Quantum Information Processing (2020) 19:328
https://doi.org/10.1007/s11128-020-02828-w

®

Check for
updates

Perfect quantum state transfer on diamond fractal graphs

Maxim Derevyagin' - Gerald V. Dunne’? . Gamal Mograby’ -
Alexander Teplyaev'?

Received: 22 September 2019 / Accepted: 17 August 2020 / Published online: 31 August 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

In the quest for designing novel protocols for quantum information and quantum com-
putation, an important goal is to achieve perfect quantum state transfer for systems
beyond the well-known one- dimensional cases, such as 1D spin chains. We use meth-
ods from fractal analysis and probability to find a new class of quantum spin chains
on fractal-like graphs (known as diamond fractals) which support perfect quantum
state transfer and which have a wide range of different Hausdorff and spectral dimen-
sions. The resulting systems are spin networks combining Dyson hierarchical model
structure with transverse permutation symmetries of varying order.

Keywords Quantum state transfer - Quantum computer - Spin chain - Hierarchical
graphs - Diamond fractal - Hamiltonians with engineered couplings - Quantum
channels

1 Introduction

The study of state transfer was initiated by Bose [1,2], who considered a 1D chain of
N qubits coupled by the time-independent Hamiltonian. The main idea is to transport a
quantum state from one end of the chain to the other. The transport of the quantum state
from one location to another is called perfect if it is realized with probability 1, that
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Fig. 1 Most standard diamond hierarchical fractal graphs, levels 3 and 4, with the similarity dimension
dim = 2, [35, Section 7] and [20-30]

is, without dissipation. In addition to its fundamental interest, this means that perfect
quantum state transfer also has potential applications to the design of sub-protocols for
quantum information and quantum computation [3-5]. A number of one- dimensional
cases, when perfect transmission can be achieved, have been found in some XX
chains with inhomogeneous couplings, see [2,3,6—16, and references therein]. These
models have the advantage that the perfect transfer can be done without the need for
active control. Recently, there has been active interest to generalize these results to
graphs with potentials and to graphs that are not one dimension [5,17-19]. These
works illustrate the fact that perfect state transfer is a rare phenomenon, for which the
construction of explicit examples remains rather non-trivial.

The main result of our paper is to show that perfect quantum state transfer is possi-
ble on the large and diverse class of fractal-type diamond graphs, which have different
geometrical properties including a wide range of dimensions. These graphs have pro-
vided an important collection of structures with interesting physical and mathematical
properties and a broad variety of geometries, see [20-32] and Figs. 1, 2, 3. The struc-
ture of these graphs is such that they combine spectral properties of Dyson hierarchical
models and transport properties of one-dimensional chains. The methods that we use
are discretized versions of the methods recently developed in [28,29] (see also [33,34]),
which provides a construction of Green’s functions for diamond fractals. Our work is
part of a long-term study of mathematical physics on fractals and self-similar graphs
[24,35-45], in which novel features of quantum processes on fractals can be associ-
ated with the unusual spectral and geometric properties of fractals compared to regular
graphs and smooth manifolds.

2 1D chains

We begin with a brief summary of perfect quantum state transfer on 1D chains [3].
Consider one-dimensional Hamiltonians H of the XX type with nearest neighbor
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Fig.2 Diamond graphs of level 1, 2, 3 and 4 with uniformly bounded degree and the similarity dimension
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Fig.3 Construction of the first three levels G, G1, G and the mapping ITy

interactions

n=0

N-—1 N
H=1>" J(o50) +0j0), )+3Y Bulog+1).
n=0

where J, are the constants coupling the sites (n — 1) and n, and B,, are the strengths
of the magnetic field at the sitesn (n = 0, 1, ..., N). The symbols o7, oy, o, denote
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the standard Pauli matrices which act as follows on the single qubit states || ) and |1):

o'y =11, oY) =—ilt), o*ll)=-N)
of Ity =) eIt =ill),  ofIt) =11

It is straightforward to see that [H, Zflv:o(a,f + 1)] = 0 and so the eigenstates
of H split in subspaces labeled by the number of spins over the chain that are in
state |1). It suffices to restrict H to the subspace spanned by the states that con-
tain only one excitation. A natural basis for that subspace is given by the vectors
n) = (0,0,...,1,...,0), n=20,1,2,..., N, where the only “1” occupies the
nth position. In this basis, the restriction J of H to the one-excitation subspace is given
by the following (N + 1) x (N + 1) symmetric tridiagonal matrix

By Ji 0
J1 B )
J = J» By - . (D
o0 N
0 JN By

Such matrices are called Jacobi matrices and, as usual for the theory of Jacobi matrices,
we assume that J, > 0 forn = 1, 2, ... N. Clearly, the action of the operator J on the
basis vectors |n) gives

Jin) = Jus1ln + 1) + Buln) + Jpln — 1),

forn =0,1,..., N, where we set Jy = Jy4+1 = 0. Now we can see that after some
time 7 the initial state will evolve into the state ¢/’J]0). So, in order to transfer an
excitation from the site |0) to the site |N) there should exist 7 > 0 and ¢ € R such
that

1110y = ¢'?|N). )

As was noted in [3], the latter condition immediately implies that the entries of the
Jacobi matrix J satisfy the following relations

B, =By_y, Ju=JNy1n, n=12...N,

which is the mirror symmetry of the matrix J. This property can also be expressed in
the following way
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where the matrix R, the mirror reflection matrix, is

00...01
00...10
R=|::.::
01...00
10...00

Furthermore, in [3] the following necessary and sufficient conditions for state transfer
in the chain corresponding to the mirror symmetric Jacobi matrix J was proved: The
ordered set of the eigenvalues Ay of J (A1 < Ax) must satisfy

M — Ae—1 = Cmy + /T, k=1,2,..., N, 3)

where T is the state transfer time and my, is a nonnegative integer, which can vary with
k.

As an example, we can consider one of the simplest cases of spin chains with perfect
state transfer discussed in [6]. To this end, let us set

AR R "

and so the underlying Jacobi matrix is mirror symmetric and it corresponds to the
symmetric Krawtchouk polynomials [48]. Also, it is known that in this case we have
that

AMm=k—N/2, k=0,1,...,N, 5)

and, thus, Ay — Ax_1 = 1, which means that the condition (3) is satisfied with T = 7.
As a result, the corresponding 1D spin system can realize perfect state transfer with
the transfer time 7 = . For more examples of spin chains with perfect transfer, see
[3,19] and references therein.

3 Hamiltonians on graphs

We extend the results mentioned above to a collection of fractal-type diamond graphs.
These graphs are no longer one dimension, so they can be used to study more complex
quantum systems as an extension to the 1D spin chain models. Indeed, the diamond
fractals can have a wide variety of dimensions for different choices of their self-similar
structure. We equip these graphs with a general Hamiltonian that encodes their geo-
metric information and takes the fractal-type diamond graph symmetries into account.
Our main result in this paper is to show that perfect state transfer on this collection
of fractal-type diamond graphs can be reduced to an appropriately constructed 1D
chain. We effectively separate variables into a longitudinal direction and transverse
directions related to a hierarchy of permutation symmetries. This separation leads to
conditions that are sufficient to both construct and design these general Hamiltonians
in such a way that guarantees perfect state transfer.

@ Springer



328 Page6o0of13 M. Derevyagin et al.

The class of fractal-type diamond graphs studied in [28] is a family of graphs
{G1}1>0 which is characterized by two sequences of numbers: a sequence of branching
parameters {Nj}>0 and a sequence of segmenting numbers {J;}1>0. Each link on
the graph branches into a given number of links and is also segmented into a given
number of links. See Figs. 1, 3 for some examples that illustrate this structure. These
sequences generate inductively {G};>0 in the following sense. At level /, we construct
G by replacing each edge from the previous level G;_; by N; new branches, whereas
each new branch is then segmented into J; edges that are arranged in series. For our
purposes in this paper, we will initialize G as the one- edge graph connecting two
nodes. For example, let \; = J; = 2 forall levels/ € N and G be the one-edge graph
connecting a node x; with another node xg. A construction of the first three levels
is schematized in Fig. 3. These graphs are fractal-type in the sense that the sequence
{G1}1>0 approximates a limit graph which is a special diamond fractal, see Fig. 1 for
higher levels [24].

Let V; denote the set of nodes of the diamond graph G;. We define the mapping
n; : Vi = {0,..., N} which assigns each node x € V; the number of edges of the
shortest path from x to the node x1 . For the most standard fractal-type diamond graphs
in Fig. 1, we have N = 2'. This is not true in general; for example, for the fractal-type
graph in Fig. 2 we have N = 4/, For level 2, the mapping I is demonstrated in Fig. 3.
The set of nodes V; is decomposed into a disjoint union of N +1 intrinsically transversal
layers induced by the preimages of 11y, i.e., V; = {Hl_l(O) U l'll_l(l) ..U Hl_l(N)}.
In particular, when a node is in the transversal layer l'll_l (n), then it has an intrinsic
distance of n edges to the node xj .

A quantum state on Gj is represented by a complex-valued wave function on the
nodes V;. The space of quantum states is defined by

L*G)=1{y|y:Vi—C)

which is a Hilbert space equipped with the inner product

Wlple, = D ¥ (o) (x) (6)
xeV;
where the weights are given by p;(x) = |1T—l‘(n)\ for n = 1m;(x) and |Hl_l(n)|
!

denotes the number of nodes in the transversal layer Hl_l(n) that contains x. This
factor accounts for the transverse degeneracies due to the permutation symmetries at
a given level /. We denote by |x) the wave function that assigns one to the node x € V;
and zeros elsewhere (one-excitation state on Gy). The set of all one-excitation states
{IxL), ..., |xg)} form a natural basis for L%(G)).

An [-level Hamiltonian on G; is a Hermitian operator H; acting on L2(G1). To
encode the geometric information of the fractal-type diamond graph G; in the Hamil-
tonian, we impose the following assumptions on H;:

o Nearest neighbor coupling: for x, y € Vi, let (x|H;|y)s, = 0if x and y are not
connected by an edge, i.e., the transition matrix element from the quantum state
|y) to |x) is zero if the nodes y and x are not adjacent in Gj.
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e Symmetric coupling: for x1, y1, x2, y» € V; such that both x1, y; and x, y, are
adjacent, let

(x1Hily1)g, = (x2[Hily2) g,
if 1y (x1) = M;(x2) and 1;(y1) = M (y2),

i.e., the transition matrix elements are compatible with the intrinsically transversal
layers of Gj.

This means that we can regard {0, ..., N} as the set of nodes of a 1D chain. To reduce
the perfect state transfer problem from the graph G to this 1D chain, we introduce
the following Hilbert space L2({0, ..., N}) = {¢/ | ¥ : {0,..., N} — C} equipped
with the inner product

N
(Wleh =Y wn)gn). (7
n=0
Moreover, we project a wave function in L?(G)) to awave function in LZ({0, ..., N})

through averaging its values on the transversal layers,

P, : L*(G)) — L*({0, .. })

¥ Py(n) = Z ¥ (x).
In; ol =

A simple calculation using the definition of the inner products gives (P;y|@); =
(Y| Pjp) G, where the adjoint operator P;* of P, is defined by

P L2 ({0, ..., N}) — L*(G))
¢ = Plo(x) = (M (x)).

4 Main results and proofs

The Hamiltonian H; on G; induces an operator on the 1D chain {0, ..., N} by
Ji=PH P}

which acts on Lz({O, ..., N}), see Fig. 4. We denote the one-excitation states in
Lz({O, ..., N}) by |n) foranode n € {0,...,N}. Let H; = (H;(x,y))x,yev, be
the matrix representation of H; with respect to {|xz), ..., |xg)}. The following result
relates the matrix elements of H; to J;.

Proposition1 Let x € V,

1. Hi(x, x) = ()| J; 0 (x)),.
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Fig.4 Diagram to explain the J I
mapping between the 2 ({0, - N})
Hamiltonian H; on the diamond

fractal graph G; and the

effective Hamiltonian J; on the Pl* n
associated one-dimensional spin

chain. The definition of

2 2
J; = PH; P*: We apply first L (Gl) H L (Gl>
P[*, then Hy, and finally P, l

2. Let y € V; be adjacent to x and 1;(y) = I;(x) £ 1, then

1
Hi(x,y) = ——— (M) LM (x) £ 1),
deg (x)
where deg_ (x) is defined as follows: Let x € rll_1 (n) for somen € {0, ..., N—1}

the mapping deg  (x) assigns the node x the number of edges that connect x to
nodes in l'Il_1 (n + 1). Similarly, deg_(x) assigns the node x the number of edges
that connect x to nodes in 1'[171 (n—1).

3. The Hamiltonian H; is self-adjoint with respect to the inner product 6 if and only
if Ji is self-adjoint with respect to the inner product 7.

The following result justifies the reduction in the perfect transfer problem from G; to
a 1D chain.

Theorem 1 If the perfect state transfer on the 1D chain {0, ..., N} is achieved, i.e.,
there exists T; > 0 such that . ‘
¢TI0y = ¢'?|N)

for some phase ¢, then the perfect state transfer on G is also achieved with the same
time T; and phase @, i.e.,

eiT’H/|xL) = ei¢|xR) and eiT’H/|xR) = ei¢|xL).

For the purpose of proving the main results, we introduce first the following aux-
iliary definitions and lemmas. We define the space of functions ¥ € L?(G) that are
constant on each transversal layer 1'11_1 (n) forn € {0, ..., N} and denote it by

Liym(G) =¥ [ ¥(x) = ¥ (y) if i (x) = ().

Lgym(Gl) is a subspace of L%(G;) and let Proj; : L*(G)) — Lgym(Gl) be the projec-
tion of L2(G;) onto L2, (G)).

sym

Lemma 2 Lgym(Gl) is an invariant subspace osz(Gl) under Hj.
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Proof Let nl_l(n) = {Xp;, ..., Xp, ) forsomen € {0,..., N}and [/) = |x,)+-- -+
[Xy,,), 1., forx € V;

1

(xl¥)g, = § M@
0 otherwise

ifx € r[l_l(n)

It suffices to show that H; ) € Lfym (Gy). By the symmetric coupling assumption on
H;, we set ¢p = (xn, [Hi|Xn,) g, = ... = (xn,, [Hilxp,, ), - Note that any two nodes in
the same transversal layer are not adjacent. Similarly, for the neighboring transversal
layers, we set c,—1 = (x|H1|y)Gl for any adjacent nodes x € Hfl(n —1),ye€ H;I(n)
forn > Oand ¢,+1 = (x|H;ly), for any adjacent nodes x € Hl_l(n—i— 1),ye Hl_l(n)
for n < N. One can easily verify the following formula,

deg+’n,lcn_1 ifx e nfl(n -1
c ifx e '(n)
(x[Hyly)=1{" !

deg_ . cos1  ifxem '(n+1)
0 otherwise

where the last case is implied by the nearest neighbor coupling assumption on H; and
deg, ,_; (ordeg_ , ) is the number of edges that connect a node in nfl (n—1) (or

11, ' (n + 1)) to nodes in 1, (n).

Lemma3 The range of P/ is L2 _(G)).

Ssym
Proof It follows by the definition of P;* and L, (G/).

Corollary4 Ker P = (L3, (Gt In particular, if ¥ € (L%, (G))L, then the sum

sym sym

over a transversal layer gives ernl—l(n) Y(x)=0forne{0,..., N}

Proof 1t follows with Ker P, = (Range Pl*)l and Lemma 3.
Lemma5 Lety € L%(G)) and x € V), then Pl*Pn//(x) = Proj; ¥ (x).

Proof We decompose ¥ = Vsym + Ygy such that Yym € L3, (Gr) and ¥y, €
(Lfym(Gl))J-. Corollary 4 implies P Py = P/ Prsym. Letn € {0, ..., N} and x €
1'[1_l (n). Then, ¥sym is constant on the transversal layer 1'[1_1 (n) and its averaging gives
Pirsym(n) = Ysym(x). Hence, by the definition of P, it follows P/ Pj{rsym(x) =

WSym (x) = Proj; ¥ (x).

Proof of Proposition 1 Let x € nl_l(n) = {Xu;, ..., Xxp,} for some n € {0,..., N}.
We evaluate the matrix element,

(M )1 () = (m ()| P PF G () = (P (o) [Hy | PP () g,
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where we adopt the notation |P*1;(x)) = P (x)) = [x,,) + -+ + |xs,). The
assumptions on H; imply

(O T (), = (o iy g, + -+ Gy [y, ), = 107 00| (B x) 6, = Hi(x, )

where the last equality holds as |1'If] (n)| cancels the weights in the inner product
defined on G;. Similar reasoning will give the second part of the statement. Assume
y is adjacent to x such that y € Hl_l(n + D = {0 Y )s

(o) 31 (x) + 1), = (P (o) [y | P (T (x) + D),
= (Qong |+ -+ o, D Hy () + -+ 1yn)
=deg () ;' ()| (x[H;ly)g,
= deg (x) Hi(x,y)

To prove the third statement, we first observe that the previous computations verify
the following equation,

()| (x) + 1), = deg,, (x) |11 ()] (x[H;|y)g,

Similarly, we can show
(m(x) + 13 (x)), = deg_(y) |1 ' (n + 1)) (yIHylx)g,-

Hence, it suffices to prove deg_(y) |1'If1(n + 1| = deg, (x) |1'If1(n)|. The last
equality holds as both left-hand side and the right-hand side give the number of edges
between the transversal layers Hl_l (n) and l'Il_1 (n+1).

Proof of Theorem 1 We observe
)k = PH,P* - PH, P} --- PH, P/ = P;(H,Proj)* P*

where P = Proj, P/* holds due to Lemma 3 and P P, = Proj; due to Lemma 5.
Hence,

P/ THIPOI pr0) — pel? P¥INY = P/ THPTO | ) = Prei®|xp)

which implies ! THIPrOU |y, ) — ¢9|xz) € Ker(P). Note that |x,) = P*|0) and
[xr) = Pl*|N). By Corollary 4 and by the fact that |x1), |[xg) € Lfym(Gl), we
conclude

OHTIHIPE ) = ¢ |xp)

Let Projf‘ be the projection of L?(G)) onto (Lfym(Gl))J-. We observe
(H,Proj; + H,Proj;")|x.) = H,Proj;|x.),
iT;

which implies /T |x; ) = ¢!?|xg).
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5 Conclusions and outlook

Our construction provides an infinite set of new examples of novel geometries for
which perfect quantum state transfer can be achieved. For example, using the spin
coupling values J, in (4) for the simplest case of a spin chain, combined with our
Hamiltonian construction in Proposition 1 and Theorem 1, we find perfect quantum
state transfer on diamond fractals such as those shown in Figs. 1 and 2. This clearly
generalizes to the set of quantum systems on the graphs G; described in Sect. 3.
The basic projection idea is very general and applicable to many other fractal-type
graphs, which allows to construct further examples. This opens up the possibility to
design perfect quantum state transfer on fractal-like structures with special features.
The existence of the results for Green’s functions for these structures means that other
quantum information properties such as fidelity and entanglement can be studied for
these fractal structures. Moreover, our approach allows to consider other transport
phenomena involving linear and nonlinear, classical and quantum waves on certain
graphs, quantum graphs, and fractals. This will be the subject of future research [44].
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