Optimizing Flow Bandwidth Consumption with
Traffic-diminishing Middlebox Placement

Yang Chen Jie Wu Bo Ji
Temple University Temple University Temple University
yang.chen@temple.edu jilewu@temple.edu boji@temple.edu
ABSTRACT

The implementation of network services is changed from dedicated
hardware to software middleboxes with the evolution of Network
Function Virtualization (NFV). The placement of such middleboxes
are complicated not only by the selection of multiple available
hosting servers, but also by the traffic-changing effect of middle-
boxes. In this paper, we address the placement problem of a single
type of traffic-diminishing middlebox (e.g., spam filters), where the
objective is to minimize the total bandwidth consumption when
the total number of placed middleboxes is limited. We prove the
NP-hardness of checking the feasibility of our problem in general
topologies. Then we propose a greedy solution and prove that it is
performance-guaranteed when it generates a feasible deployment.
Next we narrow down to tree-structured networks and propose an
optimal dynamic programming based strategy. In order to improve
the time efficiency, we also introduce an efficient greedy solution
with an intuitive insight. Extensive simulations are conducted on a
real-world dataset to evaluate the performance of our algorithms.

KEYWORDS

Bandwidth consumption, traffic-diminishing effect, middlebox de-
ployment, NFV.

ACM Reference Format:

Yang Chen, Jie Wu, and Bo Ji. 2020. Optimizing Flow Bandwidth Con-
sumption with Traffic-diminishing Middlebox Placement. In 49th Inter-
national Conference on Parallel Processing - ICPP (ICPP °20), August 17—
20, 2020, Edmonton, AB, Canada. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3404397.3404458

1 INTRODUCTION

Network Function Virtualization (NFV) changes the way we im-
plement network services from expensive hardware to software
functions (middleboxes), which run on switch-connected commod-
ity servers [18]. The choice of middlebox service location is com-
plicated by not only the availability of multiple hosting servers
but also the traffic-changing effect of middleboxes [22]. Middle-
boxes with traffic-diminishing capability are quite common. For
example, the Citrix CloudBridge Wide Area Network Optimizer
reduces traffic volume by up to 80% by compressing traffic [2]. Re-
dundancy Eliminator would reduce the difference between peak
and minimum traffic more significantly by 25% for the university
and by 52% for the data center [15]. Spam filters intercept all sus-
picious flows by cutting down 100% spam rates. Link bandwidth
is a valuable resource in most networks such as data centers [21],
WANS [4], and LANs [13]. Efficiently placing such kind of traffic-
diminishing middleboxes is important for today’s high-performance
networks/systems [14]. Additionally, server resources for running
middleboxes, such as CPU and memory, are also valuable and finite

JZONG P
@ O ® /
~ ~

l\fzifi f4 1\fz

() wm

(a) Two middleboxes. (b) Three middleboxes.

Figure 1: A motivating example.

in today’s networks [1]. Then there is usually a constraint on the
total number of middleboxes that we can deploy [26].

In this paper, we aim at minimizing the total flow bandwidth
consumption by placing a limited number of a single type of traffic-
diminishing middleboxes with a given number of copies. The flow
bandwidth consumption is defined as the sum of a flow’s occupied
bandwidth on each link along its path. A middlebox does not have
a capacity limit. Note that even under a simplified assumption of
only one type of middleboxes, our formulated problem is non-trivial
(Section V). There is a delicate trade-off between saving more link
bandwidth and sharing more middleboxes among flows. Intuitively,
deploying traffic-diminishing middleboxes as close to flows’ sources
as possible along all paths consumes less link bandwidth resources.
However, this simple strategy reduces middleboxes’ sharing oppor-
tunities and forces the launch of more middleboxes. Similarly, when
a middlebox is deployed on the vertex of a flow’s source, the traffic
rate of the flow diminishes in its earliest position and the band-
width consumption of the flow is the minimum. However, more
middleboxes are needed if we deploy one on each flow’s source.

We illustrate the complexity of deployment by showing an ex-
ample in Fig. 1, where circles and squares represent switches and
middleboxes, respectively. Middleboxes are assigned to servers (not
shown in the figures) that are attached to switches. All flows need
to be served by a middlebox m before reaching their destinations.
The traffic-diminishing ratio, which is the ratio of a flow’s traffic
rate before and after being processed by the middlebox, is 0.5. There
are four flows: fi, f2, f3, and fi, and their initial traffic rates are
4,2,2, and 2, respectively. All flow paths are pre-determined, shown
in different types of lines. Fig. 1(a) shows the optimal deployment
with only two middleboxes allowed. A middlebox is deployed on vs
to process f1, and another one on v processes f, f3, and fi. Take
f1 as an example of a flow’s bandwidth consumption calculation.
Its initial traffic rate is 4 and its consumed bandwidths on both
links (v5 to v3 and v3 to v;) are 0.5 - 4 = 2 because of the deployed
traffic-diminishing middlebox at its source vs. Then the bandwidth
consumption of fj is 2+ 2 = 4. The total bandwidth consumption of
all flows is calculated as 0.5-4-2+2-2+2+2 = 12. If we are allowed
to deploy three middleboxes, shown in Fig. 1(b), we should deploy

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

one on each flow’s source, which reduces the bandwidth consump-
tion in the earliest locations for all flows. Additionally, the total flow
bandwidth consumption is reduced to 0.5-(4-2+2-2+2+2) =8,
which is the minimum.

Most existing works focus on multiple middlebox deployment,
but frequently formulate as a complex Integer Programming prob-
lem with no efficiency-guaranteed solvers, or are limited to design
no performance-guaranteed heuristic solutions. Additionally, we
find that when it comes to security inspection or analytic services,
only one kind of middleboxes is needed for each flow, such as spam
filters, Intrusion Detection Systems (IDSs), Intrusion Prevention
Systems (IPSs), Deep Packet Inspection (DPI), and network analyt-
ics/ billing services [28]. Thus, we narrow down to the deployment
problem of one single type of middleboxes per flow, and propose
performance-guaranteed solutions for middleboxes with traffic-
diminishing effects in order to minimize the total flow bandwidth
consumption. Our main contributions are summarized as follows:

e We formulate a new optimization problem, called Traffic-
diminishing Middlebox Deployment (TDMD), where the ob-
jective is to minimize the total bandwidth consumption in
a given network using a fixed number of middleboxes. The
solution of TDMD is particularly useful in allocating spam
filters to minimize the total spam traffic using a fixed number
of spam filters.
We prove the NP-hardness of the middlebox deployment in
general topologies in Section 4 (Theorem 1). A heuristic algo-
rithm with a complexity of O(|V|? log |V]) of oracle queries
is proposed, which has a performance-guaranteed ratio of
(1—1/e) based on k middleboxes derived from the algorithm.
e We propose one optimal dynamic programming based al-
gorithm and one efficient greedy algorithm for the tree-
structured networks. Their time complexities are O(|V] -
(log |V])® - rmax) and O(|V|? log |V]) respectively, where V
is the vertex set, and rpyay is the integral largest flow rate.
When flows have the same rate, the time complexity is re-
duced to O(|V|*(log |V'])?). We also present a time-efficient
greedy solution with complexity of O(|V|? log |V]).
e We conduct extensive simulations to evaluate our algorithms’
efficiency with the CAIDA data set [5].

2 RELATED WORK

NFV frameworks have recently drawn a lot of attention, especially
in the middlebox deployment[9, 10, 24]. For placing a single type of
middleboxes for all flows, Casado et al. [6] propose a deployment
model and present a heuristic solution. Sang et al. [28] study the
joint deployment and allocation of a single type of middleboxes,
where flows can be split and served by several middleboxes. They
propose several performance-guaranteed algorithms to minimize
the number of middleboxes. Sallam et al. [27] maximize the total
amount of network flows that are fully processed by certain nodes
while respecting deployment budget and node capacity. However,
none of them considers middlebox traffic-changing effects or fo-
cuses on the bandwidth consumption objective.

For placing multiple types of middleboxes, most research on mid-
dlebox deployment focuses on placing a totally-ordered set, which
is known as a service chain [32]. Mehraghdam et al. [23] propose

Yang Chen, Jie Wu, and Bo Ji

a context-free language to formalize the chaining of middleboxes
and describe the middlebox resource allocation problem as a mixed
integer quadratically constrained program. Rami et al. [8] locate
middleboxes in a way that minimizes both new middlebox setup
costs and the distance cost between middleboxes and flows’ paths.
Both [19] and [20] aim to maximize the total number of requests
for service chains. Kuo et al. [19] propose a systematic way to tune
the proper link consumption and the middlebox setup costs in a
joint problem of middlebox deployment and path selection. Li et al.
[20] present the design and implementation of NFV-RT, a system
that dynamically provisions resources in an NFV environment to
provide timing guarantees so that the assigned flows meet their
deadlines. Fei et al. [11] propose a proactive approach to provi-
sion new middleboxes in order to minimize the cost incurred by
inaccurate prediction of middlebox deployment. However, none of
the above mentioned works on service chain considers the traffic-
changing effect.

Ma et al. [22] are the first to take the traffic-changing effects
into consideration. They target load balancing instead of middle-
box setting-up costs. They propose a dynamic programming based
algorithm to deploy a totally-ordered set, an optimal greedy solu-
tion for the middlebox deployment of a non-ordered set, and prove
the NP-hardness of placing a partially-ordered set. However, this
work only processes a single flow and always builds new, private
middleboxes without sharing with other flows, which excessively
increases the number of located middleboxes. Chen et al. [7] con-
sider both traffic-changing effects and multiple flows. However,
their results only can apply to a special restrictive network called
the double-tree structure network when flows have the same rate.

3 MODEL AND PROBLEM FORMULATION
3.1 Network model

Our scenario is based on a directed network, G = (V, E), where V
is a set of vertices (i.e., switches), and E C V? is a set of directed
edges (i.e., links). We use v and e to denote a vertex (node) and an
edge (link). We assume each link is bidirectional and has enough
bandwidth to hold all bypass flows with their initial traffic rates,
which eliminates congestion and ensures that the routing of all
flows is successful. Middlebox m has a pre-defined traffic-changing
ratio A > 0, serving as the ratio of a flow’s traffic rate before and
after being processed by m if the flow requires to be processed by m.
We focus on the deployment of a single type of traffic-diminishing
middleboxes, whose traffic-changing ratio is A < 1. We use an
indicator function, m,, to represent whether there is a middlebox
of m deployed on v. If a middlebox is deployed on v, m, = 1;
otherwise, m, = 0.

We are given a set of unsplittable flows F = { f}. Because flow
splitting may not be feasible for applications that are sensitive to
TCP packet ordering (e.g. video applications). In any case, split
flows can be treated as multiple unsplittable flows. We use f to
denote a single flow that has an initial traffic rate of . Its path pg
is an ordered set of edges from f’s source, srcg, to its destination,
dsty. All flows’ paths are predetermined and valid. We introduce
the indicator function, f, for flow f using the middlebox m de-
ployed on the vertex v. We define I,,(f) as the minimum number
of edges from a vertex v to srcy. We use b(f) to denote f’s total

Optimizing Flow Bandwidth Consumption with Traffic-diminishing Middlebox Placement

l Symbols “ Definitions
V,E, F the set of vertices, edges, and flows
v, e, f,m a vertex,an edge, a flow, and a middlebox

srcg, dstf, P ry|| source, destination, path, initial rate of f
A traffic-changing ratio of middlebox m

my indicator function of placing m on v

fo indicator function of f using m on v

1, (f) minimum number of edges from v to srcy
P, T deployment and allocation plans

b(f), b(P, F) consumed bandwidth of f and the solution
k the maximum number of middleboxes

Table 1: Symbols and definitions.

bandwidth consumption on all edges along its path. If f requires
to get processed by m, its traffic rate (occupied bandwidth) on e
equals to ry before a flow f is processed by m and A - ry after the
processing; otherwise, its traffic rate remains unchanged as ry. We
assume that each packet in a flow is served by the middlebox only
once, even if there are several middleboxes along its path. This is
because being served by middleboxes will add an extra transmission
delay, which should be avoided as much as possible, in order to
improve the network performance.

The problem consists of two sub-problems: the middlebox deploy-
ment, which vertices to deploy middleboxes; and the flow allocation,
which middlebox to process each flow. Note that the flow allocation
is trivial once the middlebox deployment is determined because
assigning each flow f with the first deployed middlebox along its
path always minimizes its total bandwidth consumption. We use £
and F to denote the deployment and allocation plans. b(P,) is
the total bandwidth consumption of all flows being processed by
the plans. We have P = {v | my, = 1,Vov € V} where P is a subset
of V,ie, P € V, which contains all vertices with deployed middle-
boxes. The allocation plan consists of indicator values for all flows,
meaning ¥ = {f,|Vf € F}. The decision variables include f;, and
my, for all flows and all vertices. We are given a priori the maxi-
mum number of middleboxes that are allowed to be deployed in the
whole network, denoted by k. For ease of reference, we summarize
notations in Tab. 1.

3.2 Problem formulation

Based on the above model, our Traffic-Diminishing Middlebox De-
ployment (TDMD) problem includes two properties: feasibility and
optimality. The feasibility of our TDMD problem is whether we are
able to use k middleboxes to ensure all flows being processed. For
the optimality of middlebox deployment and allocation, we formu-
late it as a mathematical optimization problem on minimizing the
total bandwidth consumption in the following:

min (P, F) =) b(f) = ry(lps 11 = Dlo(f)) (1)
mo-foloeVy o f i er

st. P={v|my =1, YVoeV} (2)
Pl=> ,mo<k VmeM (3)

Doy fo=1 VFeF (4

’UE[)f
fo <mo, F = {fuVf € F} Voev (5)
my, ={0,1}, fu ={0,1} YoeV (6)

Eq. (1) is our objective: minimizing the total bandwidth con-
sumption, which is the sum of all flows’ bandwidth consumption.

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

Figure 2: Reduction from feasibility check to set-cover.

A flow’s bandwidth consumption is the sum of its occupied band-
widths on each link along its path. We mathematically define in
Eq. (2) as a set of vertices with middleboxes deployed on them. Eq.
(3) states that the total number of deployed middleboxes is no more
than k. (| - | denotes the set cardinality.) |#| is the total number
of selected vertices with deployed middleboxes, which equals the
sum of m,, Yv € V. This is because m;, = 1 when a middlebox
is deployed on v; otherwise, m, = 0. Eq. (4) requires that each
flow f € F be served by the middlebox once and only once. Eq. (5)
ensures that a flow only can be processed on v when one m has
been deployed on v. Eq. (6) shows m, and f;, can only be either 0
or 1.

4 SOLUTION FOR GENERAL NETWORKS

4.1 Problem hardness in a general topolgoy

THEOREM 1. The feasibility of the TDMD problem is NP-hard to
check in a general topology.

Proof: The TDMD problem’s feasibility is whether a deployment
with k middleboxes ensuring all flows being processed exists or
not. First, the feasibility of a given deployment can be verified in a
polynomial time as it takes O(|F|) time to check that all flows are
processed when reaching their destinations.

Second, we show that the set-cover decision problem is reducible
to the feasibility of our TDMD problem. Consider a case of set-cover
decision: given a set of elements {1, 2, ..., n} (called the universe)
and a collection S of |S| sets, whose union equals the universe,
we need to identify whether there is a sub-collection of S with k
sets, whose union equals the universe. We can always construct
an equivalent case of the TDMD problem: we construct a flow f
corresponds to each element, then the universe equals their univer-
sal set F = {f}. Each flow requires to be processed by a same type
of traffic-changing middlebox m. For each set and its elements in
collection S, we construct a set of corresponding flows and assume
it is the set of flows that can be processed by deploying a middlebox
m on a vertex v. Intuitively, the union of all such sets equals to F.
The topology of the TDMD instance consists of all these vertices
and is designed as fully-connected between every pair of vertices.
The path py of each flow f is a directed line connecting each vertex
that can process f. We claim that there is a sub-collection of S
with k sets, whose union equals the universe, if and only if there
exists k vertices to deploy middleboxes, which can process all flows.
For suppose there is a sub-collection of S with k sets whose union
equals the universe, then we can deploy middleboxes on k ver-
tices with their corresponding sets of processed flows. We illustrate
the reduction using an example in Fig. 2. The elements are all the
flows F = {f}, i.e, {f1, f2, f3, fa}. In the example, S1 = { f1, f2, fa},
S2 = {f1, f2} and S3 = {f3}. We need to find the minimum number
of subsets whose union equals the universe set, which is S; and Ss.

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

Algorithm 1 General Topology Placement (GTP)

In: V,E,F and traffic-changing ratio A;
Out: Deployment and allocation plans £ and F;
1: Initialize # as an empty set 0;
2: while not all flows are processed do
3. deploy one m on the vertex v € V\P with maxdp(v);
4 P=PU{vlandm, = 1;
5: YFEF, fu=1,if lp(f) =max{ly (f)Imy =1, Vv’ €pr}.
6: return P and ¥ = {f,|Vf € F}.

Then we deploy one middlebox on v and another on v3 to serve
all flows.

Conversely, if we can deploy k vertices to process all flows, then
we can select their corresponding sets of elements from S. As all
flows are processed, the union of the sub-collection sets of S equals
the universe. Consequently, since the set-cover decision problem is
a NP-complete problem, the TDMD problem is NP-hard. |

4.2 Performance-guaranteed solution

Since the feasibility is NP-hard to check in a general topology, we
propose a greedy but feasible solution that uses k middleboxes de-
rived from the solution. We prove that it is performance-guaranteed
for the k. The greedy algorithm, called General Topology Placement
(GTP), is shown in Alg. 1. Line 1 initiates the deployment plan as
an empty set. Lines 2-4 iteratively select v € V with the maximum
value of max dp(y,) until all flows are fully served. In each round,
we add the new middlebox to the current plan #. Line 5 generates
the allocation plan The deployment plan # returns in line 6.

We also use Fig. 1 to illustrate the process of applying GTP. The
settings are the same. The initial traffic rates of flows are r; =
4, rp = 2, r3 = 2, and r4 = 2, respectively. We list the values of
marginal decrement for all vertices in Tab. 2. In the first round,
dp(vs) has the maximum value so that we deploy a middlebox on
v5 and P = {vs}. In the next round, d(,,(vs) has the maximum
value, but the deployment plan is not feasible. We can only deploy a
middlebox on vy because of k = 2 and P = {vy, vs}. If we are given
k = 3, the result is shown in Fig. 1(b). In the first round, dgy(vs)
has the maximum value so that we deploy a middlebox on v5 and
= {vs}. In the next round, d{,, }(vs) has the maximum value so
P = {vs,v6} and . Then, d{, ;,}(v4) has the maximum value so
the final plan is {v4, vs5, V6 }

DEFINITION 1 (DECREMENT FUNCTION). The decrement func-
tion, denoted as d(P), indicates the decrement of the total band-
width consumption by a deployment plan P, which satisfies d(P) =
XferTs - lppl = b(P).

DEFINITION 2 (MARGINAL DECREMENT). The marginal decre-
ment, denoted as dp(S) = d(P US) — d(P), indicates the additional
bandwidth decrement of processing flows by deploying middleboxes
on a new subset S € V beyond vertices in the current deployment P.

Lemma 1. (1)d(0) = 0 andd(V) = (1 =) - Xrerrf - Iprls (2)
maxd(P) =(1-A) - Xrerrs - Iprl; (3) mind(P) = 0.
Proof: (1) A flow f’s bandwidth consumption is the sum of its

occupied bandwidth on each link along its path, which is rf - [pg|.
When we deploy no middlebox, i.e., # = 0, the traffic rates of all

Yang Chen, Jie Wu, and Bo Ji

v V1| U2 | V3 | Vg | U5 | Vg
do(v) 0 0 3 1 4 3

d{ v5}(v) 0 0 1 1 — 3
d{vs, vé}(v) 0 0 0 1 - | =

Table 2: Marginal decrement values.
flows remain unchanged. Then we have d(0) = 0. Similarly, when

there is a middlebox deployed on each vertex, i.e., P = V, the traffic
rate of each flow f changes fromry to A-ry as early as its source. The
bandwidth consumption of a flow f is decreased to A - r¢ - [pg|. The
total bandwidth consumption becomes b(V') = Zfe FA- e |pf| =
A+ Sperry - Ipl We have d(V) = (V) — (1 = A) - Srep ry - Ips.
(2) The total bandwidth consumption is the smallest when all flows
are processed as early as their sources because all flows’ traffic
rates are diminished from the first edges along their paths. We have
minb(P) = A- Lrerrr - Iprland maxd(P) = (1 - A1) - Xrepry -
Iprl. (3) Similarly, the total bandwidth consumption is the largest
when all flows are not processed because their traffic rates are
not diminished. Thus, we have max b(P) = ZfeF rr - lprl and
mind(P) = 0. u

Next, we analyze the properties of the decrement function d(%).
It is known that a function d is submodular if and only if VP C
P’ CV,Yu e V\P',dp({v}) = dp/({v}),ie.,d(PU{v})-d(P) =
d(P’ U {v}) —d(P’).

THEOREM 2. d(P) is a submodular function.

Proof: We assume P’=% |J S. From definitions 2 and 3, we have
dP")=dP)=() 1y - ppl=bP N~ rf - Ips|=b(P))

feF feF
=b(P)=b(P") = > rp(1 = Dlor(f) = Y rp(1 = Dlo(f)
for=Lf€F fo=Lf€F

= = (D) = L]

We know f, "Z'1if v has Ly(f) = max{ly(f)Imw = 1,Yw € pr}.
As more middleboxes are deployed in £’ beyond P, flows must be
processed no later than in . Then Vf € F, we have [y (f) > I,(f)
when f,y = 1in P’ and f,, = 1in P. Thus, d(P’) > d(P) and d(P)
is a non-decreasing function, which is monotone. Suppose a vertex
u satisfies u € V\P’. If we deploy a middlebox on u, f,, becomes
1if u has lu(f) = max{Ly(f)|mw, Yw € pr}, resulting in a smaller
b(f); otherwise, f; still is 0 and b(f) remains the same. Then we
have ly(f) > lu/(f) 2 l(f),Vf € F.

From above, we get d(P U{u})-d(P) = Zj;efl rr(1=)u(f) -

o) AsVF € F () = Lo (FD) £ (ulf) = o) we bave:
D= D) =L (H) < D rp(= Dlu(f) = Lo(f)-

fu=1 fu=1
Then we have d(P’ | U{u})-d(P’) < d(P U{u})-d(P), meaning
dp{v} < dp{v}. Thus, d(P) is submodular. |

THEOREM 3. The proposed GTP can achieve a deployment with at
most (1 — 1/e) times of the maximum decrement. Its time complexity
is O(|V|?log |V|) of oracle queries.

Proof: Our TDMD problem has the same formulation as the set
cover problem and the deployment # follows its greedy algorithm
in [16]. Hence, the approximation ratio (1—1/e) follows from Propo-
sition 6 in [16]. Also, Feige [12] proved that unless P = NP, no polyno-
mial time algorithm can achieve an approximation ratio better than

Optimizing Flow Bandwidth Consumption with Traffic-diminishing Middlebox Placement

(b) Served on current node v.

(a) Subtree fully served.

Figure 3: Illustration for fully served situation.

(1—1/e) for the cardinality constrained maximization of this kind of
set cover problem. We run k rounds for placing each middlebox and
k = O(]V|) as we at most place one middlebox on each vertex. In
each round, it takes a constant time to calculate dp(v), Yo € V' \ P.
Sorting all such dp(v) takes at most O(|V|log |V]). The function
calculation itself is usually assumed to be conducted by an oracle,
and thus its complexity is not taken into account. So the algorithm
complexity is O(|V| - |V|log |V]) = O(|V|? log |V|) times oracles. B

5 SOLUTIONS FOR TREE NETWORKS

Because of the NP-hardness of our TDMD problem in general
topologies, here we narrow down to tree topologies, which are
common in streaming services [25], content delivery networks
(CDNs) [30], and tree-based tiered topologies like Fat-tree [3] or
BCube [14] in data centers. We require that the sources of all flows
are leaves and their destinations are the same as the root of the tree.
As long as the middlebox number constraint k > 1 and the destina-
tions of all flows are the root, we can process all flows by placing a
middlebox on the root so that there does not exist infeasibility.

5.1 Optimal DP-based solution

We introduce the optimal dynamic programming (DP) based solu-
tion for the tree-structured networks. Note that the solution works
for general trees with an arbitrary number of branches. For sim-
plicity, we only discuss the solution for the binary tree. Before
introducing our optimal DP solution, we define two notations for
the fully and partially served situations, respectively. Let F(v, k)
denote the minimum total occupied bandwidth of all flows with k
deployed middleboxes in the subtree T, rooted at v when all flows
have been fully processed. Let P(v, k, b) denote the minimum total
occupied bandwidth of all flows with k deployed middleboxes in
the tree T, when flows with a total bandwidth consumption of b
have been processed. Then we have the following formulations.
The formulation for the full served case is:
F(v,k) = min{ min {F(v;,p) + F(v,, k —p)}+
0<p<k

AZfETv b(f),ogn;gk{P(v,,q, b)) + P(vy, k —1— g, by)

FAbp+ b+ 3 (6() = b= b)))
Here is the explanation. When all flows have been fully processed,
there are only two served situations in Fig. 3:

(a) In Fig. 3(a), the left and right subtrees of v have already been
served by totally deploying k middleboxes before v. The minimum
total occupied bandwidth in the tree of v, is selected from all com-
binations of allocating the total k middleboxes. If the left subtree
deploys p (0 < p < k) middleboxes, then the right tree deploys the
remaining k —p ones. The sum of the minimum total occupied band-
width inside v’s two subtrees is ming <, <x {F(vy, p) + F(vr, k = p)}.

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

Figure 4: Illustration for partial served situation.

The total consumed bandwidth on the two uplinks from its two
subtrees to v, is A ZfeTv b(f). This is because all flows have al-
ready been processed inside its two subtrees. The minimum total
occupied bandwidth in the tree of v, F(v, k), is the sum of the two
parts.

(b) In Fig. 3(b), its two subtrees are partially served. So we deploy
one middlebox on v to make sure all flows through v have been
served. The minimum total occupied bandwidth in the tree of v is
selected from all combinations of allocating the remaining k —1 mid-
dleboxes in its subtrees. If the left subtree deploys q (0 < g < k—1)
middleboxes, then the right tree deploys the remaining k—g—1 ones.
Here each subtree can deploy no middlebox as we do not require all
flows to be served. The sum of the minimum total occupied band-
width inside v’s two subtrees is ming <4<k {P(v, ¢, by) + P(vr, k —
1-q, br)}. The total consumed bandwidth on the two uplinks from
its two subtrees to v, is Aby + Aby + Xrer, (b(f) — by — by). This
is because its left subtree has flows with a total bandwidth of b;
processed while the right has flows with a total bandwidth of b,
processed. Additionally, there are flows with a total bandwidth of
2 rer, (b(f)—b;—by) that are not processed inside its both subtrees
and will be processed by the middlebox deployed on v.

The formulation for the partial served case is:

P(v,k,b) = min {P(vy,p,b;) + P(vr, k —p,by) + Ab;
0<p<k

F 2t () = by = b)) ®)
We have b = by +b, “Here is the explanation. When flows are par-
tially processed with a total served bandwidth b, there is only one
served situation, illustrated in Fig. 4: The left and right subtrees of v
are both partially served. The minimum total occupied bandwidth
in the tree of T, is selected from all combinations of allocating the
total k middleboxes. If the left subtree deploys p (0 < p < k) mid-
dleboxes, then the right tree deploys the remaining k — p ones. Here
each subtree can deploy no middlebox as we do not require all flows
to be served. The sum of the minimum total occupied bandwidth
inside v’s two subtrees is ming <, <x{P(v, p, by) + P(vr, k = p, by)}.
The total consumed bandwidth on the two uplinks from its two
subtrees to v, is Ab + Aby + X rer, (b(f) — by — by). The reason is
the same as the second served situation of F(v, k). Then the total
served flow bandwidth is the sum of the served ones in each subtree,
which is b = b; + b,. Here we need to mention that F(v, k) is a
special case of P(v, k, b) when all flows in T, are processed and b
is the smallest.

The initial value of F(v, k) for each leaf node v is:

F(o. k) = 0 k>1,)
o0 otherwise.

There is no bandwidth consumption inside a leaf node if any
middlebox is deployed. If no middlebox is deployed (k < 0), there
is no feasible deployment then the value of F(v, k) is set as co. The

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

[k\o][1 [2 [3[4[5]e]7]8]
1 [[24 [3]6]o[o]e]o]o
2 |[16.5[1.5/3]0[0[3]0]0
3 |[13.5]1.5[3]0[0[3]0]0
4 || 12 [1.5[3]0[0[3]0]0

Figure 5: An example. Figure 6: Values for F(v, k).

initial value of P(v, k, b) for each leaf v is:
P(v, k. b) = 0 k>0 aAnd b < ZfGTU bf’ (10)
otherwise.

The upper-bound of the total processed bandwidth is > rc7,, by,
which is the sum of all flows’ initial traffic rates. Even when no
middlebox is deployed (k = 0), P(v, k, D) is 0.

In order to reduce bandwidth consumption, flows are always
processed by the middlebox that is nearest to their sources, i.e.,
farthest to their destinations. It means that f;, = 1 if v has the
value I, (f) = max{lw(f)Imw = 1,Yw € pr}. For aflow f,if a
vertex v € py has f, = 1, we have (|pg| — lo(f)) edges consuming
rg bandwidth and [, (f) edges consuming A - s bandwidth. Then

b(f) = (pgl = Lo (f)) - rp +A-rp - Lo(f) = relppl = re(1 = Dl (f).
Thus, when P is decided, the optimal allocation plan is also decided.

For simplicity, we omit ¥ in b(P, F) as b(P).

THEOREM 4. The dynamic programming based solution (DP) is
optimal for our TDMD problem in tree-structured topologies.

Proof: The detailed proof is omitted due to the optimal property
of the dynamic programming method. |

We use an example in Fig. 5 to explain the details of applying
our DP formulation. There is a binary tree with eight vertices and
four flows fi, f2, f3 and fy with their initial rates as r; = 2,rp =
1,73 = 5and r4 = 1, respectively. The traffic changing ratio of the
middlebox is A = 0.5. We list the values of F(v, k) and P(v, k, b) for
all combinations of feasible k and b for each vertex in the tables
of Fig. 6 and Fig. 7. When all flows have been processed in the
rootvy, b =ri+ro+r3+rg =2+1+5+1 =9, and we have
F(v1,k) = P(v1,k,9) for all k. Take k = 3 as an example. We

have F(v1,3) = P(v1,3,9) = 13.5 from tables in Fig.6 and Fig. 7(a).

For finding the corresponding, we trace back. If no middlebox is
deployed on vy, all flows have been processed inside both subtrees
of v1. Then we can calculate the total consumed bandwidth inside
both subtrees as 13.5—0.5-(2+1+5+1) = 9, which is exactly the sum
of F(vg,1) = 3 and F(vs3,2) = 6. Our assumption is correct. Then
F(vg, 1) is selected, which means that we deploy only one middlebox
to fully serve all flows in the tree T». The only feasible position is
vg. For the right subtree, F(vs, 2) is selected. Since there are only
two leaf nodes in the tree T3, we deploy one middlebox on each

leaf node. Then the optimal deployment for k = 3 is {vy, v7,vs}.
Similarly, the optimal deployment for k = 2 is {v1, v7} or {vg, vg}.

As for partially processing with k = 3, if only 1 rate of flows
is not processed, we have b = 9 — 1 = 8. For minimizing the
total bandwidth consumption, we should deploy a middlebox on
v4 instead of vy, resulting in P(v1, 3,8) = 13 < P(v1, 3,9). Due to
space limits, we omit calculation of other values in Figs. 6 and 7.

THEOREM 5. Time complexity of Alg. DP is O(|V| - (log |V])? -
Fmax), where rmax = maxfep Iy (We assume rmax is an integer.)

Yang Chen, Jie Wu, and Bo Ji

[k\eflo] 12345 e[7]8[9]
0 ||24] 00 | 00 | 00 | 0O | 0O |oO| 0O |0O| ©O
22.5| 22 |22.5| oo |16.5|0c0| 00 |oco| 24
oo |21.520.5| 21 |16.5{15|14.5|15|16.5
00 | 0o | 0o [19.5] co |oo| 14 |13]13.5

00 | 00 | 00 | 00| 00 [c0f 00|00l 12

(a) P(vy, k, b)
T 0[] e
0 6| 00|00 0 [[12|c0|00|0c0 0

1 [|6]5.5]3.5|c0 1 [[12{11|7 |0
2 |[|00]5.5(3.5]3 2 [leo|11]7 |6

(b) P(v2, k, b) (c) P(vs, k, b)

o] BRI @oTs) (ewler

8/8[8(8

WD =

(o)

0
1 |[[oo| 0

(d) P(v4, k, b)

(o)

0 ¢S]

0 0 0 |[0|oc0 0 [|0]|oco
1 |/ 6(5.5/3.5|c0

1 |[[eo|0O 1 ||oo| 0 1 ||oo| 0
2 ||00]5.5(3.5|3

(e) P(vs, k, b) (8) P(v7, k. b) (h) P(vs, k. b)

() P(vs, k, b)
Figure 7: Values for P(v, k, b).

Proof: This is because there are |V| vertices and we need to
traverse each vertex. For each vertex v, we need to calculate values
of F(v, k) and P(v, k, b) for all combinations of feasible k and b.
The largest value of k is the number of leaves, which is O(log | V)
for a binary tree. Additionally, the largest value of b is the sum of
all flows’ initial traffic rate) feF bf, which is less than |F| - rpax.
Additionally, for flows from the same leaf source, we can treat
them as a single flow because of their same path to the root. As
a result, the maximum number of flows is the same number of
the leaf nodes, i.e., O(|F|) = O(log|V|). rmax is the largest flow
rate after the merge. When calculating the value of F(v, k) for a
group of fixed values v and k, we need to select the minimum value
from all its combinations for two served situations, whose total
number is less than O(k +k - |F| - rmax) = O((log |V])? - Fimax). When
calculating the value of P(v, k, b) for a group of fixed values v, k and
b, we need to select the minimum value from all its combinations,
whose total number is less than k - |F| - rmax = O((log [V])? - Fmax).
The selection takes a constant time. As a result, the worst time
complexity is O(|V] - log V] - (1og V)2 - rinax + (10g [V])? - Fnax) =
O(lV]| - (log |V|)3 * Tmax)- u

When all flows have the same initial traffic rate, the time complex-
ity becomes O([V|(log |V (V|2 + (log |V])?) = O(IV *(log [V])?),
which is polynomial. When flows have various initial traffic rates ,
the DP algorithm is pseudo-polynomial. It is not trivial to transform
our proposed DP algorithm into a polynomial-time approximation
scheme (PTAS) [31] because the placement at the current vertex
does not have a obvious relationship or direct impact with its par-
ent. When the traffic rates of flows are in an arbitrary precision
and order of magnitude, the DP algorithm is computationally hard.
This motivates us to propose an efficient algorithm with a lower
time complexity in the next subsection.

5.2 Efficient greedy solution

We study a fast, sub-optimal greedy solution, but first introduce a
definition from graph theory.

Optimizing Flow Bandwidth Consumption with Traffic-diminishing Middlebox Placement

Algorithm 2 Heuristic Algorithm for Trees (HAT)

In: Sets of vertices V, edges E, and flows F, traffic-changing ratio
A and middlebox number constraint k;
Out: The deployment plan P;

1: Initialize P as a set of all leaf vertices;

2: Calculate Ab(i, j), Yvi,vj € P(i # j);

3: Construct a min-heap of Ab(i, j), Vv, vj € P(i # j).

4 while |P| > k do

5. Merge the two middleboxes with the minimum Ab(i, j),
Yo, vj € P(i # j).

6: Update the heap by deleting pairs with v; or v; and inserting

pairs with LCA(, j).

P =P\ {vi,v;}) U{LCAG,))};

8: return The deployment plan $.

>’

DEFINITION 3 (LCA). Lowest common ancestor (LCA) of two
vertices v and w in an acyclic graph G is the lowest vertex that has
both v and w as descendants.

We define each vertex to be a descendant of itself. Thus, if v has
a direct connection from w, w is the lowest common ancestor [29].
Take Fig. 5 as an example. LCA of vertices v4 and vs is v and LCA
of vertices v and vg is v1.

Next, we define Ab(i, j) as the difference in the total bandwidth
value when we delete two middleboxes on v; and v; and deploy one
middlebox on LCA(i, j). The process of the deletion and deployment
is called merge. We propose our solution as Heuristic Algorithm for
Trees (HAT), shown in Alg. 2. Line 1 initiates the deployment plan
by placing a middlebox on every leaf vertex. Line 2 calculates the
value of Ab(i, j) for each pair of vertices. Line 3 constructs the first
min-heap. Lines 4-7 iteratively select the pair with the minimum
value of Ab(i, j) and merge the two middleboxes by placing one on
their LCA until the number of middleboxes reaches k. In each round,
we do merge to reduce the number of middleboxes by one. The
min-heap is updated by deleting pairs with v; or v; and inserting
new pairs with LCA(i, j). We also delete two vertices v; and vj from
and insert their LCA into #. The deployment ¥ returns in line
8. Note that HAT is not optimal for some cases, especially when
traffic has a heavily unbalanced distribution.

We show steps of running HAT in Fig. 5 with the same setting
in the last subsection. Initially, # = {v4, vs5, v7, v}, which has the
minimum bandwidth consumption for all possible deployments.
This is because the traffic rates of all flows are diminished from
their sources and the bandwidth consumption of each flow is the
smallest. If k > 4, since the while loop does not need to run, the
deployment plan returned by Alg. HAT is P = {v4,vs,v7, vs}. If
k = 3, one round of the while loop needs to run. There are (3) =6
pairs. We calculate the value of Ab(i, j) for each pair. For example,
Ab(4,5) = 1.5, Ab(7,8) = 3 and Ab(4,7) = 9.5. After calculating
these six pairs, we find that Ab(4, 5) has the minimum value, 1.5.
We delete v5 and vg from P and insert their LCA v, into . Then
the deployment plan returned by Alg. HAT is P = {vg, v7,vs}. If
k = 2, two rounds of the while loop need to run. The first round is
the same as k = 3. In the second round, there are (g) = 3 pairs. We
have Ab(2,7) = 9,Ab(2,8) = 3, and Ab(7,8) = 3. Ab(2,8) = 3, and
Ab(7,8) = 3 have the same minimum value. If we select to delete v;

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

ooooo Quonteat

9 TN
vmqqn o e G ®
urited statesQ 'Q (o S

(a) The Archipelago (Ark) Infrastructure.
X3

(b) Tree topo (subgraph of (a)). (c) General topo (subgraph of (a)).

Figure 8: Simulation topologies.

and vg from P and insert their LCA v into #. Then the deployment
plan returned by HAT is P = {vg, vg}. Otherwise, P = {v1,v7}.
Similarly, # = {v1} when k = 1.

THEOREM 6. The time complexity of Alg. HAT is O(|V|? log |V).

Proof: There are O(|V|/2) = O(|V]) leaf vertices and O(|V|?)
pairs. The time of building a min-heap costs O((|V|?) - log(|V|?)) =
O(|V|? log |V]). For the while loop, we need to run O(|V|/2 - k) =
O(|V|) rounds in order to reduce the number of middleboxes from
O(|V|/2) to k. In each round, it at most takes O(|V|) time to delete
pairs with v; and v; and insert pairs with LCA(H, j). Thus, the total
time complexity is O(|V|?log |V| + |[V| - |[V]) = O(|[V|®log |V]). H

6 EVALUATION

6.1 Setting

Topology: We conduct simulations by MATLAB on the Archipela-
go (Ark) Infrastructure topology [5] in Fig. 8(a), which is CAIDA’s
active measurement infrastructure serving the network research
community since 2007. The tree and general topologies are reduced
from Fig. 8(a). Additionally, traditional data center networks and
WAN design over-provision the network with 30—-40% average
network utilization in order to handle traffic demand changes and
failures [17]. Thus, we assume each link has enough bandwidth
to hold all flows. This assumption eliminates link congestion and
ensures that the transmission of all flows is successful, since routing
failure is not our concern.

Middlebox: We only have one kind of middlebox for each de-
ployment. The traffic changing ratio has a range from 0 (e.g., spam
filters) to 0.9 (e.g., traffic optimizer) with an interval of 0.1. We
do additional simulations for the spam filter, which cuts down the
traffic after flows being served by them.

Traffic: All flows’ paths are fixed and their traffic rates are also
known a priori. We use the flow size distribution of the CAIDA
center, which was collected in a 1-hour packet trace. Under the tree
topology, the destination of all flows is the root of the tree. As for
changing the flow density variable, we randomly select flows from
the dataset in order to make our experiments more general. Here we
mention that our simulations only study feasible deployments. If the
algorithm can not find a feasible solution, we choose to regenerate
a traffic distribution.

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

x10° 300
1.6 -§ Random -O Random
s -$-Best-effort - Best-effort
B 14, §-GTP © 33;;’
£ NS —F-HAT T,
212 - 40P £ 00)-=-pp
8 8
£ 1 3
2 © 100
: &
208
@
@
0.6 0
5 10 15
k
(a) Bandwidth consumption. (b) Execution time.
Figure 9: Middlebox number constraint k in tree.
x10°
25 -# Random - 800 -G Random
-$-Best-effort 4 —¥-Best-effort
SR
—+HAT s 200[1A
—+DP)

Execution time/s

00

Bandwidth consumption
(4]

o

o
4
|4

0
0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
Traffic-changing ratio Traffic-changing ratio

o

(a) Bandwidth consumption. (b) Execution time.

Figure 10: Traffic-changing ratio in tree.

6.2 Metrics and comparison algorithms

We use two performance metrics for our benchmark comparisons:
the total bandwidth consumption, which is our objective in Eq. 1,
and the execution time of each algorithm in seconds. We test the
relationships among these two metrics and five variables: middle-
box number constraint k (only for trees), traffic-changing ratio,
flow density, topology size and topology type. The flow density is
defined as the ratio of the total traffic load to the total capacity of
the network. Each simulation tests one variable and keeps other
variables constant. The default values of these variables are: (1) The
middlebox number for the tree is k = 8 and for the general topology
is k = 10; (2) The traffic-changing ratio is A = 0.5; (3) The flow den-
sity is 0.5; (4) The topology size is 22 for the tree topology (shown
in Fig. 8(b)), and 30 for the general topology (shown in Fig. 8(c)); (5)
We have a tree topology and a general topology. Destinations are
shown as red nodes. The root of tree topology is colored red, shown
in Fig. 8(b). The topology size changes by randomly inserting and
deleting vertices in the network. The independent variable in each
figure is shown as the caption.

We include two benchmark schemes in our simulations: one is
Random, which randomly deploys middleboxes until it deploys k
middleboxes; another one is Best-effort, which deploys one mid-
dlebox on the vertex, which can reduce the bandwidth of flows
mostly, until it deploys k middleboxes. Our proposed Alg. DP and
Alg. HAT are for the tree, and Alg. GTP is for both the tree and the
general topologies. We only discuss feasible solutions. We run each
algorithm multiple times and show the error bar of each point to
evaluate fluctuating situations.

6.3 Simulation results in a tree topology

Simulation results in a tree are shown in Figs. 9, 10, 11, and 12.
Fig. 9(a) shows the relationship between bandwidth consumption
and k ranging from 1 to 16 with an interval of 3. Alg. DP always
has the lowest bandwidth consumption as well as the smallest

Yang Chen, Jie Wu, and Bo Ji

x10°

2 - Random 400 -G Random
-}-Best-effort —¥-Best-effort
18|.5.a1p . 300 -GTP
—HAT g ——HAT
1.6 —+-DP -5-DP.
4
2

Execution time/s
n
o
o

o
=]

Bandwidth consumption

o

.3 0‘.’4 0.5 0.6 0.7 0.8
Flow density

0.3 0.4 0.5 0.6 0.7 0.8
Flow density

(a) Bandwidth consumption. (b) Execution time.

Figure 11: Flow density in tree.

5

x10

-¢ Random 600 -G Random
& _|F-Besteffort ‘g'zisg-eﬁort
s K

@ —+HAT
§ E 400 | 5 pp
2
3 8
s 1. 5
2 8 200
5 &
3
e
3
0.5 0=t
15 20 25 30 15 20 25 30

Topology size Topology size

(a) Bandwidth consumption. (b) Execution time.

Figure 12: Topology size in tree.

error bars, which verifies its optimality. When k = 1, there is
only one feasible deployment plan so all bandwidth consumptions
are the same. When k becomes larger, all their total bandwidth
consumptions become lower since more flows can be processed
nearer to their sources. Alg. HAT has the second lowest bandwidth
consumption, while Alg. GTP has the third lowest. The error bars
of Alg. Random are always the largest because its randomness of
deployment results in an unsteady performance. Fig. 9(b) shows
the execution time result of the five algorithms, which verifies the
time complexity analysis of our proposed algorithms. When the
middlebox number constraint k increases, the execution time of
Alg. DP increases vastly while other four algorithms only have
moderate increment. This is because the relationship between k
and V is k = O(log |V]) as we discussed in Section V. It indicates
the trade-off between the performance and the efficiency of this
algorithm. Alg. HAT has the second longest execution time because
its complexity is O(|V|? log |V|) larger than others, although its
bandwidth consumption performance is the second best. Alg. Best-
effort has a close execution time with the Alg. GTP. In the following
discussion, since some results and analysis are similar, we omit the
details because of limited space.

Fig. 10(a) indicates the result of the bandwidth consumption on
the traffic-changing effect ranging from 0 to 0.9 with an interval of
0.1. Alg. DP still achieves the lowest bandwidth consumption for all
the time. Alg. HAT has the second lowest bandwidth consumption,
while Alg. GTP has the third lowest. The difference between every
two algorithms becomes larger with the increase of A. When 1 = 0.8,
the bandwidth consumption of Alg. HAT is only 75.4% of Alg. Best-
effort and 66.1% of Alg. Random. We find the traffic-changing ratio
has little influence on the execution time of all greedy algorithms,
shown in Fig. 10(b). This also confirms that the time complexity is
almost irrelevant of the traffic-changing ratio.

The bandwidth consumption with the flow density changing
from 0.3 to 0.8 with an interval of 0.1 is shown in Fig. 11(a). The

Optimizing Flow Bandwidth Consumption with Traffic-diminishing Middlebox Placement

5
x10

55 -§ Random 150 .G Random
s -+~ Best-effort -%-Best-effort
B3 gt t-GTP » ©O-GTP
€ 5 @
2 £ 100 ,
g £ .
345 5
£ E
E 8 50
3 4 b
c
@
m

3.5 0

12 14 16 18 20 22 5 10 15
k K

(a) Bandwidth consumption. (b) Execution time.

Figure 13: Middlebox number k in a general topology.

x10°

-& Random i R 200 2 gando'r'n
S 4|-+-Besteffort P I e 180 | *-Best-effort 4
',% {-atP ’%_;’.'va' » ©-GTP o
£38 K] ¥
3 £ H

= o--

g% 5
<
534 3
332 &
=4 .
©
@ 3t .

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

Traffic-changing ratio Traffic-changing ratio

(a) Bandwidth consumption. (b) Execution time.

Figure 14: Traffic-changing ratio in a general topology.

basic tendencies of all five lines are linear with the increase of
the flow density. When the density increases from 0.5 to 0.7, the
advantage of our Alg. HAT is so obvious that its consumption is at
most 72.1% of the consumption of Alg. Random. When the density
is high, the bandwidth consumption of Alg. Random becomes larger
at a faster rate because more flows need to be handled and randomly
selecting locations is much far from optimality. The execution time,
shown in Fig. 11(b) has a similar tendency with Fig. 9(b). When the
flow density grows, the execution time of Alg. DP increases vastly
while other four algorithms only have moderate increment. When
the flow density reaches the largest value as 0.8, the execution time
of Alg. DP is more than 4 times than that of any of other algorithms.

Fig. 12(a) is the result of the bandwidth consumption as the topol-
ogy size goes from 12 to 32 with an interval of 4. The performance
of Alg. Best-effort is also good and has little difference with the
bandwidth consumption of our Alg. GTP. The difference between
Alg. HAT and Alg. GTP is ignoble when the topology has 20 — 25
vertices. On average, the bandwidth consumption of our Alg. DP
is 10.3% less than that of Alg. GTP and 18.6% less than that of Alg.
Best-effort. The tendency of the execution times in Fig. 12(b) is also
similar to that in Fig. 9(b). Besides that, the increment speed with
the growth of the topology size is faster than those of the previous
three variables in Figs. 9(b), 10(b), and 11(b). Alg. Best-effort has a
close execution time with the Alg. GTP.

6.4 Simulation results in a general topology

The simulation results in a general topology of Fig. 8(b) with k
derived from Alg. GTP are shown in Figs. 13, 14, 15, and 16. Fig.
13(a) shows the relationship between bandwidth consumption and
k ranging from 12 to 22 with an interval of 2. We compare our pro-
posed Alg. GTP, with Algs. Random and Best-effort. The bandwidth
consumption is around three times of that in Fig. 9(a). The possibil-
ity of an infeasible deployment plan is higher than in the tree. This
is because the general topology has a larger diversity in the flows’

ICPP °20, August 17-20, 2020, Edmonton, AB, Canada

x10°
8.0 -¢ Random 300 -G Random
5 -}-Best-effort -%-Best-effort
g |terP o ©-GTP
£ £ 200
2 =
:
< 5
2 100
3 i
2
3 T
o et
0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8

Flow density Flow density

(a) Bandwidth consumption. (b) Execution time.

Figure 15: Flow density in a general topology.

5

80 f; (;andom 500 -O Random
S -}-Best-effort —¥-Best-effort
S 2 E
E’ % 400 |-0-GTP FA
380 E300
8 s
£ 3200
S0 e
2 100
©
1]

2.0

20 30 40 50 15 20 25 30
Topology size Topology size

(a) Bandwidth consumption. (b) Execution time.

Figure 16: Topology size in a general topology.

paths and serving all flows becomes more difficult. Additionally, the
error bars are smaller than in the tree. From Fig. 13(b), Alg. GTP has
the longest execution time, indicating the delicate tradeoff between
the bandwidth consumption performance and the time efficiency.

Fig. 14(a) indicates the result of the bandwidth consumption as
the traffic-changing effect goes from 0 to 0.9 with an interval of
0.1. The bandwidth consumption increases faster when the traffic-
changing ratio is from 0.4 to 0.6. The advantage of our Alg. GTP
is less obvious as its bandwidth is only 17.3% less than that of Alg.
Random and 8.3% less than that of Alg. Best-effort. The lines are not
so smooth, especially when the ratio is around 0.3 to 0.6. Fig. 14(b)
shows the execution time results. The tendency is almost linear,
which is different from Fig. 10(b), because the general topology has
more choices and is more likely to generate infeasible solutions.

The bandwidth with flow density changing from 0.3 to 0.8 with
an interval of 0.1 is shown in Fig. 15(a). When the flow density is
lower than 0.4, there is little bandwidth difference among the three
algorithms. It may be due to the non-optimality of our Alg. GTP
and the NP-hardness of our problem in a general topology. When
the density is larger than 0.5, the bandwidth of our Alg. HAT is on
average 91.4% of the bandwidth of Alg. Random and 93.5% of the
bandwidth of Alg. Best-effort. From Fig. 15(b), Alg. GTP has the
longest execution time, indicating the delicate tradeoff between the
bandwidth consumption performance and the time efficiency.

Fig. 16(a) is the result of bandwidth consumption as topology size
goes from 12 to 52 with an interval of 8. The lines are almost linear
with the increment of topology size. The bandwidth consumption
is nearly three times of the one in Fig. 12(a). The advantage of Alg.
GTP becomes larger when topology size increases. Fig. 16(b) is
similar to Fig. 15(b).

6.5 Simulation results with spam filters

We additionally do simulations with spam filters, whose traffic-
changing ratio is A = 0. It illustrates that flows are cut off after

ICPP "20, August 17-20, 2020, Edmonton, AB, Canada

5 5
%)<10 %xﬂ)
S S 3
2154 o
£ :
@ 325
] s
1

e £ 2
3 5
3 2
05 15
8 15 g 16
@ @

10 _— o8 i 0.8

5 0.6 10 > 0.6
0.4 8 5 0.4
k Flow density k Flow density
(a) Tree. (b) General topology.

Figure 17: Spam filters.

being processed by spam filters. We test the total bandwidth con-
sumption of Alg. GTP with the relationship of flow density and
k in the tree and general topologies. Results are shown in Figs.
17 (a) and (b). In order to describe the importance between k and
flow density, we draw 3-D plots. From both sub-graphs, we know
that flow density plays a more important role in affecting the total
bandwidth consumption. This is because the slope of flow density
is larger than the slope of k. Additionally, the result increases gen-
tly with flow density and decreases gradually with k. In Fig. 17(a),
when the flow density doubles from 0.3 to 0.6, the total bandwidth
consumption in trees increases 30.2%, while the increment is 25.6%
in the general topology in Fig. 17. We find that when k is large, the
bandwidth drops quickly, especially with a high density, since more
flows are intercepted from sources.

Consequently, the results demonstrate the delicate trade-off be-
tween the performance and the time efficiency of our proposed
algorithms. The five variables have different extents of impacts
on the results while k has the largest impact on the performance
of bandwidth consumption. We find that when k grows large, the
bandwidth drops quickly, especially with a high flow density. The
comparison Alg. Random does not have a steady enough perfor-
mance, and its error bars are always the largest compared to the
other four algorithms.

7 CONCLUSION

In this paper, we address the deployment problem of one single
type of middleboxes with traffic-diminishing effect (e.g., spam fil-
ters). We aim at minimizing the total bandwidth consumption of
all flows by placing a pre-determined number of middleboxes to
serve flows. First, we formulate the traffic-diminishing middlebox
deployment problem as an optimization problem. We prove that
it is NP-hard to check the feasibility of our problem in a general
topology. Then a greedy algorithm is proposed and prove it is
performance-guaranteed when it generates a feasible deployment.
Next we narrow down to the tree-structured networks, and propose
both an optimal dynamic programming based strategy and an effi-
cient heuristic strategy. Extensive simulations on CAIDA data set
are conducted to evaluate the performance of our proposed algo-
rithms in various scenarios. We believe that our results provide im-
portant insights in practice. In the future, we will design algorithms
with provable performance guarantees for the general deployment
of service chains and middleboxes with traffic-changing effects of
both expanding and diminishing.

REFERENCES

[1] 2012. Energy-aware resource allocation heuristics for efficient management of
data centers for Cloud computing. Future Generation Computer Systems 28, 5

N

[10]

[11]

(12

[13]

(14

[15

[16

[17

[18

[19]
[20]

[21]

[22]

[23

[24

[25

[26

[27]

[28

[29

[30

[31

(32]

Yang Chen, Jie Wu, and Bo Ji

(2012), 755 - 768.

2015. Citrix CloudBridge Product Overview. In Citrix CloudBridge Online.

M. Al-Fares, A. Loukissas, and A. Vahdat. 2008. A Scalable, Commodity Data
Center Network Architecture. SIGCOMM Comput. Commun. Rev. 38, 4 (2008),
63-74.

Hari Balakrishnan, Mark Stemm, Srinivasan Seshan, and Randy H. Katz. 1997.
Analyzing Stability in Wide-area Network Performance. In SIGMETRICS 1997.
CAIDA. 2018. Archipelago Monitor Locations. http://www.caida.org/projects/
ark/locations/

M. Casado, T. Koponen, R. Ramanathan, and S. Shenker. 2010. Virtualizing the
Network Forwarding Plane. In PRESTO 2010.

Y. Chen and J. Wu. 2018. NFV Middlebox Placement with Balanced Set-up Cost
and Bandwidth Consumption. In ICPP 2018.

R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz. 2015. Near optimal placement
of virtual network functions. In INFOCOM 2015.

Sedef Demirci and Seref Sagiroglu. 2019. Optimal placement of virtual net-
work functions in software defined networks: A survey. Journal of Network and
Computer Applications (2019), 102424.

Vincenzo Eramo and Francesco Giacinto Lavacca. 2019. Optimizing the Cloud Re-
sources, Bandwidth and Deployment Costs in Multi-Providers Network Function
Virtualization Environment. IEEE Access 7 (2019), 46898-46916.

X. Fei, F. Liu, H. Xu, and H. Jin. 2018. Adaptive VNF Scaling and Flow Routing
with Proactive Demand Prediction. In INFOCOM 2018.

U. Feige. 1998. A threshold of In n for approximating set cover. J. ACM 45, 4
(1998), 634-652.

H. J. Fowler and W. E. Leland. 1991. Local area network characteristics, with
implications for broadband network congestion management. IEEE Journal on
Selected Areas in Communications 9, 7 (Sep 1991), 1139-1149.

C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu. 2009.
BCube: A High Performance, Server-centric Network Architecture for Modular
Data Centers. In SIGCOMM 2009.

Archit Gupta, Aditya Akella, Srinivasan Seshan, Scott Shenker, Jia Wang, Archit
Gupta, Aditya Akella, Srinivasan Seshan, Scott Shenker, and Jia Wang. 2007.
Understanding and Exploiting Network Traffic Redundancy. In SIGMETRICS
2007.

T Horel. 2015. Notes on greedy algorithms for submodular maximization. https:
//thibaut.horel.org/submodularity/notes/02- 12.pdf

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, and Min Zhu. 2013. B4:
Experience with a globally-deployed software defined WAN. In ACM SIGCOMM
Computer Communication Review, Vol. 43. ACM, 3-14.

Maryam Jalalitabar, Evrim Guler, Danyang Zheng, Guangchun Luo, Ling Tian,
and Xiaojun Cao. 2018. Embedding dependence-aware service function chains.
Journal of Optical Communications and Networking 10, 8 (2018), C64-C74.

T. Kuo, B. Liou, K. Lin, and M. Tsai. 2016. Deploying chains of virtual network
functions: On the relation between link and server usage. In INFOCOM 2016.

Y. Li, L. T. X. Phan, and B. T. Loo. 2016. Network functions virtualization with
soft real-time guarantees. In INFOCOM 2016.

Y. Liu, J K. Muppala, M. Veeraraghavan, D. Lin, and M. Hamdi. 2016. Data
Center Networks: Topologies, Architectures and Fault-Tolerance Characteristics.
In Springer International Publishing, 2016.

W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou. 2017. Traffic aware
placement of interdependent NFV middleboxes. In INFOCOM 2017.

S. Mehraghdam, M. Keller, and H. Karl. 2014. Specifying and placing chains of
virtual network functions. In CloudNet 2014.

Montida Pattaranantakul, Ruan He, Qipeng Song, Zonghua Zhang, and Ahmed
Meddahi. 2018. NFV security survey: From use case driven threat analysis to
state-of-the-art countermeasures. IEEE Communications Surveys & Tutorials 20, 4
(2018), 3330-3368.

Bangbang Ren, Deke Guo, Guoming Tang, Xu Lin, and Yudong Qin. 2018. Optimal
service function tree embedding for NFV enabled multicast. In ICDCS 2018.

G. Sallam, G. R. Gupta, B. Li, and B. Ji. 2018. Shortest Path and Maximum Flow
Problems Under Service Function Chaining Constraints. In INFOCOM 2018.

G. Sallam and B. Ji. 2019. Joint Placement and Allocation of Virtual Network
Functions with Budget and Capacity Constraints. In INFOCOM 2019.

Y. Sang, B. Ji, G. Gupta, X. Du, and L. Ye. 2017. Provably efficient algorithms for
joint placement and allocation of virtual network functions. In INFOCOM 2017.
B. Schieber and U. Vishkin. 1988. On Finding Lowest Common Ancestors: Sim-
plification and Parallelization. SIAM J. Comput. 17, 6 (1988), 1253-1262.

S. Seyyedi and B. Akbari. 2011. Hybrid CDN-P2P architectures for live video
streaming: Comparative study of connected and unconnected meshes. In CNDS
2011. 175-180.

Gerhard] Woeginger. 2000. When does a dynamic programming formulation
guarantee the existence of a fully polynomial time approximation scheme (FP-
TAS)? INFORMS Journal on Computing 12, 1 (2000), 57-74.

Bo Yi, Xingwei Wang, Keqin Li, Min Huang, et al. 2018. A comprehensive survey
of network function virtualization. Computer Networks 133 (2018), 212-262.

	Abstract
	1 Introduction
	2 Related Work
	3 Model and Problem Formulation
	3.1 Network model
	3.2 Problem formulation

	4 Solution for General Networks
	4.1 Problem hardness in a general topolgoy
	4.2 Performance-guaranteed solution

	5 Solutions for Tree Networks
	5.1 Optimal DP-based solution
	5.2 Efficient greedy solution

	6 Evaluation
	6.1 Setting
	6.2 Metrics and comparison algorithms
	6.3 Simulation results in a tree topology
	6.4 Simulation results in a general topology
	6.5 Simulation results with spam filters

	7 Conclusion
	References

