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STRICHARTZ ESTIMATES AND STRAUSS CONJECTURE

ON NON-TRAPPING ASYMPTOTICALLY HYPERBOLIC

MANIFOLDS

YANNICK SIRE, CHRISTOPHER D. SOGGE, CHENGBO WANG, AND JUNYONG ZHANG

Abstract. We prove global-in-time Strichartz estimates for the shifted wave
equations on non-trapping asymptotically hyperbolic manifolds. The key tools
are the spectral measure estimates from [Ann. Inst. Fourier, Grenoble 68
(2018), pp. 1011–1075] and arguments borrowed from [Analysis PDE 9 (2016),
pp. 151–192], [Adv. Math. 271 (2015), pp. 91–111]. As an application, we

prove the small data global existence for any power p ∈ (1, 1 + 4
n−1

) for the

shifted wave equation in this setting, involving nonlinearities of the form ±|u|p
or ±|u|p−1u, which answers partially an open question raised in [Discrete Con-
tin. Dyn. Syst. 39 (2019), pp. 7081–7099].
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1. Introduction and main results

The purpose of this paper is to study the dispersive behaviour of the linear wave
equation on non-trapping asymptotically hyperbolic manifolds, which is a class
of manifolds with variable curvature, and its application to the small data global
existence for the nonlinear Cauchy problem with power nonlinearities.
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1.1. Background on Strichartz estimates. The dispersive decay and Strichartz
estimates are known to play an important role in the study of the behaviour of
solutions to nonlinear Schrödinger equations, nonlinear wave equations, and other
nonlinear dispersive equations; e.g. see Tao [31]. The first aim of this article is
to prove global-in-time Strichartz estimates for the wave equation on non-trapping
asymptotically hyperbolic manifolds.

Let (M◦, g) be a Riemannian manifold of dimension n ≥ 2, and let I ⊂ R be a
time interval. Suppose u(t, z): I ×M◦ → R is a solution of the wave equation

∂2
t u−Δgu = F, u(0) = u0(z), ∂tu(0) = u1(z),

where Δg denotes the Laplace-Beltrami operator on (M◦, g). The general Strichartz
estimates show that

‖u(t, z)‖Lq
t (I;L

r
z(M

◦)) + ‖u(t, z)‖C(I;Ḣs(M◦))

� ‖u0‖Ḣs(M◦) + ‖u1‖Ḣs−1(M◦) + ‖F‖
Lq̃′

t (I;Lr̃′
z (M◦))

,
(1.1)

where Ḣs denotes the homogeneous L2-Sobolev space over M◦ and the pairs
(q, r), (q̃, r̃) ∈ [2,∞]2 satisfy the wave-admissible condition

(1.2)
2

q
+

n− 1

r
≤ n− 1

2
, (q, r, n) 	= (2,∞, 3),

and the gap condition

(1.3)
1

q
+

n

r
=

n

2
− s =

1

q̃′
+

n

r̃′
− 2.

It is well known that (1.1) holds for (M◦, g) = (Rn, δ) with I = R and r, r̃ <
∞, and the result is sharp; see Strichartz [25], Ginibre-Velo [12], Keel-Tao [16],
and references therein. There is a huge literature about Strichartz inequalities
on Euclidean space or manifolds, and it is beyond the scope of this introduction
to review all of it. We instead mention a few of the most relevant papers about
Strichartz estimates for the wave equation on the real hyperbolic spaces. On the real
hyperbolic spaces Hn, Anker-Pierfelice [1], Anker-Pierfelice-Vallarino [2], Metcalfe-
Taylor [23, 24] and Tataru [29] have showed better dispersive estimates and hence
stronger results than in the Euclidean space. More precisely, they can obtain results
with (q, r) exterior of the range (1.2). Our first results will generalize their results to
any non-trapping asymptotically hyperbolic space, i.e. a non-compact Riemannian
manifold with variable curvature in which conjugate points can possibly appear,
causing the failure of the usual dispersive estimate.

1.2. The setting. In this paper, we work on an n-dimensional complete non-
compact Riemannian manifold (M◦, g) where the metric g is an asymptotically
hyperbolic metric. This setting is the same as in Chen-Hassell [7, 8], Mazzeo [21],
and Mazzeo-Melrose [22]. Let x be a boundary-defining function for the compacti-
fication M of M◦. We say a metric g is conformally compact if x2g is a Riemannian
metric and extends smoothly up to the boundary ∂M . Mazzeo [21] showed that its
sectional curvature tends to −|dx|2x2g as x → 0. In particular, if the limit is such

that −|dx|2x2g = −1, we say that the conformally compact metric g is asymptoti-

cally hyperbolic. More specifically, let y = (y1, . . . , yn−1) be local coordinates on
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Y = ∂M , and let (x, y) be the local coordinates on M near ∂M . The metric g in
a collar neighborhood [0, ε)x × ∂M takes the form

(1.4) g =
dx2

x2
+

h(x, y)

x2
=

dx2

x2
+

∑
hjk(x, y)dy

jdyk

x2
,

where x ∈ C∞(M) is a boundary-defining function for ∂M and h is a smooth
family of metrics on Y = ∂M . In addition, if every geodesic in M reaches ∂M both
forwards and backwards, we say M is non-trapping. The Poincaré disc (Bn, g) is a
typical example of such a manifold. Indeed, considering the ball Bn = {z ∈ R

n :
|z| < 1} endowed with the metric

(1.5) g =
4dz2

(1− |z|2)2 ,

one can take x = (1 − |z|)(1 + |z|)−1 as the boundary-defining function and ω as
the coordinates on S

n−1. Then the Poincaré metric takes the form

g =
dx2

x2
+

1
4 (1− x2)2dω2

x2
,

where dω2 is the standard metric on the sphere S
n−1. Another typical example

is the real hyperbolic space H
n, which is a complete simply connected manifold of

constant negative curvature −1. Since the curvature is a negative constant, Hn is
automatically non-trapping and has no conjugate points.

1.3. The main result about Strichartz estimates. Consider the wave equation
associated to the Laplace-Beltrami operator Δg on the non-trapping asymptotically
hyperbolic manifold (M◦, g):

(1.6)

{
∂2
t u−Δgu = F,

u(0) = u0(z), ∂tu(0) = u1(z).

From Mazzeo-Melrose [22], the continuous spectrum of −Δg is contained in

[ (n−1)2

4 ,+∞), while the point spectrum is contained in (0, (n−1)2

4 ). When −Δg

has no point spectrum, it is natural to consider a family of Klein-Gordon equations

(1.7)

{
∂2
t u(t, z)−Δgu(t, z) +mu(t, z) = F (t, z),

u(0) = u0(z), ∂tu(0) = u1(z),

with the constant

(1.8) m ≥ −ρ2 := −(n− 1)2/4.

In particular for m = −ρ2, the equation is named the shifted wave equation. In
this paper, we focus on the shifted wave equation on any non-trapping asymptoti-
cally hyperbolic manifold, motivated by the problem of small data global existence
raised in [26]. Another motivation is to continue the study of dispersive equations
on manifolds with variable curvature. As mentioned above, there possibly exist
conjugate points in the variable curvature setting and they cause the failure of the
usual dispersive estimates, but not of the Strichartz estimates. For example, on
non-trapping asymptotically conic manifolds whose curvature tends to zero as the
boundary-defining function x → 0, Hassell and the last author [13, 33] established
the global-in-time Strichartz estimates for Schrödinger and wave equations, which
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are the same as in Euclidean space. While on a non-trapping asymptotically hyper-
bolic manifold whose sectional curvature tends to −1, Chen [6] showed Strichartz
estimates for the Schrödinger equation, which are stronger than the Euclidean re-
sult. The crucial point in these papers is to use the microlocal method to deal
with the conjugate points of the manifold. If the manifold has non-positive cur-
vature, e.g. the hyperbolic space H

n considered in [1, 2, 23, 24, 29], then there are
no conjugate points. In the Euclidean space, the Strichartz estimates usually are
proved by interpolating an L2-estimate and a dispersive estimate. For Schrödinger
equations, the dispersive estimate directly follows from the representation of the
solution, while for the wave equation, the dispersive estimate requires a more com-
plicated argument, which typically involves Littlewood-Paley theory. However, in
the hyperbolic setting, the usual Littlewood-Paley theory is missing; see Bouclet [5].
To get around this, in the real hyperbolic space with constant sectional curvature
−1, Metcalfe-Taylor [23] made use of Sobolev spaces based on BMO-spaces and
interpolation results from [30]; Anker-Pierfelice [1] and Anker-Pierfelice-Vallarino
[2] used a good representation of the fundamental solution of the wave equation
and a complex interpolation argument. Before these works, Tataru [29] obtained
Strichartz estimates for Hn using complex interpolation.

For the variable curvature setting, we do not know such precise results. Of
course, a standard replacement (which is very often sufficient) can be to use the
Littlewood-Paley-Stein theory based on heat semi-groups; see e.g. [17,20]. We refer
the reader in particular to the recent work [18], where the authors develop a sys-
tematic treatment of Littlewood-Paley theory using the heat flow for the (shifted)
Laplace-Beltrami operator on hyperbolic spaces (see also [19]). In this case also,
we could not overcome the technical issues. We take then a new approach. Our
approach consists of splitting the solution space into low and high frequencies. We
derive general Strichartz estimates, of independent interest, and use part of them
(high frequencies) to obtain the global well-posedness for power-type nonlinearities.
The argument crucially uses a microlocalized spectral measure estimate, which is a
replacement for the argument involving restriction theorem (like the Stein-Tomas
theorem) for the Euclidean case.

Now we state our main result on the Strichartz estimate. Before doing so, we
introduce some notation. Let H = −Δg − ρ2 and let χ ∈ C∞

c ([0,∞) such that
χ(λ) = 1 for λ ≤ 1 and vanishes when λ ≥ 2. Define the norm of Ha,b

c by

(1.9) ‖f‖Ha,b
c

= ‖(1− χ)(
√
H)H

a
2 f‖Lc + ‖χ(

√
H)H

b
2 f‖Lc .

In the particular case c = 2, we write briefly Ha,b. The space introduced here is an
analogue of the usual Sobolev space but with separated regularity corresponding
to high and low frequencies. Next we define the sets related with the admissible
conditions:

(1.10) Λw =
{
(q, r, μ) ∈ [2,∞]× (2,∞]× R :

2

q
≤ (n− 1)(

1

2
− 1

r
), μ > sw

}
,

where

(1.11) sw = n(
1

2
− 1

r
)− 1

q
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and

(1.12) Λe =
{
(q, r, μ) ∈ [2,∞]× (2,∞]× R :

2

q
≥ (n− 1)(

1

2
− 1

r
), μ > se

}
,

where

(1.13) se =
n+ 1

2
(
1

2
− 1

r
).

We remark here that μ in the above sets is strictly greater than the optimal expo-
nents sw and se. This fact will imply a loss of regularity for high frequencies in the
Strichartz estimates.

1/2

1/2

0
1/q

1/r

B

C

A

O

1/q
=
1/2−

1/r

Figure 1. The range of
(q, r) when n = 3. If
(q, r, μ) ∈ Λw, then (q, r)
is in the triangle region
ACO; while if (q, r, μ) ∈
Λe, then (q, r) is in the
region ABC.

1/2

1/2

0
1/q

1/r

B

C

D

A

O

2/q =
(n−

1)(1/2−
1/r)

Figure 1. The range of
(q, r) when n ≥ 4. If
(q, r, μ) ∈ Λw, then (q, r)
is in the region ACDO;
while if (q, r, μ) ∈ Λe,
then (q, r) is in the trian-
gle region ABC.

Our result about the homogeneous Strichartz estimate is the following.

Theorem 1.1 (Homogeneous Strichartz estimate). Let (M◦, g) be any non-trapping
asymptotically hyperbolic manifold of dimension n ≥ 2 and let Δg be the Laplace-
Beltrami operator on (M◦, g) and ρ2 = (n− 1)2/4. Assume Δg has no pure point
eigenvalue and has no resonance at the bottom of the continuous spectrum ρ2. Sup-
pose that u is a solution to the Cauchy problem

(1.14)

{
∂2
t u−Δgu− ρ2u = 0, (t, z) ∈ I ×M◦;

u(0) = u0(z), ∂tu(0) = u1(z),

for some initial data u0 ∈ Hμ,0(M◦), u1 ∈ Hμ−1,−ε(M◦) defined in (1.9), and the
time interval I ⊆ R. Then

‖u(t, z)‖Lq
t (I;L

r
z(M

◦)) � ‖u0‖Hμ,0(M◦) + ‖u1‖Hμ−1,−ε(M◦),(1.15)

where (q, r, μ) ∈ Λw ∪ Λe defined in (1.10) and (1.12), 0 < ε 
 1.

Licensed to Johns Hopkins Univ. Prepared on Fri Apr  2 15:11:23 EDT 2021 for download from IP 72.85.49.148.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



7644 Y. SIRE, C. D. SOGGE, C. WANG, AND J. ZHANG

Remark 1.1. The Strichartz estimate is global in time but with an arbitrary small
loss in regularity of high frequency which is a bit weaker than the estimates in
[1, 2, 23, 29] on the hyperbolic space H

n. The loss comes from our techniques since
we lack the (standard) Littlewood-Paley square function estimate due to the non-
doubling property of the manifold (or a good representation of the fundamental
solution as in [1, 2, 29]).

Remark 1.2. Compared with [1, 2, 23, 29], the general setting considered here may
have conjugate points which can lead the usual dispersive estimate to fail. It is
known that the sharp regularity Strichartz estimate in Euclidean space fails for
admissible pairs (e.g. q = 2 and r = ∞ when n = 3), but we obtain the inequalities
for the admissible pairs including q = 2.

Remark 1.3. We exclude the case r = 2. At the special point A, that is, q = ∞, r =
2, the usual Strichartz estimate holds. For example, in the Euclidean space, the
Strichartz estimate holds at A if ‖u0‖L2 + ‖u1‖Ḣ−1 < ∞; however one also can
recover the estimate (1.15) at A but with ε = 1 by using Proposition 3.1 below. In
this sense, the result gains some regularity in low frequency.

Theorem 1.2 (Inhomogeneous Strichartz estimate). Let Δg be as in Theorem 1.1
and suppose that u is a solution to the Cauchy problem

(1.16)

{
∂2
t u−Δgu− ρ2u = F (t, z), (t, z) ∈ I ×M◦;

u(0) = 0, ∂tu(0) = 0

and the time interval I ⊆ R. Then

‖u(t, z)‖Lq
t (I;L

r
z(M

◦)) � ‖F‖
Lq̃′

t (I;Hμ+μ̃−1,0

r̃′ (M◦))
,(1.17)

where (q, r, μ), (q̃, r̃, μ̃) ∈ Λw ∪ Λe.

The proof of the inhomogeneous Strichartz estimate will be divided into two
cases. The first case q > q̃′ is proved using the TT ∗-method and the Christ-Kiselev
lemma [9]. The second case when q = q̃ = 2 is more complicated to treat due to
the failure of the Christ-Kiselev lemma, and the usual dispersive estimate fails due
to the conjugate points. We overcome these difficulties following the idea of Hassell
and the last author [13]. In this argument, we classify the microlocalized pseudo-
differential operator via the wavefront set propagated along the bicharacteristic flow
and parametrize the wavefront set off the diagonal case by a phase function with
an unchanged sign. Finally we can show some dispersive estimate in some special
cases; see Proposition 5.3 for details. Combining this with the TT ∗-method again,
we show the inhomogeneous Strichartz estimate when q = q̃ = 2.

1.4. The small data global existence and Strauss conjecture. We now ap-
ply the previous estimates to the nonlinear wave equation with small data. We
introduce the class of nonlinearities: let Fp ∈ C1 behaving like ±|u|p or ±|u|p−1u,
hence such that

|Fp(u)|+ |u||F ′
p(u)| ≤ C|u|p

for some constant C > 0. Consider the family of nonlinear equations

(1.18)

{
∂2
t u(t, z)−Δgu(t, z) +mu(t, z) = Fp(u),

u(0) = u0(z), ∂tu(0) = u1(z),
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where the constant satisfies

(1.19) m ≥ −ρ2 := −(n− 1)2/4.

The problem under consideration belongs to the realm of the dichotomy between
global existence vs. blow-up for the nonlinear equation (1.18) with m = 0 as investi-
gated for the first time by F. John in [14] on the Euclidean space. John determined

the critical power to be pS = 1+
√
2 for the problem when n = 3 by proving global

existence results for p > 1+
√
2 and blow-up results for p < 1+

√
2. Later, Strauss

[28] conjectured that the critical power pc(n) = pS(n) (above which global existence
for small data holds) for other dimensions n ≥ 2 should be the positive root of the
quadratic equation

(n− 1)p2 − (n+ 1)p− 2 = 0.

See [32] and the references therein for a complete account on the state of the
art. On the real hyperbolic space H

n, Metcalfe-Taylor [23] gave a proof of small
data global existence for (1.18) with m = 0 and p ≥ 5/3 for dimension n = 3,
and then Anker-Pierfelice [1] proved global existence for the problem (1.18) with
m > −ρ2 and p ∈ (1, 1+ 4

n−1 ] where n ≥ 2. Metcalfe-Taylor [24] gave an alternative
proof for n = 3. Notice that the spectrum of the Laplacian on H

n is contained in
[ρ2,∞); these results are more like a nonlinear Klein-Gordon equation instead of
a nonlinear wave equation. For the limit case m = −ρ2, i.e. the shifted wave
equation, Fontaine [10] was the first one to provide small data global existence
for n = 2, 3 and p ≥ 2. Anker-Pierfelice-Vallarino [2] proved wider couples of
Strichartz estimates and a stronger local well-posedness result for the nonlinear
shifted wave equation. The Strichartz estimate established in [2] could be applied
to show small data global existence for any p ∈ (1, 1 + 4/(n − 1)], even though
such results have not been proved explicitly in [2]. Hence it illustrates that the
critical power of global existence holds for the shifted wave equation with small
data pc(n) = 1. This result on H

n is explicitly stated and proved by the first
three authors [26]. Tataru [29] actually proved dispersive estimates, which are
strong enough to ensure global results, as pointed out in [26]. On Damek-Ricci
spaces (which contain Riemannian symmetric spaces of rank one), Anker-Pierfelice-
Vallarino [3] prove also global results. In [26], the authors also showed the small
data global existence result for (1.18) on a manifold with variable curvature under
the assumption that Spec(−Δg+m) ⊂ (c,+∞) with c > 0. The final remark of [26]
raised a question about the small data global existence for (1.18) with p > 1 and
m = −κρ2 on a manifold with variable negative curvature with sectional curvatures
K ∈ [−κ̃,−κ] for some κ̃ ≥ κ > 0. Our second result partially answers this problem.
More precisely, we prove

Theorem 1.3. Let (M◦, g) be a non-trapping asymptotically hyperbolic manifold
of dimension n ≥ 2 and let Δg be the Laplace-Beltrami operator on (M◦, g) as in
Theorem 1.1. Let ρ2 = (n − 1)2/4 and let p ∈ (1, 1 + 4

n−1 ). Then there exists a
constant ν1 > 0 such that the Cauchy problem

(1.20)

{
∂2
t u−Δgu− ρ2u = Fp(u), (t, z) ∈ I ×M◦;

u(0) = νu0(z), ∂tu(0) = νu1(z)

has global solution where ν ∈ (0, ν1] and u0 ∈ Hμ,0(M◦), u1 ∈ Hμ−1,−ε(M◦) defined
in (1.9) for ε very small and μ > n+1

2 ( 12 − 1
p+1 ).
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Remark 1.4. The assumption on the regularity of the initial data is not sharp. The
usual investigations for small data global existence require more care; see Wang
[32].

Notice here that we do not reach the endpoint p = 1 + 4
n−1 . The reason is that

there is a loss of derivatives in the inhomogeneous Strichartz estimates and so it
is impossible to close the iteration in this latter case. In this case, one has to use
another method, based on the strategy described in [4]. We postpone this issue to
a later work since the techniques are very different.

Notation. We use A � B to denote A ≤ CB for some large constant C which
may vary from line to line and depend on various parameters, and similarly we use
A 
 B to denote A ≤ C−1B. We employ A ∼ B when A � B � A. If the constant
C depends on a special parameter other than the above, we shall denote it explicitly
by subscripts. For instance, Cε should be understood as a positive constant not
only depending on p, q, n, and M but also on ε. Throughout this paper, pairs of
conjugate indices are written as p, p′, where 1

p + 1
p′ = 1 with 1 ≤ p ≤ ∞.

Organization of this paper. Our paper is organized as follows. We recall the
properties of the microlocalized spectral measure in Section 2. In Section 3, we
define the microlocalized propagator and prove the energy estimate and the mi-
crolocalized dispersive estimate. We conclude this section by showing the microlo-
calized Strichartz estimate. We prove Theorem 1.1 in Section 4 and Theorem 1.2
in Section 5. Finally, we prove the global existence of Theorem 1.3 in Section 6.

2. The spectral measure

In this section, we briefly review the key elements of the microlocalized spectral
measure, which was constructed and proved by Chen-Hassell [7, Theorem 1.3], [8].
This is an analogue of a result of Hassell and the fourth author [13, Proposition
1.5] for the non-trapping asymptotically conic manifold. The property not only
gives the decay of spectral measure in frequency but also captures the oscillatory
behaviour of the spectral measure.

Proposition 2.1. Let (M◦, g) and H = −Δg − (n − 1)2/4 be as in Theorem
1.1. Then for low energy, i.e. λ ≤ 2, the Schwartz kernel of the spectral measure
dE√

H(λ; z, z′) satisfies

(2.1) dE√
H(λ; z, z′) = λ

(
(ρLρR)

n−1
2 +iλa(λ; z, z′)− (ρLρR)

n−1
2 −iλa(−λ; z, z′)

)
,

where a ∈ C∞([−2, 2]λ ×M2
0 ) and ρL and ρR are respectively the boundary defining

functions for the left and right boundary in the double space M2
0 . Furthermore,

there holds

(2.2) |dE√
H(λ; z, z′)| ≤ Cλ2(1 + d(z, z′))e−(n−1)d(z,z′)/2.

For the high energy, i.e. λ ≥ 1/2, there exists a finite pseudo-differential operator
partition of the identity operator

Id =
N∑

k=0

Qk(λ),(2.3)
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where the Qk are uniformly bounded as operators on L2 and N is independent of
λ, such that

(2.4) (Qk(λ)dE√
H(λ)Q∗

k(λ))(z, z
′) = λn−1

∑
±

e±iλd(z,z′)a±(λ; z, z
′) + b(λ; z, z′),

where d(·, ·) is the Riemannian distance on M◦, and for any α, there exists a
constant Cα such that the a± satisfies

(2.5) |∂α
λa±(λ; z, z

′)| ≤
{
Cαλ

−α(1 + λd(z, z′))−
n−1
2 , d(z, z′) ≤ 1,

Cαλ
−n−1

2 −αe−(n−1)d(z,z′)/2, d(z, z′) ≥ 1,

and b satisfies

(2.6) |∂α
λ b(λ; z, z

′)| ≤ Cαλ
−K−αe−(n−1)d(z,z′)/2 ∀α, K > 0.

Moreover, if (M◦, g) is in addition simply connected with non-positive sectional
curvatures, then the estimates above are true for spectral measure without microlo-
calization; that is, in this case we can take {Qk(λ)} to be the trivial partition of
unity.

Remark 2.1. For example, a Cartan-Hadamard manifold is a simply connected
manifold with non-positive sectional curvatures; hence we have the estimates above
without microlocalization. The non-positive sectional curvatures imply that the
manifold is non-trapping and has no conjugate points.

Next we show an inequality for an integral operator which is similar to a result
of Anker-Pierfelice-Vallarino [2] on H

n. This is close to a non-Euclidean feature of
hyperbolic space related to the Kunze-Stein phenomenon [15].

Lemma 2.1. Let M◦ be the manifold as in Theorem 1.1 and let the kernel K
satisfy the pointwise bound

(2.7) |K(z, z′)| ≤ e−ρδd(z,z
′), ρδ = ρ− δ = (n− 1)/2− δ.

Then for any q ∈ (2,∞], there exist a constant C and 0 < δ0(q) := (n− 1)( 12 − 1
q )

such that

(2.8)
∥∥ ∫

M◦
K(z, z′)f(z′)dg(z′)

∥∥
Lq(M◦)

≤ C‖f‖Lq′(M◦)

holds for all 0 < δ < δ0.

Proof. The proof is a variant of the argument in [8, Section 4.2], where the estimates
of the spectral measure are established. We show that there exists a constant C
such that ∣∣∣ ∫

M◦×M◦
K(z, z′)f(z′)h(z)dg(z′)dg(z)

∣∣∣ ≤ C‖f‖Lq′‖h‖Lq′ .(2.9)

We split the left hand side into several pieces, restricting the kernel to different
regions. Recall that M is the compactification of M◦ and M2

0 is the blow-up space.
Let O be a neighbourhood of the front face FF in M2

0 . We write

K(z, z′) = K(z, z′)χO +K(z, z′)χM2
0\O,

where χ is the usual bump function. We first consider (2.9) with the kernel
K(z, z′)χM2

0 \O. Since the other cases are similar, we only prove (2.9) when both
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z, z′ are near the boundary {x = 0} of M where x is the boundary-defining func-
tion. Away from the front face, the distance d(z, z′) is comparable to − log(xx′).
Since q > 2 and 0 < δ 
 1, we obtain∣∣∣ ∫

{x,x′≤η}∩M2
0 \O

K(z, z′)f(z′)h(z)dg(z′)dg(z)
∣∣∣

�
∫
x,x′≤η

(xx′)qρδ
dx′

x′n
dx

xn
‖f‖Lq′‖h‖Lq′ ≤ Cη‖f‖Lq′ ‖h‖Lq′ .

(2.10)

Now consider the kernel K(z, z′)χO near the front face. Further decompose the
set O into subsets Oi ⊂ M2

0 ,

Oi = {(x, x′, y, y′) : x, x′ ≤ η; dh(y, yi), dh(y
′, yi) ≤ η},

for some yi ∈ ∂M where the distance dh is measured by the metric h(0) on ∂M .
Use the local coordinates (x, y) on M which is near (0, yi) ∈ ∂M to define a map
φi such that

(2.11) φi : Ui �→ U ′
i ⊂ H

n,

where Ui = {(x, y) ∈ M : x ≤ η, dh(y, yi) ≤ η} and U ′
i is a neighbourhood of the

origin (0, 0) (using the upper half-space model) in the real hyperbolic space H
n.

The map φi induces a diffeomorphism Φi,

(2.12) Φi : Oi �→ O′
i,

where O′
i is a subset of (Bn)20, the double space for H

n. Let r be the geodesic
distance on H

n; then the kernel satisfies

(2.13) |φi ◦K(z, z′)χOi
◦ φ−1

i | ≤ Ce−ρδr.

We need the following lemma proved in [2, Lemma 5.1]:

Lemma 2.2. Let q ≥ 2,
(2.14)

‖f ∗ κ‖Lq(Hn) ≤ Cq‖f‖Lq′ (Hn)

(∫ ∞

0

(sinh r)n−1(1 + r)e−(n−1)r/2|κ(r)|q/2dr
)2/q

.

Using this lemma with κ(r) = e−ρδr and the fact that∫ ∞

0

(sinh r)n−1(1 + r)e−(n−1)r/2|κ(r)|q/2dr

≤
∫ ∞

0

(1 + r)e−
n−1
2 ( q

2−1)re
qδ
2 rdr < ∞, 0 < δ < δ0,

(2.15)

we obtain that the integral operator with kernel (2.13) is bounded from Lq′(Hn) into
Lq(Hn). Therefore it shows that the integral operator with the kernel K(z, z′)χO

is bounded from Lq′(Ui) to Lq(Ui) since φi are bounded and invertible maps from

Lq′(Ui) to Lq′(U ′
i). �

3. Dispersive estimate and microlocalized Strichartz estimate

In this section, we define the microlocalized wave propagator and prove the
microlocalized L2-estimates and the dispersive estimates. As a final conclusion of
this section, we prove microlocalized Strichartz estimates.
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3.1. Microlocalized wave propagator and L2-estimates. We first define the

microlocalized wave propagator. Denote U(t) = eit
√
H . For any σ ∈ R, we define

(3.1) σU(t) = eit
√
HH− σ

2 .

In the following application, in particular, we are interested in the cases σ = 0,
σ = 1/2, and σ = 1. Choose χ ∈ C∞

c (R) such that χ(λ) = 1 for λ ≤ 1 and vanishes
when λ ≥ 2. Then we define

σU low(t) =

∫ ∞

0

eitλχ(λ)λ−σdE√
H(λ), σUhigh(t)(3.2)

=

∫ ∞

0

eitλ(1− χ)(λ)λ−σdE√
H(λ).

Let ϕ ∈ C∞
c ([1/2, 2]) and take values in [0, 1] such that 1 =

∑
j∈Z

ϕ(2−jλ) for any
λ 	= 0. We define

σU low
j (t) =

∫ ∞

0

eitλϕ(2−jλ)χ(λ)λ−σdE√
H(λ),

σUhigh
j (t) =

∫ ∞

0

eitλϕ(2−jλ)(1− χ)(λ)λ−σdE√
H(λ).

(3.3)

For the high-energy operator partition of identity operator Qk(λ) in Proposition
2.1, we further define

(3.4) σUhigh
j,k (t) =

∫ ∞

0

eitλϕ(2−jλ)(1− χ)(λ)λ−σQk(λ)dE√
H(λ), 0 ≤ k ≤ N.

The above definition of the operator is well-defined. Indeed, we have

Proposition 3.1 (L2-estimates). Let σU low
j (t) and σUhigh

j,k (t) be defined as in (3.3)

and (3.4). Then there exists a constant C independent of t, j, k such that

‖σU low
j (t)‖L2→L2 ≤ C2−σj , ‖σUhigh

j,k (t)‖L2→L2 ≤ C2−σj(3.5)

for all k ≥ 0, j ∈ Z.

Remark 3.1. The estimate of σU low
j (t) will not be used in the following proofs. In

the following argument, we only need estimates of σUhigh
j,k (t) for the interpolation

argument.

Proof. The proof essentially follows the argument in [13, 33] in which Hassell and
the last author considered the cases of asymptotically conic manifolds. One also
can find a modified version in [6] on the asymptotically hyperbolic setting. We here
outline the proof for the convenience of the reader.

We first show that the above definition of the operator is well-defined. To this
end, it suffices to show that the above integrals in the definitions are well-defined
over any compact dyadic interval in (0,∞). Let A(λ) = eitλχ(λ)ϕ(2−jλ)λ−σ or
A(λ) = eitλϕ(2−jλ)(1 − χ)(λ)λ−σQk(λ). Then A(λ) is compactly supported in
[a, b] with a = 2j−1 and b = 2j+1 and C1 in λ ∈ (0,∞). After integrating by parts,
we see that the integral ∫ b

a

A(λ)dE√
H(λ)
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is given by

(3.6) E√
H(b)A(b)− E√

H(a)A(a)−
∫ b

a

d

dλ
A(λ)E√

H(λ) dλ.

From the construction of the pseudo-differential operator Qk(λ) in [8, Section 6.1],
similarly as [13, Corollary 3.3], we can show thatQk(λ) and each operator λ∂λQk(λ)
is bounded on L2(M◦) uniformly in λ. Then this means that the integrals are well-
defined over any dyadic compact interval in (0,∞); hence the operators U low

j (t)

and Uhigh
j,k (t) are well-defined.

Next we show these operators are bounded on L2. We only consider σUhigh
j,k (t)

since the other is handled in the same way. We have by [13, Lemma 5.3],
(3.7)

σUhigh
j,k (t)σUhigh

j,k (t)∗ =

∫
(1− χ)2(λ)ϕ

( λ

2j
)
ϕ
( λ

2j
)
λ−2σQk(λ)dE√

H(λ)Qk(λ)
∗

= −
∫

d

dλ

(
(1− χ)2(λ)ϕ

( λ

2j
)
ϕ
( λ

2j
)
Qk(λ)λ

−2σ
)
E√

H(λ)Qk(λ)
∗

−
∫
(1− χ)2(λ)ϕ

( λ

2j
)
ϕ
( λ

2j
)
λ−2σQk(λ)E√

H(λ)
d

dλ
Qk(λ)

∗.

On one hand, we note that this is independent of t and also recall that Qk(λ) and
each operator λ∂λQk(λ) is bounded on L2(M◦) uniformly in λ. On the other hand,
the integrand is a bounded operator on L2, with an operator bound of the form
Cλ−1−2σ where C is uniform. By the support property of ϕ, the L2 operator norm
of the integral is uniformly bounded by 2−2jσ, as we are integrating over a dyadic
interval in λ, and the proposition is proved. �

3.2. Dispersive estimates. In this subsection, we prove the microlocalized dis-
persive estimates, which are the key estimates to derive the Strichartz estimates.

Proposition 3.2. Let σU low
j (t) and σUhigh

j,k (t) be defined in (3.3) and (3.4). Let

ρ = (n−1)/2. Then there exist constants C independent of t, j, k for all j ∈ Z such
that

• For j ≥ 0, σ ≥ 0, and |t− τ | ≤ 2,

‖σUhigh
j,k (t)(σUhigh

j,k (τ ))∗‖L1→L∞

≤ C2j[(n+1)/2−2σ](2−j + |t− τ |)−(n−1)/2.
(3.8)

• For j ≥ 0, σ ≥ 0 and |t− τ | ≥ 2,

‖σUhigh
j,k (t)(σUhigh

j,k (τ ))∗‖L1→L∞

≤ C2j[(n+1)/2−2σ]|t− τ |−K ∀K ≥ 0.
(3.9)

• For j ≤ 0, 0 ≤ σ < 3/2, and 0 ≤ ε 
 min{1, 3− 2σ},

(3.10) ‖σU low
j (t)(σU low

j (τ ))∗‖L1→L∞ ≤ C2∓εj(1 + |t− τ |)2σ−3∓ε.

Proof. As before, we have by [13, Lemma 5.3]
(3.11)

σUhigh
j,k (t)(σUhigh

j,k (τ ))∗=

∫ ∞

0

ei(t−τ)λ(1− χ)2(λ)ϕ2
( λ

2j
)
λ−2σQk(λ)dE√

H(λ)Qk(λ)
∗
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and

(3.12) σU low
j (t)(σU low

j (τ ))∗ =

∫ ∞

0

ei(t−τ)λχ2(λ)ϕ2
( λ

2j
)
λ−2σdE√

H(λ).

Let φ(λ) = ϕ2(λ). Then the proposition is a consequence of the following lemma
about the microlocalized dispersive estimates.

Lemma 3.1 (Microlocalized dispersive estimates). Let Q(λ) be the operator Qk

constructed as in Proposition 2.1 and suppose φ ∈ C∞
c ([1/2, 2]) and takes value in

[0, 1]. Let ρ = (n− 1)/2 and 0 < δ 
 1. Then, for j ≥ 0 and any σ ≥ 0, there exist
positive constant C independent of j and points z, z′ ∈ M◦ such that

• when |t| ≤ 2,

∣∣∣ ∫ ∞

0

eitλφ(2−jλ)(1− χ)2(λ)λ−2σ
(
Q(λ)E′√

H
(λ)Q∗(λ)

)
(z, z′)dλ

∣∣∣
≤ C2j[(n+1)/2−2σ](2−j + |t|)−(n−1)/2e−(ρ−δ)d(z,z′);

(3.13)

• when |t| ≥ 2,

∣∣∣ ∫ ∞

0

eitλφ(2−jλ)(1− χ)2(λ)λ−2σ
(
Q(λ)E′√

H
(λ)Q∗(λ)

)
(z, z′)dλ

∣∣∣
≤ C2j[(n+1)/2−2σ]|t|−Ke−(ρ−δ)d(z,z′) ∀K ≥ 0;

(3.14)

and for j ≤ 0, there exist constant C independent of j and points z, z′ ∈ M◦ such
that

∣∣∣ ∫ ∞

0

eitλφ(2−jλ)χ2(λ)λ−2σE′√
H
(λ; z, z′)dλ

∣∣∣
≤ C2∓εj(1 + |t|)2σ−3∓εe−(ρ−δ)d(z,z′), 0 ≤ σ < 3/2, 0 ≤ ε 
 min{1, 3− 2σ}.

(3.15)

Note that dE√
H(λ) = E′√

H
(λ)dλ; thus we have proved the result in Proposition

3.2 once we prove the lemma. �

Remark 3.2. In the proof of Proposition 3.2, the factor e−(ρ−δ)d(z,z′) is used as a
bounded constant. This is enough to obtain the high-frequency estimate (3.31) in

Proposition 3.3 below. However, the factor e−(ρ−δ)d(z,z′) is needed to obtain the
low-frequency estimates (3.32) and (3.33).

The proof of Lemma 3.1. We shall rely on Proposition 2.1. We first prove (3.13)
and (3.14), which are for the high frequencies. Using Proposition 2.1, it suffices to
estimate

(3.16)

∫ ∞

0

eitλφ(2−jλ)λn−1−2σe±iλd(z,z′)ã±(λ; z, z
′)dλ

and

(3.17)

∫ ∞

0

eitλφ(2−jλ)λ−2σ b̃(λ; z, z′)dλ,

where ã± = (1 − χ)2(λ)a±(λ; z, z
′) and b̃ = (1 − χ)2(λ)b(λ; z, z′) with a± and b

satisfying (2.5) and (2.6). It is easy to verify that ã± and b̃ have the same property
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as a± and b, respectively; that is, ã± satisfies (2.5) and b̃ satisfies (2.6). Hence we

briefly relabel ã± to a± and b̃ to b without confusion from now on.

For any K > 0, we have by (2.6) in Proposition 2.1∣∣∣ ∫ ∞

0

eitλφ(2−jλ)λ−2σb(λ; z, z′)dλ
∣∣∣ ≤ ∫ ∞

0

φ(2−jλ)λ−K−2σdλ e−(n−1)d(z,z′)/2

≤ 2j(1−K−2σ)e−(n−1)d(z,z′)/2.

We use (2.6) and N integrations by parts to obtain∣∣∣ ∫ ∞

0

eitλφ(2−jλ)λ−2σb(λ; z, z′)dλ
∣∣∣

≤
∣∣∣ ∫ ∞

0

( 1
it

∂

∂λ

)N(
eitλ

)
φ(2−jλ)λ−2σb(λ; z, z′)dλ

∣∣∣
≤ CN |t|−N

∫ 2j+1

2j−1

λ−K−N−2σdλ e−(n−1)d(z,z′)/2

≤ CN |t|−N2j(1−K−N−2σ)e−(n−1)d(z,z′)/2.

Note that j ≥ 0; therefore we obtain

∣∣∣ ∫ ∞

0

eitλφ(2−jλ)λ−2σb(λ; z, z′)dλ
∣∣∣ ≤ CN (1 + |t|)−N2j(1−K−2σ)e−(n−1)d(z,z′)/2,

(3.18)

which implies that (3.17) is bounded by the right hand side of (3.13) and (3.14).

Next we estimate (3.16). Due to the property of a±, we divide it into two cases.

Case 1. d(z, z′) ≤ 1. By using (2.5), we obtain∣∣∣ ∫ ∞

0

eitλφ(2−jλ)λn−1−2σe±iλd(z,z′)a±(λ; z, z
′)dλ

∣∣∣
=

∣∣∣ ∫ ∞

0

(
1

i(t− d(z, z′))

∂

∂λ

)N (
ei(t−d(z,z′))λ

)
φ(2−jλ)λn−1−2σa±(λ; z, z

′)dλ
∣∣∣

≤ CN |t− d(z, z′)|−N

∫ 2j+1

2j−1

λn−1−2σ−N (1 + λd(z, z′))−
n−1
2 dλ

≤ CN2j(n−2σ−N)|t− d(z, z′)|−N (1 + 2jd(z, z′))−(n−1)/2.

Case 2. d(z, z′) ≥ 1. By using (2.5) again, we obtain∣∣∣ ∫ ∞

0

eitλφ(2−jλ)λn−1−2σe±iλd(z,z′)a±(λ; z, z
′)dλ

∣∣∣
=

∣∣∣ ∫ ∞

0

(
1

i(t− d(z, z′))

∂

∂λ

)N (
ei(t−d(z,z′))λ

)
φ(2−jλ)λn−1−2σa±(λ; z, z

′)dλ
∣∣∣

≤ CN |t− d(z, z′)|−Ne−(n−1)d(z,z′)/2

∫ 2j+1

2j−1

λn−1−2σ−Nλ−n−1
2 dλ

≤ CN2j(n−2σ−N)|t− d(z, z′)|−N2−j(n−1)/2e−(n−1)d(z,z′)/2.
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It follows that for d(z, z′) ≤ 1,∣∣∣ ∫ ∞

0

eitλφ(2−jλ)(1− χ)2(λ)λ−2σ
(
Q(λ)E′√

H
(λ)Q∗(λ)

)
(z, z′)dλ

∣∣∣
≤ CN2j(n−2σ)

(
1 + 2j |t− d(z, z′)|

)−N
(1 + 2jd(z, z′))−(n−1)/2

(3.19)

and for d(z, z′) ≥ 1,∣∣∣ ∫ ∞

0

eitλφ(2−jλ)(1− χ)2(λ)λ−2σ
(
Q(λ)E′√

H
(λ)Q∗(λ)

)
(z, z′)dλ

∣∣∣
≤ CN2j(n−2σ)

(
1 + 2j |t− d(z, z′)|

)−N
2−j(n−1)/2e−(n−1)d(z,z′)/2.

(3.20)

Consider the case |t| ≤ 2. We first consider the case, d(z, z′) ≤ 1. If |t| ∼ d(z, z′), it
is clear to see (3.13). Otherwise, we have |t−d(z, z′)| ≥ c|t| for some small constant
c. Then choose N = (n− 1)/2 to prove (3.13). For the second case, d(z, z′) ≥ 1, by
using j ≥ 0, it follows from the fact that 2−j + |t| � 1. Therefore we have proved
(3.13).

Next we consider the case |t| ≥ 2. We first consider the case d(z, z′) ≤ 1. Since
|t| ≥ 2, we have |t− d(z, z′)| ≥ 1

4 |t|. Then by (3.19) for any N ,∣∣∣ ∫ ∞

0

eitλφ(2−jλ)(1− χ)2(λ)λ−2σ
(
Q(λ)E′√

H
(λ)Q∗(λ)

)
(z, z′)dλ

∣∣∣
≤ CN2j(n−2σ)2−Nj |t|−N .

For the second case, d(z, z′) ≥ 1, if |t| ∼ d(z, z′), it is clear to see for 0 < δ 
 1
that∣∣∣ ∫ ∞

0

eitλφ(2−jλ)(1− χ)2(λ)λ−2σ
(
Q(λ)E′√

H
(λ)Q∗(λ)

)
(z, z′)dλ

∣∣∣
≤ CN2j[(n+1)/2−2σ]e−(n−1)d(z,z′)/2 ≤ CN,δ2

j[(n+1)/2−2σ]|t|−Ne−(ρ−δ)d(z,z′).

Otherwise, we have |t − d(z, z′)| ≥ c|t| for some small constant c. Then by (3.20)
for any N ,∣∣∣ ∫ ∞

0

eitλφ(2−jλ)(1− χ)2(λ)λ−2σ
(
Q(λ)E′√

H
(λ)Q∗(λ)

)
(z, z′)dλ

∣∣∣
≤ CN2j[(n+1)/2−2σ]2−Nj |t|−Ne−(n−1)d(z,z′)/2.

By using the fact that j ≥ 0, we have proved (3.14).

We next prove (3.15), which is for the low frequency, i.e. j ≤ 0, and for any
0 ≤ σ < 3/2.

Case 1. |t| � 1. In this case, we know from (2.2) that

∣∣∣ ∫ ∞

0

eitλφ(2−jλ)λ−2σχ2(λ)E′√
H
(λ; z, z′)dλ

∣∣∣
≤ C

∫ 2j+1

2j−1

φ(2−jλ)λ2−2σ(1 + d(z, z′))e−(n−1)d(z,z′)/2dλ

≤ C2j(3−2σ)(1 + d(z, z′))e−(n−1)d(z,z′)/2,

(3.21)

which implies (3.15) when |t| � 1.
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Case 2. |t| � 1. In this case, we further consider two subcases.

Subcase 1. |t| ≤ 2d(z, z′). In this subcase, arguing as above, we obtain

∣∣∣ ∫ ∞

0

eitλφ(2−jλ)λ−2σχ2(λ)E′√
H
(λ; z, z′)dλ

∣∣∣
≤ C

∫ 2j+1

2j−1

φ(2−jλ)λ2−2σ(1 + d(z, z′))e−(n−1)d(z,z′)/2dλ

≤ C2j(3−2σ)(1 + d(z, z′))e−(n−1)d(z,z′)/2

≤ C2j(3−2σ)|t|−Ne−(ρ−δ)d(z,z′)

(3.22)

for any arbitrary large N > 0 and 0 < δ 
 1.

Subcase 2. |t| ≥ 2d(z, z′), |t| � 1. To show (3.15), it suffices to show that, for
0 < δ 
 1,∣∣∣∣

∫ ∞

0

eitλφ(2−jλ)λ−2σχ2(λ)E′√
H
(λ; z, z′)dλ

∣∣∣∣ � 2∓εj |t|2σ−3∓εe−(ρ−δ)d(z,z′).(3.23)

To this end, let λ̄ = λ/t and recall that
∑

k ϕ(2
−kλ) = 1. We write

∫ ∞

0

eitλφ(2−jλ)λ−2σχ2(λ)E′√
H
(λ; z, z′)dλ

= t2σ−1

∫ ∞

0

eiλλ−2σφ(2−jλ̄)χ2(λ̄)E′√
H
(λ̄; z, z′)dλ

= t2σ−1
∑
k∈Z

∫ ∞

0

eiλλ−2σϕ(2−kλ)φ(2−jλ̄)χ2(λ̄)E′√
H
(λ̄; z, z′)dλ.

(3.24)

Define

I = t2σ−1
∑
k≤0

∫ ∞

0

eiλλ−2σϕ(2−kλ)φ(2−jλ̄)χ2(λ̄)E′√
H
(λ̄; z, z′)dλ;

II = t2σ−1
∑
k≥1

∫ ∞

0

eiλλ−2σϕ(2−kλ)φ(2−jλ̄)χ2(λ̄)E′√
H
(λ̄; z, z′)dλ.

(3.25)

Recall that λ̄ = λ/t, by (2.2) and λ/t ∼ 2j . Then we have

|I| = |t|2σ−1

∣∣∣∣∣∣
∑
k≤0

∫ ∞

0

eiλλ−2σϕ(2−kλ)φ(2−jλ̄)χ2(λ̄)E′√
H
(λ̄; z, z′)dλ

∣∣∣∣∣∣
≤ t2σ−12∓jε

∑
k≤0

∫ 2k+1

2k
λ−2σ(t−1λ)2±ε(1 + d(z, z′))e−(n−1)d(z,z′)/2dλ

� 2∓jεt2σ−3∓ε(1 + d(z, z′))e−(n−1)d(z,z′)/2, 0 ≤ σ<3/2, 0 ≤ ε 
 min{1, 3− 2σ},

(3.26)
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which gives (3.23). By (2.1) in Proposition 2.1, we have

II = t2σ−1
∑
k≥1

∫ ∞

0

eiλλ−2σϕ(2−kλ)φ(2−jλ̄)χ2(λ̄)E′√
H
(λ̄; z, z′)dλ

= 2∓εjt2σ−1(ρLρR)
n−1
2

∑
k≥1

∫ ∞

0

eiλ(t−1λ)1±ελ−2σϕ(2−kλ)φ(2−jλ̄)χ2(λ̄)

×
(
(ρLρR)

iλ̄a(λ̄; z, z′)− (ρLρR)
−iλ̄a(−λ̄; z, z′)

)
dλ.

(3.27)

By integration by parts, we estimate that

II � t2σ−2∓ε2∓jε(ρLρR)
n−1
2

∑
k≥1

∫ ∞

0

( d

dλ

)4(
λ1±ε−2σϕ(2−kλ)φ(2−jλ̄)χ2(λ̄)

×
(
(ρLρR)

iλ̄a(λ̄; z, z′)− (ρLρR)
−iλ̄a(−λ̄; z, z′)

) )
dλ.

(3.28)

If none of the derivatives hit the term
(
(ρLρR)

iλ̄a(λ̄; z, z′)− (ρLρR)
−iλ̄a(−λ̄; z, z′)

)
,

since |λ̄| = |λ/t| ≤ 1, then we use the smoothness of a at 0 to obtain(
(ρLρR)

iλ̄a(λ̄; z, z′)− (ρLρR)
−iλ̄a(−λ̄; z, z′)

)
� λ̄ � λt−1.

If the derivatives hit the other terms we gain λ−4. In this case, note that 0 ≤ σ <
3/2 and 0 ≤ ε 
 1, and we show that

|II1| � t2σ−3∓ε2∓jε(ρLρR)
n−1
2

∑
k≥1

∫ 2k+1

2k
λ−2∓εdλ � t2σ−3∓ε2∓jε(ρLρR)

n−1
2 .

(3.29)

If at least one derivative hits the term
(
(ρLρR)

iλ̄a(λ̄; z, z′)−(ρLρR)
−iλ̄a(−λ̄; z, z′)

)
,

since a ∈ C∞, we gain t−1 at least. Note that λ/t � 1, and we gain in total λ−3t−1;
then

|II2| � t2σ−3∓ε2∓jε(ρLρR)
n−1
2 (ln(ρLρR))

4
∑
k≥1

∫ 2k+1

2k
λ−2±εdλ

� t2σ−3∓ε2∓jε(ρLρR)
n−1
2 (ln(ρLρR))

4.

(3.30)

From [8, Proposition 3.4], we have

(ρLρR)
n−1
2 (ln(ρLρR))

4 ≤ (1 + d(z, z′))4e−(n−1)d(z,z′)/2.

Therefore we prove (3.23); hence we have (3.15). The proof of Lemma 3.1 is then
complete. �

3.3. Microlocalized Strichartz estimate. In this subsection, we use the L2-
estimate and dispersive estimate for the microlocalized wave propagator to obtain
the microlocalized Strichartz estimate.

Licensed to Johns Hopkins Univ. Prepared on Fri Apr  2 15:11:23 EDT 2021 for download from IP 72.85.49.148.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



7656 Y. SIRE, C. D. SOGGE, C. WANG, AND J. ZHANG

Proposition 3.3. Let σU low
j (t) and σUhigh

j,k (t) be defined in (3.3) and (3.4) and

let n ≥ 3. Then for every pair (q, r) ∈ [2,∞] × (2,∞], there exists a constant C
depending only on n, q, and r such that:

• For j ≥ 0 and σ ≥ 0,

(3.31)
(∫

R

‖σUhigh
j,k (t)f‖qLrdt

) 1
q ≤ C(1 + j)2j(s−σ)‖f‖L2 ,

where s = se as in (1.13) when 2/q ≥ (n − 1)(1/2 − 1/r) and s = sw defined in
(1.11) when 2/q ≤ (n− 1)(1/2− 1/r).

• For j ≤ 0, if 0 ≤ σ < 1,

(3.32)
(∫

R

‖σU low
j (t)f‖qLrdt

) 1
q ≤ C2εj‖f‖L2 ∀0 ≤ ε 
 1, ε < 1− σ.

• For j ≤ 0, σ = 1, and q ≥ 2,

(3.33)
(∫

R

‖σU low
j (t)f‖qLrdt

) 1
q ≤ C2−jε‖f‖L2 ∀0 < ε 
 1.

In addition if q 	= 2, one can choose ε = 0.

Remark 3.3. The log regularity j in (3.31) appears on the line 2
q = (n− 1)( 12 −

1
r ).

This loss can be removed using Keel-Tao’s argument [16, Sections 3-7], but we do
not pursue here sharp regularity.

Proof of Proposition 3.3. We closely follow Keel-Tao’s argument [16, Sections 3-7].
By the TT ∗ argument, it suffices to show that∣∣∣ ∫∫

〈(σUhigh
j,k (τ ))∗F (τ ), (σUhigh

j,k (t))∗G(t)〉dτdt
∣∣∣(3.34)

� 22j(s−σ)(1 + j)2‖F‖
Lq′

t Lr′‖G‖
Lq′

t Lr′

and

∣∣∣ ∫∫
〈(σU low

j (τ ))∗F (τ ), (σU low
j (t))∗G(t)〉dτdt

∣∣∣ � CΛ(j)2‖F‖
Lq′

t Lr′ ‖G‖
Lq′

t Lr′ ,

(3.35)

where Λ(j) = 2εj when 0 ≤ σ < 1 with 0 ≤ ε 
 1 and Λ(j) = 2−εj when σ = 1
with 0 < ε 
 1. In particular, if σ = 1 and q 	= 2 one can choose ε = 0.

To this end, we consider four cases.

Case 1. j ≥ 0 and |t − τ | ≤ 2. By the interpolation of the bilinear form of (3.8)
and the energy estimate in Proposition 3.1, we have

〈(σUhigh
j,k (τ ))∗F (τ ), (σUhigh

j,k (t))∗G(t)〉

≤ C2j[(n+1)( 1
2−

1
r )−2σ](2−j + |t− τ |)−(n−1)( 1

2−
1
r )‖F‖Lr′ ‖G‖Lr′ .

Therefore we obtain by Hölder’s and Young’s inequalities∣∣∣ ∫∫
〈(σUhigh

j,k (τ ))∗F (τ ), (σUhigh
j,k (t))∗G(t)〉dτdt

∣∣∣
� 2j[(n+1)( 1

2−
1
r )−2σ]

∫∫
|t−τ |≤2

(2−j + |t− τ |)−(n−1)( 1
2−

1
r )‖F (τ )‖Lr′‖G(t)‖Lr′dtdτ

� 22j(se−σ) max{2j[(n−1)( 1
2−

1
r )−

2
q ], 1}‖F‖

Lq′
t Lr′‖G‖

Lq′
t Lr′
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when 2
q 	= (n− 1)( 12 − 1

r ). If
2
q = (n− 1)( 12 − 1

r ), we similarly have∣∣∣ ∫∫
〈(σUhigh

j,k (τ ))∗F (τ ), (σUhigh
j,k (t))∗G(t)〉dτdt

∣∣∣
� (1 + j)22j(se−σ)‖F‖

Lq′
t Lr′‖G‖

Lq′
t Lr′ .

Case 2. j ≥ 0 and |t − τ | ≥ 2. Similarly, by the interpolation of the bilinear form
of (3.9) and the energy estimate in Proposition 3.1, we have

〈(σUhigh
j,k (τ ))∗F (τ ), (σUhigh

j,k (t))∗G(t)〉

≤ C2j[(n+1)( 1
2−

1
r )−2σ]|t− τ |−2N( 1

2−
1
r )‖F‖Lr′‖G‖Lr′ .

Therefore, by using Hölder’s and Young’s inequalities and choosing N enough, we
obtain∣∣∣ ∫∫

〈(σUhigh
j,k (τ ))∗F (τ ), (σUhigh

j,k (t))∗G(t)〉dsdt
∣∣∣

� 2j[(n+1)( 1
2−

1
r )−2σ]

∫∫
|t−τ |≥2

|t− τ |−2N( 1
2−

1
r )‖F (τ )‖Lr′‖G(t)‖Lr′dtdτ

� 22j(se−σ)‖F‖
Lq′

t Lr′ ‖G‖
Lq′

t Lr′ .

By the definition of s, we collect the two cases to prove (3.31).

Case 3. j ≤ 0 and 0 ≤ σ < 1. By using (3.15) with positive sign and small δ
satisfying 0 < δ < δ0(r) as in Lemma 2.1, we use (2.8) to obtain

〈(σU low
j (τ ))∗F (τ ), (σU low

j (t))∗G(t)〉
≤ C‖σU low

j (t)(σU low
j (τ ))∗F‖Lr‖G(t)‖Lr′

≤ C22εj(1 + |t− τ |)2σ−3+2ε
∥∥∫

e−(ρ−δ)d(z,z′)Fdg(z′)
∥∥
Lr‖G(t)‖Lr′

≤ C22εj(1 + |t− τ |)2σ−3+2ε‖F (τ )‖Lr′‖G(t)‖Lr′ .

Note that if 0 ≤ σ < 1, for q ≥ 2, it gives 2/q < 3 − 2σ − 2ε when 0 ≤ ε 
 1 − σ.
Therefore, by using Hölder’s and Young’s inequalities, we obtain for q ≥ 2:∣∣∣ ∫∫

〈(σU low
j (τ ))∗F (τ ), (σU low

j (t))∗G(t)〉dτdt
∣∣∣

� 22εj
∫∫

(1 + |t− τ |)2σ−3+2ε‖F (t)‖Lr′‖G(τ )‖Lr′dtdτ

� 22εj‖F‖
Lq′

t Lr′‖G‖
Lq′

t Lr′ .

This proves (3.35).

Case 4. j ≤ 0, σ = 1 and q ≥ 2. By using (3.15) with negative sign and a similar
argument as above, we have

〈(σU low
j (τ ))∗F (τ ), (σU low

j (t))∗G(t)〉
≤ C‖σU low

j (t)(σU low
j (τ ))∗F‖Lr‖G(t)‖Lr′

≤ C2−2jε(1 + |t− τ |)−1−2ε
∥∥ ∫

e−(ρ−δ)d(z,z′)Fdg(z′)
∥∥
Lr‖G(t)‖Lr′

≤ C2−2jε(1 + |t− τ |)−1−2ε‖F (τ )‖Lr′‖G(t)‖Lr′ .

This proves (3.35). In particular if q > 2, it is clear that one can choose ε = 0. �
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4. Homogeneous Strichartz estimates

In this section, we prove Theorem 1.1 by using the microlocalized Strichartz
estimate in Proposition 3.3. Recall that H = −Δg − ρ2 and let u be the solution of

(4.1) ∂2
t u+Hu = 0, u(0) = u0(z), ∂tu(0) = u1(z).

Then we have

u(t, z) =
U(t) + U(−t)

2
u0 +

U(t)− U(−t)

2i
√
H

u1,

where U(t) = eit
√
H . By recalling that σU(t) = eit

√
HH− σ

2 and using (3.2), we aim
to estimate

‖u‖Lq(R;Lr(M◦))

�
∑
±

∑
σ∈{0,1}

(
‖σU low(±t)uσ‖Lq(R;Lr(M◦)) + ‖σUhigh(±t)uσ‖Lq(R;Lr(M◦))

)
.(4.2)

To prove (1.15) in Theorem 1.1, it is enough to prove that

(4.3) ‖αUhigh(t)f‖Lq
t (R:L

r(M◦)) � ‖f‖L2(M◦),

with α = μ, and

(4.4) ‖βU low(t)f‖Lq
t (R:L

r(M◦)) � ‖f‖L2(M◦),

where β equals 0 or 1− ε with 0 < ε 
 1. Recall σU low
j (t) and σUhigh

j,k (t) defined in

(3.3) and (3.4). Then we have

σUhigh(t)f =
∑
j≥0

N∑
k=0

σUhigh
j,k (t)f

and

σU low(t)f =
∑
j≤0

σU low
j f.

By using Proposition 3.3 with σ = α = μ, we obtain for j ≥ 0, 0 ≤ k ≤ N ,

‖αUhigh
j,k (t)f‖Lq

t (R:L
r(M◦)) � 2j(s−μ)‖f‖L2(M◦), s = se, sw.

Note that μ > s, and by taking summation in j ≥ 0 and finite k, we prove (4.3).
If β = 0, by using Proposition 3.3 with σ = 0, we obtain for j ≤ 0,

‖βU low
j (t)f‖Lq

t (R:L
r(M◦)) � 2εj‖f‖L2(M◦),

and if β = 1 − ε with 0 < ε 
 1, choose 0 < ε̃ < ε = 1 − β. We use (3.32) in
Proposition 3.3 with σ = β = 1− ε to obtain

‖βU low
j (t)f‖Lq

t (R:L
r(M◦)) � 2ε̃j‖f‖L2(M◦).

By summing in j ≤ 0, we obtain (4.4) with β = 0 and 1− ε. Hence we have proved
(1.15) in Theorem 1.1.
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5. Inhomogeneous Strichartz estimates

In this section, we prove the inhomogeneous Strichartz estimate in Theorem 1.2.
To this purpose, we divide into two cases. The first case that q > q̃′ is much easier to
prove due to the Christ-Kiselev lemma [9]. The second case when q = q̃ = 2 is more
complicated since the usual dispersive estimate fails due to the conjugate points.
We call the inhomogeneous Strichartz estimate a double endpoint estimate when
q = q̃ = 2; otherwise we call it a non-double endpoint inhomogeneous Strichartz
estimate.

5.1. Inhomogeneous Strichartz estimates for non-double endpoint. In this
subsection, we prove

Proposition 5.1. Let (q, r, μ), (q̃, r̃, μ̃) ∈ Λw ∪ Λe and suppose at least one of q, q̃
does not equal 2. Then the following inequalities hold:

• Low-frequency estimate∥∥∥ ∫
τ<t

sin (t− τ )
√
H√

H
χ(

√
H)F (τ )dτ

∥∥∥
Lq

tL
r
z

� ‖F‖
Lq̃′

t Lr̃′
z
;(5.1)

• High-frequency estimate∥∥∥ ∫
τ<t

sin (t− τ )
√
H√

H
(1− χ)(

√
H)F (τ )dτ

∥∥∥
Lq

tL
r
z

� ‖H
μ+μ̃−1

2 F‖
Lq̃′

t Lr̃′
z
,(5.2)

where χ ∈ C∞
c ([0,∞) such that χ(λ) = 1 for λ ≤ 1 and vanishes when λ ≥ 2.

Remark 5.1. We can obtain a special inhomogeneous Strichartz estimate that we
shall require in the next section. For p ∈ (1, 1 + 4/(n− 1)), we have∥∥∥ ∫

τ<t

sin (t− τ )
√
H√

H
F (τ )dτ

∥∥∥
Lp+1

t Lp+1
z

� ‖F‖
L

p+1
p

t L
p+1
p

z

.(5.3)

Indeed, the low-frequency part follows from (5.1). Choose μ = μ̃ = 1/2. Then we
can check that

(p+ 1, p+ 1, 1/2) ∈ Λe, p+ 1 > 2,

when p ∈ (1, 1 + 4/(n− 1)). Hence the high-frequency part follows from (5.2).

Proof of Proposition 5.1. We first prove (5.1). Recall that U(t) = eit
√
H . Then

sin (t− τ )
√
H√

H
χ(

√
H) = H− 1

2χ(
√
H)(U(t)U(τ )∗ − U(−t)U(−τ )∗)/2i

=
1

2i

(
σU low(t)(σU low(τ ))∗ − σU low(−t)(σU low(−τ ))∗

)
, σ = 1/2,

where

(5.4) σU low(t) =

∫ ∞

0

eitλχ1/2(λ)λ−σdE√
H(λ).

This is just the analogue of (3.2) with χ(λ) there replaced by χ1/2(λ), which causes
no problems. Since the other term can be treated similarly, it suffices to show that∫

τ<t

σU low(t)(σU low(τ ))∗F (τ )dτ, σ = 1/2,(5.5)
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satisfies the bounds in (5.1). As before, by using Proposition 3.3 with σ = 1/2, we
obtain for j ≤ 0,

‖σU low
j (t)f‖Lq

t (R:L
r(M◦)) � 2εj‖f‖L2(M◦), 0 ≤ ε 
 1,

and hence we further have

‖σU low(t)f‖Lq
t (R:L

r(M◦)) �
∑
j≤0

‖σU low
j (t)f‖Lq

t (R:L
r(M◦)) � ‖f‖L2(M◦).

By the duality, we have the following:∥∥∥ ∫
R

σU low(t)(σU low(τ ))∗F (τ )dτ
∥∥∥
Lq

t (R:L
r(M◦))

� ‖F‖
Lq̃′

t (R:Lr̃′(M◦))
.

Under the assumption that at least one of q, q̃ is not 2, we have q > q̃′. Hence by
using the Christ-Kiselev lemma [9], we obtain∥∥∥ ∫

τ<t

σU low(t)(σU low(τ ))∗F (τ )dτ
∥∥∥
Lq

t (R:L
r(M◦))

� ‖F‖
Lq̃′

t (R:Lr̃′(M◦))
.

Therefore we have shown that (5.5) satisfies the bounds in (5.1), as desired.
Next we prove (5.2). Similarly as above, we write

sin (t− τ )
√
H√

H
H−μ+μ̃−1

2 (1− χ)(
√
H)

= H−μ+μ̃
2 (1− χ)(

√
H)(U(t)U(τ )∗ − U(−t)U(−τ )∗)/2i

=
1

2i

(
μUhigh(t)(μ̃Uhigh(τ ))∗ − μUhigh(−t)(μ̃Uhigh(−τ ))∗

)
,

where

(5.6) σUhigh(t) =

∫ ∞

0

eitλ(1− χ)1/2(λ)λ−σdE√
H(λ).

Here we have replaced (1−χ)(λ) in (3.2) by (1−χ)1/2(λ), which is inconsequential.
To prove (5.2), it suffices to show that∥∥∥ ∫

τ<t

μUhigh(t)(μ̃Uhigh(τ ))∗F (τ )dτ
∥∥∥
Lq

tL
r
z

� ‖F‖
Lq̃′

t Lr̃′
z

.(5.7)

Applying Proposition 3.3 with σ = μ and its dual version with σ = μ̃, we have for
all j ≥ 0 and k = 0, . . . , N ,∥∥μUhigh

j,k (t)f
∥∥
Lq

t (R:L
r(M◦))

� 2j(s−μ)‖f‖L2(M◦), s = se, sw,

and ∥∥∥ ∫
R

(μ̃Uhigh
j,k (τ ))∗F (τ )dτ

∥∥∥
L2(M◦)

� 2j(s−μ̃)‖F‖
Lq̃′

t Lr̃′
z
, s = se, sw.

Therefore we obtain, for all k, k′ ∈ {0, . . . , N} and j, j′ ≥ 0,∥∥∥ ∫
R

μUhigh
j,k (t)(μ̃Uhigh

j′,k′ (τ ))
∗F (τ )dτ

∥∥∥
Lq

t (R:L
r(M◦))

� 2j(s−μ)2j
′(s−μ̃)‖F‖

Lq̃′
t (R:Lr̃′ (M◦))

.

Let

(5.8) σUhigh
≥,k (t) =

∑
j≥0

σUhigh
j,k (t),
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since μ, μ̃ > s. Then we sum over j and j′ to show that

(5.9)
∥∥∥ ∫

R

μUhigh
≥,k (t)(μ̃Uhigh

≥,k′ (τ ))
∗F (τ )dτ

∥∥∥
Lq

t (R:L
r(M◦))

� ‖F‖
Lq̃′

t (R:Lr̃′(M◦))
.

Further by taking the summation in k, k′ which range over a finite set and using
the Christ-Kiselev lemma with q > q̃′, we prove (5.7). �

5.2. Inhomogeneous Strichartz estimates on the double endpoint. We
prove the following result on the double endpoint inhomogeneous Strichartz es-
timate.

Proposition 5.2. Let (q, r, μ), (q̃, r̃, μ̃) ∈ Λw ∪Λe and let q = q̃ = 2. The following
inequalities hold:

• Low-frequency estimate∥∥∥ ∫
τ<t

sin (t− τ )
√
H√

H
χ(

√
H)F (τ )dτ

∥∥∥
L2

tL
r
z

� ‖F‖L2
tL

r̃′
z
,(5.10)

• High-frequency estimate∥∥∥ ∫
τ<t

sin (t− τ )
√
H√

H
(1− χ)(

√
H)F (τ )dτ

∥∥∥
L2

tL
r
z

� ‖H
μ+μ̃−1

2 F‖L2
tL

r̃′
z
,(5.11)

where χ ∈ C∞
c ([0,∞) such that χ(λ) = 1 for λ ≤ 1 and vanishes when λ ≥ 2.

Proof. The above argument breaks down here due to the failure of the Christ-
Kiselev lemma. We follow the argument in Keel-Tao [16] to overcome this obstacle,
but we need the usual dispersive estimates which are known to be false when there
exist conjugate points on the manifold. However we can recover this by following
the argument in [13].

We first prove (5.10). Recall σU low(t) in (5.4). As before, it suffices to show that
(5.12)∥∥∥ ∫

τ<t

σU low(t)(σU low(τ ))∗F (τ )dτ
∥∥∥
L2

t (R:L
r(M◦))

� ‖F‖L2
t (R:L

r̃′(M◦)), σ = 1/2.

To show (5.12), it is enough to show the bilinear form estimate

(5.13) |T (F,G)| � ‖F‖L2
tL

r̃′
z
‖G‖L2

tL
r′
z
,

where T (F,G) is the bilinear form

(5.14) T (F,G) =

∫∫
τ<t

〈σU low(t)(σU low(τ ))∗F (τ ), G(t)〉L2 dτdt.

Note that

σU low(t)(σU low(τ ))∗ =

∫ ∞

0

ei(t−τ)λχ(λ)λ−2σdE√
H(λ)

=
∑
j≤0

∫ ∞

0

ei(t−τ)λχ(λ)ϕ
(
2−jλ

)
λ−2σdE√

H(λ).
(5.15)

Note that the summation term is close to (3.12):

(5.16) σU low
j (t)(σU low

j (τ ))∗ =

∫ ∞

0

ei(t−τ)λχ2(λ)ϕ2
( λ

2j
)
λ−2σdE√

H(λ).
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Therefore we can use the same argument to prove the same dispersive estimate
(3.15). Using (3.15) with positive sign, we obtain

〈σU low(t)(σU low(τ ))∗F (τ ), G(t)〉L2

≤ C
∑
j≤0

2εj(1 + |t− τ |)2σ−3+ε
∥∥ ∫

e−(ρ−δ)d(z,z′)F (τ )dg(z′)
∥∥
Lr‖G(t)‖Lr′

≤ C(1 + |t− τ |)2σ−3+ε‖F (τ )‖Lr̃′‖G(t)‖Lr′ .

By using Hölder’s and Young’s inequalities and the fact that σ = 1/2 and 0 < ε 
 1,
we obtain

|T (F,G)| �
∫∫

τ<t

(1 + |t− τ |)2σ−3+ε‖F (τ )‖Lr′‖G(t)‖Lr′dtdτ

� ‖F‖L2
tL

r̃′‖G‖L2
tL

r′ .

This proves (5.13) and hence (5.10).

We next prove (5.11). Recall σUhigh(t) in (5.6). As before, it suffices to show
that ∥∥∥ ∫

τ<t

μUhigh(t)(μ̃Uhigh(τ ))∗F (τ )dτ
∥∥∥
L2

tL
r
z

� ‖F‖L2
tL

r̃′
z
.(5.17)

To show (5.17), it is enough to show the bilinear form estimate

(5.18) |T (F,G)| � ‖F‖L2
tL

r̃′
z
‖G‖L2

tL
r′
z
,

where T (F,G) is the bilinear form

(5.19) T (F,G) =

∫∫
τ<t

〈μUhigh(t)(μ̃Uhigh(τ ))∗F (τ ), G(t)〉L2 dτdt.

Note that

μUhigh(t)(μ̃Uhigh(τ ))∗

=
N∑

k,k′=0

∫ ∞

0

ei(t−τ)λ(1− χ)(λ)λ−(μ+μ̃)Qk(λ)dE√
H(λ)Qk′(λ)∗

=
∑
j≥0

N∑
k,k′=0

∫ ∞

0

ei(t−τ)λ(1− χ)(λ)ϕ(2−jλ)λ−(μ+μ̃)Qk(λ)dE√
H(λ)Qk′(λ)∗,

(5.20)

in which the summation term is close to (3.11):

σUhigh
j,k (t)(σUhigh

j,k (τ ))∗=

∫ ∞

0

ei(t−τ)λ(1− χ)2(λ)ϕ2
( λ

2j
)
λ−2σQk(λ)dE√

H(λ)Qk(λ)
∗.

The difference between the powers of functions 1 − χ and ϕ is harmless. From
Lemma 5.2 below, the case “near-diagonal” (k is close to k′) satisfies the same
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property of the case k = k′. Thus it also leads to (3.8) and (3.9); hence it proves
(5.18). In the case “off diagonal” in which the conjugate points are not separated,
we cannot prove the similar dispersive estimate like (3.8) and (3.9). However, we
can prove the following, which also leads to (5.18).

Lemma 5.1. Let σUhigh
≥,k (t) be defined as in (5.8). Then for each pair (k, k′) ∈

{0, 1, . . . , N}2 there exists a constant C such that either

(5.21)

∫∫
τ<t

〈μUhigh
≥,k (t)(μ̃Uhigh

≥,k′ (τ ))
∗F (τ ), G(t)〉L2 dτdt ≤ C‖G‖L2

τL
r′
z
‖F‖L2

tL
r̃′
z

or

(5.22)

∫∫
τ>t

〈μUhigh
≥,k (t)(μ̃Uhigh

≥,k′ (τ ))
∗F (τ ), G(t)〉L2 dτdt ≤ C‖G‖L2

τL
r′
z
‖F‖L2

tL
r̃′
z
.

We postpone the proof for a moment. Now we see how Lemma 5.1 implies (5.18).
On the one hand, for every pair (k, k′), we have by (5.9)

(5.23)

∫∫
〈μUhigh

≥,k (t)(μ̃Uhigh
≥,k′ (τ ))

∗F (τ ), G(t)〉L2 dτdt ≤ C‖G‖L2
τL

r′
z
‖F‖L2

tL
r̃′
z
.

Hence for every pair (k, k′), by (5.21) or subtracting (5.22) from (5.23), we obtain∫∫
τ<t

〈μUhigh
≥,k (t)(μ̃Uhigh

≥,k′ (τ ))
∗F (τ ), G(t)〉L2 dτdt ≤ C‖G‖L2

τL
r′
z
‖F‖L2

tL
r̃′
z
.

Finally by summing over all k and k′, we obtain (5.18). Once we prove Lemma 5.1,
we complete the proof of Proposition 5.2. �

To prove Lemma 5.1, we need a result about the dispersive estimates. To state
and prove the dispersive estimates, we need to categorize all microlocalization pairs
{Qk, Qk′}Nk,k′=0 and the property of spectral measure.

Lemma 5.2. The partition of the identity Qk(λ) can be chosen so that the pairs
of indices (k, k′), 1 ≤ k, k′ ≤ N , can be divided into three classes,

{1, . . . , N}2 = Jnear ∪ Jnot−out ∪ Jnot−inc,

so that

• if (k, k′) ∈ Jnear, then Qk(λ)dE√
H(λ)Qk′(λ)∗ satisfies the conclusions of

Proposition 2.1;
• if (k, k′) ∈ Jnon−inc, then Qk(λ) is not incoming-related to Qk′(λ) in the
sense that no point in the operator wavefront set (microlocal support) of
Qk(λ) is related to a point in the operator wavefront set of Qk′(λ) by back-
ward bicharacteristic flow;

• if (k, k′) ∈ Jnon−out, then Qk(λ) is not outgoing-related to Qk′(λ) in the
sense that no point in the operator wavefront set of Qk(λ) is related to a
point in the operator wavefront set of Qk′(λ) by forward bicharacteristic
flow.

Proof. This is an analogue of [13, Lemma 8.2], which is stated in the asymptotically
conic manifold. The proof of the non-trapping asymptotically hyperbolic manifold
is given in [6], which is essentially due to [11]. �
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Using the not-incoming or not-outgoing property ofQk(λ) with respect toQk′(λ),
we obtain a similar lemma [13, Lemma 8.5] for spectral measure. We omit the de-
tails but we point out the key idea, which also was used in [6] considering the
endpoint inhomogeneous Strichartz estimate for Schrödinger on the same setting
considered here.

The essential key point is that the phase function in the oscillation expression of
the Schwartz kernel of Qk(λ)dE√

H(λ)Qk′(λ)∗ has an unchanged sign when (k, k′) ∈
Jnon−inc or (k, k′) ∈ Jnon−out. More precisely, there exists a small constant c > 0
such that the phase function Φ ≤ −c when (k, k′) ∈ Jnon−out and Φ ≥ c when
(k, k′) ∈ Jnon−inc. For simplicity, we take only one example to illustrate the idea.
If Qk is not incoming-related to Qk′ , we only consider

Qk(λ)dE√
H(λ)Qk′(λ)∗ =

∫
Rm

eiλΦ(z,z′,v)λn−1+m
2 a(λ, z, z′, v)dv,

where Φ(z, z′, v) ≥ c > 0 and |(λ∂λ)αa| ≤ Cαe
−(ρ−δ)d(z,z′), where ρ = (n − 1)/2

and 0 < δ 
 1. Here the parameter 0 ≤ m ≤ n − 1 is connected to the conjugate
points, which is the degenerate rank of the projection from the phase space to the
base. If we review the previous result in [13] and references therein, we will find
that m = 0 if there is no conjugate points in the manifold. Then the expression
will be similar to the case k = k′ in which the conjugate points are separated. If
m > 0, then it causes a difficulty in showing the dispersive estimate when λ → ∞.
However, if we restrict to τ < t, then the microlocalized wave propagator∫ ∞

0

ei(t−τ)λ

∫
Rm

eiλΦ(z,z′,v)λn−1+m
2 a(λ, z, z′, v)dvdλ

has the phase function satisfying (t−τ )+Φ ≥ max{|t−τ |, c} due to the fact that Φ
and t−τ have the same signs. Hence we can overcome the difficulties by integration
by parts. More precisely, we shall prove that

Proposition 5.3. Let ρ = (n − 1)/2 and 0 < δ 
 1. There exists a constant C
independent of t, z, z′ for all (k, k′) ∈ {0, 1, . . . , N}2, j ≥ 0, such that the following
pointwise estimates hold for any K ≥ 0:

• If k = 0 or k′ = 0 or (k, k′) ∈ Jnear, then for all t 	= τ we have

∣∣∣ ∫ ∞

0

ei(t−τ)λ(1− χ)(λ)ϕ(2−jλ)λ−(μ+μ̃)Qk(λ)dE√
H(λ)Qk′(λ)∗

∣∣∣
�

{
2j[

n+1
2 −(μ+μ̃)](2−j + |t− τ |)−n−1

2 e−(ρ−δ)d(z,z′), |t− τ | ≤ 2;

2j[
n+1
2 −(μ+μ̃)]|t− τ |−Ke−(ρ−δ)d(z,z′), |t− τ | ≥ 2.

(5.24)

• If (k, k′) ∈ Jnon−out, that is, Qk is not outgoing related to Qk′ and t < τ ,
then

∣∣∣ ∫ ∞

0

ei(t−τ)λ(1− χ)(λ)ϕ(2−jλ)λ−(μ+μ̃)Qk(λ)dE√
H(λ)Qk′(λ)∗

∣∣∣
�

{
2j[

n+1
2 −(μ+μ̃)](2−j + |t− τ |)−n−1

2 e−(ρ−δ)d(z,z′), |t− τ | ≤ 2;

2j[
n+1
2 −(μ+μ̃)]|t− τ |−Ke−(ρ−δ)d(z,z′), |t− τ | ≥ 2.

(5.25)
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• Similarly, if (k, k′) ∈ Jnon−inc, that is, Qk is not incoming related to Qk′

and τ < t, then

∣∣∣ ∫ ∞

0

ei(t−τ)λ(1− χ)(λ)ϕ(2−jλ)λ−(μ+μ̃)Qk(λ)dE√
H(λ)Qk′(λ)∗

∣∣∣
�

{
2j[

n+1
2 −(μ+μ̃)](2−j + |t− τ |)−n−1

2 e−(ρ−δ)d(z,z′), |t− τ | ≤ 2;

2j[
n+1
2 −(μ+μ̃)]|t− τ |−Ke−(ρ−δ)d(z,z′), |t− τ | ≥ 2.

(5.26)

Now we prove Lemma 5.1 assuming Proposition 5.3.

Proof of Lemma 5.1. The main argument is to repeat the argument in the proof of
Proposition 3.3 with j ≥ 0 due to [16] if we have the dispersive estimate. In the
case that (k, k′) ∈ Jnear, we have the dispersive estimate (5.24). We repeat the
argument in the proof of Proposition 3.3 and sum in j ≥ 0 to obtain (5.21). We
would like to remark that μ, μ̃ > s ensures that the summation in j ≥ 0 converges.
If (k, k′) ∈ Jnon−inc, we obtain (5.21) due to the dispersive estimate (5.26) when
τ < t. Finally, in the case that (k, k′) ∈ Jnon−out, we obtain (5.22) since we have
the dispersive estimate (5.25) for τ > t. �

Proof of Proposition 5.3. The proof is modified from the proof for the Schrödinger
equation in [13, Lemma 8.6] adapted to the wave equation.

We first prove (5.24). If one of k, k′ equals 0, we have the expression of microlo-
calized spectral measure in Proposition 2.1 since the support of Q0 is far away from
the boundary. From the above result, if (k, k′) ∈ Jnear, by Lemma 5.2, we also
have the expression of microlocalized spectral measure in Proposition 2.1. Hence
we can prove (5.24) by using the same argument used to prove (3.13) and (3.14) in
Lemma 3.1. We omit the details here.

We only prove (5.26) since (5.25) follows from the same argument. Assume that
Qk is not incoming-related to Qk′ . In this case, for the sake of simplicity, we only
consider

Qk(λ)dE√
H(λ)Qk′(λ)∗ =

∫
Rm

eiλΦ(z,z′,v)λn−1+m
2 a(λ, z, z′, v)dv,

where Φ(z, z′, v) ≥ ε > 0, 0 ≤ m ≤ n − 1, and a is a smooth function which is

compactly supported in the v such that |(λ∂λ)αa| ≤ Cαe
−(ρ−δ)d(z,z′). For example,

see [13, (8-13), Lemma 8.5]. Then we need to show that for τ < t and j ≥ 0,

∣∣∣ ∫ ∞

0

ei(t−τ)λ(1− χ)(λ)ϕ(2−jλ)λ−(μ+μ̃)

∫
Rm

eiλΦ(z,z′,v)λn−1+m
2 a(λ, z, z′, v)dvdλ

∣∣∣
�

{
2j[

n+1
2 −(μ+μ̃)](2−j + |t− τ |)−n−1

2 e−(ρ−δ)d(z,z′), |t− τ | ≤ 2;

2j[
n+1
2 −(μ+μ̃)]|t− τ |−Ke−(ρ−δ)d(z,z′), |t− τ | ≥ 2.

(5.27)
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Indeed, we can directly obtain by integration by parts∣∣∣ ∫ ∞

0

ei(t−τ)λ(1− χ)(λ)ϕ(2−jλ)λ−(μ+μ̃)

∫
Rm

eiλΦ(z,z′,v)λn−1+m
2 a(λ, z, z′, v)dvdλ

∣∣∣
�

∣∣∣ ∫
Rm

∫ ∞

0

|(t− τ ) + Φ(z, z′, v)|−K

× ∂K
λ

(
(1− χ)(λ)ϕ(2−jλ)λ−(μ+μ̃)λn−1+m

2 a(λ, z, z′, v)
)
dλdv

∣∣∣.
Note that a is compactly supported in variable v, t− τ > 0, and Φ(z, z′, v) ≥ ε > 0.
Consequently,∣∣∣ ∫ ∞

0

ei(t−τ)λ(1− χ)(λ)ϕ(2−jλ)λ−(μ+μ̃)

∫
Rm

eiλΦ(z,z′,v)λn−1+m
2 a(λ, z, z′, v)dvdλ

∣∣∣
� |(t− τ ) + ε|−K

∫ 2j+1

2j−1

λn−1+m
2 −μ−μ̃−Kdλ e−(ρ−δ)d(z,z′)

� 2j(n+
m
2 −μ−μ̃)(2j(|t− τ |+ ε))−Ke−(ρ−δ)d(z,z′),

which implies (5.27) by choosing K large enough. �

6. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3 by using the Strichartz
estimates in Theorems 1.1 and 1.2.

Let p > 1. The proof is standard and based on a contraction mapping argument
in the Banach space Lp+1(R+×M◦). Define the map T by v = T u where v solves,
given u ∈ Lp+1(R+ ×M◦),

(6.1)

{
∂2
t v −Δgv − ρ2v = Fp(u), (t, z) ∈ I ×M◦;

u(0) = νu0(z), ∂tu(0) = νu1(z).

Notice first that all the Strichartz estimates are global in time so one has I = R
+.

Choose q = r = q̃ = r̃ = p+ 1 > 2. Then we can verify, for any p ∈ (1, 1 + 4
n−1 ),

(p+ 1, p+ 1, μ) ∈ Λe, se < μ,

and

(p+ 1, p+ 1, 1/2) ∈ Λe, se < 1/2.

Therefore, for fixing 0 < ε 
 1, we can apply Theorem 1.1 with (p+1, p+1, μ0) ∈ Λe

and Theorem 1.2 with (p+ 1, p+ 1, 1/2) ∈ Λe (or directly (5.3)) to obtain

‖v(t, z)‖Lp+1(I×M◦)

� ν
(
‖u0‖Hμ,0(M◦) + ‖u1‖Hμ−1,−ε(M◦)

)
+ ‖|u(t, z)|p‖

L
p+1
p

t (I;L
p+1
p (M◦))

.

Thus this gives

‖v(t, z)‖Lp+1(I×M◦) � ν
(
‖u0‖Hμ,0(M◦) + ‖u1‖Hμ−1,−ε(M◦)

)
+ ‖u‖p

Lp+1
t (I;Lp+1(M◦))

.

Therefore the operator T maps Lp+1(R+×M◦) into itself. Furthermore, a stan-
dard computation shows that if ν is small enough, T maps a ball of
Lp+1(R+ × M◦) into itself and is actually a contraction. Hence by the Banach
fixed point theorem this leads to the desired result (see for instance [26]).
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