is also discussed in [14].

There has been some work that aims to reduce the AoI by

making use of service preemption. In [16], the average AoI of

LCFS in the M/M/1 queue with and without service preemp-

tion is analyzed. The work of [17] is quite similar to [16], but it

considers the average AoI in the M/M/2 queue. In [18], the aver-

age AoI for the M/G/1/1 preemptive system with a multi-stream

updates source is derived. The age-optimality of the preemptive

LCFS (LCFS_P) policy is proved in [5], where the service times

are exponentially distributed.

In addition to taking advantage of service preemption, some

of the prior studies also consider the strategy of prioritizing in-

formative updates for reducing the AoI. The work of [6], [7]

reveals that the AoI performance can be improved by prioritiz-

ing informative updates and discarding non-informative policies

when making scheduling decisions. In [19], the authors consider

a G/G/1 queue with informative updates and derive the station-

ary distribution of the AoI, which is in terms of the stationary

distribution of the delay and the Peak AoI (PAoI). With the AoI

distribution, one can analyze the mean or higher moments of

the AoI in GI/GI/1, M/GI/1, and GI/M/1 queues under several

scheduling policies (e.g., FCFS and LCFS).

Recent research effort has also been exerted to understanding

the relation between the AoI and the delay. In [20], the authors

analyze the tradeoff between the AoI and the delay in a single-

server M/G/1 system under a specific scheduling policy without

knowing the service time of each individual update. In [21], the

violation probability of the delay and the PAoI is investigated

under an additive white Gaussian noise (AWGN) channel, but

the update size is assumed to be identical.

III. SYSTEM MODEL

In this section, we consider a single-server queueing system

and give the definitions of the Age-of-Information (AoI) and the

Peak AoI (PAoI).

We model the information-update system as a G/G/1 queue

where a single source generates updates (which contain current

state of a measurement or observation of the source) with rate

λ. The updates enter the queueing system immediately after

they are generated. Hence, the generation time is the same as

the arrival time. We use S to denote the size of an update (i.e.,

the amount of time required for the update to complete service),

which has a general distribution with mean E [S ]= 1/µ. The

system load is defined as ρ , λ/µ.

We use ti and t′
i

to denote the time at which the i-th update

was generated at the source and the time at which it leaves the

server, respectively. The AoI at time t is then defined as ∆(t) ,

t − U(t), where U (t), max
{

ti : t′
i
≤ t
}

is the generation time of

the freshest update among those that have been processed by the

server. An example of the AoI evolution under the FCFS policy

is shown in Fig. 2. Then, the average AoI can be defined as

∆ = lim
t→∞

1

t

∫ t

0

∆ (τ)dτ. (1)

In general, the analysis of the average AoI is quite difficult

since it is determined by two dependent quantities: the inter-

arrival time and the delay of updates [2]. We define the inter-

arrival time between the i-th update and (i − 1)-th update as

A
oI

∆ሺ𝒕ሻ

𝒕𝒊 𝒕𝒊ା𝟏 ᇱ𝒕𝒊ᇱ 𝒕𝒊ା𝟏𝒕𝒊ି𝟏ᇱ𝒕𝒊ି𝟏 Time

𝑨𝒊ି𝟏 𝑨𝒊
𝑨𝒊ା𝟏

Fig. 2: An example of the AoI evolution under the FCFS policy

Xi , ti− ti−1 and define the delay of the i-th update as Ti , t′
i
− ti.

Alternatively, the Peak AoI (PAoI) is also proposed as an in-

formation freshness metric [6], which is defined as the maxi-

mum value of the AoI before it drops due to a newly delivered

fresh update. Let Ai be the i-th PAoI. From Fig. 2, we can see

Ai = t′
i
− ti−1. This can be rewritten as the sum of the inter-arrival

time between the i-th update and the previous update (i.e., Xi)

and the delay of the i-th update (i.e., Ti). Therefore, the PAoI

of the i-th update can also be expressed as Ai = Xi + Ti, and its

expectation is E[Ai] = E[Xi] + E[Ti].

IV. SIZE-BASED POLICIES

In this section, we investigate the AoI performance of sev-

eral common scheduling policies, including size-based policies

and non-size-based policies, via extensive simulations. Note

that these common scheduling policies may serve the non-

informative updates (which do not lead to a reduced AoI). This

is because in some applications, such as news and social net-

work, obsolete updates are still useful and need to be served [5].

In Section VI, we will discuss the case where obsolete updates

are discarded.

Following [4], we first give the definitions of several common

scheduling policies that can be divided into four types: depend-

ing on whether they are size-based or not, where the size-based

policies use the update-size information (which is available in

some applications, such as smart grid [3]) for making schedul-

ing decisions; depending on whether they are preemptive or not.

The definition of preemption is given below. In this paper, we

do not consider the cost of preemption.

Definition 1. A policy is preemptive if an update may be stopped

partway through its execution and then restarted at a later time

without losing intermediary work.

The first type consists of policies that are non-preemptive and

blind to the update size:

• First-Come-First-Served (FCFS): When the server frees up, it

chooses to serve the update that arrived first if any.

• Last-Come-First-Served (LCFS): When the server frees up, it

chooses to serve the update that arrived last if any.

• Random-Order-Service (RANDOM): When the server frees

up, it randomly chooses one update to serve if any.

The second type consists of policies that are non-preemptive

and make scheduling decisions based on the update size:

• Shortest-Job-First (SJF): When the server frees up, it chooses

to serve the update with the smallest size if any.
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Fig. 3: Comparisons of the average AoI performance under several common scheduling policies
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Fig. 4: Comparisons of the average PAoI performance under several common scheduling policies

The third type consists of policies that are preemptive and

blind to the update size:

• Processor-Sharing (PS): All the updates in the system are

served simultaneously and equally (i.e., each update receives an

equal fraction of the available service capacity).

• Preemptive Last-Come-First-Served (LCFS_P): This is the

preemptive version of the LCFS policy. Specifically, a preemp-

tion happens when there is a new update.

The fourth type consists of policies that are preemptive and

make scheduling decisions based on the update size:

• Preemptive Shortest-Job-First (SJF_P): This is the preemp-

tive version of the SJF policy. Specifically, a preemption hap-

pens when there is a new update that has the smallest size.

• Shortest-Remaining-Processing-Time (SRPT): When the server

frees up, it chooses to serve the update with the smallest remain-

ing size. In addition, a preemption happens only when there is a

new update whose size is smaller than the remaining size of the

update in service.

Previous work (see, e.g., [4, Section VII]) reveals that size-

based policies can greatly improve the delay performance. Due

to such results, we conjecture that size-based policies also

achieve a better AoI performance given that the AoI is domi-

nantly determined by the delay when the system load is high

or when the size variability is large [2]. As we mentioned ear-

lier, it is in general very difficult to obtain the exact expression

of the average AoI except for some special cases (e.g., FCFS

and LCFS) [2], [19]. Therefore, we attempt to investigate the

AoI performance of size-based policies through extensive simu-

lations.

In Figs. 3 and 4, we present the simulation results of the aver-

age AoI and PAoI performance under the scheduling policies we

introduced above, respectively. There are three commonly used

methods to conduct the simulation: Independent Replications,

Batch Means, and Regeneration. Here, we use the Independent

Replications for the following reasons: (i) the replication means

are independent; (ii) it allows to start the individual replications

in different initial states such that various different sample paths

of the underlying stochastic process can be observed. Specifi-

cally, we conduct 50 simulation runs and take the average val-

ues. In each simulation run, we consider a total number of 105

updates to ensure that the steady state is reached. All the random

numbers are generated using the default pseudorandom number

generator (i.e., the Mersenne Twister) in the Python standard li-

brary. Here, we assume that a single source generates updates

according to a Poisson process with rate λ, and the update size

is independent and identically distributed (i.i.d.). In Fig. 3(a),

we assume that the update size follows an exponential distribu-

tion with mean 1/µ = 1. In Figs. 3(b) and 3(c), we assume

that the update size follows a Weibull distribution1 with mean

1/µ = 1. We define the squared coefficient of variation of the

update size as C2
, Var (S ) /E[S ]2, i.e., the variance normalized

1The Weibull distribution is a heavy-tailed distribution with pdf f (x;α, β) =
α
β ( x
β )α−1e−(x/β)α for x > 0, where α > 0 is the shape parameter and β > 0 is the

scale parameter.
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by the square of the mean [4]. Hence, a larger C2 means a larger

variability. In Fig. 3(b), we fix C2 = 10 and change the value of

system load ρ, while in Fig. 3(c), we fix system load ρ = 0.7 and

change the value of C2. Note that throughout the paper, these

simulation settings are used as default settings unless otherwise

specified. In addition, the 95% confidence intervals of Figs. 3

and 4 are also provided in our online technical report [22], in

which we observe that the margin of error is only a very small

portion of the average (about 1%).

In the following, we will discuss key observations from the

simulation results and propose useful guidelines for the design

of AoI-efficient policies.

Observation 1. Size-based policies achieve a better average

AoI/PAoI performance than non-size-based policies in both non-

preemptive and preemptive cases.

In Fig. 3, we can see that for the non-preemptive case, SJF

has a better average AoI performance than FCFS, RANDOM,

and LCFS in various settings. Similarly, for the preemptive case,

SJF_P and SRPT have a better average AoI performance than PS

and LCFS_P. Similar observations can be made for the average

PAoI performance in Fig. 4.

Observation 2. Under preemptive, size-based policies, the av-

erage AoI/PAoI decreases as the system load increases.

In Figs. 3(a) and 3(b), we can see that under SJF, SJF_P, and

SRPT, the average AoI decreases as the system load ρ increases.

There are two reasons. First, when ρ increases, there will be

more updates with small size arriving to the queue. Therefore,

size-based policies that prioritize updates with small size lead to

more frequent AoI drops. Second, preemption operations pre-

vent fresh updates from being blocked by a large or stale update

in service. Similar observations can be made for the average

PAoI performance in Figs. 4(a) and 4(b).

Observations 1 and 2 lead to the following guideline:

Guideline 1. When the update-size information is available,

one should prioritize updates with small size.

However, in certain application scenarios, the update-size in-

formation may not be available or is difficult to estimate. Hence,

the scheduling decisions have to be made without the update-

size information. In such scenarios, we make the following ob-

servations from Figs. 3 and 4.

Observation 3. LCFS and LCFS_P achieve the best average

AoI performance among non-preemptive, non-size-based poli-

cies and preemptive, non-size-based policies, respectively.

Observation 4. Under LCFS_P, the average AoI/PAoI de-

creases as the system load increases.

Observations 3 and 4 have also been made in previous

work [5], [14], [23]. It is quite intuitive that when the update-

size information is unavailable, one should give a higher prior-

ity to more recent updates. This is because while all the updates

have the same expected service time, the most recent update ar-

rives the last and thus leads to the smallest AoI once delivered.

Therefore, Observations 3 and 4 lead to the following guideline:

Guideline 2. When the update-size information is unavailable,

one should prioritize recent updates.

A
o
I

∆ሺ𝒕ሻ

𝒕𝒊𝒕𝒊ᇱ
𝒕𝒊ି𝟏ᇱ𝒕𝒊ି𝟏
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Fig. 5: An example of the AoI/PAoI evolution where the inter-

arrival time has a large variability

Note that Observations 2 and 4 also suggest that under pre-

emptive policies, the average AoI/PAoI decreases as the system

load ρ increases. This is because preemptions prevent fresh up-

dates from being blocked by a large or stale update in service.

In addition, we have also observed the following nice properties

of preemptive policies.

Observation 5. Not only do preemptive policies achieve a bet-

ter average AoI/PAoI performance than non-preemptive poli-

cies, but they are also less sensitive when the update-size vari-

ability changes, i.e., they are more robust.

In Figs. 3(a) and 3(b), we can see that preemptive policies

(e.g., LCFS_P, SJF_P, and SRPT) generally have a better av-

erage AoI performance than non-preemptive ones (e.g., FCFS,

RANDOM, LCFS, and SJF), especially when the system load

is high. In Fig. 3(c), we can see that the advantage of pre-

emptive policies becomes larger as the update-size variability

(i.e., C2) increases. Moreover, the AoI performance of preemp-

tive policies is only very slightly impacted when the update-size

variability changes, while that of non-preemptive policies varies

significantly. Therefore, Observations 2, 4, and 5 lead to the

following guideline:

Guideline 3. Service preemption should be employed when it is

allowed.

Note that above observations not only hold for the M/G/1

queue, but also can be made for the G/G/1 queue. More sim-

ulation results for the G/G/1 queue (i.e., Figs. 16-23) can be

found in Appendix .A and our technical report [22]. In addi-

tion, we make the following interesting observations regarding

the average PAoI and AoI in a G/G/1 queue.

Observation 6. The average PAoI could be much smaller than

the average AoI when the interarrival time has a large variabil-

ity.

In Figs. 16(a) and 17(a), we can see that the average PAoI is

much smaller than the average AoI for all the common schedul-

ing policies we considered. This is due to the interarrival time

has a large variability. We present an example in Fig. 5 to il-

lustrate that this phenomenon comes from the large variability
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of the interarrival time. We consider three updates: the i-th,

the (i + 1)-st and (i + 2)-nd updates, which are served in se-

quence during (t′
i−1, t

′
i+2). Their interarrival times are as follows:

ti − ti−1 = 30, ti+1 − ti = 1, and ti+2 − ti+1 = 1; and their

system times are as follows: t′
i
− ti = 1, t′

i+1 − ti+1 = 1, and

t′
i+2− ti+2 = 1. In addition, we also assume t′

i−1− ti−1 = 1. There-

fore, the average AoI and the average PAoI during (t′
i−1, t

′
i+2) are

312+22+22−3×12

2×(30+1+1)
≈ 15.09 and 31+2+2

3
≈ 11.67, respectively. In this

case, the average PAoI is indeed smaller than the average AoI.

The importance of Observation 6 can be summarized as fol-

lows. First, in certain settings (e.g., where the interarrival

time has a large variability), the average AoI can actually be

higher than the average PAoI. This observation is counterintu-

itive, given that the computation of the average PAoI includes

the peak values of the AoI only. Second, given that the average

AoI and the average PAoI exhibit different relationships in dif-

ferent settings, an AoI-efficient scheduling policy may not nec-

essarily achieve a desired PAoI performance, and vice versa. In

other words, one must carefully study the design of AoI-efficient

scheduling policies with different goals in mind (i.e., minimiz-

ing the average AoI or the average PAoI).

Observation 7. While the average AoI performance of several

non-preemptive policies (such as RANDOM, LCFS, and SJF) is

sensitive to the update-size variability, their average PAoI per-

formance is not.

In Fig.4(c), we observe that while the average PAoI perfor-

mance of FCFS is sensitive to the update-size variability, under

several non-preemptive policies (such as RANDOM, LCFS, and

SJF), the average PAoI performance is much less sensitive. An

explanation for this observation is the following.

First, we explain why the average PAoI under FCFS is still

sensitive to the update-size variability. Note that a key difference

between FCFS and other non-preemptive policies is that under

FCFS, every update leads to an AoI drop and thus corresponds

to an AoI peak2. When a large update is in service, it will block

all the following updates that are waiting in the queue, which

results in a large delay for all such updates and thus a large PAoI

corresponding to these updates. In contrast, under RANDOM,

LCFS, and SJF, the impact of such a blocking issue is minimal

for the updates that lead to an AoI drop.

Next, we explain why under RANDOM, LCFS, and SJF,

while the average AoI is sensitive to the update-size variability,

the average PAoI is not. We first consider LCFS. In the setting

we consider, there is a high chance that the newest update has

a small size. Serving such small-size updates leads to a small

PAoI. When the newest update has a large size, the correspond-

ing PAoI would also be large. However, this happens less often.

Therefore, the AoI trajectory would consist of a smaller percent-

age of large AoI peaks with many small AoI peaks in between.

As the update-size variability increases, there will be fewer but

larger AoI peaks. In such cases, while the average AoI is sensi-

tive to the large AoI peaks (which comes from the large update-

size variability), the average PAoI is much less sensitive. To

2Consider a non-preemptive policy, the LCFS policy, as an example. Under
LCFS, there may be older updates waiting in the queue when a new update is
being served. After this new update finishes service, those older updates waiting
in the queue become outdated, and the delivery of any of these older updates
will not lead to an AoI drop.
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Fig. 6: An example of the AoI/PAoI evolution where the service

time has a large variability

illustrate this fact, we provide an example in Fig. 6, where there

is a large update of size n − 1, immediately followed by n small

updates of size 1. In this case, we can compute the average AoI

as ∆=
[

1 × ( n2

2
− 12

2
) + n ×

(

22

2
− 12

2

)]

/ ((n − 1) + n) = n2+3n−1
4n−2

=

O(n) and compute the average PAoI as A = n+2×n
n+1
= 3n

n+1
= O(3).

This example shows that a larger update-size variability (i.e., a

larger n in this example) results in a larger average AoI but only

minimally affects the average PAoI. A similar explanation also

applies to SJF and RANDOM.

V. AOI-BASED POLICIES

In Section IV, we have demonstrated that size-based policies

achieve a better average AoI/PAoI performance than non-size-

based policies. However, size-based policies do not utilize the

arrival-time information, which also plays an important role in

reducing the AoI. In this section, we propose three AoI-based

scheduling policies, which leverage both the update-size and

arrival-time information to reduce the AoI. Our simulation re-

sults show that these AoI-based policies outperform non-AoI-

based policies.

We begin with the definitions of three AoI-based policies that

attempt to optimize the AoI at a specific future time instant from

three different perspectives:

• AoI-Drop-Earliest (ADE): When the server frees up, it

chooses to serve an update such that once it is delivered, the

AoI drop as soon as possible.

• AoI-Drop-to-Smallest (ADS): When the server frees up, it

chooses to serve an update such that once it is delivered, the

AoI drops to a value as small as possible.

• AoI-Drop-Most (ADM): When the server frees up, it chooses

to serve an update such that once it is delivered, the AoI drops

as much as possible.

If all updates waiting in the queue are obsolete, then the above

policies choose to serve an update with the smallest size.

Although all of these AoI-based policies are quite intuitive,

they behave very differently. In order to explain the differences

of these AoI-based policies, we present an example in Fig. 7 to

show how the AoI evolves under these policies. Suppose that

when the (i − 1)-st update is being served, three new updates

(i.e., the i-th, (i+1)-st, and (i+2)-nd updates) arrive in sequence

at times ti, ti+1, and ti+2, respectively. The sizes of these updates
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Fig. 7: The AoI evolution under three AoI-based policies: ADE

(red), ADS (blue), and ADM (green)

satisfy S i < S i+1 < S i+2. When the server frees up after it fin-

ishes serving the (i − 1)-st update at time t′
i−1, ADE, ADS, and

ADM choose to serve the i-th, (i + 1)-st, and (i + 2)-nd updates,

respectively. This is because serving the i-th update leads to the

earliest AoI drop at time t′
i

(following the red curve), serving the

(i+1)-st update leads to the AoI dropping to the smallest at time

t′
i+1 (following the blue curve), and serving the (i+ 2)-nd update

leads to the largest AoI drop at time t′
i+2 (following the green

curve). Clearly, ADE, ADS and ADM aim to optimize AoI at

a specific future time instant (i.e., the future delivery time of

chosen update) with different myopic goals. Note that at first

glance, ADS and ADM may look the same. Indeed, they would

be equivalent if the events of AoI drop have happened at the

same time instant. However, these two policies are different as

the time instants at which the AoI drops are not necessarily the

same (e.g., t′
i+1 vs. t′

i+2 in Fig. 7). In addition, ADE and SJF

may also look the same at first glance. Indeed, these two poli-

cies would make the same decision (i.e., choose the smallest

update to serve) when the smallest update leads to an AoI drop.

However, they make different decisions when the smallest up-

date does not lead to an AoI drop. An example is provided in

Fig. 8 to illustrate the key difference. In Fig. 8, after the (i − 1)-

st update completes service at time t′
i−1, there are two updates

waiting to be served: the (n − 2)-nd update and the i-th update.

Suppose that the update size and the arrival time of these two

updates satisfy the following: S i−2 < S i and ti−2 < ti−1 < ti.

Clearly, ADE chooses to serve the i-th update that leads to an

earlier AoI drop (see Fig. 8(a)), while SJF chooses to serve the

(i − 2)-nd update that has a smaller size (see Fig. 8(b)).

Next we conduct extensive simulations to investigate the AoI

performance of these AoI-based policies. In Fig. 9, we present

the simulation results of the average AoI performance of the

AoI-based policies compared to a representative arrival-time-

based policy (i.e., LCFS) and a representative size-based-policy

(i.e., SJF). All the policies considered here are non-preemptive;

the preemptive cases will be discussed in Section VI.

In Fig. 9(a), we observe that most AoI-based policies are

slightly better than non-AoI-based policies, although their per-

formances are very close. Among the AoI-based policies, ADE

is the best, ADM is the worst, and ADS is in-between. This is

not surprising that ADM is the worst: although ADM has the
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Fig. 8: An example of the AoI evolution under ADE and SJF

largest AoI drop, this is at the cost that it may have to wait un-

til the AoI become large first. ADE being the best suggests that

giving a higher priority to small updates (so that the AoI drops as

soon as possible) is a good strategy. In Figs. 9(b) and 9(c), sim-

ilar observations can be made for update size following Weibull

distributions.

The above observations lead to the following guideline:

Guideline 4. Leveraging both the update-size and arrival-time

information can further improve the AoI performance. However,

the benefit seems marginal.

VI. PREEMPTIVE, INFORMATIVE, AOI-BASED

POLICIES

In Section IV, we have observed that preemptive policies have

several advantages and perform better than non-preemptive poli-

cies. In this section, we first demonstrate that policies that prior-

itize informative updates (i.e., those that can lead to AoI drops

once delivered) perform better than non-informative policies.

Then, by integrating the guidelines we have, we consider pre-

emptive, informative, AoI-based policies and evaluate their per-

formances through simulations.

A. Informative Policies

As far as the AoI is concerned, there are two types of up-

dates: informative updates and non-informative updates [24].

Informative updates lead to AoI drops once delivered while non-

informative updates do not. In some applications, such as au-

tonomous vehicles and stock quotes, it is reasonable to discard

non-informative updates (which do not help reduce the AoI but

may block new updates). In this subsection, we introduce the

“informative” versions of various policies, which prioritize in-

formative updates and discards non-informative updates. Then,

we use simulation results to demonstrate that informative poli-

cies generally have a better average AoI/PAoI performance than

the original (non-informative) ones. Furthermore, we rigorously

prove that in a G/M/1 queue, the informative version of LCFS is

stochastically better than the original LCFS policy.

We use π_I to denote the informative version3 of policy π.

All the scheduling policies we consider have their informative

versions. In some cases, the informative version is simply the

same as the original policy (e.g., FCFS and LCFS_P).

3For simplicity, we omit the additional “_" in the policy name if policy π is a
preemptive policy ending with “_P". For example, we use LCFS_PI to denote
the informative version of LCFS_P.
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Fig. 9: Comparisons of the average AoI performance: AoI-based policies vs. non-AoI-based policies
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Fig. 10: Comparisons of the average PAoI performance: AoI-based policies vs. non-AoI-based policies

In Fig. 11, we show the simulation results of the average AoI

performance of several informative policies compared to their

non-informative counterparts. In order to evaluate the benefit of

informative policies, we plot the informative AoI gain, which is

the ratio of the difference between the average AoI of the non-

informative version and the informative version to the average

AoI of the non-informative version. Hence, a larger informa-

tive gain means a larger benefit of the informative version. One

important observation from Fig. 11 is as follows.

Observation 8. Informative policies achieve a better average

AoI performance than their non-informative counterparts. The

informative gain is larger for non-preemptive policies and in-

creases as the system load increases.

Intuitively, informative policies are expected to outper-

form their non-informative counterparts because serving non-

informative updates cannot reduce the AoI but may block new

updates. The simulation results verify this intuition as the infor-

mative AoI gain is always non-negative. Second, we can see that

most non-preemptive policies (e.g., RANDOM, LCFS, and SJF)

benefit more from prioritizing informative updates. Third, as the

system load ρ increases, the informative AoI gain increases un-

der most considered policies, especially those non-preemptive

ones. This is because as the system load increases, the number

of non-informative updates also increases, which has a larger

negative impact on the AoI performance for non-preemptive,

non-informative policies.

Observation 8 leads to the following guideline:

Guideline 5. The server should prioritize informative updates

and discard non-informative updates when it is allowed.

Based on Observation 8, we conjecture that an informative

policy is as least as good as its non-informative counterpart. As

a preliminary result, we prove that this conjecture is indeed true

for LCFS in a G/M/1 queue. In the following, we introduce the

stochastic ordering notion, which will be used in the statement

of Proposition 1.

Definition 2. Stochastic Ordering of Stochastic Processes [25,

Ch.6.B.7]: Let {X(t), t ∈ [0,∞)} and {Y(t), t ∈ [0,∞)} be two

stochastic processes. Then, {X(t), t ∈ [0,∞)} is said to be

stochastically less than {Y(t), t ∈ [0,∞)}, denoted by {X(t), t ∈

[0,∞)}≤st{Y(t), t ∈ [0,∞)}, if, for all choices of integer n and

t1 < t2 < · · · < tn in [0,∞), the following holds for all upper

sets4 S U ⊆ Rn:

P(~X ∈ S U) ≤ P(~Y ∈ S U), (2)

where ~X , (X(t1), X(t2), . . . , X(tn)) and ~Y , (Y(t1),Y(t2), . . . ,Y(tn)).

Stochastic equality can be defined in a similar manner and is de-

noted by {X(t), t ∈ [0,∞)}=st{Y(t), t ∈ [0,∞)}.

Roughly speaking, Eq. (2) implies that ~X is less likely than
~Y to take on large values, where “large” means any value in

4A set S U ⊆ Rn is an upper set if ~y ∈ S U whenever ~y ≥ ~x and ~x ∈ S U , where
~x = (x1, . . . , xn) and ~y = (y1, . . . , yn) are two vectors in Rn and ~y ≥ ~x if yi ≥ xi

for all i = 1, 2, . . . , n.
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Fig. 11: Comparisons of the average AoI performance: informative policies vs. non-informative policies
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Fig. 12: Comparisons of the average PAoI performance: informative policies vs. non-informative policies

an upper set S U . We also use ∆π(t) to denote the AoI process

under policy π. Furthermore, we define a set of parameters

I = {n, (ti)
n
i=1
}, where n is the number of updates and ti is the

generation time of update i. Having these definitions and nota-

tions, we are now ready to state Proposition 1.

Proposition 1. In a G/M/1 queue, for all I, the AoI under

LCFS_I is stochastically smaller than that under LCFS, i.e.,

[
{

∆LCFS_I (t) , t ∈ [0,∞)
}

|I]≤st[{∆LCFS (t) , t ∈ [0,∞)} |I]. (3)

Proof. Recall that we use ti and t′
i

to denote the arrival time and

the delivery time of the i-th update, respectively. In addition, we

use si to denote the service start time of the i-th update.

We define the system state at time t under policy π as S π(t) ,

Uπ(t), where Uπ (t) is the largest arrival time of the updates that

have been served under policy π by time t. Let {S π(t), t ∈ [0,∞)}

be the state process under policy π. By the definition of AoI,

Eq. (3) holds if the following holds:

[
{

S LCFS−I(t), t ∈ [0,∞)
}

|I]≥st[{S LCFS(t), t ∈ [0,∞)} |I]. (4)

Next, we prove Eq. (4) by contradiction through a cou-

pling argument. Suppose that stochastic processes Ŝ LCFS_I (t)

and Ŝ LCFS (t) have the same stochastic laws as S LCFS_I (t) and

S LCFS (t), respectively. We couple Ŝ LCFS_I (t) and Ŝ LCFS (t) in

the following manner: If an update i is delivered at t′
i

in Ŝ LCFS(t),

then the update j being served at t′
i

(if any) in Ŝ LCFS_I(t) is also

delivered at the same time. This coupling is reasonable because:

(i) the updates served in Ŝ LCFS_I(t) are not chosen based on up-

date size; (ii) the service time of an update in both Ŝ LCFS_I (t)

and Ŝ LCFS (t) is exponentially distributed and has the memory-

less property. By Theorem 6.B.30 in [25], Eq. (4) holds if the

following holds:

P(Ŝ LCFS_I (t) ≥ Ŝ LCFS (t) , t ∈ [0,∞) |I) = 1. (5)

In the following, we want to show that Ŝ LCFS_I (t) ≥ Ŝ LCFS (t)

holds conditionally on an arbitrary sample path I, which triv-

ially implies Eq. (5). We prove it by contradiction. For the sake

of contradiction, suppose that Ŝ LCFS_I(t) < Ŝ LCFS(t) does hap-

pen and that it happens for the first time at time t0 (see Fig. 13

for illustration). Let m and n be the index of the served updates

with the largest arrival time by t0 in Ŝ LCFS_I(t) and Ŝ LCFS(t), re-

spectively. Then, we have ULCFS_I(t0) = tm and ULCFS(t0) = tn.

Note that we also have tm < tn due to Ŝ LCFS_I(t0) < Ŝ LCFS(t0)

(i.e., ULCFS_I(t0) < ULCFS(t0)). Since t0 is the first time when

Ŝ LCFS_I(t) < Ŝ LCFS(t) happens, a crucial observation is that t0
must be immediately after an update is delivered in Ŝ LCFS(t).

Hence, we have t0 = (t′n)+, where (t′n)+ denotes the time imme-

diately after t′n.

Due to the coupling between Ŝ LCFS(t) and Ŝ LCFS_I(t), there

are two cases in Ŝ LCFS_I(t): 1) the server is being idle at t′n; 2)

an update is delivered at t′n too. We discuss these two cases

separately and show that there is a contradiction in both cases.

Case 1): The server in Ŝ LCFS_I(t) is being idle at t′n (see
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(c)Case 2b): The m-th update is delivered at t′n in Ŝ LCFS_I(t), and the server in

Ŝ LCFS(t) is busy at time sm

Fig. 13: Part of sample path of Ŝ LCFS_I(t) and Ŝ LCFS(t) in differ-

ent cases

Fig. 13(a)). Then, the most recently delivered update in

Ŝ LCFS_I(t) (i.e., the m-th update) must be delivered before t′n.

Hence, we have t′m < t′n and that the server in Ŝ LCFS_I(t) stays in

the idle state during (t′m, t
′
n]. Then, the server in Ŝ LCFS_I(t) could

have started serving a newer update that arrives later than the m-

th update immediately after t′m. (Such a newer update must exist

as the n-th update is a valid candidate due to tm < tn.) This re-

sults in a contradiction with the server being idle during (t′m, t
′
n].

Case 2): An update is delivered at t′n in Ŝ LCFS_I(t). This deliv-

ered update is the m-th update. Note that we must have sm < tn.

This is because if sm ≥ tn, then the server in Ŝ LCFS_I(t) would

have chosen to serve the n-th update or a fresher update that ar-

rives later than tn at time sm since this selected update is a newer

update (due to tm < tn). There are two subcases for the server in

Ŝ LCFS(t) at time sm: 2a) idle; 2b) busy. Again, we discuss these

two subcases separately and show that there is a contradiction in

both cases.

Case 2a): The server in Ŝ LCFS(t) is idle at time sm (see

Fig. 13(b)). In this case, the m-th update must have already

been delivered by time sm in Ŝ LCFS(t). Otherwise, the server in

Ŝ LCFS(t) would have started serving the m-th update (or a newer

update) at or before sm. This implies that Ŝ LCFS_I(t) < Ŝ LCFS(t)

happens before sm, which results in a contradiction with that t0
is the first time at which Ŝ LCFS_I(t) < Ŝ LCFS(t) happens.

Case 2b): The server in Ŝ LCFS(t) is busy at time sm (see

Fig. 13(c)). Assume that the l-th update is being served at sm in

Ŝ LCFS(t). In this case, the l-th update must be delivered by time

sn in Ŝ LCFS(t). This is because the n-th update starts service at

sn in Ŝ LCFS(t). Then, the m-th update must also be delivered by

time sn in Ŝ LCFS_I(t), due to the coupling between Ŝ LCFS(t) and

Ŝ LCFS_I(t). This results in a contradiction that the m-th update is

delivered at t′n.

Combining all the cases, we show that Ŝ LCFS_I (t) ≥ Ŝ LCFS (t)

holds conditionally on an arbitrary sample path I. This triv-

ially implies Eq. (5), which further implies Eq. (4) by Theo-

rem 6.B.30 in [25]. This completes the proof. �

B. Preemptive, Informative, AoI-based Policies

So far, we have demonstrated the advantages of preemptive

policies, AoI-based policies, and informative policies. In this

subsection, we want to integrate all of these three ideas and pro-

pose preemptive, informative, AoI-based policies.

We first consider preemptive, informative version of three

AoI-based policies: ADE_PI, ADS_PI, and ADM_PI. Interest-

ingly, we can show equivalence between ADE_PI and SRPT_I

(i.e., the informative version of SRPT) and between ADE_I and

SJF_I (i.e., the informative version of ADE and SJF, respec-

tively) in the sample-path sense. These results are stated in

Propositions 2 and 3.

Proposition 2. ADE_PI and SRPT_I are equivalent in every

sample path.

Proof. We use strong induction to prove that under the same

sample path, ADE_PI and SRPT_I always choose the same up-

date to serve at the same time. In the following, we only con-

sider informative updates since non-informative updates are dis-

carded under both ADE_PI and SRPT_I.

Suppose that when ADE_PI needs to choose the n-th update

to serve at time tADE_PI (n), it chooses the update with index

dADE_PI (n). Similarly, SRPT_I chooses the update with index

dSRPT_I (n) as its n-th update to serve at tSRPT_I (n).

Claim: ADE_PI and SRPT_I always serve the same

update at the same time, i.e., (dADE−PI(n), tADE−PI(n)) =

(dSRPT−I(n), tSRPT−I(n)) for all n.

Base case: When n = 1, both ADE_PI and SRPT_I

serve the first update when it arrives. Hence, we have
(

dADE_PI (1) , tADE_PI (1)
)

=
(

dSRPT_I (1) , tSRPT_I (1)
)

.

Induction step: Suppose that for n = k (k ≥ 1), we

have
(

dADE_PI (m) , tADE_PI (m)
)

=
(

dSRPT_I (m) , tSRPT_I (m)
)

for

the m-th update for all 1 ≤ m ≤ k. We want to show that
(

dADE_PI (n) , tADE_PI (n)
)

=
(

dSRPT_I (n) , tSRPT_I (n)
)

still holds

for n = k + 1. Note that there are two cases for the (k + 1)-

st update: 1) the (k + 1)-st update preempts the k-th update; 2)

the (k + 1)-st update does not preempt the k-th update, i.e., the

(k+1)-st update starts service from the idle state or immediately

after the k-th update is delivered. We discuss these two cases

separately and show that
(

dADE_PI (k + 1) , tADE_PI (k + 1)
)

=
(

dSRPT_I (k + 1) , tSRPT_I (k + 1)
)

holds in both cases.

Case 1): The (k + 1)-st update preempts the k-th update. Dur-

ing the service of the k-th update, the (k + 1)-st update arrives.

Under ADE_PI, in order to make AoI drop as early as possi-

ble, the server compares the remaining service time of the k-

th update with the original service time of the (k + 1)-st up-

date and chooses to serve the update with a smaller remain-

ing service time. This is exactly the same as what SRPT_I

does. Therefore, we have
(

dADE_PI (k + 1) , tADE_PI (k + 1)
)

=
(

dSRPT_I (k + 1) , tSRPT_I (k + 1)
)

.
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Fig. 14: Comparisons of the average AoI performance: preemptive, informative, AoI-based policies vs. others
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Case 2): The (k + 1)-st update does not preempt the k-th

update. On the one hand, if the (k + 1)-st update starts ser-

vice from the idle state, then by the induction hypothesis, both

ADE_PI and SRPT_I finish serving the k-th update at the same

time and then go through a period of being idle. Therefore,

ADE_PI and SRPT_I will also serve the same (k + 1)-st up-

date at the same time, i.e.,
(

dADE_PI (k + 1) , tADE_PI (k + 1)
)

=
(

dSRPT_I (k + 1) , tSRPT_I (k + 1)
)

. On the other hand, if the

(k + 1)-st update starts service immediately after the ser-

vice of k-th update, then by the induction hypothesis,

ADE_PI and SRPT_I will start service at the same time,

i.e., tADE_PI (k + 1)=tSRPT_I (k + 1). SRPT_I will select the

(k + 1)-st update with the shortest remaining size. How-

ever, this selected (k + 1)-st update must have not been

served before. Otherwise, this update is no longer infor-

mative it was preempted by other update. Thus, SRPT_I

ends up choosing an update with the shortest original

size, which will also be selected by ADE_PI. This im-

plies dADE_PI (k + 1) = dSRPT_I (k + 1). Therefore, we have
(

dADE_PI (k + 1) , tADE_PI (k + 1)
)

=
(

dSRPT_I (k + 1) , tSRPT_I (k + 1)
)

.

�

Proposition 3. ADE_I and SJF_I are equivalent in every sam-

ple path.

Proof. Similar to the proof of Proposition 2, we use strong in-

duction to show that under the same sample path, ADE_I and

SJF_I always choose the same update to serve at the same time.

Here, we also only consider the informative updates.

Suppose that when ADE_I needs to choose the n-th update

to serve at time tADE_I (n), it chooses the update with index

dADE_I (n). Similarly, SJF_I chooses the update with index

dSJF_I (n) as its n-th update to serve at tSJF_I (n).

Claim: ADE_I and SJF_I always serve the same update at the

same time, i.e., (dADE−I(n), tADE−I(n)) = (dSJF−I(n), tSJF−I(n)) for

all n.

Base case: When n = 1, both ADE_I and SJF_I serve the first

update when it arrives. Hence, we have
(

dADE_I (1) , tADE_I (1)
)

=
(

dSJF_I (1) , tSJF_I (1)
)

.

Induction step: Suppose that for n = k (k ≥ 1), we have
(

dADE_I (m) , tADE_I (m)
)

=
(

dSJF_I (m) , tSJF_I (m)
)

for the m-th

update for 1 ≤ m ≤ k. We want to show that (dADE−I(n),

tADE−I(n)) = (dSJF−I(n), tSJF−I(n)) still holds for n = k + 1. Note

that there are two cases for the (k + 1)-st update: 1) the (k + 1)-

st update starts service from the idle state; 2) the (k + 1)-st

update starts service immediately after the k-th update is de-

livered. We discuss these two cases separately and show that
(

dADE_I (k + 1) , tADE_I (k + 1)
)

=
(

dSJF_I (k + 1) , tSJF_I (k + 1)
)

holds in both cases.

Case 1): The (k + 1)-st update starts service from the idle

state. By the induction hypothesis, both ADE_I and SJF_I

finish serving the k-th update at the same time and then go

through a period of being idle. Therefore, ADE_I and SJF_I

will also serve the same (k + 1)-st update at the same time, i.e.,
(

dADE_I (k + 1) , tADE_I (k + 1)
)

=
(

dSJF_I (k + 1) , tSJF_I (k + 1)
)

.

Case 2): The (k + 1)-st update starts service immediately

after the k-th update is delivered. By the induction hypothe-
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sis, ADE_I and SJF_I will start service at the same time, i.e.,

tADE_I (k + 1)=tSJF_I (k + 1). SJF_I will choose the (k + 1)-st up-

date that has the smallest update size, which will also be se-

lected by ADE_I since this update can make AoI drop earliest.

This implies dADE_PI (k + 1) = dSJF_I (k + 1). Therefore, we have
(

dADE_I (k + 1) , tADE_I (k + 1)
)

=
(

dSJF_I (k + 1) , tSJF_I (k + 1)
)

.

�

Propositions 2 and 3 imply that although SRPT_I and SJF_I

do not explicitly follow an AoI-based design, they are essen-

tially AoI-based policies. This provides an intuitive explanation

for why size-based policies, such as variants of SRPT and SJF,

have a good empirical AoI performance.

In Fig. 14, we present the simulation results for the aver-

age AoI performance of the preemptive, informative, AoI-based

policies (ADE_PI) compared to several other policies. We ob-

serve that in various settings we consider, ADE_PI achieves

the best AoI performance. However, compared to the best

delay-efficient policies (such as SRPT), the AoI improvement

of the preemptive, informative, and AoI-based policies is rather

marginal in the settings with exogenous arrivals.

VII. CONCLUSION

In this paper, we systematically studied the impact of various

aspects of scheduling policies on the AoI performance and pro-

vided several useful guidelines for the design of AoI-efficient

scheduling policies. Our study reveals that among various as-

pects of scheduling policies we investigated, prioritizing small

updates, allowing service preemption, and prioritizing informa-

tive updates play the most important role in the design of AoI-

efficient scheduling policies. It turns out that common schedul-

ing policies like SRPT and SJF_P and their informative variants

can achieve a very good AoI performance, although they do not

explicitly make scheduling decisions based on the AoI. This can

be partially explained by the equivalence between such size-

based policies and some AoI-based policies. Moreover, when

the AoI requirement is not stringent or the update-size informa-

tion is not available, some simple delay-efficient policies (such

as LCFS_P) are also good candidates for AoI-efficient policies.

Our findings also raise several interesting questions that are

worth investigating as future work. One important direction is to

pursue more theoretical results beyond the simulation results we

provided in this paper. For example, it would be interesting to

see whether one can rigorously prove that any informative pol-

icy always outperforms its non-informative counterpart, which

is consistently observed in the simulation results.

Appendix

A. Additional Simulation Results for the G/G/1 Queue

We present additional simulation results for the G/G/1 queue

in Figs. 16-23. For all these simulations, we assume that the in-

terarrival time follows a Weibull distribution with C2 = 10. In

subfigure (a), we assume that the update size follows an Expo-

nential distribution with mean 1/µ = 1; in subfigures (b) and

(c), we assume that the update size follows a Weibull distribu-

tion with mean 1/µ = 1. Note that in subfigures (a) and (b),

we change the value of the system load ρ; in subfigure (c), we

change the value of C2 for the update size while fixing the sys-

tem load at ρ = 0.7. Observations 1-8 can also be made for the

setting of G/G/1 queue.
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Fig. 16: Comparisons of the average AoI performances of several common scheduling policies under different distributions
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Fig. 17: Comparisons of the average PAoI performances of several common scheduling policies under different distributions
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Fig. 18: Comparisons of the average AoI performance under different distributions: AoI-based policies vs. non-AoI-based policies

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

System load 

2

4

6

8

10

12

14

A
v
e
ra

g
e
 P

A
o
I

ADM

ADS

ADE

LCFS

SJF

0.8

4
4.5

5

(a)Interarrival time: Weibull (C2= 10); Update size:
Exponential (µ = 1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

System load 

2

4

6

8

10

12

14

A
v
e
ra

g
e
 P

A
o
I

ADM

ADS

ADE

LCFS

SJF

0.8

5
5.1
5.2

(b)Interarrival time: Weibull (C2= 10); Update size:
Weibull (µ = 1 and C2= 10)

1 2 3 4 5 6 7 8 9 10

Squared  coefficient  of  variation C
2

0

2

4

6

8

10

A
v
e
ra

g
e
 P

A
o
I

ADM

ADS

ADE

LCFS

SJF

9

4.9

5

5.1

(c)Interarrival time: Weibull (C2= 10); Update size:
Weibull (µ = 1 and ρ = 0.7)

Fig. 19: Comparisons of the average PAoI performance under different distributions: AoI-based policies vs. non-AoI-based policies
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Fig. 20: Comparisons of the avg. AoI performance under different distributions: informative policies vs. non-informative policies
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Fig. 21: Comparisons of the avg. PAoI performance under different distributions: informative policies vs. non-informative policies
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Exponential (µ = 1)
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Fig. 22: Comparisons of the avg. AoI performance under different distributions: preemptive, informative, AoI-based policies vs.

others
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Fig. 23: Comparisons of the avg. PAoI performance under different distributions: preemptive, informative, AoI-based policies vs.

others
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