


ICPP ’20, August 17ś20, 2020, Edmonton, AB, Canada Yang Chen, Jie Wu, and Bo Ji

one on each flow’s source, which reduces the bandwidth consump-

tion in the earliest locations for all flows. Additionally, the total flow

bandwidth consumption is reduced to 0.5 · (4 · 2 + 2 · 2 + 2 + 2) = 8,

which is the minimum.

Most existing works focus on multiple middlebox deployment,

but frequently formulate as a complex Integer Programming prob-

lem with no efficiency-guaranteed solvers, or are limited to design

no performance-guaranteed heuristic solutions. Additionally, we

find that when it comes to security inspection or analytic services,

only one kind of middleboxes is needed for each flow, such as spam

filters, Intrusion Detection Systems (IDSs), Intrusion Prevention

Systems (IPSs), Deep Packet Inspection (DPI), and network analyt-

ics/ billing services [28]. Thus, we narrow down to the deployment

problem of one single type of middleboxes per flow, and propose

performance-guaranteed solutions for middleboxes with traffic-

diminishing effects in order to minimize the total flow bandwidth

consumption. Our main contributions are summarized as follows:

• We formulate a new optimization problem, called Traffic-

diminishing Middlebox Deployment (TDMD), where the ob-

jective is to minimize the total bandwidth consumption in

a given network using a fixed number of middleboxes. The

solution of TDMD is particularly useful in allocating spam

filters to minimize the total spam traffic using a fixed number

of spam filters.

• We prove the NP-hardness of the middlebox deployment in

general topologies in Section 4 (Theorem 1). A heuristic algo-

rithm with a complexity of O(|V |2 log |V |) of oracle queries

is proposed, which has a performance-guaranteed ratio of

(1−1/e) based on k middleboxes derived from the algorithm.

• We propose one optimal dynamic programming based al-

gorithm and one efficient greedy algorithm for the tree-

structured networks. Their time complexities are O(|V | ·

(log |V |)3 · rmax) and O(|V |2 log |V |) respectively, where V

is the vertex set, and rmax is the integral largest flow rate.

When flows have the same rate, the time complexity is re-

duced to O(|V |3(log |V |)2). We also present a time-efficient

greedy solution with complexity of O(|V |3 log |V |).

• We conduct extensive simulations to evaluate our algorithms’

efficiency with the CAIDA data set [5].

2 RELATED WORK

NFV frameworks have recently drawn a lot of attention, especially

in the middlebox deployment[9, 10, 24]. For placing a single type of

middleboxes for all flows, Casado et al. [6] propose a deployment

model and present a heuristic solution. Sang et al. [28] study the

joint deployment and allocation of a single type of middleboxes,

where flows can be split and served by several middleboxes. They

propose several performance-guaranteed algorithms to minimize

the number of middleboxes. Sallam et al. [27] maximize the total

amount of network flows that are fully processed by certain nodes

while respecting deployment budget and node capacity. However,

none of them considers middlebox traffic-changing effects or fo-

cuses on the bandwidth consumption objective.

For placing multiple types of middleboxes, most research on mid-

dlebox deployment focuses on placing a totally-ordered set, which

is known as a service chain [32]. Mehraghdam et al. [23] propose

a context-free language to formalize the chaining of middleboxes

and describe the middlebox resource allocation problem as a mixed

integer quadratically constrained program. Rami et al. [8] locate

middleboxes in a way that minimizes both new middlebox setup

costs and the distance cost between middleboxes and flows’ paths.

Both [19] and [20] aim to maximize the total number of requests

for service chains. Kuo et al. [19] propose a systematic way to tune

the proper link consumption and the middlebox setup costs in a

joint problem of middlebox deployment and path selection. Li et al.

[20] present the design and implementation of NFV-RT, a system

that dynamically provisions resources in an NFV environment to

provide timing guarantees so that the assigned flows meet their

deadlines. Fei et al. [11] propose a proactive approach to provi-

sion new middleboxes in order to minimize the cost incurred by

inaccurate prediction of middlebox deployment. However, none of

the above mentioned works on service chain considers the traffic-

changing effect.

Ma et al. [22] are the first to take the traffic-changing effects

into consideration. They target load balancing instead of middle-

box setting-up costs. They propose a dynamic programming based

algorithm to deploy a totally-ordered set, an optimal greedy solu-

tion for the middlebox deployment of a non-ordered set, and prove

the NP-hardness of placing a partially-ordered set. However, this

work only processes a single flow and always builds new, private

middleboxes without sharing with other flows, which excessively

increases the number of located middleboxes. Chen et al. [7] con-

sider both traffic-changing effects and multiple flows. However,

their results only can apply to a special restrictive network called

the double-tree structure network when flows have the same rate.

3 MODEL AND PROBLEM FORMULATION

3.1 Network model

Our scenario is based on a directed network, G = (V ,E), where V

is a set of vertices (i.e., switches), and E ⊆ V 2 is a set of directed

edges (i.e., links). We use v and e to denote a vertex (node) and an

edge (link). We assume each link is bidirectional and has enough

bandwidth to hold all bypass flows with their initial traffic rates,

which eliminates congestion and ensures that the routing of all

flows is successful. Middleboxm has a pre-defined traffic-changing

ratio λ ≥ 0, serving as the ratio of a flow’s traffic rate before and

after being processed bym if the flow requires to be processed bym.

We focus on the deployment of a single type of traffic-diminishing

middleboxes, whose traffic-changing ratio is λ ≤ 1. We use an

indicator function,mv , to represent whether there is a middlebox

of m deployed on v . If a middlebox is deployed on v , mv = 1;

otherwise,mv = 0.

We are given a set of unsplittable flows F = { f }. Because flow

splitting may not be feasible for applications that are sensitive to

TCP packet ordering (e.g. video applications). In any case, split

flows can be treated as multiple unsplittable flows. We use f to

denote a single flow that has an initial traffic rate of rf . Its path pf
is an ordered set of edges from f ’s source, srcf , to its destination,

dstf . All flows’ paths are predetermined and valid. We introduce

the indicator function, fv , for flow f using the middleboxm de-

ployed on the vertex v . We define lv (f ) as the minimum number

of edges from a vertex v to srcf . We use b(f ) to denote f ’s total





ICPP ’20, August 17ś20, 2020, Edmonton, AB, Canada Yang Chen, Jie Wu, and Bo Ji

Algorithm 1 General Topology Placement (GTP)

In: V ,E, F and traffic-changing ratio λ;

Out: Deployment and allocation plans P and F ;

1: Initialize P as an empty set ∅;

2: while not all flows are processed do

3: deploy onem on the vertex v ∈ V \P with maxdP (v);

4: P = P
⋃

{v} andmv = 1;

5: ∀f ∈F , fv =1, if lv (f )=max{lv ′(f )|mv ′ =1,∀v ′ ∈pf }.

6: return P and F = { fv |∀f ∈ F } .

Then we deploy one middlebox on v1 and another on v3 to serve

all flows.

Conversely, if we can deploy k vertices to process all flows, then

we can select their corresponding sets of elements from S . As all

flows are processed, the union of the sub-collection sets of S equals

the universe. Consequently, since the set-cover decision problem is

a NP-complete problem, the TDMD problem is NP-hard. ■

4.2 Performance-guaranteed solution

Since the feasibility is NP-hard to check in a general topology, we

propose a greedy but feasible solution that uses k middleboxes de-

rived from the solution. We prove that it is performance-guaranteed

for the k . The greedy algorithm, called General Topology Placement

(GTP), is shown in Alg. 1. Line 1 initiates the deployment plan as

an empty set. Lines 2-4 iteratively select v ∈ V with the maximum

value of maxdP(v) until all flows are fully served. In each round,

we add the new middlebox to the current plan P. Line 5 generates

the allocation plan The deployment plan P returns in line 6.

We also use Fig. 1 to illustrate the process of applying GTP. The

settings are the same. The initial traffic rates of flows are r1 =

4, r2 = 2, r3 = 2, and r4 = 2, respectively. We list the values of

marginal decrement for all vertices in Tab. 2. In the first round,

d∅(v5) has the maximum value so that we deploy a middlebox on

v5 and P = {v5}. In the next round, d {v5 }(v6) has the maximum

value, but the deployment plan is not feasible. We can only deploy a

middlebox onv2 because of k = 2 and P = {v2,v5}. If we are given

k = 3, the result is shown in Fig. 1(b). In the first round, d∅(v5)

has the maximum value so that we deploy a middlebox on v5 and

P = {v5}. In the next round, d {v5 }(v6) has the maximum value so

P = {v5,v6} and . Then, d {v5,v6 }(v4) has the maximum value so

the final plan is {v4,v5,v6}.

Definition 1 (decrement function). The decrement func-

tion, denoted as d(P), indicates the decrement of the total band-

width consumption by a deployment plan P, which satisfies d(P) =
∑

f ∈F rf · |pf | − b(P).

Definition 2 (marginal decrement). The marginal decre-

ment, denoted as dP (S) = d(P ∪ S) −d(P), indicates the additional

bandwidth decrement of processing flows by deploying middleboxes

on a new subset S ∈ V beyond vertices in the current deployment P.

Lemma 1. (1) d(∅) = 0 and d(V ) = (1 − λ) ·
∑

f ∈F rf · |pf |; (2)

maxd(P) = (1 − λ) ·
∑

f ∈F rf · |pf |; (3) mind(P) = 0.

Proof: (1) A flow f ’s bandwidth consumption is the sum of its

occupied bandwidth on each link along its path, which is rf · |pf |.

When we deploy no middlebox, i.e., P = ∅, the traffic rates of all

v v1 v2 v3 v4 v5 v6

d∅(v) 0 0 3 1 4 3

d{v5}(v) 0 0 1 1 Ð 3

d{v5,v6}(v) 0 0 0 1 Ð Ð

Table 2: Marginal decrement values.
flows remain unchanged. Then we have d(∅) = 0. Similarly, when

there is a middlebox deployed on each vertex, i.e., P = V , the traffic

rate of each flow f changes from rf to λ·rf as early as its source. The

bandwidth consumption of a flow f is decreased to λ · rf · |pf |. The

total bandwidth consumption becomes b(V ) =
∑

f ∈F λ · rf · |pf | =

λ ·
∑

f ∈F rf · |pf |. We have d(V ) = b(V ) − (1 − λ) ·
∑

f ∈F rf · |pf |.

(2) The total bandwidth consumption is the smallest when all flows

are processed as early as their sources because all flows’ traffic

rates are diminished from the first edges along their paths. We have

minb(P) = λ ·
∑

f ∈F rf · |pf | and maxd(P) = (1 − λ) ·
∑

f ∈F rf ·

|pf |. (3) Similarly, the total bandwidth consumption is the largest

when all flows are not processed because their traffic rates are

not diminished. Thus, we have maxb(P) =
∑

f ∈F rf · |pf | and

mind(P) = 0. ■

Next, we analyze the properties of the decrement function d(P).

It is known that a function d is submodular if and only if ∀P ⊆

P ′ ⊆ V ,∀v ∈ V \P ′, dP ({v}) ≥ dP′({v}), i.e., d(P∪{v})−d(P) ≥

d(P ′ ∪ {v}) − d(P ′).

Theorem 2. d(P) is a submodular function.

Proof: We assume P ′
=P

⋃

S . From definitions 2 and 3, we have

d(P ′)−d(P)= (
∑

f ∈F

rf · |pf |−b(P
′))−(

∑

f ∈F

rf · |pf |−b(P))

=b(P)−b(P ′) =
∑

fv′=1,f ∈F

rf (1 − λ)lv ′(f ) −
∑

fv=1,f ∈F

rf (1 − λ)lv (f )

=

∑f ∈F

fv′=1,fv=1
rf (1 − λ)[lv ′(f ) − lv (f )].

We know fv = 1 if v has lv (f ) = max{lw (f )|mw = 1,∀w ∈ pf }.

As more middleboxes are deployed in P ′ beyond P, flows must be

processed no later than in P. Then ∀f ∈ F , we have lv ′(f ) ≥ lv (f )

when fv ′ = 1 in P ′ and fv = 1 in P. Thus, d(P ′) ≥ d(P) and d(P)

is a non-decreasing function, which is monotone. Suppose a vertex

u satisfies u ∈ V \P ′. If we deploy a middlebox on u, fu becomes

1 if u has lu (f ) = max{lw (f )|mw ,∀w ∈ pf }, resulting in a smaller

b(f ); otherwise, fu still is 0 and b(f ) remains the same. Then we

have lu (f ) > lv ′(f ) ≥ lv (f ),∀f ∈ F .

From above, we get d(P
⋃

{u})−d(P) =
∑f ∈F

fu=1
rf (1−λ)(lu (f )−

lv (f )). As ∀f ∈ F , (lu (f ) − lv ′(f )) ≤ (lu (f ) − lv (f )), we have:
f ∈F
∑

fu=1

rf (1 − λ)(lu (f ) − lv ′(f )) ≤

f ∈F
∑

fu=1

rf (1 − λ)(lu (f ) − lv (f )).

Thenwe haved(P ′⋃{u})−d(P ′) ≤ d(P
⋃

{u})−d(P), meaning

dP′{v} ≤ dP {v}. Thus, d(P) is submodular. ■

Theorem 3. The proposed GTP can achieve a deployment with at

most (1 − 1/e) times of the maximum decrement. Its time complexity

is O(|V |2 log |V |) of oracle queries.

Proof: Our TDMD problem has the same formulation as the set

cover problem and the deployment P follows its greedy algorithm

in [16]. Hence, the approximation ratio (1−1/e) follows from Propo-

sition 6 in [16]. Also, Feige [12] proved that unless P =NP, no polyno-

mial time algorithm can achieve an approximation ratio better than



Optimizing Flow Bandwidth Consumption with Traffic-diminishing Middlebox Placement ICPP ’20, August 17ś20, 2020, Edmonton, AB, Canada

v

F F

p k-p
vl vr

(a) Subtree fully served.

v

P P

k-q-1q

m

vl vr

(b) Served on current node v .

Figure 3: Illustration for fully served situation.

(1−1/e) for the cardinality constrained maximization of this kind of

set cover problem. We run k rounds for placing each middlebox and

k = O(|V |) as we at most place one middlebox on each vertex. In

each round, it takes a constant time to calculate dP (v), ∀v ∈ V \ P.

Sorting all such dP (v) takes at most O(|V | log |V |). The function

calculation itself is usually assumed to be conducted by an oracle,

and thus its complexity is not taken into account. So the algorithm

complexity isO(|V | · |V | log |V |) = O(|V |2 log |V |) times oracles.■

5 SOLUTIONS FOR TREE NETWORKS

Because of the NP-hardness of our TDMD problem in general

topologies, here we narrow down to tree topologies, which are

common in streaming services [25], content delivery networks

(CDNs) [30], and tree-based tiered topologies like Fat-tree [3] or

BCube [14] in data centers. We require that the sources of all flows

are leaves and their destinations are the same as the root of the tree.

As long as the middlebox number constraint k ≥ 1 and the destina-

tions of all flows are the root, we can process all flows by placing a

middlebox on the root so that there does not exist infeasibility.

5.1 Optimal DP-based solution

We introduce the optimal dynamic programming (DP) based solu-

tion for the tree-structured networks. Note that the solution works

for general trees with an arbitrary number of branches. For sim-

plicity, we only discuss the solution for the binary tree. Before

introducing our optimal DP solution, we define two notations for

the fully and partially served situations, respectively. Let F (v,k)

denote the minimum total occupied bandwidth of all flows with k

deployed middleboxes in the subtree Tv rooted at v when all flows

have been fully processed. Let P(v,k,b) denote the minimum total

occupied bandwidth of all flows with k deployed middleboxes in

the tree Tv when flows with a total bandwidth consumption of b

have been processed. Then we have the following formulations.

The formulation for the full served case is:
F (v,k) = min{ min

0<p<k
{F (vl ,p) + F (vr ,k − p)}+

λ

∑

f ∈Tv
b(f ), min

0≤q<k
{P(vl ,q,bl ) + P(vr ,k − 1 − q,br )

+ λbl + λbr +
∑

f ∈Tv
(b(f ) − bl − br )}}. (7)

Here is the explanation. When all flows have been fully processed,

there are only two served situations in Fig. 3:

(a) In Fig. 3(a), the left and right subtrees of v have already been

served by totally deploying k middleboxes before v . The minimum

total occupied bandwidth in the tree of v , is selected from all com-

binations of allocating the total k middleboxes. If the left subtree

deploys p (0 < p < k) middleboxes, then the right tree deploys the

remaining k−p ones. The sum of the minimum total occupied band-

width inside v’s two subtrees is min0<p<k {F (vl ,p) + F (vr ,k − p)}.

v

P P

k-pp
vl vr

Figure 4: Illustration for partial served situation.

The total consumed bandwidth on the two uplinks from its two

subtrees to v , is λ
∑

f ∈Tv b(f ). This is because all flows have al-

ready been processed inside its two subtrees. The minimum total

occupied bandwidth in the tree of v , F (v,k), is the sum of the two

parts.

(b) In Fig. 3(b), its two subtrees are partially served. So we deploy

one middlebox on v to make sure all flows through v have been

served. The minimum total occupied bandwidth in the tree of v is

selected from all combinations of allocating the remaining k−1mid-

dleboxes in its subtrees. If the left subtree deploys q (0 ≤ q ≤ k − 1)

middleboxes, then the right tree deploys the remaining k−q−1 ones.

Here each subtree can deploy no middlebox as we do not require all

flows to be served. The sum of the minimum total occupied band-

width inside v’s two subtrees is min0≤q≤k {P(vl ,q,bl ) + P(vr ,k −

1−q,br )}. The total consumed bandwidth on the two uplinks from

its two subtrees to v , is λbl + λbr +
∑

f ∈Tv (b(f ) − bl − br ). This

is because its left subtree has flows with a total bandwidth of bl
processed while the right has flows with a total bandwidth of br
processed. Additionally, there are flows with a total bandwidth of
∑

f ∈Tv (b(f )−bl −br ) that are not processed inside its both subtrees

and will be processed by the middlebox deployed on v .

The formulation for the partial served case is:
P(v,k,b) = min

0≤p≤k
{P(vl ,p,bl ) + P(vr ,k − p,br ) + λbl

+ λbr +
∑

f ∈Tv
(b(f ) − bl − br )}. (8)

We have b = bl +br . Here is the explanation. When flows are par-

tially processed with a total served bandwidth b, there is only one

served situation, illustrated in Fig. 4: The left and right subtrees ofv

are both partially served. The minimum total occupied bandwidth

in the tree of Tv is selected from all combinations of allocating the

total k middleboxes. If the left subtree deploys p (0 ≤ p ≤ k) mid-

dleboxes, then the right tree deploys the remaining k −p ones. Here

each subtree can deploy no middlebox as we do not require all flows

to be served. The sum of the minimum total occupied bandwidth

inside v’s two subtrees is min0≤p≤k {P(vl ,p,bl ) + P(vr ,k − p,br )}.

The total consumed bandwidth on the two uplinks from its two

subtrees to v , is λbl + λbr +
∑

f ∈Tv (b(f ) − bl − br ). The reason is

the same as the second served situation of F (v,k). Then the total

served flow bandwidth is the sum of the served ones in each subtree,

which is b = bl + br . Here we need to mention that F (v,k) is a

special case of P(v,k,b) when all flows in Tv are processed and b

is the smallest.

The initial value of F (v,k) for each leaf node v is:

F (v,k) =

{

0 k ≥ 1,

∞ otherwise .
(9)

There is no bandwidth consumption inside a leaf node if any

middlebox is deployed. If no middlebox is deployed (k ≤ 0), there

is no feasible deployment then the value of F (v,k) is set as ∞. The



ICPP ’20, August 17ś20, 2020, Edmonton, AB, Canada Yang Chen, Jie Wu, and Bo Ji

v1

v2 v3

v4 v5
f1

f4

v6

v7 v8
f3

f2

Figure 5: An example.

k\v 1 2 3 4 5 6 7 8

1 24 3 6 0 0 6 0 0

2 16.5 1.5 3 0 0 3 0 0

3 13.5 1.5 3 0 0 3 0 0

4 12 1.5 3 0 0 3 0 0

Figure 6: Values for F (v,k).

initial value of P(v,k,b) for each leaf v is:

P(v,k,b) =

{

0 k ≥ 0 and b ≤
∑

f ∈Tv bf ,

∞ otherwise .
(10)

The upper-bound of the total processed bandwidth is
∑

f ∈Tv bf ,

which is the sum of all flows’ initial traffic rates. Even when no

middlebox is deployed (k = 0), P(v,k,b) is 0.

In order to reduce bandwidth consumption, flows are always

processed by the middlebox that is nearest to their sources, i.e.,

farthest to their destinations. It means that fv = 1 if v has the

value lv (f ) = max{lw (f )|mw = 1,∀w ∈ pf }. For a flow f , if a

vertex v ∈ pf has fv = 1, we have (|pf | − lv (f )) edges consuming

rf bandwidth and lv (f ) edges consuming λ · rf bandwidth. Then

b(f ) = (|pf | − lv (f )) · rf + λ · rf · lv (f ) = rf |pf | − rf (1 − λ)lv (f ).

Thus, when P is decided, the optimal allocation plan is also decided.

For simplicity, we omit F in b(P,F ) as b(P).

Theorem 4. The dynamic programming based solution (DP) is

optimal for our TDMD problem in tree-structured topologies.

Proof: The detailed proof is omitted due to the optimal property

of the dynamic programming method. ■

We use an example in Fig. 5 to explain the details of applying

our DP formulation. There is a binary tree with eight vertices and

four flows f1, f2, f3 and f4 with their initial rates as r1 = 2, r2 =

1, r3 = 5 and r4 = 1, respectively. The traffic changing ratio of the

middlebox is λ = 0.5. We list the values of F (v,k) and P(v,k,b) for

all combinations of feasible k and b for each vertex in the tables

of Fig. 6 and Fig. 7. When all flows have been processed in the

root v1, b = r1 + r2 + r3 + r4 = 2 + 1 + 5 + 1 = 9, and we have

F (v1,k) = P(v1,k, 9) for all k . Take k = 3 as an example. We

have F (v1, 3) = P(v1, 3, 9) = 13.5 from tables in Fig.6 and Fig. 7(a).

For finding the corresponding, we trace back. If no middlebox is

deployed on v1, all flows have been processed inside both subtrees

of v1. Then we can calculate the total consumed bandwidth inside

both subtrees as 13.5−0.5·(2+1+5+1) = 9, which is exactly the sum

of F (v2, 1) = 3 and F (v3, 2) = 6. Our assumption is correct. Then

F (v2, 1) is selected, whichmeans that we deploy only onemiddlebox

to fully serve all flows in the tree T2. The only feasible position is

v2. For the right subtree, F (v3, 2) is selected. Since there are only

two leaf nodes in the tree T3, we deploy one middlebox on each

leaf node. Then the optimal deployment for k = 3 is {v2,v7,v8}.

Similarly, the optimal deployment for k = 2 is {v1,v7} or {v2,v6}.

As for partially processing with k = 3, if only 1 rate of flows

is not processed, we have b = 9 − 1 = 8. For minimizing the

total bandwidth consumption, we should deploy a middlebox on

v4 instead of v2, resulting in P(v1, 3, 8) = 13 < P(v1, 3, 9). Due to

space limits, we omit calculation of other values in Figs. 6 and 7.

Theorem 5. Time complexity of Alg. DP is O(|V | · (log |V |)3 ·

rmax), where rmax = maxf ∈F rf . (We assume rmax is an integer.)

k\b 0 1 2 3 4 5 6 7 8 9

0 24 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1 ∞ 22.5 22 22.5 ∞ 16.5 ∞ ∞ ∞ 24

2 ∞ ∞ 21.5 20.5 21 16.5 15 14.5 15 16.5

3 ∞ ∞ ∞ ∞ 19.5 ∞ ∞ 14 13 13.5

4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 12

(a) P (v1, k, b)

k\b 0 1 5 6

0 6 ∞ ∞ ∞

1 6 5.5 3.5 ∞

2 ∞ 5.5 3.5 3

(b) P (v2, k, b)

k\b 0 1 5 6

0 12 ∞ ∞ ∞

1 12 11 7 ∞

2 ∞ 11 7 6

(c) P (v3, k, b)

k\b 0 2

0 0 ∞

1 ∞ 0

(d) P (v4, k, b)

k\b 0 1

0 0 ∞

1 ∞ 0

(e) P (v5, k, b)

k\b 0 1 5 6

0 6 ∞ ∞ ∞

1 6 5.5 3.5∞

2 ∞ 5.5 3.5 3

(f) P (v6, k, b)

k\b 0 5

0 0 ∞

1 ∞ 0

(g) P (v7, k, b)

k\b 0 1

0 0 ∞

1 ∞ 0

(h) P (v8, k, b)

Figure 7: Values for P(v,k,b).

Proof: This is because there are |V | vertices and we need to

traverse each vertex. For each vertex v , we need to calculate values

of F (v,k) and P(v,k,b) for all combinations of feasible k and b.

The largest value of k is the number of leaves, which is O(log |V |)

for a binary tree. Additionally, the largest value of b is the sum of

all flows’ initial traffic rate
∑

f ∈F bf , which is less than |F | · rmax.

Additionally, for flows from the same leaf source, we can treat

them as a single flow because of their same path to the root. As

a result, the maximum number of flows is the same number of

the leaf nodes, i.e., O(|F |) = O(log |V |). rmax is the largest flow

rate after the merge. When calculating the value of F (v,k) for a

group of fixed valuesv and k , we need to select the minimum value

from all its combinations for two served situations, whose total

number is less thanO(k +k · |F | ·rmax) = O((log |V |)2 ·rmax). When

calculating the value of P(v,k,b) for a group of fixed valuesv,k and

b, we need to select the minimum value from all its combinations,

whose total number is less than k · |F | · rmax = O((log |V |)2 · rmax).

The selection takes a constant time. As a result, the worst time

complexity isO(|V | · log |V | · ((log |V |)2 · rmax + (log |V |)2 · rmax) =

O(|V | · (log |V |)3 · rmax). ■

When all flows have the same initial traffic rate, the time complex-

ity becomes O(|V |(log |V |)2(|V |2 + (log |V |)2) = O(|V |3(log |V |)2),

which is polynomial. When flows have various initial traffic rates ,

the DP algorithm is pseudo-polynomial. It is not trivial to transform

our proposed DP algorithm into a polynomial-time approximation

scheme (PTAS) [31] because the placement at the current vertex

does not have a obvious relationship or direct impact with its par-

ent. When the traffic rates of flows are in an arbitrary precision

and order of magnitude, the DP algorithm is computationally hard.

This motivates us to propose an efficient algorithm with a lower

time complexity in the next subsection.

5.2 Efficient greedy solution

We study a fast, sub-optimal greedy solution, but first introduce a

definition from graph theory.





ICPP ’20, August 17ś20, 2020, Edmonton, AB, Canada Yang Chen, Jie Wu, and Bo Ji

5 10 15

k

0.6

0.8

1

1.2

1.4

1.6

B
a
n
d
w

id
th

 c
o
n
s
u
m

p
ti
o
n

10
5

Random

Best-effort

GTP

HAT

DP

(a) Bandwidth consumption.

5 10 15

k

0

100

200

300

E
x
e

c
u

ti
o

n
 t

im
e

/s

Random

Best-effort

GTP

HAT

DP

(b) Execution time.

Figure 9: Middlebox number constraint k in tree.

0 0.2 0.4 0.6 0.8

Traffic-changing ratio

0.5

1

1.5

2

2.5

B
a

n
d

w
id

th
 c

o
n

s
u

m
p

ti
o

n

10
5

Random

Best-effort

GTP

HAT

DP

(a) Bandwidth consumption.

0 0.2 0.4 0.6 0.8

Traffic-changing ratio

0

100

200

300

E
x
e

c
u

ti
o

n
 t

im
e

/s

Random

Best-effort

GTP

HAT

DP

(b) Execution time.

Figure 10: Traffic-changing ratio in tree.

6.2 Metrics and comparison algorithms

We use two performance metrics for our benchmark comparisons:

the total bandwidth consumption, which is our objective in Eq. 1,

and the execution time of each algorithm in seconds. We test the

relationships among these two metrics and five variables: middle-

box number constraint k (only for trees), traffic-changing ratio,

flow density, topology size and topology type. The flow density is

defined as the ratio of the total traffic load to the total capacity of

the network. Each simulation tests one variable and keeps other

variables constant. The default values of these variables are: (1) The

middlebox number for the tree is k = 8 and for the general topology

is k = 10; (2) The traffic-changing ratio is λ = 0.5; (3) The flow den-

sity is 0.5; (4) The topology size is 22 for the tree topology (shown

in Fig. 8(b)), and 30 for the general topology (shown in Fig. 8(c)); (5)

We have a tree topology and a general topology. Destinations are

shown as red nodes. The root of tree topology is colored red, shown

in Fig. 8(b). The topology size changes by randomly inserting and

deleting vertices in the network. The independent variable in each

figure is shown as the caption.

We include two benchmark schemes in our simulations: one is

Random, which randomly deploys middleboxes until it deploys k

middleboxes; another one is Best-effort, which deploys one mid-

dlebox on the vertex, which can reduce the bandwidth of flows

mostly, until it deploys k middleboxes. Our proposed Alg. DP and

Alg. HAT are for the tree, and Alg. GTP is for both the tree and the

general topologies. We only discuss feasible solutions. We run each

algorithm multiple times and show the error bar of each point to

evaluate fluctuating situations.

6.3 Simulation results in a tree topology

Simulation results in a tree are shown in Figs. 9, 10, 11, and 12.

Fig. 9(a) shows the relationship between bandwidth consumption

and k ranging from 1 to 16 with an interval of 3. Alg. DP always

has the lowest bandwidth consumption as well as the smallest

0.3 0.4 0.5 0.6 0.7 0.8

Flow density

0.8

1

1.2

1.4

1.6

1.8

2

B
a

n
d

w
id

th
 c

o
n

s
u

m
p

ti
o

n

10
5

Random

Best-effort

GTP

HAT

DP

(a) Bandwidth consumption.

0.3 0.4 0.5 0.6 0.7 0.8

Flow density

0

100

200

300

400

E
x
e
c
u
ti
o
n
 t
im

e
/s

Random

Best-effort

GTP

HAT

DP

(b) Execution time.

Figure 11: Flow density in tree.

15 20 25 30

Topology size

0.5

1

1.5

2

2.5

3

B
a

n
d

w
id

th
 c

o
n

s
u

m
p

ti
o

n

10
5

Random

Best-effort

GTP

HAT

DP

(a) Bandwidth consumption.

15 20 25 30

Topology size

0

200

400

600

E
x
e
c
u
ti
o
n
 t
im

e
/s

Random

Best-effort

GTP

HAT

DP

(b) Execution time.

Figure 12: Topology size in tree.

error bars, which verifies its optimality. When k = 1, there is

only one feasible deployment plan so all bandwidth consumptions

are the same. When k becomes larger, all their total bandwidth

consumptions become lower since more flows can be processed

nearer to their sources. Alg. HAT has the second lowest bandwidth

consumption, while Alg. GTP has the third lowest. The error bars

of Alg. Random are always the largest because its randomness of

deployment results in an unsteady performance. Fig. 9(b) shows

the execution time result of the five algorithms, which verifies the

time complexity analysis of our proposed algorithms. When the

middlebox number constraint k increases, the execution time of

Alg. DP increases vastly while other four algorithms only have

moderate increment. This is because the relationship between k

and V is k = O(log |V |) as we discussed in Section V. It indicates

the trade-off between the performance and the efficiency of this

algorithm. Alg. HAT has the second longest execution time because

its complexity is O(|V |2 log |V |) larger than others, although its

bandwidth consumption performance is the second best. Alg. Best-

effort has a close execution time with the Alg. GTP. In the following

discussion, since some results and analysis are similar, we omit the

details because of limited space.

Fig. 10(a) indicates the result of the bandwidth consumption on

the traffic-changing effect ranging from 0 to 0.9 with an interval of

0.1. Alg. DP still achieves the lowest bandwidth consumption for all

the time. Alg. HAT has the second lowest bandwidth consumption,

while Alg. GTP has the third lowest. The difference between every

two algorithms becomes larger with the increase of λ. When λ = 0.8,

the bandwidth consumption of Alg. HAT is only 75.4% of Alg. Best-

effort and 66.1% of Alg. Random. We find the traffic-changing ratio

has little influence on the execution time of all greedy algorithms,

shown in Fig. 10(b). This also confirms that the time complexity is

almost irrelevant of the traffic-changing ratio.

The bandwidth consumption with the flow density changing

from 0.3 to 0.8 with an interval of 0.1 is shown in Fig. 11(a). The



Optimizing Flow Bandwidth Consumption with Traffic-diminishing Middlebox Placement ICPP ’20, August 17ś20, 2020, Edmonton, AB, Canada

12 14 16 18 20 22

k

3.5

4

4.5

5

5.5

B
a
n
d
w

id
th

 c
o
n
s
u
m

p
ti
o
n

10
5

Random

Best-effort

GTP

(a) Bandwidth consumption.

5 10 15

k

0

50

100

150

E
x
e

c
u

ti
o

n
 t

im
e

/s

Random

Best-effort

GTP

(b) Execution time.

Figure 13: Middlebox number k in a general topology.

0 0.2 0.4 0.6 0.8

Traffic-changing ratio

3

3.2

3.4

3.6

3.8

4

B
a
n
d
w

id
th

 c
o
n
s
u
m

p
ti
o
n

10
5

Random

Best-effort

GTP

(a) Bandwidth consumption.

0 0.2 0.4 0.6 0.8

Traffic-changing ratio

80

100

120

140

160

180

200

E
x
e
c
u
ti
o
n
 t
im

e
/s

Random

Best-effort

GTP

(b) Execution time.

Figure 14: Traffic-changing ratio in a general topology.

basic tendencies of all five lines are linear with the increase of

the flow density. When the density increases from 0.5 to 0.7, the

advantage of our Alg. HAT is so obvious that its consumption is at

most 72.1% of the consumption of Alg. Random. When the density

is high, the bandwidth consumption of Alg. Random becomes larger

at a faster rate because more flows need to be handled and randomly

selecting locations is much far from optimality. The execution time,

shown in Fig. 11(b) has a similar tendency with Fig. 9(b). When the

flow density grows, the execution time of Alg. DP increases vastly

while other four algorithms only have moderate increment. When

the flow density reaches the largest value as 0.8, the execution time

of Alg. DP is more than 4 times than that of any of other algorithms.

Fig. 12(a) is the result of the bandwidth consumption as the topol-

ogy size goes from 12 to 32 with an interval of 4. The performance

of Alg. Best-effort is also good and has little difference with the

bandwidth consumption of our Alg. GTP. The difference between

Alg. HAT and Alg. GTP is ignoble when the topology has 20 − 25

vertices. On average, the bandwidth consumption of our Alg. DP

is 10.3% less than that of Alg. GTP and 18.6% less than that of Alg.

Best-effort. The tendency of the execution times in Fig. 12(b) is also

similar to that in Fig. 9(b). Besides that, the increment speed with

the growth of the topology size is faster than those of the previous

three variables in Figs. 9(b), 10(b), and 11(b). Alg. Best-effort has a

close execution time with the Alg. GTP.

6.4 Simulation results in a general topology

The simulation results in a general topology of Fig. 8(b) with k

derived from Alg. GTP are shown in Figs. 13, 14, 15, and 16. Fig.

13(a) shows the relationship between bandwidth consumption and

k ranging from 12 to 22 with an interval of 2. We compare our pro-

posed Alg. GTP, with Algs. Random and Best-effort. The bandwidth

consumption is around three times of that in Fig. 9(a). The possibil-

ity of an infeasible deployment plan is higher than in the tree. This

is because the general topology has a larger diversity in the flows’

0.3 0.4 0.5 0.6 0.7 0.8

Flow density

2.0

4.0

6.0

8.0

B
a

n
d

w
id

th
 c

o
n

s
u

m
p

ti
o

n

10
5

Random

Best-effort

GTP

(a) Bandwidth consumption.

0.3 0.4 0.5 0.6 0.7 0.8

Flow density

0

100

200

300

E
x
e

c
u

ti
o

n
 t

im
e

/s

Random

Best-effort

GTP

(b) Execution time.

Figure 15: Flow density in a general topology.

20 30 40 50

Topology size

2.0

4.0

6.0

8.0

B
a
n
d
w

id
th

 c
o
n
s
u
m

p
ti
o
n

10
5

Random

Best-effort

GTP

(a) Bandwidth consumption.

15 20 25 30

Topology size

0

100

200

300

400

500

E
x
e

c
u

ti
o

n
 t

im
e

/s

Random

Best-effort

GTP

(b) Execution time.

Figure 16: Topology size in a general topology.

paths and serving all flows becomes more difficult. Additionally, the

error bars are smaller than in the tree. From Fig. 13(b), Alg. GTP has

the longest execution time, indicating the delicate tradeoff between

the bandwidth consumption performance and the time efficiency.

Fig. 14(a) indicates the result of the bandwidth consumption as

the traffic-changing effect goes from 0 to 0.9 with an interval of

0.1. The bandwidth consumption increases faster when the traffic-

changing ratio is from 0.4 to 0.6. The advantage of our Alg. GTP

is less obvious as its bandwidth is only 17.3% less than that of Alg.

Random and 8.3% less than that of Alg. Best-effort. The lines are not

so smooth, especially when the ratio is around 0.3 to 0.6. Fig. 14(b)

shows the execution time results. The tendency is almost linear,

which is different from Fig. 10(b), because the general topology has

more choices and is more likely to generate infeasible solutions.

The bandwidth with flow density changing from 0.3 to 0.8 with

an interval of 0.1 is shown in Fig. 15(a). When the flow density is

lower than 0.4, there is little bandwidth difference among the three

algorithms. It may be due to the non-optimality of our Alg. GTP

and the NP-hardness of our problem in a general topology. When

the density is larger than 0.5, the bandwidth of our Alg. HAT is on

average 91.4% of the bandwidth of Alg. Random and 93.5% of the

bandwidth of Alg. Best-effort. From Fig. 15(b), Alg. GTP has the

longest execution time, indicating the delicate tradeoff between the

bandwidth consumption performance and the time efficiency.

Fig. 16(a) is the result of bandwidth consumption as topology size

goes from 12 to 52 with an interval of 8. The lines are almost linear

with the increment of topology size. The bandwidth consumption

is nearly three times of the one in Fig. 12(a). The advantage of Alg.

GTP becomes larger when topology size increases. Fig. 16(b) is

similar to Fig. 15(b).

6.5 Simulation results with spam filters

We additionally do simulations with spam filters, whose traffic-

changing ratio is λ = 0. It illustrates that flows are cut off after




	Abstract
	1 Introduction
	2 Related Work
	3 Model and Problem Formulation
	3.1 Network model
	3.2 Problem formulation

	4 Solution for General Networks
	4.1 Problem hardness in a general topolgoy
	4.2 Performance-guaranteed solution

	5 Solutions for Tree Networks
	5.1 Optimal DP-based solution
	5.2 Efficient greedy solution

	6 Evaluation
	6.1 Setting
	6.2 Metrics and comparison algorithms
	6.3 Simulation results in a tree topology
	6.4 Simulation results in a general topology
	6.5 Simulation results with spam filters

	7 Conclusion
	References

