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Teichmiiller dynamics and unique ergodicity via
currents and Hodge theory

By Curtis T. McMullen at Cambridge, MA

Abstract. We present a cohomological proof that recurrence of suitable Teichmiiller
geodesics implies unique ergodicity of their terminal foliations. This approach also yields con-
crete estimates for periodic foliations and new results for polygonal billiards.

1. Introduction

Let Mg denote the moduli space of compact Riemann surfaces X of genus g, and let
QMg — Mg denote the bundle of nonzero holomorphic 1-forms (X, w). Any 1-form deter-
mines a horizontal foliation ¥ (w) of X together with a transverse invariant measure. If this
measure is unique up to scale, we say & (w) is uniquely ergodic.

The purpose of this note is to present a cohomological proof of the following important
result of Masur:

Theorem 1.1. Suppose the Teichmiiller geodesic ray generated by shrinking the leaves
of ¥ (w) is recurrent in moduli space Mg. Then the foliation ¥ () is uniquely ergodic.

The perspective we adopt is based on currents and Hodge theory. First, we introduce the
convex cone P (w) of closed, positive currents carried by ¥ (w). These are the 1-forms & on X,
with distributional coefficients, satisfying

dé=0, EAB=0 and aAE>0,

where w = o + if. As we will see in Section 3, there is a natural bijection between such
currents and transverse invariant measures for ¥ (w).

The language of currents provides a useful bridge between foliations, differential forms
and Hodge theory. Moreover, the closed currents P(w) map injectively into H!(X,R) when
F (w) has a dense leaf, so unique ergodicity can be addressed at the level of cohomology.
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40 McMullen, Teichmiiller dynamics and unique ergodicity via currents and Hodge theory

In this language, our main result is:

Theorem 1.2. Suppose X lies in a compact subset K C Mg, and the geodesic ray
generated by (X, w) spends at least time T in K. Then the closed, positive currents carried by
F (w) determine a convex cone

[P(w)] € H'(X,R)

which meets the unit sphere in a set of diameter O(e~*FT),

Here the unit sphere and diameter are defined using the Hodge norm on H!(X,R), and
A(K) > 0 depends only on K.

One can regard Theorem 1.2 as a quantitative refinement of Theorem 1.1. In the recurrent
case we can take 7 = oo, [ P(w)] reduces to a single ray, and we obtain unique ergodicity (see
Section 5).

Billiards. Theorem 1.2 also sheds light on the distribution of closed geodesics on
(X, |w]), and leads to new results on billiards in polygons. To illustrate this connection, in
Section 6 we will show:

Theorem 1.3. Consider a sequence of periodic billiard trajectories of slope s, — s
on the golden L-shaped table. If the lengths of the golden continued fractions for s, tend to
infinity, then the trajectories become uniformly distributed as n — oo.

Three examples with s,, — 0 are shown in Figure 1. Only the last sequence of trajectories
is uniformly distributed.
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Figure 1. Periodic billiard trajectories with slopes tending to zero.

An analogous statement holds for any lattice polygon and any 1-form generating
a Teichmiiller curve V' C M. These applications were our original motivation for proving
Theorem 1.2. A more complete development will appear in a sequel [Mc5].

The cone of positive currents. Here is a sketch of the proof of Theorem 1.2.

Let £ € P(w) be a closed, positive current carried by ¥ (w) as above, with & # 0. The
standard transverse measure for ¥ (w) corresponds to the smooth current § = Im(w). To com-
pare the two, we first scale £ so it has the form

E=B+3,
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/5/\a)=0.
X

Let X;, ¢t > 0, denote the Teichmiiller geodesic ray generated by w with Xo = X. The natural
flat connection on cohomology groups allows us to transport the Hodge norm from H (X, R)
to a varying family of norms on H (X, R), which we denote by || - ||x, -

In Section 3 we show that a cone condition of the form

181x,
I181lx,

holds whenever X; € K. On the other hand, in Section 4 we show that as ¢ — oo, the Hodge
norm of B shrinks more rapidly than that of §: there isa A = A(K) > 0 such that

where

< C(K)

I8lx, _ ar ISllx

1Blx, — IBllx

where T is the amount of time X spends in K for s € [0, ¢].
Combining these bounds gives the stronger cone condition

)
I8l _ a7 k)

IBllx —
whenever X; € K. This inequality says that the line through [£] = [+ §] is exponentially close
to the line through [B] in H!(X,R), and Theorem 1.2 follows. (For more details, see Section 5.)
Conceptually, equation (1.1) follows from uniform contraction (over K) of the comple-
mentary period mapping

(1.1)

o:H— $g_1,

which records the Hodge structure on the part of H!(X, R) orthogonal to @, as X moves along
a complex geodesic (see Section 4).

Notes and references. Many of the ideas presented in Section 4 below were developed
independently and earlier by Forni and others, with somewhat different aims and formulations.
In particular, a version of Theorem 4.1 for strata is given in [AF, Theorem 4.2], and a variant
of equation (A.1) is derived, by different means, in [Fo, Lemma 2.1]. The strategy to prove
Theorem 1.1 is similar to the proof that ¥ (w) is ergodic for almost every w € QMg sketched
in [FM, Remark 60]. Here we use currents and the Hodge norm throughout, and exploit the
cone condition given in Theorem 3.1.

Masur’s original proof of Theorem 1.1, which also applies to quadratic differentials, is
given in [Mas, Theorem 1.1]; see also [Mc2]. The original argument works directly with dy-
namics and Anosov properties of the foliation of X. A strengthening of Theorem 1.1 is given
in [Tr, Theorem 4].

A discussion of currents and foliations on general manifolds can be found in [Sul];
another instance of their use in the present setting is given in [Mc4, Section 2]. For more
on the interaction between Hodge theory and Teichmiiller theory, see e.g. [Ah, Roy, Fo, Mcl,
Mol,EKZ,FM, FMZ].

Acknowledgement. I would like to thank J. Chaika and G. Forni for useful discussions
and references.
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2. Background

We begin by recalling some basic results regarding the Hodge theory, foliations, geo-
desics in Teichmiiller space, and the action of SL(IR) on the moduli space of holomorphic
1-forms. For more details, see e.g. [FLP, GH, Ga,IT, Nag, MT, Mo2].

The Hodge norm. Let X be a Riemann surface of genus g. The spaces of holomorphic
and real harmonic 1-forms on X will be denoted by Q(X) and J#!(X), respectively.

By Hodge theory, the map sending a cohomology class to its harmonic representative pro-
vides an isomorphism H (X, R) 2 #!(X). These representatives, together with the Hodge
star, give a rise to a natural inner product

@ (@B = [ ansp
b'¢
on H'(X,R); and the associated Hodge norm is defined by

2
lelly = (e a)x.

Similarly, the space €2(X) carries a natural Hermitian form defined by

) _
(601,(02))( = —/ w1 N\ wa,
2 Jx

whose associated norm is given by

2 2
ol =/ ol
X

These norms are compatible in the sense that the map w — Re w gives a norm—preserving, real
linear isomorphism
Q(X) =~ HY(X,R).

Foliations and measures. Every nonzero w € Q(X) determines a natural horizontal
Joliation ¥ (w) of X . To describe this foliation, recall that

w=u0a+if

is a linear combination of real harmonic forms satisfying xa = S.

The foliation ¥ (w) has multipronged singularities at the zeros of @. Away from these
points, we can choose local coordinates such that w = dz and the leaves of ¥ (w) become
horizontal lines in C. In particular, the tangent space to & (w) is the kernel of 8. Each leaf L
of ¥ (w) is naturally oriented by the condition «|L > 0.

A transverse measure for ¥ (w) is the specification of a Borel measure p; > 0 on every
smooth arc T C X disjoint from Z(w) and transverse to the leaves of the foliation. We require
that ¢, is compatible with restriction; that s, (e = ;|0 whenever o C 7. A transverse measure
is invariant if it also compatible with the smooth maps between nearby transversal obtained by
flowing along the leaves of ¥ (w).

The standard transverse invariant measure for ¥ () is defined by p, = B|t (where 7 is
oriented so the measure is positive.) There may be many others; for example, any closed leaf L
of ¥ (w) supports a transverse atomic measure (L, with mass one at each point of 7 N L.
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Moduli of Riemann surfaces. Fix a compact, oriented topological surface X, of genus
g > 2 with mapping—class group Mod, . A point (X, f) in the associated Teichmiiller space T4
is specified by a Riemann surface of genus g together with an orientation—preserving marking
homeomorphism f : ¥, — X. By forgetting the marking, we obtain a natural map

Tg — Tg/Modg = Mg,

presenting 7 as the orbifold universal cover of the moduli space Mg of Riemann surfaces of
genus g.

The cotangent space to 7 at X is naturally identified with the space Q(X) of holo-
morphic quadratic differentials on X, and the Teichmiiller metric corresponds to the norm
lgll = [x lg]. To describe the tangent space, let M (X ) denote the space of measurable Beltrami
differentials on X with ||| = supy |u| < oo. The natural pairing

(q. 1) =/Xqu=/Xq(Z)M(Z)Id2|2

between Q(X) and M (X) then allows one to identify the tangent space Tx 7 with the quotient
space M(X)/Q(X)*.
For later reference, we note that when ||g| = ||| = 1, we have
q
g1
This observation is an infinitesimal form of uniqueness of the Teichmiiller mapping.

(2.2) Re(q, u) <1, and equality holds if and only if u =

Moduli of forms. Consider the holomorphic vector bundle over 7, whose fiber over X
is ©2(X). Removing the zero section, we obtain the space 27, of marked holomorphic 1-forms.
The associated sphere bundle, whose fibers are

Q1(X) ={w € QX) : |ollx =1}
will be denoted by €21 7, . Taking the quotient by Mod, yields the corresponding bundles 2Mg
and 21 Mg over moduli space.
Dynamics and geodesics. There is a natural action of SL>(R) on Q7 characterized
by the property that, for L = (4 3 ) € SLy(R) we have
L-(X,0)=(Y.n)

if and only if there is amap f : X — Y, compatible with markings, such that

b
2.3) rra=(1 1) (j d) (f;i)

The orbits (X;, ws) = a; - (X, ) of the diagonal group

A= {a, - (e: 2) e R} C SLy(R)

project to Teichmiiller geodesics in 7, parameterized by arclength, and satisfying

dXt _|: 5;

(2.4) i —w—t] e M(X1)/Q(Xo)*
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for all # € R. For ¢t > 0, the natural affine map f; : (X, |w|) = (X;, |w¢]) is area—preserving
and shrinks the leaves of F (w) by a factor of e~?. In particular, if all the leaves of ¥ (w)
are closed, then [X;] converges to a stable Riemann surface in 0.Mg by pinching these closed
curves.

Dynamics and cohomology. The vector bundle H! — T, with fibers H!(X,R) is
both trivial and flat with respect to the connection provided by the marking isomorphisms
H'(X,R) — H'(Z4,R). The same is true when it is pulled back to Q7. Over this space we
have H! = W @ W, where the splitting

(2.5) H'(X.R) = W(X,0) ® W(X.0)"
on each fiber is obtained by taking the image of the direct sum
Q(X) = (Co) & (Co)*

under the map @ — Re w. Since W (X, w) is *x-invariant, the summands in (2.5) are also ortho-
gonal with respect to the symplectic form. Thus the following result is immediate from (2.3):

Proposition 2.1.  The sub-bundles W and W are flat over any SL»(R) orbit in Q7.

Put differently, we have W(L - (X, w)) = W(X, w) when both are identified with sub-
spaces of H!(X,,R), and similarly for W (X, w)t.

3. Currents and cones

In this section we describe the connection between measured foliations and closed, pos-
itive currents. We then show that the shape of the convex cone in cohomology determined by
these currents is uniformly controlled over compact subsets of moduli space. This control can
be expressed in terms of the Hodge norm as a reverse Cauchy—Schwarz inequality, which we
state as follows.

Theorem 3.1. Let K C Mg be a compact set. Then for any closed, positive current &
carried by the horizontal foliation ¥ (w) of a holomorphic 1-form w € Q(X) with X € K,
we have

(3.1 lolx - I§llx = C(K)‘/XwAS‘-

Here C(K) > 0 is a constant depending only on K. Geometrically, this results says that
the length of the current £ in the metric |w| controls the Hodge norm of its harmonic represen-
tative.

Currents and foliations. Recall that a 1-dimensional current £ on X is an element
of the dual of the space of smooth 1-forms (see e.g. [dR], [GH, Section 3.1]). Since X is
oriented, currents on X can be thought of as forms with distributional coefficients. The current
£ is closed if d§ = 0; equivalently, if [, & A df = 0 for every smooth function f on X. Any
closed current determines a cohomology class [£] € H(X,R).
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Given a nonzero holomorphic form w = o + if, let
(3.2) P(w) ={currents £ : d§ =0, EAB=0anda A& > 0}.

The final positivity condition means

/X(fa)/\SZO

for all smooth f > 0 on X; in particular, & is required to satisfy infinitely many linear inequal-
ities. We refer to P(w) as the space of closed, positive currents carried by ¥ (w). It is a closed,
convex cone in the natural topology on currents.

Proposition 3.2. There is a natural bijection between the closed, positive currents car-
ried by ¥ (w) and its transverse invariant measures.

Proof. A transverse invariant measure determines a current £ € P(w) by integration
along the (oriented) leaves of ¥ (@) locally weighted by p.. Conversely, if £ € P(w), then the
fact that £ A B = 0 implies £ is locally a distributional multiple of 8; the fact that £ is closed
implies it is locally the pullback of a distribution on a transversal t; and positivity implies this
distribution is a measure p; > 0. O

The cohomology class of a measured foliation. Each transverse invariant measure
determines a cohomology class, by the correspondence i, — & > [£] € H!(X,R). Recall
that the foliation ¥ (w) is minimal if each of its leaves is dense in X.

Proposition 3.3. [If ¥ (w) is minimal, its transverse invariant measures are determined
by their cohomology classes. Equivalently, the natural map P(w) — H'(X,R) is injective.

Proof. It suffices to show that the values of [~ & for C € Hi(X,Z) determine ji(7)
for every transversal t. By minimality i, has no atoms. Let L be a dense leaf of ¥ (w). Then
L Nt is dense in 7, so we can find an increasing sequence of subarcs 11y C 70 C 13:+- C T
such that |_J 7, has full measure in 7 and each t,, has endpoints in L. By adding a piece of L to
connect these endpoints, we obtain a closed loop C;, with [C,,| € Hy (X, Z). Using these loops,
we find

pe(®) = lim s (5) = lim /C 3

Since the integrals above only depend on [£] € H!(X,R), the proof is complete. O

Corollary 3.4 (Katok). If ¥ (w) is minimal, it carries at most g = g(X) mutually sin-
gular, ergodic, transverse invariant measures.

Proof. The cohomology classes of these measures are linearly independent by the pre-
vious result; and since the corresponding currents are given by integration along the leaves of
the same foliation ¥ (@), they lie in a Lagrangian subspace of H (X, R), which has dimen-
sion g. o

See e.g. [Ka, Theorem 1], [V1, Theorem 0.5] and [Fi, Theorem 1.29] for other perspec-
tives on Corollary 3.4.
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Proof of Theorem 3.1. 'We will first prove a cone inequality for a single form
w=a+if € QX),

X € K, normalized so that ||w||x = 1. By definition (3.2) we have | [ @ A £] = [a A &. Thus
our goal is to prove an inequality of the form

(3.3) lElx < C(K) /X N

forall £ € P(w).

Choose a sequence of smooth, closed 1-forms §1, ..., d2¢ that represent an orthonormal
basis for H1(X,R) with respect to the inner product (2.1). We may assume that these forms
all vanish on an open neighborhood U of Z(w). Since the smooth area form o A § > 0 only
vanishes at the zeros of w, there is a constant M > 0 such that

(3.4) B A *6;| < Ma A B

pointwise on X, fori =1,2,...,2g.
Now for any £ € P(w), the current & is locally a limit of smooth currents of the form
fnB with f, > 0. Since (3.4) implies that

|(fnP) A x8i| < Ma A (fuB)

as measures on X, in the limit we obtain
|E A *6i] < Ma AE,

and hence

<s,5i>st/XaAs

for all i. This implies that

2g 2
Iet = 3 t6.803 = 20m2( [ ant)

1

and taking the square—root of both sides yields the desired inequality (3.3).

We now allow the form (X, w) to move in £21.Mg. Since the zero set Z(w) and the Hodge
norm vary continuously with the form, it is easy to extend the argument just given to obtain
a uniform cone constant in a neighborhood of (X, w). By properness of the projection map
Q1 Mg — Mg, we can then obtain a uniform cone constant C(K) for all unit-norm forms
(X, w) with X in a given compact set K C M. But once the cone inequality (3.1) holds for @
it also holds for all the positive real multiples of w, so the proof is complete. O

4. The complementary period mapping

In this section we study the variation of the Hodge norm along a geodesic in Jg. Its
relationship to the period mapping 7 : T, — 9, will be presented at the end.
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Norms. Let X; be the geodesic in 7 generated by a holomorphic 1-form
wo = ag +1fo € 21(Xo).
Since all the Riemann surfaces in 7, are marked by 2., we have a natural isomorphism
(4.1) H'(Xo,R) = H'(X;,R)

for all # € R. Using this identification, we can transport the Hodge norms on X; to a varying
family of norms || - ||x, on the fixed vector space H (X, R).
It is easy to see that

lvollx, = ¢’ and |Bollx, ="

for all t € R. The next result says that the Hodge norm of any cohomology class orthogonal to
these moves more slowly.

Theorem 4.1. Fix a compact set K C Mg. Then there is a constant A = A(K) > 0
such that for all [8o) € H'(Xo, R) with ||8o|lx, = 1 and

50/\0!0: 50/\,30:0,
Xo Xo

and all t > 0, we have

e)lT—t < | t—AT'

8ollx, <e
Here T = |{s € [0,1] : X5 € K}|.

Proof. Let (X;,w;) = a; - (Xo,wp), and write

wy = 0 + l,Bt
Then
dt o Wy
by equation (2.4).
Let n; € 21(X;) be the unique unit norm 1-form such that
[So]
= [Re 7]
180 lx,

under the identification (4.1). By assumption, we have (1o, wo)x, = 0, and thus

<7lt70)t>Xt =0

for all # € R by Proposition 2.1.
Define a function k on QMg by

K(X,w) = sup{ <r]2, g>‘ :neQi(X)and (n,w)xy = O}.

(The brackets denote the natural pairing (2.2) between tangent and cotangent vectors to Ty
at X.) Since n = w is excluded by the orthogonality condition, we have x(X,w) < 1 (see
equation (2.2)). It can also be readily verified that « is continuous on £21.M ¢, and hence

A=AMK)=1—-sup{k(X,w): X € K} > 0.
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Let N(t) = log ||80||x,. Computing the variation of the Hodge norm (see the Appendix,
Corollary A.2), we find that
N/(t) = _Re<nls Xl)?

and hence _
. W
IN(©)] < 100 Ke)| = ‘<n w—‘> < (X, 0.
t
This shows that
IN'(1)] <1

for all 7, and that

IN'(D)]<1-2
whenever X; € K. Since N(0) = 0, this implies that |[N(¢)| <t — AT for all ¢, and then expo-
nentiation yields the theorem above. O

Conceptual framework. The idea behind the proof above can be expressed as follows.
First, the Hodge norm on H (X, R) provides the same information as the period matrix ;; (X),
which is recorded by the holomorphic period map to Siegel space,

T:Tg = 9.
Second, the choice of a 1-form w = « + i on X determines a natural splitting
4.2) H' (X, R)y=W @ W,

where W = xW is spanned by « and §. Third, the form w generates a holomorphic, isometric
complex geodesic
F:H — 7;,,

related to the real geodesic by X; = F(ie?"). The splitting (4.2) is constant over this geodesic
(see Proposition 2.1), and accordingly the period map t o F' can be written as

H—>Hx$5g_1csbg,

where the two factors of the product IH x $4_1 record the Hodge structures on W and Wt
respectively. Indeed, with a suitable choice of coordinates on the first factor, we can write
to F(s) = (s5,0(5)).
It is then straightforward to show, using Ahlfors variational formula, that the complemen-
tary period map
o:H— $Hg1

is a contraction for the Kobayashi metric. In fact, we have
[Do(s)|| = «(Xs,w5) <1

for all s, and the upper bound can be replaced by 1 — A(K) < 1 provided X5 € K C Mg. To
complete the proof, one need only observe that the rate of change of o (s) controls the rate at
which the Hodge norm varies for a class in WL (cf. [Mc3, Proposition 3.1]).

For more details and similar discussions, see e.g. [Ah], [Roy], [Mc1, Theorem 4.2], [Mc3,
Section 3], the Appendix, and the works [Fo, AF, FMZ] on ergodic averages and Lyapunov
exponents.
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5. Unique ergodicity with bounds
With the previous results in place, it is now easy to prove Theorems 1.1 and 1.2.

Narrowing the cone. We begin with Theorem 1.2. Let K C Mg be a compact set,
let o = +if be a I-form on X € K with ||| x = 1, and let X; be the Teichmiiller ray
generated by (X, w). Let

Pi(w) ={§ € P(w): (B.§) = 1}.

Let T denote the amount of time that X; spends in K for ¢ > 0, and let C(K), A(K) > 0 be
the constants provided by Theorems 3.1 and 4.1.

Theorem 5.1. We have || — Bllx < C(K)e T forall £ € Py(w).

Proof. Let (X;,w;) = a; - (X,w), and write w; = oy + if;. The Teichmiiller map-
ping f; : X — X, provides a natural identification between H!(X;, R) and H'(X,R), under
which we have

[0r] = ¢7'[ao] and  [Be] = €'[Bo]
by equation (2.3). Since ||w;||x, = ||B:|lx, = 1. this gives

1Bollx, ="

Recall that (o, £) = 0 by the definition (3.2) of P(w). Since (f, &) = 1, we can write
E=8+49, Where/ wANs=0.
X

The Teichmiiller mapping f; transports & to a current &; € P(w;) which we can similarly write

as

Er=e "B+ 8. where/ w; N6 = 0.
Xy

By Theorem 3.1, we then have

(51) “8;”)([ < C(K)’/X Wt /\Et = C(K)e_t

whenever X; € K.

Note that the cohomology classes [&;] and [§;] do not depend on ¢. The first is con-
stant because we use f; to identify cohomology groups as ¢ varies, and the second is constant
because the span of [a;] and [B;] does not depend on ¢ (cf. Proposition 2.1).

Suppose s = sup{t > 0: X; € K} is finite. Then we also have

18sllx, > [I8]lx - e S HAET
by Theorem 4.1. Setting # = s in (5.1) and combining these inequalities gives

I8]lx < C(K)e T,

Since § = & — B, the proof is complete. The case s = oo is similar. o



50 McMullen, Teichmiiller dynamics and unique ergodicity via currents and Hodge theory
Theorem 1.2 is then equivalent to:

Corollary 5.2. The diameter of the intersection of [P(w)] C H'(X,R) with the unit
sphere in the Hodge norm is bounded by 2C (K )e )T

Proof. Consider any £ € P(w) with ||€]lx = 1. Then r = (£, 8) > 0 by Theorem 3.1,
and r < I since ||B]lx = 1. The preceding result then gives

IE—Blix < Ir'& = Bllx < C(K)e BT,

where the first inequality comes from the fact that both £ and f lie on the unit sphere. |

Unique ergodicity: Proof of Theorem 1.1. Suppose the geodesic ray X; generated
by (X, w) is recurrent. Then X; spends an infinite amount of time in some fixed compact set
K C Mg, and thus [P1(w)] C H'(X,R) is a single point by the preceding result. By recur-
rence, ¥ (w) has no cylinders or loops of saddle connections; if it did, they would pinch and
force X, to infinity. Hence ¥ (w) has a dense leaf, which implies the map P(w) — H'(X,R)
is injective, by Proposition 3.3. Thus P (w) itself is a single point, and hence ¥ (w) is uniquely
ergodic. |

6. Billiards and equidistribution
In this section we prove Theorem 1.3 on equidistribution of billiards.

The golden table. Lety = %(1 + +/3) be the golden ratio, and let P denote the sym-
metric L-shaped polygon P C C shown in Figure 2, whose short and long sides have lengths
1 and y respectively. By gluing parallel edges of P together by horizontal and vertical transla-
tions, we obtain a holomorphic 1-form (X, w) = (P,dz)/~ € QMg, g = 2, whose stabilizer

is the lattice
0 1 1y
I' =SL(X,w) = , C SLy(R).

Its quotient V' = H/ T is the (2, 5, 00) hyperbolic orbifold.

By a well-known result of Veech, the fact that I" is a lattice implies every billiard trajec-
tory in P is either periodic or uniformly distributed [V2]. (The same result holds for the regular
n-gon, and P is closely related to the case n = 5.)

|
Al

Az I

Y

Figure 2. The golden table P.
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Continued fractions. Recall that the cusps of a Fuchsian group are the fixed points of
its parabolic elements. The slopes s of periodic trajectories for P are essentially the same as
the cusps of I'.! Since the cusps form a single orbit I" - 0o, every periodic slope can be written
as a finite golden continued fraction,

S = [a19a2qa3,...,[lN] :a1y+

ay + N
a3y+..._
any

This expression can be computed recursively and made unique by requiring that

vy
— e -, =,
X—ary ( 3 2]

and similarly for each subsequent a; € Z. We refer to the number of integers a; as the length
N = N(s).

Proof of Theorem 1.3.  Consider a sequence of periodic slopes s, — s. As usual (cf.
[MT]), a billiard trajectory in P at slope s, corresponds to a closed leaf L, of the foliation
F (wn) of X, wp = (1 +is,)" 'w, and to prove equidistribution of trajectories in P it suffices
to prove equidistribution of L, in X. We may assume that s itself is a periodic direction,
otherwise equidistribution is immediate from unique ergodicity at slope s. In fact, since I" acts
transitively on periodic slopes, we may assume s = 0 and w,;, — .

Let w = « + iB. Each closed leaf L, C X determines a current of integration on X
dividing through by the length of L, in the |w|-metric, we obtain a sequence of bounded
currents &, € P(wy) such that (8, &,)x — 1. Pass to a subsequence such that &, — £ € P(w).

Our goal is to show that £ = B. To this end, note that X naturally decomposes into a pair
of horizontal cylinders A; U A, corresponding to the two rectangles in Figure 2. Using the fact
that the slope of L, tends to zero, it is easy to see that L, is equidistributed in each cylinder
individually. This implies that | A; is a multiple of 8| A; fori = 1,2, and thus

(6.1) £ = c1(BlA1) + c2(B|A2)

for some c¢1,cy > 0.

Now we use the fact that N(s,) — co. Let K C V C M5 be the compact set obtained
by deleting a small neighborhood of the cusp of the Teichmiiller curve V' = H/T". The length
of the continued fraction N(s,) essentially counts the number of times the Teichmiiller ray
generated by (X, @, ) makes an excursion into the cusp; hence the amount of time 7}, it spends
in K is comparable to N(s,) — oo. Applying Theorem 1.2, we find that

[€n = Bnlx — 0,

and hence [£] = [B] in H'(X,R). Using (6.1), we can then conclude that £ = B as currents,
and hence L, becomes uniformly distributed on X as n — oo. O

DTt can be shown that the cusps of " coincide with Q(+/5) U {oc}; see [Le, Satz 2], [Mc1, Theorem A.1].
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Sample slopes. The first two examples in Figure 1 depict periodic billiard trajectories
in P for the sequence of slopes s, = ni In the first example the trajectories start near the right
endpoint of the bottom edge of P, and they all lie in A5; in the second example, they start near
the left endpoint, and they converge to a limiting measure that is not uniform (it assigns too
much mass to Ap). The third example is uniformly distributed; it corresponds to the sequence
of slopes with continued fractions s, = [0,n, 1, 1,..., 1] with N(s,) =n + 3.

A. Appendix: Variation of the Hodge norm
We will show that a classical result of Ahlfors gives:
Theorem A.1. Fix a cohomology class C € H'(Zg,R). Consider any (X, ») € QT
such that [Re w] = C. Then for any variation of X € Tg, the Hodge norm of C satisfies
(A.D) (IC1%)" = —2Re(w?, X).
Here a variation in X is described by a smooth path X(7) in 7z with X(0) = X. We use
the shorthand X = X’(0), and adopt a similar convention for other quantities that depend on 7.

Note that the quadratic differential w? represents a cotangent vector to Tg at X, so it pairs
naturally with the tangent vector X as in equation (2.2).

Proof. Fix a standard symplectic basis (a1, ...,ag), (b1,...,bg) for H'(Zg,R). The
associated Siegel period matrix for X is defined by

Tjj =/ wj,
bj

where (w1, ..., ®g) is the basis for (X)) characterized by

/ wj = 5,‘j.
ai

The matrix 0j; = Im7;; is symmetric and positive-definite, and the norm of a general form
n= Zf siw; € Q(X) is given by

Il =/ nl? = s'os.
X

Since equation (A.1) is homogeneous, we can assume |w|x = ||C|lx = 1. We can then choose
a symplectic basis such that w; = w. With this normalization, we have

(A2) (C,a;) = Re[ w1 = ;1.
a;

Now consider a variation X(¢) of X. Then w;, 7;; and o;; vary as well. By Ahlfors’
variational formula [Ah, equation (7)], we have

(A3) i = —2i{wiw;, X).
Let w(t) = >_ 5i (t)w; (1) be the unique form in (X (7)) satisfying [Re w(r)] = C. Then

(ICl3) = (s'o5)".
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Since w(0) = wy, we have s;(0) = §;1. By equation (A.2) we also have Re s; = §;1, and hence
Re§ = 0. Using the fact that 0’ = o, this gives

§'05 + s'os = 2(Re(§) 05) = 0,

and therefore

(s'05)" = 565 = 611.

Formula (A.1) then follows directly from Ahlfors variational formula (A.3). ]

Here is an equivalent formulation, used Section 4:

Corollary A.2. For any nonzero C € H'(Z¢,R), we have

(log | Clx)" = —Re{w?, X).

C

where [Re w] = TR

Notes and references. A variant of Theorem A.1, with a different proof, is given in

[Fo, Lemma 2.1’]. A precursor to (A.3) appears in [Ra, (7)], where the factor 1/2mi should be
replaced by 1. Ahlfors’ formula (A.3) is sometimes stated without the factor —2i, which results
from the identity dz A dZ = —2i|dz|?.
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