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Teichmüller dynamics and unique ergodicity via
currents and Hodge theory

By Curtis T. McMullen at Cambridge, MA

Abstract. We present a cohomological proof that recurrence of suitable Teichmüller
geodesics implies unique ergodicity of their terminal foliations. This approach also yields con-
crete estimates for periodic foliations and new results for polygonal billiards.

1. Introduction

Let Mg denote the moduli space of compact Riemann surfaces X of genus g, and let
�Mg ! Mg denote the bundle of nonzero holomorphic 1-forms .X; !/. Any 1-form deter-
mines a horizontal foliation F .!/ of X together with a transverse invariant measure. If this
measure is unique up to scale, we say F .!/ is uniquely ergodic.

The purpose of this note is to present a cohomological proof of the following important
result of Masur:

Theorem 1.1. Suppose the Teichmüller geodesic ray generated by shrinking the leaves

of F .!/ is recurrent in moduli space Mg . Then the foliation F .!/ is uniquely ergodic.

The perspective we adopt is based on currents and Hodge theory. First, we introduce the
convex cone P.!/ of closed, positive currents carried by F .!/. These are the 1-forms ⇠ on X ,
with distributional coefficients, satisfying

d⇠ D 0; ⇠ ^ ˇ D 0 and ˛ ^ ⇠ � 0;

where ! D ˛ C iˇ. As we will see in Section 3, there is a natural bijection between such
currents and transverse invariant measures for F .!/.

The language of currents provides a useful bridge between foliations, differential forms
and Hodge theory. Moreover, the closed currents P.!/ map injectively into H 1.X; R/ when
F .!/ has a dense leaf, so unique ergodicity can be addressed at the level of cohomology.
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In this language, our main result is:

Theorem 1.2. Suppose X lies in a compact subset K ⇢ Mg , and the geodesic ray

generated by .X; !/ spends at least time T in K. Then the closed, positive currents carried by

F .!/ determine a convex cone

ŒP.!/ç ⇢ H 1.X; R/

which meets the unit sphere in a set of diameter O.e��.K/T /.

Here the unit sphere and diameter are defined using the Hodge norm on H 1.X; R/, and
�.K/ > 0 depends only on K.

One can regard Theorem 1.2 as a quantitative refinement of Theorem 1.1. In the recurrent
case we can take T D 1, ŒP.!/ç reduces to a single ray, and we obtain unique ergodicity (see
Section 5).

Billiards. Theorem 1.2 also sheds light on the distribution of closed geodesics on
.X; j!j/, and leads to new results on billiards in polygons. To illustrate this connection, in
Section 6 we will show:

Theorem 1.3. Consider a sequence of periodic billiard trajectories of slope sn ! s

on the golden L-shaped table. If the lengths of the golden continued fractions for sn tend to

infinity, then the trajectories become uniformly distributed as n ! 1.

Three examples with sn ! 0 are shown in Figure 1. Only the last sequence of trajectories
is uniformly distributed.

Figure 1. Periodic billiard trajectories with slopes tending to zero.

An analogous statement holds for any lattice polygon and any 1-form generating
a Teichmüller curve V ⇢ Mg . These applications were our original motivation for proving
Theorem 1.2. A more complete development will appear in a sequel [Mc5].

The cone of positive currents. Here is a sketch of the proof of Theorem 1.2.
Let ⇠ 2 P.!/ be a closed, positive current carried by F .!/ as above, with ⇠ ¤ 0. The

standard transverse measure for F .!/ corresponds to the smooth current ˇ D Im.!/. To com-
pare the two, we first scale ⇠ so it has the form

⇠ D ˇ C ı;
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where Z

X
ı ^ ! D 0:

Let Xt , t � 0, denote the Teichmüller geodesic ray generated by ! with X0 D X . The natural
flat connection on cohomology groups allows us to transport the Hodge norm from H 1.Xt ; R/

to a varying family of norms on H 1.X; R/, which we denote by k � kXt
.

In Section 3 we show that a cone condition of the form

kıkXt

kˇkXt

 C.K/

holds whenever Xt 2 K. On the other hand, in Section 4 we show that as t ! 1, the Hodge
norm of ˇ shrinks more rapidly than that of ı: there is a � D �.K/ > 0 such that

(1.1)
kıkXt

kˇkXt

� e�T � kıkX

kˇkX
;

where T is the amount of time Xs spends in K for s 2 Œ0; t ç.
Combining these bounds gives the stronger cone condition

kıkX

kˇkX
 e��T C.K/

whenever Xt 2 K. This inequality says that the line through Œ⇠ç D ŒˇCıç is exponentially close
to the line through Œˇç in H 1.X; R/, and Theorem 1.2 follows. (For more details, see Section 5.)

Conceptually, equation (1.1) follows from uniform contraction (over K) of the comple-

mentary period mapping

� W H ! Hg�1;

which records the Hodge structure on the part of H 1.X; R/ orthogonal to !, as X moves along
a complex geodesic (see Section 4).

Notes and references. Many of the ideas presented in Section 4 below were developed
independently and earlier by Forni and others, with somewhat different aims and formulations.
In particular, a version of Theorem 4.1 for strata is given in [AF, Theorem 4.2], and a variant
of equation (A.1) is derived, by different means, in [Fo, Lemma 2.10]. The strategy to prove
Theorem 1.1 is similar to the proof that F .!/ is ergodic for almost every ! 2 �Mg sketched
in [FM, Remark 60]. Here we use currents and the Hodge norm throughout, and exploit the
cone condition given in Theorem 3.1.

Masur’s original proof of Theorem 1.1, which also applies to quadratic differentials, is
given in [Mas, Theorem 1.1]; see also [Mc2]. The original argument works directly with dy-
namics and Anosov properties of the foliation of X . A strengthening of Theorem 1.1 is given
in [Tr, Theorem 4].

A discussion of currents and foliations on general manifolds can be found in [Sul];
another instance of their use in the present setting is given in [Mc4, Section 2]. For more
on the interaction between Hodge theory and Teichmüller theory, see e.g. [Ah, Roy, Fo, Mc1,
Mo1, EKZ, FM, FMZ].

Acknowledgement. I would like to thank J. Chaika and G. Forni for useful discussions
and references.
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2. Background

We begin by recalling some basic results regarding the Hodge theory, foliations, geo-
desics in Teichmüller space, and the action of SL2.R/ on the moduli space of holomorphic
1-forms. For more details, see e.g. [FLP, GH, Ga, IT, Nag, MT, Mo2].

The Hodge norm. Let X be a Riemann surface of genus g. The spaces of holomorphic
and real harmonic 1-forms on X will be denoted by �.X/ and H

1.X/, respectively.
By Hodge theory, the map sending a cohomology class to its harmonic representative pro-

vides an isomorphism H 1.X; R/ ä H
1.X/. These representatives, together with the Hodge

star, give a rise to a natural inner product

(2.1) h˛; ˇiX D
Z

X
˛ ^ ⇤ˇ

on H 1.X; R/; and the associated Hodge norm is defined by

k˛k2
X D h˛; ˛iX :

Similarly, the space �.X/ carries a natural Hermitian form defined by

h!1; !2iX D i

2

Z

X
!1 ^ !2;

whose associated norm is given by

k!k2
X D

Z

X
j!j2:

These norms are compatible in the sense that the map ! 7! Re ! gives a norm–preserving, real
linear isomorphism

�.X/ ä H 1.X; R/:

Foliations and measures. Every nonzero ! 2 �.X/ determines a natural horizontal

foliation F .!/ of X . To describe this foliation, recall that

! D ˛ C iˇ

is a linear combination of real harmonic forms satisfying ⇤˛ D ˇ.
The foliation F .!/ has multipronged singularities at the zeros of !. Away from these

points, we can choose local coordinates such that ! D dz and the leaves of F .!/ become
horizontal lines in C. In particular, the tangent space to F .!/ is the kernel of ˇ. Each leaf L

of F .!/ is naturally oriented by the condition ˛jL > 0.
A transverse measure for F .!/ is the specification of a Borel measure �⌧ � 0 on every

smooth arc ⌧ ⇢ X disjoint from Z.!/ and transverse to the leaves of the foliation. We require
that �⌧ is compatible with restriction; that is, �� D �⌧ j� whenever � ⇢ ⌧ . A transverse measure
is invariant if it also compatible with the smooth maps between nearby transversal obtained by
flowing along the leaves of F .!/.

The standard transverse invariant measure for F .!/ is defined by �⌧ D ˇj⌧ (where ⌧ is
oriented so the measure is positive.) There may be many others; for example, any closed leaf L

of F .!/ supports a transverse atomic measure �⌧ with mass one at each point of ⌧ \ L.
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Moduli of Riemann surfaces. Fix a compact, oriented topological surface †g of genus
g � 2 with mapping–class group Modg . A point .X; f / in the associated Teichmüller space Tg

is specified by a Riemann surface of genus g together with an orientation–preserving marking

homeomorphism f W †g ! X . By forgetting the marking, we obtain a natural map

Tg ! Tg=Modg ä Mg ;

presenting Tg as the orbifold universal cover of the moduli space Mg of Riemann surfaces of
genus g.

The cotangent space to Tg at X is naturally identified with the space Q.X/ of holo-
morphic quadratic differentials on X , and the Teichmüller metric corresponds to the norm
kqk D

R
X jqj. To describe the tangent space, let M.X/ denote the space of measurable Beltrami

differentials on X with k�k D supX j�j < 1. The natural pairing

hq; �i D
Z

X
q� D

Z

X
q.z/�.z/jdzj2

between Q.X/ and M.X/ then allows one to identify the tangent space TXTg with the quotient
space M.X/=Q.X/?.

For later reference, we note that when kqk D k�k D 1, we have

(2.2) Rehq; �i  1; and equality holds if and only if � D q

jqj :

This observation is an infinitesimal form of uniqueness of the Teichmüller mapping.

Moduli of forms. Consider the holomorphic vector bundle over Tg whose fiber over X

is �.X/. Removing the zero section, we obtain the space �Tg of marked holomorphic 1-forms.
The associated sphere bundle, whose fibers are

�1.X/ D π! 2 �.X/ W k!kX D 1º;

will be denoted by �1Tg . Taking the quotient by Modg yields the corresponding bundles �Mg

and �1Mg over moduli space.

Dynamics and geodesics. There is a natural action of SL2.R/ on �Tg , characterized
by the property that, for L D . a b

c d
/ 2 SL2.R/ we have

L � .X; !/ D .Y; ⌘/

if and only if there is a map f W X ! Y , compatible with markings, such that

(2.3) f ⇤.⌘/ D
⇣
1 i

⌘ a b

c d

! 
Re !

Im !

!
:

The orbits .Xt ; !t / D at � .X; !/ of the diagonal group

A D
´

at D
 

e�t 0

0 et

!
W t 2 R

µ
⇢ SL2.R/

project to Teichmüller geodesics in Tg , parameterized by arclength, and satisfying

(2.4)
dXt

dt
D

�! t

!t

�
2 M.Xt /=Q.Xt /

?



44 McMullen, Teichmüller dynamics and unique ergodicity via currents and Hodge theory

for all t 2 R. For t > 0, the natural affine map ft W .X; j!j/ ! .Xt ; j!t j/ is area–preserving
and shrinks the leaves of F .!/ by a factor of e�t . In particular, if all the leaves of F .!/

are closed, then ŒXt ç converges to a stable Riemann surface in �Mg by pinching these closed
curves.

Dynamics and cohomology. The vector bundle H 1 ! Tg with fibers H 1.X; R/ is
both trivial and flat with respect to the connection provided by the marking isomorphisms
H 1.X; R/ ! H 1.†g ; R/. The same is true when it is pulled back to �Tg . Over this space we
have H 1 D W ˚ W ?, where the splitting

(2.5) H 1.X; R/ D W.X; !/ ˚ W.X; !/?

on each fiber is obtained by taking the image of the direct sum

�.X/ D .C!/ ˚ .C!/?

under the map ! 7! Re !. Since W.X; !/ is ⇤-invariant, the summands in (2.5) are also ortho-
gonal with respect to the symplectic form. Thus the following result is immediate from (2.3):

Proposition 2.1. The sub-bundles W and W ?
are flat over any SL2.R/ orbit in �Tg .

Put differently, we have W.L � .X; !// D W.X; !/ when both are identified with sub-
spaces of H 1.†g ; R/, and similarly for W.X; !/?.

3. Currents and cones

In this section we describe the connection between measured foliations and closed, pos-
itive currents. We then show that the shape of the convex cone in cohomology determined by
these currents is uniformly controlled over compact subsets of moduli space. This control can
be expressed in terms of the Hodge norm as a reverse Cauchy–Schwarz inequality, which we
state as follows.

Theorem 3.1. Let K ⇢ Mg be a compact set. Then for any closed, positive current ⇠

carried by the horizontal foliation F .!/ of a holomorphic 1-form ! 2 �.X/ with X 2 K,

we have

(3.1) k!kX � k⇠kX  C.K/

ˇ̌
ˇ̌
Z

X
! ^ ⇠

ˇ̌
ˇ̌:

Here C.K/ > 0 is a constant depending only on K. Geometrically, this results says that
the length of the current ⇠ in the metric j!j controls the Hodge norm of its harmonic represen-
tative.

Currents and foliations. Recall that a 1-dimensional current ⇠ on X is an element
of the dual of the space of smooth 1-forms (see e.g. [dR], [GH, Section 3.1]). Since X is
oriented, currents on X can be thought of as forms with distributional coefficients. The current
⇠ is closed if d⇠ D 0; equivalently, if

R
X ⇠ ^ df D 0 for every smooth function f on X . Any

closed current determines a cohomology class Œ⇠ç 2 H 1.X; R/.
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Given a nonzero holomorphic form ! D ˛ C iˇ, let

(3.2) P.!/ D πcurrents ⇠ W d⇠ D 0; ⇠ ^ ˇ D 0 and ˛ ^ ⇠ � 0º:
The final positivity condition means

Z

X
.f ˛/ ^ ⇠ � 0

for all smooth f � 0 on X ; in particular, ⇠ is required to satisfy infinitely many linear inequal-
ities. We refer to P.!/ as the space of closed, positive currents carried by F .!/. It is a closed,
convex cone in the natural topology on currents.

Proposition 3.2. There is a natural bijection between the closed, positive currents car-

ried by F .!/ and its transverse invariant measures.

Proof. A transverse invariant measure determines a current ⇠ 2 P.!/ by integration
along the (oriented) leaves of F .!/ locally weighted by �⌧ . Conversely, if ⇠ 2 P.!/, then the
fact that ⇠ ^ ˇ D 0 implies ⇠ is locally a distributional multiple of ˇ; the fact that ⇠ is closed
implies it is locally the pullback of a distribution on a transversal ⌧ ; and positivity implies this
distribution is a measure �⌧ � 0.

The cohomology class of a measured foliation. Each transverse invariant measure
determines a cohomology class, by the correspondence �⌧ 7! ⇠ 7! Œ⇠ç 2 H 1.X; R/. Recall
that the foliation F .!/ is minimal if each of its leaves is dense in X .

Proposition 3.3. If F .!/ is minimal, its transverse invariant measures are determined

by their cohomology classes. Equivalently, the natural map P.!/ ! H 1.X; R/ is injective.

Proof. It suffices to show that the values of
R

C ⇠ for C 2 H1.X; Z/ determine �⌧ .⌧/

for every transversal ⌧ . By minimality �⌧ has no atoms. Let L be a dense leaf of F .!/. Then
L \ ⌧ is dense in ⌧ , so we can find an increasing sequence of subarcs ⌧1 ⇢ ⌧2 ⇢ ⌧3 � � � ⇢ ⌧

such that
S

⌧n has full measure in ⌧ and each ⌧n has endpoints in L. By adding a piece of L to
connect these endpoints, we obtain a closed loop Cn with ŒCnç 2 H1.X; Z/. Using these loops,
we find

�⌧ .⌧/ D lim �⌧ .⌧n/ D lim
Z

Cn

⇠:

Since the integrals above only depend on Œ⇠ç 2 H 1.X; R/, the proof is complete.

Corollary 3.4 (Katok). If F .!/ is minimal, it carries at most g D g.X/ mutually sin-

gular, ergodic, transverse invariant measures.

Proof. The cohomology classes of these measures are linearly independent by the pre-
vious result; and since the corresponding currents are given by integration along the leaves of
the same foliation F .!/, they lie in a Lagrangian subspace of H 1.X; R/, which has dimen-
sion g.

See e.g. [Ka, Theorem 1], [V1, Theorem 0.5] and [Fi, Theorem 1.29] for other perspec-
tives on Corollary 3.4.
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Proof of Theorem 3.1. We will first prove a cone inequality for a single form

! D ˛ C iˇ 2 �.X/;

X 2 K, normalized so that k!kX D 1. By definition (3.2) we have j
R

! ^ ⇠j D
R

˛ ^ ⇠. Thus
our goal is to prove an inequality of the form

(3.3) k⇠kX  C.K/

Z

X
˛ ^ ⇠

for all ⇠ 2 P.!/.
Choose a sequence of smooth, closed 1-forms ı1; : : : ; ı2g that represent an orthonormal

basis for H 1.X; R/ with respect to the inner product (2.1). We may assume that these forms
all vanish on an open neighborhood U of Z.!/. Since the smooth area form ˛ ^ ˇ � 0 only
vanishes at the zeros of !, there is a constant M > 0 such that

(3.4) jˇ ^ ⇤ıi j  M˛ ^ ˇ

pointwise on X , for i D 1; 2; : : : ; 2g.
Now for any ⇠ 2 P.!/, the current ⇠ is locally a limit of smooth currents of the form

fnˇ with fn � 0. Since (3.4) implies that

j.fnˇ/ ^ ⇤ıi j  M˛ ^ .fnˇ/

as measures on X , in the limit we obtain

j⇠ ^ ⇤ıi j  M˛ ^ ⇠;

and hence
h⇠; ıi iX  M

Z

X
˛ ^ ⇠

for all i . This implies that

k⇠k2
X D

2gX

1

h⇠; ıi i2
X  2gM 2

✓Z

X
˛ ^ ⇠

◆2

;

and taking the square–root of both sides yields the desired inequality (3.3).
We now allow the form .X; !/ to move in �1Mg . Since the zero set Z.!/ and the Hodge

norm vary continuously with the form, it is easy to extend the argument just given to obtain
a uniform cone constant in a neighborhood of .X; !/. By properness of the projection map
�1Mg ! Mg , we can then obtain a uniform cone constant C.K/ for all unit–norm forms
.X; !/ with X in a given compact set K ⇢ Mg . But once the cone inequality (3.1) holds for !

it also holds for all the positive real multiples of !, so the proof is complete.

4. The complementary period mapping

In this section we study the variation of the Hodge norm along a geodesic in Tg . Its
relationship to the period mapping ⌧ W Tg ! Hg will be presented at the end.
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Norms. Let Xt be the geodesic in Tg generated by a holomorphic 1-form

!0 D ˛0 C iˇ0 2 �1.X0/:

Since all the Riemann surfaces in Tg are marked by †g , we have a natural isomorphism

(4.1) H 1.X0; R/ ä H 1.Xt ; R/

for all t 2 R. Using this identification, we can transport the Hodge norms on Xt to a varying
family of norms k � kXt

on the fixed vector space H 1.X0; R/.
It is easy to see that

k˛0kXt
D et and kˇ0kXt

D e�t

for all t 2 R. The next result says that the Hodge norm of any cohomology class orthogonal to
these moves more slowly.

Theorem 4.1. Fix a compact set K ⇢ Mg . Then there is a constant � D �.K/ > 0

such that for all Œı0ç 2 H 1.X0; R/ with kı0kX0
D 1 and

Z

X0

ı0 ^ ˛0 D
Z

X0

ı0 ^ ˇ0 D 0;

and all t > 0, we have

e�T �t  kı0kXt
 et��T :

Here T D jπs 2 Œ0; t ç W Xs 2 Kºj.

Proof. Let .Xt ; !t / D at � .X0; !0/, and write

!t D ˛t C iˇt :

Then
dXt

dt
D PXt D


�! t

!t

�

by equation (2.4).
Let ⌘t 2 �1.Xt / be the unique unit norm 1-form such that

Œı0ç

kı0kXt

D ŒRe ⌘t ç

under the identification (4.1). By assumption, we have h⌘0; !0iX0
D 0, and thus

h⌘t ; !t iXt
D 0

for all t 2 R by Proposition 2.1.
Define a function  on �Mg by

.X; !/ D sup
≤ˇ̌
ˇ̌
⌧
⌘2;

!

!

�ˇ̌
ˇ̌ W ⌘ 2 �1.X/ and h⌘; !iX D 0

≥
:

(The brackets denote the natural pairing (2.2) between tangent and cotangent vectors to Tg

at X .) Since ⌘ D ! is excluded by the orthogonality condition, we have .X; !/ < 1 (see
equation (2.2)). It can also be readily verified that  is continuous on �1Mg , and hence

� D �.K/ D 1 � supπ.X; !/ W X 2 Kº > 0:
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Let N.t/ D log kı0kXt
. Computing the variation of the Hodge norm (see the Appendix,

Corollary A.2), we find that
N 0.t/ D � Reh⌘t ; PXt i;

and hence
jN 0.t/j  jh⌘t ; PXt ij D

ˇ̌
ˇ̌
⌧
⌘t ;

! t

!t

�ˇ̌
ˇ̌  .X; !t /:

This shows that
jN 0.t/j < 1

for all t , and that
jN 0.t/j  1 � �

whenever Xt 2 K. Since N.0/ D 0, this implies that jN.t/j  t � �T for all t , and then expo-
nentiation yields the theorem above.

Conceptual framework. The idea behind the proof above can be expressed as follows.
First, the Hodge norm on H 1.X; R/ provides the same information as the period matrix ⌧ij .X/,
which is recorded by the holomorphic period map to Siegel space,

⌧ W Tg ! Hg :

Second, the choice of a 1-form ! D ˛ C iˇ on X determines a natural splitting

(4.2) H 1.X; R/ D W ˚ W ?;

where W D ⇤W is spanned by ˛ and ˇ. Third, the form ! generates a holomorphic, isometric
complex geodesic

F W H ! Tg ;

related to the real geodesic by Xt D F.ie2t /. The splitting (4.2) is constant over this geodesic
(see Proposition 2.1), and accordingly the period map ⌧ ı F can be written as

H ! H ⇥ Hg�1 ⇢ Hg ;

where the two factors of the product H ⇥ Hg�1 record the Hodge structures on W and W ?

respectively. Indeed, with a suitable choice of coordinates on the first factor, we can write
⌧ ı F.s/ D .s; �.s//.

It is then straightforward to show, using Ahlfors variational formula, that the complemen-
tary period map

� W H ! Hg�1

is a contraction for the Kobayashi metric. In fact, we have

kD�.s/k D .Xs; !s/ < 1

for all s, and the upper bound can be replaced by 1 � �.K/ < 1 provided Xs 2 K ⇢ Mg . To
complete the proof, one need only observe that the rate of change of �.s/ controls the rate at
which the Hodge norm varies for a class in W ? (cf. [Mc3, Proposition 3.1]).

For more details and similar discussions, see e.g. [Ah], [Roy], [Mc1, Theorem 4.2], [Mc3,
Section 3], the Appendix, and the works [Fo, AF, FMZ] on ergodic averages and Lyapunov
exponents.
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5. Unique ergodicity with bounds

With the previous results in place, it is now easy to prove Theorems 1.1 and 1.2.

Narrowing the cone. We begin with Theorem 1.2. Let K ⇢ Mg be a compact set,
let ! D ˛ C iˇ be a 1-form on X 2 K with k!kX D 1, and let Xt be the Teichmüller ray
generated by .X; !/. Let

P1.!/ D π⇠ 2 P.!/ W hˇ; ⇠i D 1º:

Let T denote the amount of time that Xt spends in K for t � 0, and let C.K/; �.K/ > 0 be
the constants provided by Theorems 3.1 and 4.1.

Theorem 5.1. We have k⇠ � ˇkX  C.K/e��.K/T
for all ⇠ 2 P1.!/.

Proof. Let .Xt ; !t / D at � .X; !/, and write !t D ˛t C iˇt . The Teichmüller map-
ping ft W X ! Xt provides a natural identification between H 1.Xt ; R/ and H 1.X; R/, under
which we have

Œ˛t ç D e�t Œ˛0ç and Œˇt ç D et Œˇ0ç

by equation (2.3). Since k!tkXt
D kˇtkXt

D 1, this gives

kˇ0kXt
D e�t :

Recall that h˛; ⇠i D 0 by the definition (3.2) of P.!/. Since hˇ; ⇠i D 1, we can write

⇠ D ˇ C ı; where
Z

X
! ^ ı D 0:

The Teichmüller mapping ft transports ⇠ to a current ⇠t 2 P.!t / which we can similarly write
as

⇠t D e�tˇt C ıt ; where
Z

Xt

!t ^ ıt D 0.

By Theorem 3.1, we then have

(5.1) kıtkXt
 C.K/

ˇ̌
ˇ̌
Z

Xt

!t ^ ⇠t

ˇ̌
ˇ̌ D C.K/e�t

whenever Xt 2 K.
Note that the cohomology classes Œ⇠t ç and Œıt ç do not depend on t . The first is con-

stant because we use ft to identify cohomology groups as t varies, and the second is constant
because the span of Œ˛t ç and Œˇt ç does not depend on t (cf. Proposition 2.1).

Suppose s D supπt � 0 W Xt 2 Kº is finite. Then we also have

kıskXs
� kıkX � e�sC�.K/T ;

by Theorem 4.1. Setting t D s in (5.1) and combining these inequalities gives

kıkX  C.K/e��.K/T :

Since ı D ⇠ � ˇ, the proof is complete. The case s D 1 is similar.



50 McMullen, Teichmüller dynamics and unique ergodicity via currents and Hodge theory

Theorem 1.2 is then equivalent to:

Corollary 5.2. The diameter of the intersection of ŒP.!/ç ⇢ H 1.X; R/ with the unit

sphere in the Hodge norm is bounded by 2C.K/e��.K/T
.

Proof. Consider any ⇠ 2 P.!/ with k⇠kX D 1. Then r D h⇠; ˇi > 0 by Theorem 3.1,
and r  1 since kˇkX D 1. The preceding result then gives

k⇠ � ˇkX  kr�1⇠ � ˇkX  C.K/e��.K/T ;

where the first inequality comes from the fact that both ⇠ and ˇ lie on the unit sphere.

Unique ergodicity: Proof of Theorem 1.1. Suppose the geodesic ray Xt generated
by .X; !/ is recurrent. Then Xt spends an infinite amount of time in some fixed compact set
K ⇢ Mg , and thus ŒP1.!/ç ⇢ H 1.X; R/ is a single point by the preceding result. By recur-
rence, F .!/ has no cylinders or loops of saddle connections; if it did, they would pinch and
force Xt to infinity. Hence F .!/ has a dense leaf, which implies the map P.!/ ! H 1.X; R/

is injective, by Proposition 3.3. Thus P1.!/ itself is a single point, and hence F .!/ is uniquely
ergodic.

6. Billiards and equidistribution

In this section we prove Theorem 1.3 on equidistribution of billiards.

The golden table. Let � D 1
2.1 C

p
5/ be the golden ratio, and let P denote the sym-

metric L-shaped polygon P ⇢ C shown in Figure 2, whose short and long sides have lengths
1 and � respectively. By gluing parallel edges of P together by horizontal and vertical transla-
tions, we obtain a holomorphic 1-form .X; !/ D .P; dz/=⇠ 2 �Mg , g D 2, whose stabilizer
is the lattice

Ä D SL.X; !/ D
* 

0 1

�1 0

!
;

 
1 �

0 1

!+
⇢ SL2.R/:

Its quotient V D H=Ä is the .2; 5; 1/ hyperbolic orbifold.
By a well-known result of Veech, the fact that Ä is a lattice implies every billiard trajec-

tory in P is either periodic or uniformly distributed [V2]. (The same result holds for the regular
n-gon, and P is closely related to the case n D 5.)

ᵞ

ᵞ
1

1

A1

A2

Figure 2. The golden table P .



McMullen, Teichmüller dynamics and unique ergodicity via currents and Hodge theory 51

Continued fractions. Recall that the cusps of a Fuchsian group are the fixed points of
its parabolic elements. The slopes s of periodic trajectories for P are essentially the same as
the cusps of Ä .1) Since the cusps form a single orbit Ä � 1, every periodic slope can be written
as a finite golden continued fraction,

s D Œa1; a2; a3; : : : ; aN ç D a1� C
1

a2� C
1

a3� C � � �
1

aN �

:

This expression can be computed recursively and made unique by requiring that

x � a1� 2
✓

��

2
;
�

2

�
;

and similarly for each subsequent ai 2 Z. We refer to the number of integers ai as the length

N D N.s/.

Proof of Theorem 1.3. Consider a sequence of periodic slopes sn ! s. As usual (cf.
[MT]), a billiard trajectory in P at slope sn corresponds to a closed leaf Ln of the foliation
F .!n/ of X , !n D .1 C isn/�1!, and to prove equidistribution of trajectories in P it suffices
to prove equidistribution of Ln in X . We may assume that s itself is a periodic direction,
otherwise equidistribution is immediate from unique ergodicity at slope s. In fact, since Ä acts
transitively on periodic slopes, we may assume s D 0 and !n ! !.

Let ! D ˛ C iˇ. Each closed leaf Ln ⇢ X determines a current of integration on X ;
dividing through by the length of Ln in the j!j-metric, we obtain a sequence of bounded
currents ⇠n 2 P.!n/ such that hˇ; ⇠niX ! 1. Pass to a subsequence such that ⇠n ! ⇠ 2 P.!/.

Our goal is to show that ⇠ D ˇ. To this end, note that X naturally decomposes into a pair
of horizontal cylinders A1 [ A2, corresponding to the two rectangles in Figure 2. Using the fact
that the slope of Ln tends to zero, it is easy to see that Ln is equidistributed in each cylinder
individually. This implies that ⇠jAi is a multiple of ˇjAi for i D 1; 2, and thus

(6.1) ⇠ D c1.ˇjA1/ C c2.ˇjA2/

for some c1; c2 � 0.
Now we use the fact that N.sn/ ! 1. Let K ⇢ V ⇢ M2 be the compact set obtained

by deleting a small neighborhood of the cusp of the Teichmüller curve V D H=Ä . The length
of the continued fraction N.sn/ essentially counts the number of times the Teichmüller ray
generated by .X; !n/ makes an excursion into the cusp; hence the amount of time Tn it spends
in K is comparable to N.sn/ ! 1. Applying Theorem 1.2, we find that

k⇠n � ˇnkX ! 0;

and hence Œ⇠ç D Œˇç in H 1.X; R/. Using (6.1), we can then conclude that ⇠ D ˇ as currents,
and hence Ln becomes uniformly distributed on X as n ! 1.

1) It can be shown that the cusps of Ä coincide with Q.
p

5/ [ π1º; see [Le, Satz 2], [Mc1, Theorem A.1].
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Sample slopes. The first two examples in Figure 1 depict periodic billiard trajectories
in P for the sequence of slopes sn D 1

n� . In the first example the trajectories start near the right
endpoint of the bottom edge of P , and they all lie in A2; in the second example, they start near
the left endpoint, and they converge to a limiting measure that is not uniform (it assigns too
much mass to A1). The third example is uniformly distributed; it corresponds to the sequence
of slopes with continued fractions sn D Œ0; n; 1; 1; : : : ; 1ç with N.sn/ D n C 3.

A. Appendix: Variation of the Hodge norm

We will show that a classical result of Ahlfors gives:

Theorem A.1. Fix a cohomology class C 2 H 1.†g ; R/. Consider any .X; !/ 2 �Tg

such that ŒRe !ç D C . Then for any variation of X 2 Tg , the Hodge norm of C satisfies

(A.1) .kC k2
X /P D �2 Reh!2; PXi:

Here a variation in X is described by a smooth path X.t/ in Tg with X.0/ D X . We use
the shorthand PX D X 0.0/, and adopt a similar convention for other quantities that depend on t .
Note that the quadratic differential !2 represents a cotangent vector to Tg at X , so it pairs
naturally with the tangent vector PX as in equation (2.2).

Proof. Fix a standard symplectic basis .a1; : : : ; ag/; .b1; : : : ; bg/ for H 1.†g ; R/. The
associated Siegel period matrix for X is defined by

⌧ij D
Z

bj

!i ;

where .!1; : : : ; !g/ is the basis for �.X/ characterized by
Z

ai

!j D ıij :

The matrix �ij D Im ⌧ij is symmetric and positive-definite, and the norm of a general form
⌘ D Pg

1 si!i 2 �.X/ is given by

k⌘k2
X D

Z

X
j⌘j2 D st�s:

Since equation (A.1) is homogeneous, we can assume k!kX D kC kX D 1. We can then choose
a symplectic basis such that !1 D !. With this normalization, we have

(A.2) hC; ai i D Re
Z

ai

!1 D ıi1:

Now consider a variation X.t/ of X . Then !i , ⌧ij and �ij vary as well. By Ahlfors’
variational formula [Ah, equation (7)], we have

(A.3) P⌧ij D �2ih!i!j ; PXi:

Let !.t/ D P
si .t/!i .t/ be the unique form in �.X.t// satisfying ŒRe !.t/ç D C . Then

.kC k2
X /P D .st�s/P:
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Since !.0/ D !1, we have si .0/ D ıi1. By equation (A.2) we also have Re si D ıi1, and hence
Re Ps D 0. Using the fact that � t D � , this gives

Pst�s C st� Ps D 2.Re.Ps/t�s/ D 0;

and therefore
.st�s/P D s P�s D P�11:

Formula (A.1) then follows directly from Ahlfors variational formula (A.3).

Here is an equivalent formulation, used Section 4:

Corollary A.2. For any nonzero C 2 H 1.†g ; R/, we have

.log kC kX /P D � Reh!2; PXi;

where ŒRe !ç D C
kC kX

.

Notes and references. A variant of Theorem A.1, with a different proof, is given in
[Fo, Lemma 2.10]. A precursor to (A.3) appears in [Ra, (7)], where the factor 1=2⇡i should be
replaced by 1. Ahlfors’ formula (A.3) is sometimes stated without the factor �2i , which results
from the identity dz ^ dz D �2i jdzj2.
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