1	The North American Cordilleran Anatectic Belt
2	
3	James B. Chapman ¹ , Simone E. Runyon ¹ , Jessie Shields ¹ , Brandi L. Lawler ¹ , Cody J. Pridmore ¹ ,
4	Shane H. Scoggin ¹ , Nathan T. Swaim ¹ , Adam E. Trzinski ¹ , Hannah N. Wiley ¹ , Andrew P.
5	Barth ² , Gordon B. Haxel ³
6	
7	¹ University of Wyoming, Department of Geology and Geophysics, Laramie, WY 82071
8	
9	² Indiana University–Purdue University Indianapolis, Department of Earth Sciences, Indianapolis,
10	IN 46202
11	
12	³ Northern Arizona University, School of Earth and Sustainability, Division of Geosciences,
13	Flagstaff, AZ 86011
14	
15	Abstract
16	The North American Cordilleran Anatectic Belt (CAB) is a ~3,000 km long region in the
17	hinterland of the Cordillera that comprises numerous exposures of Late Cretaceous to Eocene
18	intrusive rocks and anatectic rocks associated with crustal melting. As such, it is comparable in
19	size and volume to major anatectic provinces including the Himalayan leucogranite belt. The
20	CAB rocks are chiefly peraluminous, muscovite-bearing leucogranite produced primarily by
21	anatexis of Proterozoic to Archean metasedimentary rocks. The CAB rocks lack extrusive
22	equivalents and were typically emplaced as thick sheets, laccoliths, and dike/sill complexes. The
23	extent, location, and age of the CAB suggests that it is integral to understanding the tectonic

evolution of North America, however, the belt is rarely considered as a whole. This paper reviews localities associated with crustal melting in the CAB and compiles geochemical, geochronologic, and isotopic data to evaluate the melt conditions and processes that generated these rocks. The geochemistry and partial melting temperatures (ca. 675-775 °C) support waterabsent muscovite dehydration melting and/or water-deficient melting as the primary melt reactions and are generally inconsistent with water-excess melting and high-temperature (biotite to amphibole) dehydration melting. The CAB rocks are oldest in the central U.S. Cordillera and become younger towards both the north and south. At any single location, partial melting appears to have been a protracted process (\geq 10 Myr) and evidence for re-melting and remobilization of magmas is common. End-member hypotheses for the origin of the CAB include decompression, crustal thickening, fluid-flux melting, and increased heat flux from the mantle. Different parts of the CAB support different hypotheses and no single model may be able to explain the entirety of the anatectic event. Regardless, the CAB is a distinct component of the Cordilleran orogenic system.

Keywords: two-mica granite, peraluminous, crustal melting, anatexis, metamorphic core complex, decompression, fluid-flux, leucogranite, orogenic plateau, magmatism

1. Introduction

The North American Cordillera is an archetypal Cordilleran (ocean-continent subduction) orogenic system and has been the foundation for many tectonic and geodynamic concepts (Burchfiel and Davis, 1975; DeCelles, 2004; Dickinson, 2004; Yonkee and Weil, 2015; Fritz-Díaz et al., 2018). One of the fundamental components of the North American Cordillera is a

belt of Mesozoic to Cenozoic, peraluminous, muscovite-bearing granite (sensu lato) exposures in the orogenic hinterland, stretching from southern British Columbia, Canada to northern Sonora, Mexico (Miller and Bradfish, 1980; Miller and Barton, 1990) (Fig. 1). These rocks are located landward, or cratonward, of the Mesozoic Cordilleran coastal batholiths (e.g., the Sierra Nevada, Coast Mountains, and Peninsular Ranges batholiths) and are colloquially called the belt of twomica (biotite + muscovite) granites. The belt of peraluminous, muscovite-bearing granite is generally considered to have formed by crustal melting (anatexis) (Miller and Bradfish, 1980; Lee et al., 1981; Farmer and DePaolo, 1983; Haxel et al., 1984; Miller and Barton, 1990; Patiño-Douce et al., 1990; Wright and Wooden, 1991). However, detailed experimental and field studies suggest that a variety of processes could have created these peraluminous compositions and mineral assemblages, including crustal anatexis, fractional crystallization, crustal assimilation, hydrothermal alteration, high-pressure differentiation, and localized melting of country rock during the emplacement of mantle-derived magmas (see review in Patiño-Douce, 1999 and Clarke, 2019). Likewise, depending on the source rock, crustal melting may not always produce strongly peraluminous compositions (see review in Gao et al., 2016). The primary goal of this review is to update the classic compilation of Miller and Bradfish (1980) and to distinguish igneous bodies and suites related to crustal melting from peraluminous, muscovite-bearing rocks generated by other processes. Crustal melting is defined here as partial melting of pre-existing crustal rocks that does not directly involve the formation, crystallization, and differentiation of mantle-derived mafic magmas (cf., Clemens, 2020). We refer to these rocks as the North American Cordilleran Anatectic Belt (CAB). Anatectic belts are generally associated with continental collisional orogens including the Himalayan (e.g., Kohn, 2014; Weinberg, 2016), Grenville (Rivers et al., 2002), and Alpine orogens (Burri et al., 2005).

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

The CAB is one of the best examples of an anatectic province related to Cordilleran-style orogenesis and may provide an analog for deep crustal processes in other Cordilleran orogenic systems. With an along-strike length of ~3,000 km, the scale of the CAB rivals or exceeds the size of major continental collision-related anatectic belts, making it one of the largest anatectic provinces globally, regardless of tectonic setting (Fig. 2). Thinking about this belt in terms of process (crustal anatexis) rather than composition (aluminosity) or mineralogy (presence of muscovite) yields insight into the tectonic and thermal evolution of the North American Cordillera (Miller and Gans, 1989; Hodges and Walker, 1992; Foster et al., 2001; Vanderhaeghe and Teyssier, 2001; Whitney et al., 2004; Wells and Hoisch, 2008; Bendick and Baldwin, 2009; Gervais and Brown, 2011; Konstantinou and Miller, 2015).

First, we describe how CAB rocks produced by crustal melting are distinguished from granitic bodies produced by other processes with an emphasis on locations previously included in the compilation by Miller and Bradfish (1980). Next, we document locations of crustal melting in the CAB and compile geologic, geochronologic, geochemical, and isotopic data for each occurrence. This information is summarized and the shared characteristics and commonalities among the CAB rocks are presented. Then, melt conditions and processes are evaluated, including water-absent dehydration melting, water-deficient melting, and water-excess (fluid-flux) melting. Finally, we evaluate the various tectonic mechanisms that have been proposed to have caused crustal melting.

2. Geologic Setting

The North American Cordillera was constructed as a result of prolonged eastward subduction of the oceanic Farallon and Kula plates beneath the North American plate during

Triassic to Eocene time and the accretion of various terranes during this interval of time (Dickinson, 2006). This paper focuses on the Cordillera between 53° N and 29° N, which is the range of latitudes where the CAB is exposed. The orogenic system comprises several key fundamental tectonic components including a retroarc thrust belt, orogenic hinterland, and a continental arc (Fig. 1).

2.1. The retroarc and orogenic interior

The thin-skinned Sevier retroarc thrust belt extends from northernmost Canada to the Mojave region of southeast California (Fig. 1) and was active during the Early Cretaceous to Paleogene (Yonkee and Weil., 2015). The thrust belt records up to 350 km of horizontal shortening (DeCelles and Coogan, 2006) and precursor thrust belts like the Luning-Fencemaker, Central Nevada, and Eastern Sierra thrust belts accommodated another ~100 km of shortening during early Mesozoic time (Wyld, 2002). To the east (cratonward) of the Sevier thrust belt is the Laramide foreland belt that was most active from 80 to 40 Ma and temporally overlaps with the end of Sevier deformation (Copeland et al., 2017). The Laramide foreland belt is characterized by thick-skinned, basement-involved deformation with limited horizontal shortening (<50 km) (Yonkee and Weil, 2015).

Pre-Sevier, Sevier, and Laramide-related shortening thickened the crust in the orogenic hinterland and created a high-elevation plateau, called the Nevadaplano in the central U.S. Cordillera (DeCelles, 2004) and the Arizonaplano in the southern U.S. and northern Mexican Cordillera (Chapman et al., 2020). Maximum crustal thickness estimates range from 50 to 65 km in the U.S. and Mexican Cordillera (Coney and Harms, 1984; Chapman et al., 2015; 2020) and may have been as high as 80 km in southeastern British Columbia (Hinchey and Carr, 2006).

Exposures of recumbently folded and stacked nappes in metamorphic core complexes like the Ruby-East Humboldt Mountains suggest that upper crustal shortening was balanced by middle to lower crustal shortening and thickening (McGrew et al., 2000).

The regions of thickest crust in the orogenic hinterland during the Cretaceous to early Paleogene are thought to roughly coincide with the current position of the Cordilleran metamorphic core complexes (Coney and Harms, 1984), which were most active from 60 Ma to 10 Ma (Bendick and Baldwin, 2009; Konstantinou and Miller, 2015; Gottardi et al., 2020). There is also a close spatial correlation between the CAB and the Cordilleran metamorphic core complexes (Fig. 1). We adopt the terminology of Whitney et al. (2013) who divided the Cordilleran core complexes into northern, central, and southern belts. The northern belt encompasses core complexes from the Shuswap complex (British Columbia, Canada) to the Pioneer Mountains (Idaho, USA). The central belt extends from the Raft River-Albion-Grouse Creek complex (Utah-Idaho, USA) to the Black Mountains (California, USA). The southern belt stretches from the Sacramento Mountains (California, USA) to Sierra Mazatán (Sonora, Mexico). We use the same geographic divisions when referring to the northern, central, and southern CAB hereafter.

2.2. Cordilleran magmatism

The North American Cordillera has a rich magmatic history related to subduction and extension that overlaps with the CAB in both time and space. The North American Cordilleran continental arc is chiefly preserved as the belt of giant Mesozoic Cordilleran coastal batholiths including the Peninsular Ranges, Sierra Nevada, Idaho, and Coast Mountains batholiths located west of the CAB (Fig. 1). However, magmatism extended into the orogenic interior, particularly

during the Jurassic, and some Jurassic igneous rocks were originally included in the belt of muscovite-bearing granite of Miller and Bradfish (1980). In southern British Columbia, the Jurassic Kootenay arc overlaps spatially with the CAB and includes units such as the Kuskanax and Nelson suites that range in composition from diorite to peraluminous two-mica \pm garnet granite (Armstrong, 1988; Ghosh, 1995). In the Great Basin region, Jurassic igneous rocks located in a hinterland/back-arc position spatially overlap with the CAB and range in composition from gabbro to peraluminous, two-mica granite (e.g., Dawley Canyon granite; Kistler et al., 1981; Barton et al., 2011). Subsequent to Miller and Bradfish's (1980) study of muscovite-bearing granite, petrologic and isotopic studies indicated that Jurassic to Early Cretaceous magmatism that spatially overlaps with the CAB was chiefly produced from subduction-related (mantle-involved) melting and overwhelmingly tends to be metaluminous or weakly peraluminous (Farmer and DePaolo, 1983; Miller and Barton, 1990; Wright and Wooden 1991; Brandon and Smith, 1994). Strongly peraluminous, Jurassic-age rocks, like the Dawley Canyon granite, may be related to localized crustal melting associated with the intrusion of mafic magmas at depth (Jones, 1999). In the eastern Great Basin, Jurassic magmatism has also been linked to mantle upwelling during back-arc extension (Elison, 1995; Miller and Hoisch, 1995; Miller and Barton, 1990) as well as a slab break-off event (Dickinson, 2006). We do not include any Jurassic or older rocks in the CAB.

157

158

159

160

161

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

2.2.1. Laramide magmatism

Subduction-related, calc-alkaline, metaluminous magmatism ended in the Mesozoic coastal batholiths during the Late Cretaceous (Chen and Moore, 1982; Silver and Chappell, 1988; Gehrels et al., 2009; Gaschnig et al., 2010; Cecil et al., 2012). In the U.S. and Mexican

Cordillera, subduction-related magmatism then migrated eastward, sometimes referred to as the "magmatic sweep," as the subduction angle shallowed during the Laramide Orogeny (Coney and Reynolds, 1977; Constenius et al., 2003; Yonkee and Weil, 2015; Fitz-Díaz et al., 2018). This eastward sweep was most pronounced to the north and south of the central U.S. Cordillera - the Great Basin region today. The central U.S. Cordillera contains only scattered evidence for magmatic activity during the Laramide Orogeny and has been referred to as a magmatic gap that is associated with low-angle subduction (Dickinson and Snyder, 1978). We refer to igneous rocks produced during this eastward sweep of magmatism as "Laramide magmatism" or the "Laramide arc," as it is referred to in the southern U.S. and northern Mexican Cordillera (Lang and Titley, 1998; González-León et al., 2011; Leveille and Stegen, 2012; Seedorf et al., 2019). Laramide magmatism is compositionally distinct from rocks in the CAB and is generally characterized as calc-alkaline, quartz-poor to intermediate, metaluminous, containing biotite + hornblende \pm clinopyroxene, and is more isotopically juvenile than rocks associated with the CAB (Barton, 1990; 1996). The eastward migration of subduction-related, Laramide magmatism reached or passed through the future position of the CAB during the Late Cretaceous to early Paleogene. Magmatism associated with the Laramide magmatic sweep is generally older than anatectic intrusive rocks in the CAB, but in some cases the two igneous suites overlap both spatially and temporally (e.g., Wright and Haxel, 1982; Miller and Barton, 1990).

180

181

182

183

184

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

2.2.2. Mid-Cenozoic ignimbrite flare-up

Soon after Laramide magmatism reached its most eastward extent during the Laramide orogeny, magmatism rapidly swept back westward toward the trench, producing the mid-Cenozoic (*née* mid-Tertiary) ignimbrite flare-up and several large-volume volcanic eruptive

centers (Ferrari et al., 2002; Best et al., 2009). The mid-Cenozoic ignimbrite flare-up is related to the foundering or rapid roll-back of the previously shallowly-dipping Farallon plate (Humphreys et al., 2003). The majority of mid-Cenozoic flare-up magmatism has been interpreted to have originated by melting of hydrated mantle lithosphere to produce mafic magmas that then experienced various degrees of fractional crystallization and assimilation within the crust to produce a range of compositions (basaltic to rhyolitic) (Farmer et al., 2008; Henry and John, 2013). In some locations, intrusion of mantle-derived mafic magmas into the crust locally caused crustal melting and produced magmas with similar geochemical and isotopic compositions to the CAB rocks (e.g., Watts et al., 2016). In the northern and central U.S. Cordillera, the mid-Cenozoic flare-up migrated southward while in the southern U.S. and Mexican Cordillera, the flare-up migrated west-northwestward (Armstrong and Ward, 1991; Humphreys, 1995). The oldest flare-up related rocks in the Canadian and northern U.S. Cordillera are the Eocene Kamloops-Challis-Absaroka volcanics (Moye et al., 1988; Breitsprecher et al., 2003) and the oldest related rocks in the southern U.S. and Mexican Cordillera are the Eocene volcanic rocks in the Big Bend National Park region in Texas, USA (Barker, 1987; Parker et al., 2012). Igneous rocks related to the mid-Cenozoic ignimbrite flareup (including intrusive rocks) are generally younger than rocks in the CAB (Konstantinou and Miller, 2015). There is a close temporal association between the migration or passage of the ignimbrite flare-up and the onset of extension in the Cordilleran metamorphic core complexes (Gans, 1989; Best and Christiansen, 1991). Closely following the mid-Cenozoic ignimbrite flare-up, widespread magmatism associated with lithospheric extension commenced and continues to the present in the Basin and Range province (Best and Brimhall, 1974; Hawkesworth et al., 1995).

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

3. Examples of peraluminous, muscovite-bearing rocks not produced by crustal melting

In our review of North American Cordilleran magmatism, we identified many examples of Mesozoic to Cenozoic peraluminous, muscovite-bearing granites that were produced by processes other than crustal melting, including fractional crystallization, crustal assimilation, hydrothermal alteration, and localized crustal melting associated with mantle-derived mafic intrusions. Below, we provide a few examples with an emphasis on locations previously included in the compilation by Miller and Bradfish (1980).

3.1. Fractional Crystallization and Crustal Assimilation

Fractional crystallization of pyroxene or subaluminous amphibole (aluminum saturation index [ASI] = ~0.5) can lead to peraluminous compositions during magmatic differentiation (Cawthorn and Brown, 1976; Zen, 1986). Throughout this contribution, we use ASI = molecular Al₂O₃ / [CaO – (3.33*P₂O₅) + Na₂O + K₂O] (Frost et al., 2001). Assimilation of aluminous sedimentary country rock during differentiation may also result in peraluminous compositions (Barbarin, 1996). In both cases, the simplest way to recognize these processes is to examine whether or not the felsic peraluminous rocks in question are part of a co-magmatic suite that ranges in composition and exhibits chemical or isotopic evidence for fractional crystallization or assimilation (e.g., decreasing ɛNd_i with increasing SiO₂) (DePaolo, 1981).

An example of peraluminous granite created by fractional crystallization is the Late Cretaceous (ca. 90 Ma) Chemehuevi Mountains plutonic suite in California, USA, which is part of the Chemehuevi metamorphic core complex (John, 1988; John and Mukasa, 1990). The Chemehuevi Mountains plutonic suite has evolved Pb and Sr isotopic values, similar to nearby

Proterozoic-age crust, and is compositionally and temporally zoned with older, metaluminous to weakly peraluminous biotite granodiorite on the margins and younger, peraluminous two-mica ± garnet granite in the center, forming a "bullseye" map pattern (John and Wooden, 1990) (Fig. 3). The occurrence of cogenetic magmas of variable composition as well as the nested geometry suggest that the strongly peraluminous granite differentiated from a more mafic, metaluminous magma and the evolved isotopic compositions suggest that the magma assimilated significant amounts of Proterozoic crust (John, 1988; John and Wooden, 1990). In contrast, igneous suites in the CAB generally have a comparatively limited compositional range, usually lacking intermediate to low SiO₂ and metaluminous members (Fig. 3). The Chemehuevi Mountains plutonic suite and similarly aged suites nearby have been interpreted to be part of the Cordilleran (Laramide) arc and to have formed by (mantle-derived) mafic magma influx, hybridization, and partial remelting of the lower crust (Miller and Wooden, 1994; Economos et al., 2010).

3.2. Hydrothermal Alteration

Hydrothermal alteration can also influence the apparent peraluminosity of an intrusive rock unit (Luth et al., 1964; Miller et al., 1981; Zen, 1988; Clarke et al., 2005). There are many different forms of hydrothermal alteration, broadly categorized by the elements gained in comparison to the original protolith composition (e.g., Seedorff et al., 2005; 2008). Greisen alteration and coarse muscovite alteration are characterized by the dominant hydrothermal mineral assemblage muscovite-quartz \pm albite \pm K-feldspar with or without additional accessory minerals. Coarse muscovite alteration is commonly formed during fluid exsolution from a metaluminous intrusion and results in a relative increase in Al and Rb and relative decrease in Ca and Sr as muscovite \pm end-member albite replaces plagioclase (Runyon et al., 2019). As a result,

peraluminosity for coarse muscovite altered rocks is commonly higher than the original igneous composition (Fig. 4). Another form of hydrothermal alteration that may affect peraluminosity is hydrolytic (acidic) alteration, which strips cations from the host rock. In hydrolytic alteration, feldspar is commonly altered to fine-grained muscovite (sericite) or clay and original mafic minerals may be altered to chlorite with or without accessory minerals. In these cases, cations like Na, Ca, and K are more easily mobilized into the fluid than Al, resulting in an apparent increase in peraluminosity (Fig. 4). These two examples are among the more well-known types of hydrothermal alteration that could increase peraluminosity, however, there are many factors including fluid composition, intensity of alteration, host rock composition, and pressure/temperature conditions that will all influence the apparent changes in peraluminosity during hydrothermal alteration of a given rock.

In coarse muscovite alteration, muscovite is commonly found as dispersed, euhedral booklets, replaces igneous minerals (e.g., biotite, feldspars, amphibole), and occurs in veins, and fractures, and small "vugs" or open space that can develop in areas of pervasive wall-rock replacement (Runyon et al., 2019). Hydrothermal versus magmatic muscovite can be distinguished both chemically (e.g., Ti content) and texturally (Miller et al., 1981). Hydrothermally altered rocks may also be hyperaluminous, with an aluminum saturation index (ASI) > 1.3 (Clarke, 2019) and have very high Rb/Sr ratios – with values significantly higher than unaltered anatectic rocks (Fig. 4).

Many of the muscovite-bearing granite locations originally documented in Miller and Bradfish (1980) have been hydrothermally altered (e.g., Barton, 1987). An example of hydrothermal alteration creating an apparently strongly peraluminous, muscovite granite is the Texas Canyon stock in the Little Dragoon Mountains, Arizona (Cooper and Silver, 1964).

Unaltered samples of the Texas Canyon stock are commonly biotite \pm muscovite quartz monzonite in composition and metaluminous to weakly peraluminous. Coarse muscovite alteration is strongly developed within the Texas Canyon quartz monzonite, ranging from incomplete replacement of biotite by hydrothermal muscovite to pervasive wall-rock replacement by muscovite-albite-K-feldspar \pm fluorite mineral assemblages (Runyon et al., 2019). The alteration is well-developed over large areal extents (Cooper and Silver, 1964) and samples of the coarse muscovite altered Texas Canyon quartz monzonite have a significantly higher ASI than unaltered samples (Fig. 4).

3.3. Localized Melting from Mantle-Derived Intrusions

Another way to create peraluminous granite is to locally melt the crust by underplating or intrusion of mantle-derived (basaltic) magmas (Barbarin, 1996). The majority of Phanerozoic granite suites in the North American Cordillera are hybrids with both mantle and crustal inputs, however, added heat or exsolved fluids from basaltic rocks can generate crustal melts with little to no geochemical or isotopic mantle signature (Patiño-Douce, 1999; Annen et al., 2006). As a result, peraluminous granite generated in this fashion is particularly difficult to distinguish from instances of crustal melting that does not involve the intrusion of mantle-derived mafic magmas. Recognition of a mantle-derived, basaltic precursor is mainly achieved through thermal arguments (e.g., a regional heating event) or by exposure of the basaltic intrusions themselves (including as mafic enclaves) and/or igneous rocks derived from these intrusions (e.g., Ireteba pluton, Eldorado Mountains, Nevada; Kapp et al., 2002).

An example of this process to create peraluminous granite comes from the Raft River-Albion-Grouse Creek metamorphic core complex. When examined in isolation, the 32-25 Ma

Cassia plutonic complex in the Albion Range and northern Grouse Creek Mountains is a good candidate for a crust-derived magma. The Cassia plutonic complex is 1) silica rich (> 70 wt. % SiO₂), 2) peraluminous (ASI=1.0-1.2), 3) isotopically very evolved (ϵ Nd_i < -25; 87 Sr/ 86 Sr_i > 0.71), 4) was emplaced into amphibolite-grade metamorphic rocks during or close to peak pressure-temperature conditions (4 kbar, 650°C), and 5) is syn-kinematic with early core complex extension (Egger et al., 2003; Strickland et al., 2011; Konstantinou et al., 2013). However, emplacement of the Cassia plutonic complex was immediately preceded by the intrusion of the 42-31 Ma Emigrant Pass plutonic complex, which ranges from mafic to felsic compositions (55-75 wt. % SiO₂), is more isotopically primitive, and ranges from metaluminous to peraluminous compositions (Egger et al., 2003; Strickland et al., 2011; Konstantinou et al., 2013). In addition, both the Emigrant Pass and Cassia plutonic complexes have mantle-like, autocrystic (not inherited) zircon δ^{18} O compositions (Strickland et al., 2011). Added heat from the mantle-derived Emigrant Pass magmatic event has been interpreted to have locally melted the crust to produce the Cassia plutonic suite (Strickland et al., 2011; Konstantinou et al., 2013). Rocks of the Cassia plutonic complex were included in the belt of muscovite-bearing granite of Miller and Bradfish (1980) but are excluded from our compilation of rocks in the CAB. In the compilation and summary of CAB rocks presented below, locations that involved mantle-derived magmas were excluded. We omitted locations that contain cogenetic igneous

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

In the compilation and summary of CAB rocks presented below, locations that involved mantle-derived magmas were excluded. We omitted locations that contain cogenetic igneous rocks interpreted as primitive magmas or products of assimilation and/or fractional crystallization from primitive magmas. This distinction follows previous classification schemes that suggest only peraluminous leucogranite represents crustal melts with no mantle-input and that all other granitic rocks are crust-mantle hybrids, including the Cordilleran coastal batholiths (Collins, 1996; Patiño-Douce, 1999; Annen et al., 2006; Kemp et al., 2007). Alternative models

for producing metaluminous granite of intermediate composition (representative of the Cordilleran coastal batholiths) by crustal anatexis include restite unmixing (Chappell et al., 1987) and peritectic assemblage entrainment (Clemens and Stevens, 2012).

4. The North American Cordilleran Anatectic Belt

The CAB includes most of the anatectic rocks in the Omineca Crystalline Belt in southern British Columbia, Canada (Monger et al., 1982; Parrish et al., 1988; Nelson et al., 2013), the "Late Cretaceous-Cenozoic plutonic suite" of Wright and Wooden (1991) and "S-type subzone" of Solomon and Taylor (1989) in the eastern Great Basin region of the United States, the "strongly peraluminous suite" of "Cordilleran Interior plutonism" of Miller and Barton (1990) in the U.S. Cordillera, the "compositionally restricted granites" of Haxel et al. (1984) in southern Arizona, U.S.A., and the "Aconchi granitic suite" in Mexico (Grijalva-Noriega and Roldan-Quintana, 1998). In the following section, we list and briefly describe all main exposures of anatectic rocks that collectively form the CAB. A summary of this information is presented in Table 1. We acknowledge that there are likely additional locations we are unaware of that were unintentionally omitted from the compilation. Following the descriptions, some of the shared characteristics of the CAB rocks are discussed.

4.1. The Northern Belt

4.1.1. The Shuswap Complex

The Shuswap is the largest Cordilleran metamorphic core complex and contains several migmatite-cored gneiss domes that are often treated as core complexes individually, including the Matton, Frenchman's Cap, Thor-Odin, Valhalla, Okanagan, and Grand Forks-Kettle

complexes (Vanderhaege et al., 1999) (Fig. 1). Peraluminous granites interpreted as anatectic melts are found throughout the Shuswap complex as leucosome in migmatite and as numerous intrusive bodies (plutons, dikes, sills, laccoliths, and veins). Among the more well-known intrusive bodies are the large, sheet-like Ladybird, Airy, and Adams River leucogranites, which have been interpreted to be derived from partial melting in migmatite (Sevigny and Parrish, 1993; Hinchey and Carr, 2006). The ages of Shuswap migmatite and leucogranite range from 61 to 49 Ma and exhibit a wide range of ages (≥ 10 Myr) in most individual locations (Vanderhaege et al., 1999; Hinchey et al., 2006; Gordon et al., 2008; Kruckenberg et al., 2008; Cubley et al., 2013). Metamorphic rocks and migmatite in the Shuswap complex record prograde metamorphism from ca. 85 to 55 Ma, with peak pressure and temperature conditions of 8-12 kbar and 700-850 °C ca. 60 to 55 Ma (see review in Bendick and Baldwin, 2009), coincident with or slightly older than the age of crustal melting.

4.1.2. Mid-Cretaceous Kootenay Arc

Partly overlapping and east of the Shuswap metamorphic core complex is the Kootenay arc, which contains a suite of mid-Cretaceous (117-95 Ma; Leclair et al., 1993) intrusions that have been associated with crustal melting (Brandon and Lambert, 1993; 1994; Brandon and Smith, 1994) and were included in the belt of muscovite-bearing granite of Miller and Bradfish (1980). These rocks include the White Creek, Fry Creek, Horsethief Creek, Battle Range, Bugaboo, and Bayonne batholiths (Fig. 1). The batholiths are typically zoned or nested and contain a wide range of compositions (60-78 wt. % SiO₂) from metaluminous quartz monzodiorite to biotite-hornblende granodiorite to strongly peraluminous two-mica granite (Brandon and Lambert, 1993; 1994; Brandon and Smith, 1994). Whole rock δ¹⁸O (7.1-11.2 ‰)

increases and radiogenic isotope ratios become more evolved (-5 to -20 ENdi; 0.707-0.74 ⁸⁷Sr/⁸⁶Sr) with increasing differentiation of the magmatic suite with the most evolved values represented by the two-mica granite (Brandon and Lambert, 1993; 1994; Brandon and Smith, 1994). These compositional trends are consistent with crustal contamination of a basaltic precursor during differentiation. However, Brandon and Lambert (1994) note that there are no nearby exposures of basalt, that low Cr and Ni contents and weak negative Eu anomalies are inconsistent with fractional crystallization of plagioclase from a basaltic source, and that the more mafic mid-Cretaceous igneous rock compositions are similar to experimental melt compositions of amphibolite (Rapp et al., 1991; Beard and Lofgren, 1991). The mid-Cretaceous Kootenay arc rocks were interpreted to form by dehydration melting as a zone of anatexis migrated upward through the crust; initially melting Proterozoic amphibolite to tonalitic gneiss to produce the quartz monzodiorite and biotite-amphibole granodiorite and then melting Proterozoic metapelites to produce the two-mica granite (Brandon and Lambert, 1993; 1994; Brandon and Smith, 1994). The mid-Cretaceous suite was emplaced at 2-4 kbar and postdates Early Cretaceous (144-134 Ma) regional Barrovian metamorphism that records peak pressures and temperatures of 6-7 kbar and 650-700 °C (Moynihan and Pattison, 2013; Webster et al., 2017). The mid-Cretaceous Kootenay arc is significantly older (20-80 Myr) than the rest of the CAB (Table 1) and crustal melting has been associated with accretion events on the plate margin specific to this longitude (ca. 50 °N) that may not be relevant to other parts of the CAB (Monger et al., 1982; Brandon and Lambert, 1993; 1994).

389

390

391

388

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

4.1.3. Priest River-Clearwater Complexes

Prograde metamorphism occurred from ca. 75 to 64 Ma in the Priest River metamorphic

core complex, with peak pressure and temperature conditions of 10 kbar and 790 °C, followed by nearly isothermal decompression ca. 60-57 Ma (Stevens et al., 2015) (Fig. 1). Migmatite exposures are estimated to contain 25-45% leucosome and are classified as metatexite (Stevens et al., 2016). Crustal anatexis, via dehydration melting, occurred during both prograde metamorphism and decompression with a majority of melt crystallization occurring ca. 54-44 Ma (Stevens et al., 2015). Intrusive rocks in the Priest River complex are generally Late Cretaceous or Eocene in age. The Late Cretaceous intrusive rocks (e.g., Spokane granite) partly precede prograde metamorphism, span a range of compositions including two-mica granite, and have radiogenic isotopic compositions that may require the involvement of a mantle-derived juvenile component (Whitehouse et al., 1992), which suggests that they are not crustal melts and are not included in the CAB. The Eocene intrusive rocks (e.g., Silver Point, Wrencoe, Rathdrum plutons) overlap in age (50-45 Ma) with leucosome in migmatite and include biotite-hornblendebearing and biotite-bearing granite (Miller et al., 1975; Stevens et al., 2016) that have been interpreted to be crustal melts of Proterozoic basement (metapelite to orthogneiss) based on their highly evolved isotopic composition (zircon $\varepsilon Hf_i = -22$ to -27; $\varepsilon Nd_i = -19$ to -21; Whitehouse et al., 1992; Stevens et al., 2016) and are included in the CAB. Eocene magmatism also occurs outside (in the hanging wall) of the complex including the peraluminous two-mica granite in the Loon Lake batholith that has been attributed to crustal melting (Asmerom et al., 1988). The Clearwater metamorphic core complex experienced peak metamorphism at 8-11 kbar and 650-750 °C during ca. 64-56 Ma, followed by the onset of decompression at ca. 59 Ma (Doughty and Chamberlain, 2007). Migmatite is absent, but intrusion of muscovite-bearing

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

granite (e.g., Roundtop, Beaver Creek, Bungalow plutons) during the early Eocene (ca. 50-45

Ma) may record crustal melting at depth (Marvin et al., 1984; Foster et al., 2007). Undated

pegmatitic two-mica leucogranite dikes and sills also intrude and cross-cut Proterozoic metasedimentary units (Guevara, 2012).

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

416

415

4.1.4. The Idaho Batholith & Bitterroot Complex

Unlike the other large Mesozoic coastal arc batholiths, the Idaho batholith was emplaced entirely into Proterozoic basement and is dominated by peraluminous granite including the 83-67 Ma peraluminous Atlanta suite in the Atlanta lobe and the 66-53 Ma (mostly 55-53 Ma; e.g., Bear Creek and Paradise plutons) peraluminous Bitterroot suite in the Bitterroot lobe (Hyndman, 1983; Johnson et al., 1988; Foster et al., 2007; Gaschnig et al., 2010) (Fig. 1). Whether the peraluminous suites represent crustal melts or extensive crustal assimilation has been a topic of debate for the last half-century (see review in Gaschnig et al., 2011). Emplacement of both peraluminous suites was immediately preceded by cogenetic metaluminous arc magmatism and the batholith generally exhibits increasingly evolved radiogenic isotopes through time (Gashnig et al., 2011). These patterns, along with the presence of mafic igneous rocks that overlap in age with the Bitterroot suite (Hyndman and Foster, 1988) and mantle-like zircon δ^{18} O (King and Valley, 2001), support models linking the formation of the Idaho batholith to injection of mantlederived magmas that eventually led to melting of continental crust. However, the highly evolved isotopic compositions and limited compositional range of the peraluminous suites suggest that if mantle-derived magmas were involved in petrogenesis of the suites, they likely provided heat and not mass input (Gaschnig et al., 2011). Gaschnig et al. (2011) interpreted the Atlanta peraluminous suite to have formed by dehydration melting of greywacke or biotite-bearing granitic rocks and the Bitterroot suite to have formed by dehydration melting of orthogneiss, both at relatively high pressure.

The Bitterroot peraluminous suite is located within the Bitterroot metamorphic core complex and has been interpreted in terms of core complex formation as well as part of the Cordilleran coastal batholith system. The region experienced crustal thickening and prograde metamorphism during the Sevier-Laramide orogeny (80-50 Ma) and the intrusion of the Bitterroot peraluminous suite ("main phase" plutons) as a series of thick (3-4 km) sills and laccoliths has been interpreted to be related to anatexis of Proterozoic basement gneisses (Foster et al., 2001; 2010). Migmatite is locally exposed in the Bitterroot metamorphic core complex and records anatectic melting (leucosome and pegmatite intrusions) at ~53 Ma and peak metamorphic pressures and temperatures of 7-8 kbar and 650-750 °C, resulting in muscovite breakdown (Foster et al., 2001).

4.1.5. Anaconda-Pioneer Complexes

The Anaconda metamorphic core complex shares many similarities with the Priest River, Clearwater, and Bitterroot complexes and they are linked by the dextral Lewis and Clark fault zone (Foster et al., 2007) (Fig. 1). The footwall of the Anaconda complex exposes recumbently folded nappes that record deformation and metamorphism related to crustal thickening during the Late Cretaceous (80-75 Ma) with peak pressures and temperatures of 4-6 kbar and 600-700 °C (Grice, 2006; Haney, 2008). Eocene plutons and abundant pegmatite and aplite dikes and sills intrude Proterozoic host rocks, which are locally migmatitic (Foster et al., 2007). The Eocene (53-50 Ma) intrusive rocks include the Hearst Lake pluton, a peraluminous, two-mica leucogranite (Wallace et al., 1992; Foster et al., 2007).

The footwall of the Pioneer metamorphic core complex locally contains migmatite and is pervasively intruded by leucogranite dikes and sills with crystallization ages of 52-46 Ma, which

overlap in age with the Pioneer Intrusive Suite (50-48 Ma) (Silverberg, 1990; Vogl et al., 2012).

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

461

4.2. The Central Belt

4.2.1. Ruby-East Humboldt Core Complex

Fold nappes exposed in the core of the Ruby-East Humboldt metamorphic core complex and thrust faults in nearby mountain ranges record crustal thickening and prograde metamorphism, starting during the mid-Cretaceous (ca. 100-95 Ma) and peaking during the Late Cretaceous (ca. 85-80 Ma) (Camilleri and Chamberlain, 1997; McGrew et al., 2000; Hallet and Spear, 2015) (Fig. 1). Metamorphic rocks indicate that the complex experienced decompression from ca. 85-55 Ma, although the amount of decompression (1-6 kbar) varies and there is little to no upper crustal or basinal record of this event (Hodges et al., 1992; McGrew et al., 2000; Henry et al., 2011; Hallet and Spear, 2014; 2015). Some authors have related decompression to vertical ductile thinning (Hallet and Spear, 2014; Long and Kohn, 2020). Migmatite is exposed at deep structural levels in the complex (Howard, 1980) and partial melting in these migmatites has been linked to pervasive intrusion of leucogranite at higher structural levels during the Late Cretaceous (Lee et al., 2003; Premo et al., 2008). Late Cretaceous pegmatitic leucogranite is the dominant intrusive component of the Ruby-East Humboldt complex and forms an injection complex of innumerable dikes and sills (Howard et al., 2011). The pegmatitic leucogranite has been interpreted to have formed by muscovite dehydration melting of Proterozoic metapelite and to be related to crustal anatexis during both prograde metamorphism and decompression (Wright and Snoke, 1993; McGrew et al., 2000; Lee et al., 2003; Howard et al., 2011; Hallet and Spear, 2014; 2015). A younger population (46-29 Ma) of leucogranite bodies is also present in the Ruby-East Humboldt complex and overlaps in age with a compositionally expanded suite of

igneous rocks (e.g., Harrison Pass pluton) ranging from gabbro to two-mica granite that involve a mantle-derived component (Barnes et al., 2001; Lee et al., 2003; Howard et al., 2011). These younger rocks are volumetrically less significant and geochemically and isotopically distinct from the Late Cretaceous pegmatitic granite (Barnes et al., 2001; Lee et al., 2003). Howard et al. (2011) suggested that mafic underplating during the younger phase of magmatism (Eocene-Oligocene) provided heat ± fluids that resulted in additional crustal melting and re-melting and remobilization of the Late Cretaceous pegmatitic granite. Regionally, Eocene-Oligocene magmatism is related to the mid-Cenozoic ignimbrite flare-up and rollback of the Farallon slab (Humphreys, 1995; Konstantinou and Miller, 2015) and is not included in the CAB.

East of the Ruby-East Humboldt complex, Late Cretaceous two-mica ± garnet leucogranite, pegmatite, and aplite dikes interpreted to have formed by crustal melting are present in the Wood Hills, Pequop Mountains, and Toano Range (Lee and Marvin, 1981; Miller et al., 1990; Camilleri and Chamberlain, 1997; Milliard et al., 2015). The 77-72 Ma Toano Springs pluton in the Toano Range marks the northeastern extent of Late Cretaceous crustal anatexis in the Great Basin as interpreted by Wright and Wooden (1991).

4.2.2. Snake Range-Kern Mountains-Deep Creek Range

The Snake Range, Kern Mountains, and Deep Creek Range are part of a single metamorphic core complex/extensional fault system (Miller et al., 1999), herein referred to as the Snake Range complex (Fig. 1). No migmatite is exposed in the Snake Range complex, but the region experienced peak metamorphism during the Late Cretaceous (90-70 Ma) associated with the Sevier orogeny (Miller and Gans, 1989). Metamorphic rocks in the footwall record maximum pressures and temperatures of 6-8 kbar and 500-650 °C (Cooper et al., 2010). Late

Cretaceous (ca. 86-70 Ma), strongly peraluminous, two-mica granite (e.g., Lexington Creek, Pole Canyon-Can Young Canyon, Tungstonia plutons) in the Snake Range complex have been interpreted to be crustal melts formed by dehydration melting of Proterozoic metapelite (Lee et al. 1981, Lee et al., 1986; Farmer and DePaolo et al., 1983; Lee and Christiansen 1983; Wright and Wooden, 1991; Gottlieb, 2017). Eocene peraluminous, muscovite-bearing granite (e.g., Young Canyon-Kious Basin plutons; ~37 Ma) is also present in the Snake Range complex (Lee and Christiansen 1983) and may have formed in a similar way to the Eocene peraluminous rocks in the Ruby-Humboldt Mountains (i.e., associated with the mid-Cenozoic ignimbrite flare-up). The Eocene intrusive rocks have more juvenile 87 Sr/ 86 Sr ratios, are more oxidized, and have lower δ^{18} O ratios compared to the strongly peraluminous Cretaceous intrusions (Lee and Christiansen 1983; King et al., 2004).

Swarms of pegmatitic leucogranite sills and dikes are common in the Snake Range complex as well as in neighboring ranges (e.g., Schell Creek Range) and may also be associated with crustal anatexis (Lee et al., 1981; Miller and Gans, 1989). Miller et al. (1999) reported an age of 82 Ma on a leucogranite dike in the Smith Creek region, Kern Mountains. Two-mica granite, potentially equivalent with the strongly peraluminous Cretaceous intrusions in the Snake Range, is also exposed in some surrounding ranges, including the ca. 84 Ma Troy Granite in the Grant Range (Fryxell, 1988; Lund et al., 2014) and the ca. 84 Ma McCullough Butte and Rocky Canyon plutons in the Fish Creek Range (Barton, 1987).

4.2.3. Central Great Basin Two-Mica Granite

All the rocks in the central CAB described in the preceding sections (Sections 4.2.1 and 4.2.2) occur east of the ${}^{87}\text{Sr}/{}^{86}\text{Sr} = 0.708$ isopleth and east of the Roberts Mountain thrust, which

marks a suture zone separating accreted (para)allochthonous terranes to the west from North American cratonic basement to the east (Kistler and Peterman, 1973; Stewart, 1980). Small exposures of Late Cretaceous, peraluminous, two-mica granite occur throughout the Great Basin region west of the ${}^{87}\text{Sr}/{}^{86}\text{Sr} = 0.708$ isopleth (Fig. 1). These granites are interpreted to have a significant sedimentary input and were included in previous compilations of strongly peraluminous rocks (Miller and Bradfish, 1980; Barton, 1987; 1990; Miller and Barton, 1990; Barton and Trim, 1991). In Nevada, these granites include the Pipe Springs (80 Ma) and Round Mountain plutons (95 Ma) in the Toquima Range (Shawe et al., 1986), the Birch Creek pluton (89 Ma) in the Toiyabe Range (Stewart et al., 1977), and the New York Canyon and Rocky Canyon plutons (73-71 Ma) in the Humboldt and Stillwater Ranges (Johnson et al., 1977; McFarlane, 1981; Barton and Trim, 1991). In eastern California, these include the Birch Creek and Papose Flat plutons (83-82 Ma) in the White and Inyo Mountains (Sylvester et al., 1978; Barton, 2000). Two-mica granite intrusions in the central Great Basin are generally considered to be satellites of the Sierra Nevada batholith and occur along with more common Late Cretaceous metaluminous intrusive rocks (Sylvester et al., 1978; McFarlane, 1981; Barton, 1987; 2000; Brown et al., 2018). Besides slightly more juvenile radiogenic isotopic compositions (compared to the eastern Great Basin), these rocks have lower zircon δ^{18} O ratios (King et al., 2004) and, where studied in detail, are associated with rare mafic dikes and enclaves (e.g., Barton, 2000). Late Cretaceous, two-mica granite in the central Great Basin has been interpreted to be an evolved, high-pressure equivalent to more metaluminous, calc-alkaline continental arc rocks (Patiño-Douce, 1999) or related to increased mantle heat flow (e.g., basaltic underplating or intrusion, mantle upwelling; Barton, 1990). Wright and Wooden (1991) suggested that none of the Late Cretaceous two-mica granite located west of ${}^{87}\text{Sr}/{}^{86}\text{Sr} = 0.708$ isopleth are crustal

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

melts and they are not included in the CAB here.

4.3. The Southern Belt

4.3.1. Death Valley area, California

The Funeral Mountains metamorphic core complex contains migmatite that record Late Cretaceous prograde metamorphism and maximum pressures and temperatures of 7-9 kbar and 600-700 °C during ca. 90-70 Ma (Hodges and Walker, 1990; Hoisch and Simpson, 1993; Mattinson et al., 2007) (Fig. 1). The migmatite is cut by Paleocene (64-62 Ma) two-mica leucogranite dikes and sills that were emplaced syn-kinematically and have been interpreted to have formed by water-excess to water-deficient melting of muscovite-bearing metasedimentary rocks (Mattinson et al., 2007).

Leucogranite dikes and pegmatite (59-55 Ma) are also present in the Black Mountains metamorphic core complex in the Badwater, Mormon Point, and Copper Canyon turtlebacks (antiformal footwall corrugations) (Miller and Friedman, 1999; Lima et al., 2018) and in the Panamint Mountains (Mahood et al., 1996). The ~72 Ma Hall Canyon pluton, a two-mica granodiorite, in the Panamint Mountains was interpreted by Mahood et al. (1996) to be a product of water-absent biotite dehydration melting.

Late Cretaceous muscovite-garnet granite is found south and west of Death Valley in the western Mojave Desert region and is interpreted to have formed in part by partial melting and assimilation of Pelona-Orocopia-Rand Schist, which was underplated in this area during Laramide low-angle subduction (Miller et al., 1996; 2000; Grove et al., 2003). Despite significant involvement of the Pelona-Orocopia-Rand Schist in the source region, these muscovite-garnet granites are still interpreted to be subduction-related and to have originated in

the upper mantle (Miller et al., 1996; Saleeby, 2003). They are considered distinct from the Cordilleran interior belt of muscovite-granite (Miller and Barton, 1990; Miller et al., 1996), and are not included in the CAB.

4.3.2. Colorado River Extensional Corridor

The Colorado River extensional corridor extends from southern Nevada to the Phoenix, Arizona area and consists of a series of top-to-the-northeast metamorphic core complexes and extensional fault systems (Howard and John, 1987). Numerous magmatic rocks occur throughout this corridor that have been or could be interpreted as crustally-derived magmas. The Ireteba pluton (~66 Ma) in the Eldorado Mountains, Nevada is a two-mica ± garnet granite that was included in the belt of muscovite-bearing granite of Miller and Bradfish (1980). However, the Ireteba granite shows extensive interaction with mafic magmas and has been interpreted to be related to injection of juvenile basaltic magmas causing melting of the crust (Kapp et al., 2002).

Late Cretaceous peraluminous granite in the Sacramento and Chemehuevi core complexes, California has been interpreted to be related to fractional crystallization and crustal assimilation of mantle-derived magmas as discussed in Section 3.1 (John and Wooden, 1980). Likewise, Late Cretaceous (~89 Ma) peraluminous granite in the Whipple Mountains metamorphic core complex has been interpreted to have formed in a subduction setting and involved a mantle input (Anderson and Cullers, 1990).

Late Cretaceous (75-70 Ma), strongly peraluminous two-mica granite in the Old Woman-Piute batholith, California (e.g., Sweetwater Wash, Lazy Daisy, Painted Rock plutons) has been interpreted to represent crustal melts with limited mantle input (Foster et al., 1989; Miller et al., 1990b; Miller and Wooden, 1994). The strongly-peraluminous plutons were emplaced along

with metaluminous rocks of the same age, show a spectrum of major element and isotopic compositions, and in some cases are nested within the metaluminous rocks, similar to the peraluminous granite in the Chemehuevi Mountains (John and Wooden, 1990; Miller et al., 1990). However, the peraluminous stocks in the Old Woman-Piute batholiths have been interpreted to reflect anatexis of a hybridized lower crustal source consisting of older basement rocks and mantle-derived Jurassic arc igneous rocks (Miller et al., 1990; Miller and Wooden, 1994). The nearby Iron Mountains, California also contain Late Cretaceous (ca. 75-70 Ma) strongly peraluminous two-mica ± garnet granite equivalent to the Old Woman-Piute batholith (Wells et al., 2002; Wells and Hoisch, 2008). The Iron Mountains intrusive suite and nearby Coxcomb intrusive suite comprise the Cadiz Valley batholith, which has been interpreted to be subduction-related (Howard, 2002; Economos et al., 2010).

Widespread exposures of two-mica ± garnet leucogranite occur in the Buckskin-Rawhide, Harcuvar, Harquahala, and White Tank metamorphic core complexes, Arizona, including the Tank Pass granite (ca. 80-78 Ma; DeWitt and Reynolds, 1990; Bryant and Wooden, 2008), the Brown's Canyon granite (ca. 72 Ma; Richard et al., 1990; Isachsen et al., 1998), and the White Tank granite (ca. 72 Ma; Reynolds et al., 2002; Prior et al., 2016) which intruded primarily as large sills, but also form dense networks of smaller dikes and sills. Locally, areas of particularly voluminous intrusions have been referred to as migmatitic injection complexes (Bryant and Wooden, 2008), although evidence for *in situ* melting during the Late Cretaceous is not documented in Arizona. Bryant and Wooden (2008) report a ~110 Ma mylonitized, "migmatitic" gneiss in the Harcuvar Mountains, and Knapp and Heizler (1990) report a ~67 Ma partially mylonitized, "migmatitic" gneiss in the Mesquite Mountains, Arizona.

4.3.3. Southern Arizona

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

Strongly peraluminous, two-mica \pm garnet leucogranite is exposed throughout southern Arizona, primarily within the footwalls of metamorphic core complexes. The Paleocene to Eocene (ca. 60-45 Ma) Wilderness Suite in the Catalina-Rincon metamorphic core complex was emplaced as series of thick (≤ 2 km) sills and has been interpreted to have formed by crustal melting of Proterozoic Oracle granite (Keith, 1980; Farmer and DePaolo, 1984; Force, 1997; Fornash et al., 2013; Davis et al., 2019) or from other unexposed lithologies (Ketcham, 1996). Equivalent rocks (e.g., Fresnal Canyon granite) are exposed in the Picacho and Tortolita Mountains core complexes as well (Banks, 1980; Spencer et al., 2003; Ferguson et al., 2003). The Wilderness suite was estimated to have been emplaced at 3-4 kbar and ca. 625-725 °C (Anderson et al., 1988). The Pan Tak granite in the Coyote Mountains core complex and the Presumido Peak granite in the Pozo Verde Mountains core complex are both ~58 Ma, two-mica ± garnet leucogranites that have been interpreted to have formed by crustal anatexis of Proterozoic basement, potentially the Pinal schist (Wright and Haxel, 1982; Goodwin and Haxel, 1990). Haxel et al. (1984) report similar peraluminous granite in the Kupk Hills, Sierra Blanca, and Comobabi core complexes. Apart from the southern Arizona metamorphic core complexes, peraluminous two-mica leucogranite occurrences include the Texas Canyon stock (~55 Ma), Senita Basin granite, and Artesa Mountains granite (Cooper and Silver, 1964; May and Haxel, 1980; Shafiqullah et al., 1980; Haxel et al., 1984; Chapman et al., 2018). Arnold (1986) interpreted the Gunnery Range batholith and Texas Canyon stock (Fig. 1) to represent crustal melting of a deep granulitic source terrane, although the strongly peraluminous compositions of the Texas Canyon stock may be related to hydrothermal alteration as discussed in Section 3.2

(Runyon et al., 2019).

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

645

4.3.4. Northern Sonora

The Aconchi suite in northern Sonora comprises Late Cretaceous to Paleogene two-mica ± garnet leucogranite that has been interpreted as crustal melts and has been mapped throughout the region, primarily within the footwalls of metamorphic core complexes, including in the Mesquital (59-51 Ma), Tubutama, Carnero (ca. 55 Ma), Tortuga, Guacomea (78 Ma), Magdalena, Madera, Aconchi (58-55 Ma), Puerta del Sol (68-59 Ma), and Mazatán (58 Ma) complexes (Anderson et al., 1980; Hayama et al., 1984; Nourse et al. 1994; Nourse, 1995; Grijalva-Noriega and Roldan-Quintana, 1998; González-León et al., 2011; González-Becuar et al., 2017; Mallery et al., 2018). Relatively little information is available on many of these localities, although the intrusions are often described as laterally extensive sills, laccoliths, small plutons, and networks of small dikes and sills. The largest exposure is the Aconchi-El Jaralito batholith located between the Mazatán and Aconchi complexes, which contains the Huépac (58-55 Ma) and El Babizo leucogranites (71 Ma) among others (Roldán-Quintana, 1991; González-León et al., 2011). Late Cretaceous to Paleocene (68-59 Ma) orthogneiss migmatite is reported from the Puerta del Sol complex and has been interpreted as the source for the El Pajarito (68 Ma) garnet-bearing leucogranite (González-Becuar et al., 2017). The youngest leucogranite in the Puerta del Sol complex is the ~42 Ma El Oquimonis granite, a two-mica + garnet leucogranite (González-Becuar et al., 2017).

665

666

667

5. Common Characteristics of the Cordilleran Anatectic Belt

The most straightforward way to recognize igneous rocks produced by crustal anatexis is

to observe them in situ – leucosome in migmatite. Leucosome often represents the initial stages of crustal anatexis and has been interpreted to feed larger-scale intrusive bodies or represent crystal fractionation from these bodies (Solar and Brown, 2001; Johannes et al., 2003). Migmatite (of similar age to the CAB) is common in the northern CAB, but rare to absent in the central and southern CAB. In some locations, leucosomes have been shown to be the source for more voluminous CAB magmas (e.g., Ladybird Suite in the Shuswap complex; Hinchey and Carr, 2006). However, in most instances a direct relationship between migmatitic leucosomes and CAB magmas has not been demonstrated. Most exposures of migmatite associated with the CAB record mid-crustal (5-10 kbar), amphibolite facies conditions (Table 1). In rare cases, evidence is present suggesting that significant leucosome accumulation ± melt extraction took place at these conditions (e.g., Priest River complex; Stevens et al., 2015; 2016). In the majority of locations, however, CAB igneous rocks were derived from deep structural levels not exposed at the surface.

The emplacement geometry of CAB igneous rocks varies greatly, but commonly forms dike and sill networks, injection complexes, or large sheets and laccoliths (e.g., Ruby-East Humboldt complex and Catalina-Rincon complex; Howard et al., 2011; Fornash et al., 2013). This is similar to the geometry of igneous bodies in other major anatectic provinces (e.g., Manaslu laccolith in the Himalaya leucogranite belt, LeFort et al., 1987). Where CAB rocks are exposed as stocks or plutons, they are commonly pervasively intruded by late-phase pegmatite and aplite dikes that are generally interpreted to have been derived from closed-system crystallization of water-bearing felsic magmas (e.g., Coyote Mountains complex; Wright and Haxel, 1982). To our knowledge, there are no extrusive rocks equivalent to the intrusive rocks of the CAB. The inferred high water contents of the CAB melts likely caused them to reach their

solidus and freeze at moderate pressure (depth) during ascent (Miller, 1985; Clemens and Droop, 1998), which may explain the lack of extrusive equivalents.

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

691

692

5.1. Geochemistry, Isotopic Composition, and Protoliths

The CAB igneous rocks are silica-rich (≥ 70 wt. % SiO₂; Fig. 3; Table 1), consistent with experimentally produced melts from a wide range of crustal protoliths (e.g., greywacke, schist, gneiss; Patiño-Douce, 1999). The paucity of anatectic rocks of intermediate composition (< 70 wt. % SiO₂) suggest that crustal melting of more mafic source rocks (e.g., basaltic amphibolite) is less common (Beard and Lofgren, 1991; Patiño-Douce and Beard, 1995; Rapp and Watson, 1995; Gao et al., 2016). CAB rocks are usually identified in the field as leucogranite and are geochemically and mineralogically classified as granite or rarely, as trondhjemite (Fig. 5). Potassium feldspar is common, but always significantly less abundant than plagioclase. Compositions range from alkalic to calcic on modified alkali–lime index (MALI; Na₂O + K₂O – CaO) diagrams, consistent with global compilations of leucogranites (Frost et al., 2001). CAB rocks are weakly to moderately peraluminous (ASI = 1.0-1.3; Fig. 3; Table 1) and are corundum normative with modal minerals more aluminous than biotite, chiefly muscovite and garnet, characteristic of crustal melting of metasedimentary protoliths (Castro et al., 1999; Chappell et al., 2012). Biotite is generally more abundant than muscovite and cordierite is very rare, which is one of the reasons why the CAB rocks are not strictly classified as S-type granites (White et al., 1986; Chappell and White, 2001). Another difference between the CAB and classic S-type granites is that magnetite, rather than ilmenite, is the dominant opaque oxide in CAB rocks (White et al., 1986), which suggests that the CAB magmas may be more oxidized. Crustal melts originating from (meta)sedimentary protoliths containing small amounts of organic material tend to be reduced (fO₂ < FMQ) (Nabelek, 2019). However, there has been no comprehensive investigation of the oxidation state of CAB rocks. Peraluminous S-type granites as well as peraluminous, calc-alkaline Cordilleran (subduction-related) granite are enriched in FeO, MgO, and TiO₂ compared to CAB rocks (Patiño-Douce, 1999; Fig. 6). Despite their geochemical and mineralogical differences, CAB rocks have been informally referred to as S-type granites because the large majority have been interpreted to have formed from melting of metasedimentary protoliths (Miller and Bradfish, 1980; Patiño-Douce et al., 1990; Wright and Wooden, 1991). Additional geochemical data for CAB rocks is presented below in Section 6, focusing on melt processes.

The CAB rocks exhibit highly evolved radiogenic isotopic compositions (e.g., low εNd_(i), εHf_(i), high ⁸⁷Sr/⁸⁶Sr_i; Table 1) that reflect the composition and age of local basement rocks. In North America, the ⁸⁷Sr/⁸⁶Sr_i = 0.706 isopleth ("0.706 line") is often interpreted to represent the western edge of autochthonous, North American crystalline basement (Kistler and Peterman, 1973) and the CAB is almost everywhere located east (cratonward) of this isopleth (Fig. 1). For the Great Basin region, Wright and Wooden (1991) suggested that Mesozoic to Cenozoic crustal melting was limited to areas east of the ⁸⁷Sr/⁸⁶Sr_i = 0.708 isopleth and east of the εNd_i = -7 isopleth (Farmer and DePaolo, 1983), although the relationship between these isopleths and the CAB is less clear to the north and south (Fig. 1). The CAB crosses multiple Archean to Proterozoic basement/lithospheric provinces including, from north to south, the Rae craton, Hearne craton, Medicine Hat block, Selway terrane, Grouse Creek block, Mojave province, Yavapai province, Mazatzal province, and Caborca block (Whitmeyer and Karlstrom, 2007; Fig. 7).

CAB rocks generally have high δ^{18} O ratios (2-5 ‰ above mantle array values) as

reflected in whole rock and single mineral (e.g., quartz, zircon) analyses (Table 1). The high δ^{18} O ratios have been interpreted to reflect crustal melting of metasedimentary rocks, rather than (meta)igneous rocks (Solomon and Taylor, 1989; King et al., 2004; Gottlieb, 2017). In the northern and central CAB, upper Proterozoic metasedimentary rocks are present as part of the Cordilleran passive margin sequence (Cordilleran Miogeocline) and are often cited as a possible protolith (e.g., Neoproterozoic McCoy Creek Group, Ruby-East Humboldt complex; Lee et al., 2003). Metasedimentary members of the Mesoproterozoic Belt-Purcell Supergroup and the overlying Neoproterozoic Windermere Supergroup have also been suggested as potential protoliths in the northern CAB (e.g., Shuswap complex; Norlander et al., 1992). The southern CAB does not contain metasedimentary rocks associated with the Mesoproterozoic basins or Neoproterozoic metasedimentary rocks associated the Cordilleran passive margin sequence (Stewart et al., 1984) (Fig. 7). Paleoproterozoic metasedimentary rocks in the Pinal Basin in southern Arizona and northern Sonora (Meijer., 2014; Bickford et al., 2019) have been proposed as a potential source for the southern CAB (e.g., Pinal Schist; Haxel et al., 1984). Proterozoic (meta)igneous rocks and Jurassic arc rocks in the southern CAB have also been mentioned as possible protoliths (Miller and Wooden, 1994; Fornash et al., 2013; Mallery et al., 2018).

753

754

755

756

757

758

759

752

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

5.2. Melt Temperature Estimates

Zircon saturation temperatures were calculated using the calibration of Watson and Harrison (1983) for CAB rocks that meet the compositional criteria for this thermometer (Table 1). The dataset indicates an average temperature of 724 ± 48 °C (1 σ) (Fig. 8). The calibration of Watson and Harrison (1983) results in higher calculated zircon saturation temperatures than other recently revised calibrations (Boehnke et al., 2013; Gervasoni et al., 2016; Borisov and

Aranovich, 2019) and can be considered a maximum estimate. For intrusive rocks, zircon saturation temperature has been used as a proxy for the temperature of partial melting or magma temperature (e.g., Collins et al., 2016). Zircon saturation temperature is a dynamic variable that predicts when zircon saturation begins in a cooling magma and increases during crystallization (Clemens et al., 2020). Siegel et al. (2018) suggest that magma temperature and zircon saturation temperature are only approximately equal when SiO₂ contents increase to a certain value, which was determined to be 64-74 wt. % based on a limited dataset. For higher SiO₂ values, calculated zircon saturation temperatures may overestimate the magma temperature. Because CAB rocks have $SiO_2 > 70$ wt. %, we interpret the calculated zircon saturation temperatures to be close to or a slight overestimate of the partial melting temperature. In addition, almost all zircon U-Pb analyses of CAB rocks report inherited (antecrystic or xenocrystic) zircon components (Applegate et al., 1992; Wright and Snoke, 1993; Vanderhaege et al., 1999; Vogl et al., 2012; Gaschnig et al., 2013; Stevens et al., 2016; Davis et al., 2019). Intrusions with abundant inherited zircon indicate saturation at the source and suggest that calculated zircon saturation temperatures are a maximum since part of the bulk Zr concentration is from inherited crystals rather than the melt (Miller et al., 2003; Barth and Wooden, 2006). Our compilation of CAB rocks also contains some analyses of late-stage, highly fractionated melts (chiefly aplite and pegmatite dikes). Zircon saturation temperatures of these rocks can be interpreted as minimum estimates of magma temperature at the time of melt segregation (Miller et al., 2003). Peak metamorphic temperature estimates from migmatite in the central and northern CAB are plotted in Figure 8 and show a broad maxima from 650-825 °C that overlaps with the

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

average CAB zircon saturation temperature. For individual localities, zircon saturation

temperatures are consistently 50-100 °C lower than estimates of peak metamorphic temperatures obtained using equilibria thermobarometry or pseudosection analysis (Table 1). Kohn (2014) made a similar observation in his review of the Himalayan leucogranite belt.

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

783

784

785

5.3. Age Relationships

A compilation of crystallization or emplacement ages of rocks in the CAB are presented in Figure 9 and Table 1. Ages range from 92 to 42 Ma, with the majority of ages between 80 and 50 Ma. Ages are youngest in the northern and southern CAB and oldest in the central CAB. The age pattern suggests that anatectic magmatism started in the central U.S. Cordillera and simultaneously migrated (or "swept") northward and southward with crustal melting shutting down in its wake. Many locations in the CAB only have a few dated samples, but where sufficient geochronologic data are available, the duration of anatexis is typically protracted, lasting 10 Myr or more. Examples of well-studied locations with a wide range of ages include the Shuswap complex (60-50 Ma; Vanderhaege et al., 1999; Hinchey et al., 2006; Gordon et al., 2008; Kruckenberg et al., 2008), the Ruby-East Humboldt complex (70-40 Ma; Howard et al., 2011), and the Catalina-Rincon complex (65-45 Ma; Fornash et al., 2013; Davis et al., 2019). Similar observations have been made in the Himalayan leucogranite belt with anatectic magmatism lasting ~10 Myr in any single location (Lederer et al., 2013; Weinberg, 2016). The reasons for protracted anatexis in the CAB are unclear but may be related to fluid and/or magma pulses, magma mixing and age hybridization, slow fractionation and cooling, evolving metamorphic and thermal conditions, or combinations of these. Despite the uncertainty, prolonged remobilization and reworking of melts appears to have been a common feature of CAB intrusive rocks. Protracted periods of crustal melting imply that either the source region

was not completely melted (fusible components remain to be melted later) or that conditions changed throughout the melt process (e.g., increasing temperature) so that melting could proceed. Apart from the Kootenay arc (Brandon and Lambert, 1993; 1994; Brandon and Smith, 1994) (e.g., White Creek batholith; Figs. 3 and 6), there is no geochemical evidence that more refractory minerals or restitic components were melted during later stages of crustal melting in the CAB.

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

Figure 9 also shows the timing for the onset of extension and the period of most rapid cooling for the Cordilleran metamorphic core complexes (see Supplementary File 1 for the data compilation). The period of most rapid cooling is generally constrained by thermochronological data and represented by the steepest segment of time-temperature cooling histories (Fig. 10). The onset of extension is constrained by thermochronological data as well as by other geologic data (e.g., timing of normal faulting, extensional basins, P-T-t modelling, etc.). The period of rapid cooling/exhumation occured shortly after (≤ 5 Myr) the onset of extension for most core complexes, except for the central belt of core complexes where it may have been delayed by up to ca. 30 Myr (Fig. 9). Extension and exhumation in these areas is thought to have occurred in two or more stages (Miller et al., 1999; Henry et al., 2011; Konstantinou et al., 2012). The younger stage is generally associated with extensional tectonics, whereas the older stage of extension has been related to gravitational collapse of tectonically thickened crust and/or heating, magmatism, and uplift accompanying delamination/roll-back of the Farallon slab (McGrew and Snee, 1994; Humphreys, 1995; Constenius, 1996; Dickinson et al., 2009; Konstantinou et al., 2013; Cassel et al., 2018). The timing of core complex extension and the age of CAB magmatism overlap in the northern CAB, however, extension/exhumation is up to 50 Myr younger than crustal melting in the central and southern CAB.

6. Melting Conditions and Processes

The following section explores melting conditions, processes, and sources using compiled geochemical compositions of the CAB rocks (Supplementary File 2). One of the fundamental questions we seek to address is the role of water in the production of the CAB. We refer to water regardless of its state (vapor or liquid) and use water as a more general term for mixed-fluid solutions (e.g., containing CO₂). We distinguish three types of partial melting based on the amount of available water; water-absent melting, water-excess melting, and water-deficient melting (cf., Clemens et al., 2020).

We use the term water-absent melting synonymously with dehydration melting to describe conditions in which the water present is entirely structurally bound in hydrous minerals, chiefly mica and amphibole. Water released from these minerals during dehydration melting is dissolved into the melt, which is water-undersaturated. Water-absent melting is buffered by the amount and type of hydrous minerals. Muscovite dehydration melting occurs at the lowest temperatures (ca. 700 °C at 5 kbar), followed by biotite dehydration melting (ca. 800 °C at 5 kbar) and then amphibole dehydration melting (ca. 900 °C at 5 kbar) (Patiño-Douce and Harris, 1998) (Fig. 11). Amphibole dehydration melting is relatively uncommon in orogenic anatectic terranes because of the high temperatures (>850 °C) required (Thompson and Connolly, 1995). For metapelitic rocks, muscovite dehydration melting reactions (Reaction 1; Peto, 1976) produce K-feldspar and sillimanite (or kyanite) as peritectic products and biotite dehydration melting reactions (Reaction 2; Le Breton and Thompson, 1988) produce peritectic K-feldspar and cordierite (or garnet at high-pressure).

$$Ms + Pl + Qtz = Kfs + Als + Melt$$
 (1)

$$Bt + Als + Pl + Qtz = Kfs + Crd/Grt + Melt$$
 (2)

Water-excess melting describes melting in water-saturated conditions where water remains present in the protolith above the (wet) solidus and the melt is water-saturated. Most experimental studies with added water are water-excess experiments and for most studies water-excess, water-flux, and fluid-flux melting are synonymous (e.g., Patiño Douce, 1996). Water-excess melting requires an external source of water to sustain melting and is buffered by the amount of available water. Water-excess melting of metasedimentary protoliths, including muscovite- and/or biotite-bearing schist (Reactions 3-5; Yardley and Barber, 1991; Patiño-Douce and Harris, 1998; Vielzeuf and Schmidt, 2001) and metagreywacke (Reaction 6; Genier et al., 2008) occurs at relatively low temperatures (ca. 650 °C at 5 kbar) and may or may not produce an aluminosilicate (including garnet) peritectic phase.

$$Ms + Pl + Qtz + H2O = Melt$$
 (3)

$$Bt + Als + Kfs + Qtz + H2O = Crd/Grt + Melt$$
 (4)

865
$$Ms + Bt + Kfs + Pl + Qtz + H_2O = Melt$$
 (5)

$$Qtz + Kfs + Pl + H2O = Melt$$
 (6)

Water-deficient melting describes an intermediate condition (between water-absent and water-excess melting) where a free water phase is present (e.g., pore-space fluid), but limited. In this case, the protolith is water-undersaturated and excess water is consumed at or just above the wet solidus. Melting continues along a dehydration path after the excess water is exhausted. Water-deficient melting is generally rock-buffered and produces water-undersaturated melts (*a*H₂O<1) above the wet solidus (Nabelek, 2019). Water-absent and water-excess melting are end-members and can be distinguished geochemically (see review in Weinberg and Hasalovà, 2015), however, water-deficient melting is considered geochemically indistinguishable from

dehydration melting and is generally only inferred based on melt volumes and temperature (Schwindinger et al., 2018; 2019).

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

875

876

6.1. Water-Absent Melting vs. Water-Excess Melting

In this section, we use CAB geochemistry to evaluate the roles of water-absent and water-excess melting in generating these rocks. Although there are various hypotheses concerning the tectonic mechanisms involved (see discussion in Section 7 below), the large majority of anatectic rocks in the CAB have been previously interpreted to have formed by dehydration melting (Coney and Harms, 1984; Haxel et al., 1984; Armstrong, 1988; Miller and Gans, 1989; Barton, 1990; Patiño-Douce et al., 1990; Wright and Wooden, 1991; Brandon and Lambert, 1993; Mahood et al., 1996; Vanderhaege et al., 1999; Foster et al., 2001; Norlander et al., 2002; Teyssier and Whitney, 2002; Lee et al., 2003; Hinchey et al., 2006; Mattinson et al., 2007; Gaschnig et al., 2011; Stevens et al., 2015). An exception is the Big Maria Mountains, California that contain field and petrographic evidence for widespread fluid infiltration during Late Cretaceous metamorphism (Hoisch, 1987). The metamorphic rocks in the Big Maria Mountains are not migmatitic but are intruded by numerous pegmatitic leucogranite dikes that have been interpreted to result from water-excess/fluid-flux melting (Hamilton, 1987; Hoisch, 1987). The fluid source in the Big Maria Mountains could be metamorphic reactions within the crust, crystallizing magmas at depth (Hoisch, 1987), or the dehydrating Farallon slab (Wells and Hoisch, 2008). Micas have high Rb and low Sr concentrations, whereas plagioclase has the opposite –

Micas have high Rb and low Sr concentrations, whereas plagioclase has the opposite – low Rb and high Sr concentrations. Water-absent melting, involving the breakdown of muscovite and biotite, enriches the melt in Rb. Restitic feldspar increases during muscovite

dehydration melting, depleting the melt in Sr, but does not increase during (relatively higher temperature) biotite dehydration melting, causing little change in Sr concentrations in the melt (Harris and Inger, 1992). As a result, mica dehydration melting is often associated with geochemical trends showing increasing Rb/Sr and decreasing Sr (muscovite dehydration) or near constant Sr (biotite dehydration) concentrations (Inger and Harris, 1993). Conversely, waterexcess melting breaks down plagioclase before mica, resulting in increased Sr in the melt and low Rb/Sr that remains relatively constant during melt evolution (Conrad et al., 1988; Harris and Inger, 1992; Inger and Harris, 1993). There is no absolute value of Rb/Sr that can be used to discriminate water-absent melting from water-excess melting, but Harris et al. (1993) suggested that water-excess melting was unlikely for granite with Rb/Sr >3.5 for most metasedimentary protoliths. Figure 12A shows that the rocks of the CAB have a wide range of Rb/Sr values (4 orders of magnitude) and follow Rb/Sr geochemical trends consistent with muscovite dehydration melting. However, this trend is also consistent with fractional crystallization of feldspar (particularly plagioclase) and could be produced by strongly differentiated rocks with high Rb/Sr and cumulates with low Rb/Sr.

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

Melting of feldspar during water-excess melting has also been linked to positive Eu anomalies. Prince et al. (2001) used strongly positive (> 3) Eu anomalies in Eocene Himalayan leucogranites to identify water-excess melting. Negative Eu anomalies are generally produced by fractional crystallization of feldspar and positive Eu anomalies may record a complementary feldspar-rich cumulate (Sawyer, 1987; Rudnick, 1992). Cumulates may also be recognized by low total REE, which increases for more strongly fractionated melts. Fig. 12B plots Eu anomaly vs. total REE for CAB rocks and shows that rocks with weak positive Eu anomalies (1-3) also have low total REE and are probably cumulates. Removal of trivalent REE during

crystallization of accessory phases can also produce low total REE and positive Eu anomalies (Bea and Montero, 1999). Few CAB rocks have strong positive Eu anomalies associated with water-excess melting or other processes (Fig. 12B).

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

Potassium concentration relative to Na and Ca (or normative orthoclase relative to albite and anorthite) in melts produced from crustal anatexis is another method used to qualitatively assess the role of water-excess melting. The melting of plagioclase prior to mica, particularly biotite, during water-excess melting results in melts with tonalite to trondhjemite compositions (Conrad et al. 1988; Scaillet et al. 1995; Patiño-Douce, 1996). Conversely, the preferential melting of mica prior to plagioclase during water-absent melting results in more potassic compositions and rocks with significant modal K-feldspar. With few exceptions, CAB intrusive rocks have normative Ab/Or (albite/orthoclase) ratios < 2 and do not have the tonalite or trondhjemite compositions produced experimentally by water-excess melting of metasedimentary protoliths (Patiño-Douce and Beard, 1996; Patiño-Douce, 1996; Patiño-Douce and Harris, 1998) (Fig. 5). Studies have also proposed that ferromagnesian contents increase during water-excess melting (e.g., FeO_{total} > 2 wt. %; Weinberg and Hasalovà, 2015), but are sequestered by refractory residual mineral phases during water-absent melting of metasedimentary protoliths (Naney, 1983; Holtz and Johannes, 1991; Patiño-Douce, 1996). The majority of CAB rocks have low total FeO (< 2 wt. %), consistent with water-absent melting.

The geochemistry and magma temperature estimates (Fig. 8) for the CAB are most consistent with muscovite dehydration (water-absent) melting at middle to lower crustal pressures (≥ 5 kbar) (Fig. 11) and the composition of the CAB rocks compare favorably to experimental studies of muscovite dehydration melting (e.g., Patiño-Douce, 1999). Textural heterogeneity and numerous pegmatite and aplite dikes/sills associated with the CAB indicate

exsolution of water throughout the crystallization processes from relatively hydrous melts. These observations further support muscovite dehydration melting over biotite dehydration melting. Biotite dehydration melting at higher temperature requires less water to stabilize the melt and produces relatively dry melts that are more texturally homogenous (Clemens and Vielzeuf 1987; Villaros et al., 2018; Nabelek, 2019). Muscovite dehydration melting of metasedimentary protoliths at 750 °C and 5 kbar results in ca. 6 wt. % H₂O in the melt compared to ca. 2 wt. % H₂O at 850 °C for biotite breakdown at the same pressure (Patiño Douce and Beard, 1995; Patiño Douce and Harris, 1998; Castro, 2013).

6.2. Water-Deficient Melting

There are two main problems with invoking water-absent, muscovite dehydration melting as the dominant processes to produce the CAB rocks. Both problems can potentially be resolved if water-deficient melting is involved. The first problem is that muscovite dehydration melting may not produce enough melt volume to initiate melt migration and accumulation (Clemens and Vielzeuf, 1987; Barton, 1990; Patiño Douce et al., 1990; Wells and Hoisch, 2008). Melt extraction is thought to be limited by a melt-connectivity threshold (~7 % melt), at which point melt/solid segregation can occur if the solid residue is able to deform and/or compact (Rosenberg and Handy, 2005; Vanderhaeghe, 2009). Under inefficient melt extraction conditions, a migmatite may accumulate large amounts of leucosome/melt (diatexite) until the solid-liquid threshold (20-40% melt) is reached and the migmatite starts to behave as a crystal mush (van der Molen and Paterson, 1979). A very muscovite-rich (20-30 %) schistose protolith could generate ca. 10 % melt during muscovite dehydration melting (Wyllie, 1977), but most metasedimentary compositions are estimated to produce <5 % melt by volume (Patiño Douce et al., 1990;

Johannes and Holtz, 1996; Droop and Brodie, 2012). Biotite dehydration melting of common metasedimentary protoliths can produce up to 40 % melt (Miller et al., 1985; Clemens and Vielzeuf, 1987; Patiño Douce et al., 1990; Stevens et al., 1997), but the geochemical data and melting temperature estimates discussed above do not appear to support biotite dehydration melting.

Many locations in the CAB expose significant (approaching batholith-scale) volumes of muscovite-bearing peraluminous granite related to crustal melting that suggest relatively large melt fractions. For example, ~600 km³ of CAB rocks are exposed in the Lamoille Canyon area in the Ruby-East Humboldt core complex and several times that amount is estimated to be present in the subsurface (Howard et al., 2011). Unless melt is being drained laterally from areas beyond the Ruby-East Humboldt Mountains, 5-10 % melting cannot produce the observed rock volumes. Water-deficient melting that incorporates small amounts of externally-derived water (~1 wt. % added) can result in large increases in melt fractions, 2-3 times larger than by dehydration melting alone – resulting in a 10-20 % increase in melt volume (Sola et al., 2017; Nabelek, 2019; Schwindinger et al., 2019).

To illustrate this issue, we constructed an isobaric (5 kbar) temperature-X_{H2O} assemblage diagram for a muscovite-rich metasedimentary protolith (Fig. 13). The whole rock starting composition was modeled after a muscovite-bearing quartz wacke from the Pinal Schist in Arizona (sample "B" in Copeland and Condie, 1986). This composition is comparable to other muscovite-bearing metasedimentary rocks from the Neoproterozoic Cordilleran passive margin sequence (e.g., McCoy Creek Group in Nevada; Misch and Hazzard, 1962) and comparable to generic metasedimentary rocks compositions used in modeling partial melting of other anatectic provinces (cf., Nabelek, 2019), but is more quartz-rich than the most melt-fertile rocks (e.g.,

muscovite schist). Closed-system phase assemblages and melt volumes were calculated with Perple X version 6.8.7. (Connolly, 1990; 2005; Connolly and Petrini, 2002) in the NCKMASHTO model system (Na₂O₂CaO₂, K₂O₃, Al₂O₃, SiO₂, H₂O₃, TiO₂, O₂, FeO_t, and MgO), using a quartz-fayalite-magnetite assemblage for fO2 buffering and thermodynamic data from Holland and Powell (2011). One way to read the assemblage diagram in Fig. 13 is to consider the average zircon saturation temperature estimate for the CAB and examine changes in melt content (shown as volume precent) as the amount of water in the protolith is increased (moving to the right along the x-axis). Muscovite dehydration melting occurs at ~0.7 wt. % H₂O, which is the amount of structurally bound water in mica in the protolith, not a free fluid phase. Waterabsent muscovite dehydration melting produces < 5 % melt. Water-excess melting occurs above ~2.3 wt. % H₂O, at which point free water remains in the protolith above the solidus (pink line labeled "melt in") and > 20 % melt is produced. Water-deficient melting (ca. 0.7-2.3 wt. % H₂O) consumes all free water at the solidus and produces water-undersaturated melts but results in significant increases of melt volume. For example, 1 wt. % of free water in the protolith (1.7 wt. % H₂O in Fig. 13) increases melt volume from 1.2 % (water-absent, muscovite dehydration melting) to 16.9 % at 725 °C. Debate continues about whether any amount of free water is reasonable to expect in the middle to lower crust (Thompson, 1983; Weinberg and Hasalovà, 2015).

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

The second problem with muscovite dehydration melting is that, despite relatively low FeO and MgO values in CAB rocks, biotite is very common, which requires partial melting of a phase more mafic than muscovite. Additional Fe and Mg can be added to the melt with added water (water-deficient or water-excess) melting (Holtz and Johannes, 1991; Patiño-Douce, 1996). Water-deficient melting is one possible mechanism to increase ferromagnesian

components in CAB melts, although our modeling (Fig. 13) as well as other studies of water-deficient melting (Schwindinger et al., 2018) have indicated relatively small to insignificant increases in FeO and MgO (\leq 0.5 wt. %) from water-absent melting. Other processes such as restite/peritectic mineral entrainment have also been proposed to increase Fe and Mg in crustal melts (Stevens et al., 2007). The importance of water-deficient melting has only recently been emphasized globally (e.g., Nabelek, 2019) and it has not been previously considered for intrusive suites in the CAB, but it deserves future investigation.

7. Tectonic Causes of Crustal Melting

There is no consensus on the underlying causes of Late Cretaceous to Paleogene crustal anatexis in the CAB, but hypotheses can be generally grouped into four categories: 1) decompression melting, 2) melting resulting from radiogenic heating and thermal relaxation following crustal thickening, 3) melting resulting from the introduction of slab-derived fluids, and 4) melting associated with increased heat flux from the mantle. These hypotheses are not all mutually exclusive and there is no requirement for a single process to explain the entire CAB. However, the CAB occupies a relatively narrow time interval and appears to be a coherent spatial feature, which supports treating it as a distinct component of the North American Cordilleran orogenic system, on par with other components such as the continental arc and retroarc thrust belt. Previous researchers have favored different hypotheses in the northern, central, and southern CAB, but it is instructive to consider how hypotheses favored in one region may be extended or extrapolated into other areas.

7.1. Decompression Melting Related to Exhumation

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

There is a close spatial association between the CAB and the Cordilleran metamorphic core complexes (Fig. 1), suggesting a possible petrogenetic relationship as well (Armstrong, 1982). One possible scenario is that core complex extension and exhumation caused decompression melting. Decompression melting is a form of dehydration melting and is commonly invoked when melting and exhumation of the crust are contemporaneous (Harris and Massey, 1994). Decompression melting has received the most attention in the northern CAB, particular within the Shuswap complex, where anatectic crystallization ages, cooling ages, extension timing, and the timing of near-isothermal decompression in reconstructed P-T paths all overlap (Vanderhaeghe et al., 1999; Norlander et al., 2002; Teyssier and Whitney, 2002; Whitney et al., 2004b; Gordon et al., 2008; Stevens et al., 2016) (Fig. 9). The Shuswap complex is cored by several migmatitic gneiss domes that display structural fabrics and geometries supporting vertical motion within the domes and flattening above the domes – consistent with diapiric-like rise of the deep crust (e.g., Duncan, 1984; Whitney et al., 2004). Relatively hot, ductile middle-to-lower crust is a prerequisite for diapirism although a variety of processes could trigger initial ascent, including a density inversion resulting from underthrusting of (meta)sedimentary rocks into the deep crust, low-degrees of partial melting causing density reduction, focused erosion at the surface, localized crustal thickening or buckling, and rapid tectonic denudation (Teyssier and Whitney, 2002). Estimates for diapir-related exhumation rates from migmatite gneiss domes in the Shuswap complex are ca. 20 km/Myr, which is significantly faster than tectonic exhumation associated with extension (Whitney et al., 2004; 2013). Rapid decompression should produce a narrow range of ages, which is at odds with the wide range of ages (≥ 10 Myr) and the remobilization of melts prior to emplacement observed in some CAB

localities. Furthermore, (re)melting events related to repeated or prolonged decompression are difficult to reconcile with dehydration melting as the protolith becomes increasingly refractory and requires increasingly high temperatures to make new melts. Regardless, once upward movement and decompression is initiated, there is a positive feedback between melting, viscosity reduction, and exhumation resulting in relatively large volumes (≥ 20%) of dehydration-related leucocratic melt (Whitney et al., 2004b; Rey et al., 2009), consistent with some locations in the northern CAB (e.g., Priest River complex, Stevens et al., 2015; 2016). The positive P-T slope of dehydration melting solidi suggests that melting can occur throughout the decompression process and that emplacement in the middle-to-upper crust is efficient.

Decompression melting is considered less likely in the central and southern CAB, in part because the timing of extension and exhumation is younger than crustal melting (Fig. 9).

However, P-T paths from metamorphic rocks in many Cordilleran core complexes suggest that decompression is a near-isothermal process that would not be expected to be recorded by thermochronometers. For example, by some estimates, the Ruby-East Humboldt complex experienced ~4 kbar (~15 km) decompression at ca. 750-650 °C from ca. 85-55 Ma (McGrew et al., 2000; Henry et al., 2011) (Fig. 10), which largely overlaps with the crystallization ages of CAB rocks in the complex (Howard et al., 2011). How this period of decompression occurred is unclear because the complex exposes a series of stacked and folded nappes, rather than discrete gneiss domes or evidence for diapirism (Howard, 1980). Deep structural levels within the Ruby-East Humboldt complex show some evidence for lateral crustal flow (MacCready et al., 1997) and numerical models suggest that relatively slow extension rates may have kept the complex from developing more defined migmatitic gneiss domes (Rey et al., 2009). Another possibility is that the recumbently folded nappes in the Ruby Mountains record flattening strain during Late

Cretaceous to Eocene decompression and that they sit above an even deeper structural level (not exposed) that records vertical, diapir-like exhumation. Regardless, diapiric exhumation of the lower crust has not been seriously proposed to have generated anatectic melting in North America outside of the northern CAB.

There is also evidence for syn-convergent, Late Cretaceous extension (prior to core complex extensional faulting) in the central and southern CAB (Carl et al., 1991; Wells and Hoisch, 2008; Druschke et al., 2009; Wells et al., 2012; Long et al., 2015). In some cases, this extension has been proposed to have caused decompression melting. Examples include the Iron Mountains and Old Woman Mountains in southeast California (Wells and Hoisch, 2008) and the Death Valley region (Hodges and Walker, 1990; Applegate et al., 1992; Applegate and Hodges, 1995). However, the amount of Late Cretaceous extension documented in the U.S Cordillera is limited (Miller et al., 2012; Lund-Snee et al., 2016) and it is uncertain whether there was enough extension to cause widespread decompression melting.

Relating anatectic melting to near-isothermal decompression in the central and northern CAB is possible because migmatite and metamorphic rocks are exposed, enabling P-T-t paths to be reconstructed and deep crustal strain to be evaluated. These types of rocks are generally not exposed in the southern CAB, specifically in Arizona and Sonora, and as a result, decompression melting has not been seriously proposed or evaluated in that region. However, one end-member interpretation is that intrusive rocks in the southern CAB signify a period of decompression in the deep crust that is otherwise inscrutable. As such, the northern core complexes and CAB may provide a template for understanding deep crustal process in the southern U.S. and northern Mexican Cordillera.

7.2. Radiogenic Heat and Thermal Relaxation

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

Radiogenic heating and relaxation of isotherms following crustal thickening has also been proposed to account for CAB rocks (Haxel et al., 1984; Miller and Gans, 1989; Patiño-Douce et al., 1990; Wright and Wooden, 1991). The Laramide orogeny (ca. 80-40 Ma) overlaps in age with the CAB, however, Laramide deformation is chiefly characterized by slip on highangle reverse faults that produced limited horizontal shortening and hence limited crustal thickening (Yonkee and Weil, 2015). In addition, thermal models suggest that maximum temperatures in the middle to lower crust are attained 40-60 Myr after (instantaneous) crustal thickening (England and Thompson, 1984; 1986; Clark et al., 2011), ruling out Laramide-age crustal thickening as a cause of crustal anatexis in the CAB. In contrast, the Sevier orogeny caused significant crustal thickening and the time elapsed between the end of shortening (ca. 100-80 Ma) and the onset of crustal melting in the CAB is ca. 10-50 Myr, consistent with the thermal models. These models implicitly assume that the crust, perhaps in the form of an orogenic plateau, remained thick after the end of crustal thickening. Anatexis resulting from crustal thickening was modelled explicitly for the North American Cordillera by Patiño-Douce et al. (1990) who suggested that a 10-15 km thick migmatite layer at 30-40 km depth would develop by the end of the Sevier orogeny if the crust was thickened to 50-55 km, consistent with estimates of crustal thickness for the Nevadaplano (Coney and Harms, 1984; Chapman et al., 2015). Modeling by both Patiño-Douce et al. (1990) and England and Thompson (1984, 1986) assumed that free water was not present in the melt source region and that relatively high temperatures (> 850 °C) were required to produce biotite dehydration melting in order to generate the melt volumes (20-40%) observed. To generate these high temperatures, the models required mid-crustal layers with moderately high radiogenic heat production (>2 μW/m³). The

high temperatures required for biotite-dehydration melting are one of the main arguments against crustal thickening as a primary mechanism to generate the CAB rocks (e.g., Wells and Hoisch, 2008; 2012; Wells et al., 2012). If water-excess or water-deficient melting are important processes in the origin of the CAB, then melting at lower temperatures and the production of large melt volumes is less problematic for hypotheses relating anatexis to crustal thickening (Fig. 13).

Much of the southern CAB is located southeast of the deformational limit of the Sevier thrust belt (Fig. 1) and southeast of the Maria contractional belt in western Arizona and southeast California (Spencer and Reynolds, 1990; Boettcher et al., 2002). This region (southern Arizona and Sonora) experienced limited shortening during the Laramide orogeny, but the amount of documented shortening (ca. 30 km; Davis et al., 1979; Haxel et al., 1984) is not enough to significantly thicken the crust. Nonetheless, geochemical data suggest that the crust in southern Arizona and northern Sonora was relatively thick (55-60 km) during Late Cretaceous to early Paleogene time (Chapman et al., 2020), which may be related to magmatic thickening (Erdman et al., 2016). If the southern CAB is related to crustal thickening and radiogenic heating, then the age of the intrusive rocks could be interpreted as the age of peak metamorphism in the deep crust, which is otherwise unconstrained.

Total horizontal shortening in the Sevier thrust belt is greatest (~350 km) in the central U.S. Cordillera (DeCelles and Coogan, 2006) and decreases to the north (e.g., Fuentes et al., 2012) and to the south (e.g., Giallorenzo et al., 2018). This fact may help explain why the central CAB is older than the northern and southern CAB – because the crust was thickened more and/or faster and reached peak metamorphic conditions earlier. The wide range of ages and evidence for melt remobilization in the CAB (e.g., Catalina-Rincon complex, Davis et al.,

2019; Ducea et al., 2020) is consistent with melts formed during prograde metamorphism that remained at high temperature and pressure, existing at near-solidus or partially-molten conditions until melt extraction or exhumation.

7.3. Water Present Melting

Melting involving free water in the parent rock has not received much attention as a significant cause for anatexis in the CAB. As mentioned in Section 6, Hoisch (1987) suggested that fluids exsolved from crystallizing magmas at depth resulted in water-flux melting in the Big Maria Mountains, California and hypothesized that crustal melting in the nearby Old Woman Mountains, California may be analogous. Wells and Hoisch (2008) proposed that delamination and mantle upwelling was a primary cause of crustal melting throughout the CAB (see next section), but they also suggested that dehydration of the Farallon slab could have played a role. The timing of low-angle subduction of the Farallon slab beneath the CAB matches closely with the age of CAB intrusive rocks. Many studies have suggested that the mantle lithosphere was hydrated during the Laramide orogeny (Dumitru et al., 1991; Humphreys et al., 2003; Farmer et al., 2008) and several studies in the last decade have suggested that the lower crust was hydrated as well (Jones et al., 2015; Butcher et al., 2017; Porter et al., 2017; Levandowski et al., 2018). Other potential sources of free water include metamorphic reactions within the crust (e.g., underthrusting of crustal lithologies) and small amounts of relict water in pore spaces.

The geochemistry of the CAB rocks does not support water-excess melting (Fig. 12), but it is consistent with water-deficient melting, which is difficult to distinguish from water-absent melting by geochemistry alone. The relatively low calculated zircon saturation temperatures for the CAB may even require some degree of water-added melting because some temperature

estimates are below the solidus for muscovite dehydration melting (Fig. 11). Melts produced by water-absent and water-deficient melting are both water-undersaturated and are more likely to ascend through the crust to form intrusive bodies. Periodic fluid influx could also explain the wide range of crystallization ages at individual CAB locations.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1173

1174

1175

1176

7.4. Mantle Heat Flux

The two main hypotheses proposed for CAB rocks that involve increased mantle heat flow are 1) asthenospheric upwelling following delamination and 2) mantle upwelling above a subducting slab. The delamination hypothesis suggests that upwelling following delamination of the mantle lithosphere resulted in decompression melting of the asthenosphere and basaltic underplating/intrusion that provided additional heat to melt the overlying crust (Wells and Hoisch, 2008; 2012; Wells et al., 2012). Delamination is common in areas of thickened crust (e.g., England and Houseman, 1989), consistent with the position of the CAB and reconstructions of the orogenic interior and the Nevadaplano (Coney and Harms, 1984; DeCelles et al., 2004). The delamination model has been applied specifically in the Great Basin and Mojave regions where melting is generally Late Cretaceous in age (Wells and Hoisch, 2008). The model could be extended to the northern and southern CAB, where melting is generally early to middle Paleogene in age, if delamination migrated spatially through time or if there were separate delamination events. However, geophysical studies suggest that many parts of the northern and southern CAB have intact, ancient, cratonic (or peri-cratonic) mantle lithosphere preserved, which suggests delamination has not occurred (e.g., Li et al., 2007).

The subduction hypothesis suggests that the upwelling arm of corner flow (also called counterflow or induced mantle flow) in the mantle wedge above a subducting slab may steadily

heat up the base of the lithosphere and could eventually cause crustal melting (Armstrong, 1982; Farmer and DePaolo, 1983; Barton, 1990). A variation of this model was proposed for the Death Valley region and suggests that asthenospheric upwelling above steepened portions of the Farallon slab may have caused crustal melting (Lima et al., 2018). Some studies have suggested that thermal convection or other processes in (non-extending) back-arc regions may produce temperatures high-enough to cause crustal melting (Currie and Hyndman, 2006; Wolfram et al., 2019). But most studies indicate that corner-flow and normal subduction processes (including changes in slab dip) do not provide enough heat to cause (water-absent) crustal melting in the upper plate, particularly during periods of low-angle to flat-slab subduction when the upper mantle and lithosphere are cooled by the slab (English et al., 2003; Liu and Currie, 2016). The timing and progression direction of Farallon slab roll-back in the U.S. Cordillera is also at odds with the timing and progression direction of the CAB. Flare-up magmatism related to slab rollback is oldest in the northern and southern U.S. Cordillera and youngest in the central U.S. Cordillera (Humphreys, 1995), whereas the CAB is oldest in the central U.S. Cordillera and becomes younger to the north and south (Fig. 9). Nonetheless, individual parts of the CAB coincide with the timing of Farallon slab roll-back and have been interpreted to be related to mantle upwelling or mantle-derived magmatic intrusion (e.g., Konstantinou and Miller, 2015). Both the delamination and subduction hypotheses suggest that mantle processes are

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Both the delamination and subduction hypotheses suggest that mantle processes are required to produce temperatures high enough (> 800 °C) to cause biotite dehydration melting to explain the large volumes of CAB rocks (Wells and Hoisch, 2012; Barton, 1990). This is not supported by the zircon saturation temperatures (Fig. 8), assuming that those temperatures are representative of partial melting temperatures (see Section 5.2). The rarity of mantle-derived magmatic products in CAB locations is another argument against a significant role for the mantle

in the formation of the CAB (e.g., Wright and Wooden, 1991).

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1219

8. Conclusions

The North American Cordilleran Anatectic Belt (CAB) is a chain of Late Cretaceous to Eocene intrusive rocks and anatectic rocks produced by crustal melting that is exposed from southern British Columbia, Canada to northern Sonora, Mexico in the interior, or hinterland, of the North American Cordilleran orogenic system. The duration of melting at any given location was often protracted, lasting ~10 Myr, and characterized by repeated melt remobilization and reworking. The CAB rocks are generally leucocratic (SiO₂ > 70 wt. %), peraluminous (ASI > 1.0), contain igneous muscovite \pm garnet, have evolved radiogenic isotopic compositions $(^{87}\text{Sr}/^{86}\text{Sr}_i > 0.706)$, and have elevated (crustal-like) $\delta^{18}\text{O}$. The CAB was chiefly produced by partial melting of metasedimentary rocks (e.g., schist, greywacke) and has no little or no mantlederived component, including partial melting of basalt/amphibolite. Geochemically, the CAB rocks are consistent with muscovite dehydration melting and/or water-deficient melting, but not water-excess melting. Zircon saturation temperatures for the CAB cluster between 600-800 °C with an average of 724 ± 48 °C, which is too low for biotite or amphibole dehydration melting. CAB rocks were primarily emplaced as sills, dikes, laccoliths, or large sheeted complexes and lack extrusive equivalents. Late aplite and pegmatite dikes are common and suggest relatively hydrous melts, which is also consistent with muscovite dehydration melting or water-added melting. A small amount of free water during melting may be required by the relatively large melt volumes within the CAB, supporting water-deficient conditions. The source of this free water is unknown, but may have been in relict pore fluids, exsolved from magmas, produced by metamorphic reactions, or liberated by dehydration of the Farallon slab. Crystallization ages of

rocks in the CAB overlap with the timing of the Laramide orogeny and many of these rocks were emplaced during a period of low-angle to flat-slab subduction when the Farallon slab was located beneath the CAB.

There is a close spatial correlation between the CAB and the belt of Cordilleran metamorphic core complexes, and a large majority of the rocks in the CAB are found in the footwalls of core complexes. Only in a few locations, however, have CAB intrusive rocks been demonstrated to have originated from melting of the rocks (i.e., migmatite) exposed at the surface in the core complexes. An unanswered question in the CAB is whether the prevalence of crustal melting in core complexes is related to the core complexes themselves or is an artifact of core complexes exposing middle to lower crust, where the CAB magmas appear to have been commonly emplaced. In the northern CAB, the timing for core complex extension/exhumation and anatexis overlap, supporting a shared origin between the two and emphasizing the role of decompression melting. This overlap in ages is not observed in the central and southern CAB where core complex extension/exhumation is up to 50 Myr younger than crustal melting, suggesting that mechanisms other than decompression melting are required there.

The CAB formed in a region of previously thickened crust, interpreted as an orogenic plateau. Radiogenic heating and relaxation of isotherms following crustal thickening during the Sevier orogeny may explain crustal melting, particularly in the central CAB where horizontal shortening in the retroarc thrust belt is the greatest. Horizontal shortening during the Laramide orogeny was not large enough to significantly thicken the crust structurally. In addition, the oldest rocks in the CAB occur in the central CAB and are younger to the north and to the south. Melting associated with crustal thickening may not be applicable to the southern CAB because the Sevier thrust belt did not extend that far south and crustal shortening was limited.

A prominent role of delamination, mantle upwelling, or other mechanisms that increase mantle heat flux in producing the CAB is difficult to assess but appears unlikely. Most locations in the CAB do not contain mantle-derived, co-genetic igneous rocks and those that do have been interpreted to reflect processes other than crustal anatexis. Arguments that a component of elevated mantle heat flow is required to produce temperatures high enough to initiate biotite dehydration melting to account for large melt volumes are not supported by thermometry or geochemistry, and estimated melt volumes can best be reconciled with water-deficient melting.

Acknowledgements

Chapman acknowledges support from U.S. National Science Foundation grant EAR-1928312. Comments from three anonymous reviewers helped improved the manuscript.

References

Anderson, J.L., and Cullers, R.L., 1990, Middle to upper crustal plutonic construction of a
magmatic arc; An example from the Whipple Mountains metamorphic core complex, *in*,
Anderson, J.L., ed., The Nature and Origin of Cordilleran Magmatism: Geological
Society of America Memoir 174, p. 47-69.

Anderson, J.L., Barth, A.P. and Young, E.D., 1988, Mid-crustal Cretaceous roots of Cordilleran
metamorphic core complexes: Geology, v. 16, p. 366-369.

Anderson, T.H., Silver, L.T., and Salas, G.A., 1980, Distribution and U-Pb isotope ages of some lineated plutons, northwestern Mexico, *in*, Crittenden, M.D., Coney, P.J., and Davis, G.H., Cordilleran Metamorphic Core Complexes, Geological Society of America Memoir, v. 153, p. 269–283.

1288	Annen, C., Blundy, J.D., and Sparks, R.S.J., 2006, The genesis of intermediate and silicic
1289	magmas in deep crustal hot zones: Journal of Petrology, v. 47, p. 505-539.
1290	Applegate, J.D.R. and Hodges, K.V., 1995, Mesozoic and Cenozoic extension recorded by
1291	metamorphic rocks in the Funeral Mountains, California: Geological Society of America
1292	Bulletin, v. 107, p. 1063-1076.
1293	Applegate, J.D.R., Walker, J.D. and Hodges, K.V., 1992, Late Cretaceous extensional unroofing
1294	in the Funeral Mountains metamorphic core complex, California: Geology, v. 20, p. 519-
1295	522.
1296	Armstrong, R.L. and Ward, P., 1991, Evolving geographic patterns of Cenozoic magmatism in
1297	the North American Cordillera: The temporal and spatial association of magmatism and
1298	metamorphic core complexes: Journal of Geophysical Research: Solid Earth, v. 96, p.
1299	13201-13224.
1300	Armstrong, R.L., 1982, Cordilleran metamorphic core complexes-From Arizona to southern
1301	Canada: Annual Review of Earth and Planetary Sciences, v. 10, p. 129-154.
1302	Armstrong, R.L., 1988, Mesozoic and early Cenozoic magmatic evolution of the Canadian
1303	Cordillera, in, Clark, S.P., Burchfiel, B.C., and Suppe, J., eds., Processes in continental
1304	lithospheric deformation: Geological Society of America Special Paper, v. 218, p. 55-91.
1305	Arnold, A.H., 1986, Geologic implications of a geochemical study of three two-mica granites in
1306	Southern Arizona: University of Arizona, MS thesis.
1307	Asmerom, Y., Ikramuddin, M. and Kinart, K., 1988, Geochemistry of Late Cretaceous granitoids
1308	from northeastern, Washington: Implication for genesis of two-mica, Cordilleran
1309	granites: Geology, v. 16, p. 431-435.
1310	Banks, N.G., 1980, Geology of a zone of metamorphic core complexes in southeastern Arizona,

1311 in, Crittenden, M. D., Jr., Coney, P. J., and Davis, G. H., eds., Cordilleran metamorphic 1312 core complexes: Geological Society of America Memoir 153, p. 177-215. 1313 Barbarin, B., 1996, Genesis of the two main types of peraluminous granitoids: Geology, v. 24, p. 1314 295-298. 1315 Barker, D.S., 1987, Tertiary alkaline magmatism in Trans-Pecos Texas: Geological Society, 1316 London, Special Publications, v. 30, p. 415-431. 1317 Barnes, C.G., Burton, B.R., Burling, T.C., Wright, J.E. and Karlsson, H.R., 2001, Petrology and 1318 geochemistry of the late Eocene Harrison Pass pluton, Ruby Mountains core complex, 1319 northeastern Nevada: Journal of Petrology, v. 42, p. 901-929. 1320 Barth, A.P. and Wooden, J.L., 2006, Timing of magmatism following initial convergence at a 1321 passive margin, southwestern US Cordillera, and ages of lower crustal magma sources: 1322 Journal of Geology, v. 114, p. 231-245. 1323 Barton, M.D. and Trim, H.E., 1991, Late Cretaceous two-mica granites and lithophile-element 1324 mineralization in the Great Basin, in, Raines, G.L., Lisle, R.E., Schafer, R.W., and 1325 Wilkinson, W.H., eds., Geology and ore deposits of the Great Basin, p 529–538. 1326 Barton, M.D., 1987, Lithophile-element mineralization associated with Late Cretaceous two-1327 mica granites in the Great Basin; Geology, v. 15, p. 337-340. 1328 Barton, M.D., 1990, Cretaceous magmatism, metamorphism, and metallogeny in the east-central 1329 Great Basin. The nature and origin of Cordilleran magmatism: Geological Society of 1330 America Memoir, 174, p. 283-302. 1331 Barton, M.D., 1996, Granitic magmatism and metallogeny of southwestern North America: 1332 Transactions of the Royal Society of Edinburgh: Earth Sciences, v. 87, p. 261-280. 1333 Barton, M.D., 2000, Overview of the lithophile element-bearing magmatic-hydrothermal system

1334	at Birch Creek, White Mountains, California, in, Dilles, J.H., Barton, M.D., Johnson,
1335	D.A., Proffett, J.M., Einaudi, M.T., and Crafford, E.J., eds., Contrasting Styles of
1336	Intrusion Associated Hydrothermal Systems: Society of Economic Geologists Guide
1337	Book, v. 32, p. 9-26.
1338	Barton, M.D., Girardi, J.D., Kreiner, D.C., Seedorff, E., Zurcher, L., Dilles, J.H., Haxel, G.B.,
1339	Johnson, D.A., Steininger, R.C., and Pennell, W.M., 2011, Jurassic igneous-related
1340	metallogeny of southwestern North America: Great Basin Evolution and Metallogeny,
1341	Proceedings of the Geological Society of Nevada Symposium, p. 373-396.
1342	Bea, F. and Montero, P., 1999, Behavior of accessory phases and redistribution of Zr, REE, Y,
1343	Th, and U during metamorphism and partial melting of metapelites in the lower crust: an
1344	example from the Kinzigite Formation of Ivrea-Verbano, NW Italy: Geochimica et
1345	Cosmochimica Acta, v. 63, p. 1133-1153.
1346	Beard, J.S. and Lofgren, G.E., 1991, Dehydration melting and water-saturated melting of basaltic
1347	and andesitic greenstones and amphibolites at 1, 3, and 6. 9 kb: Journal of Petrology, v.
1348	32, p. 365-401.
1349	Bendick, R. and Baldwin, J., 2009, Dynamic models for metamorphic core complex formation
1350	and scaling: The role of unchannelized collapse of thickened continental crust:
1351	Tectonophysics, v. 477, p. 93-101.
1352	Best, M.G. and Brimhall, W.H., 1974, Late Cenozoic alkalic basaltic magmas in the western
1353	Colorado Plateaus and the Basin and Range transition zone, USA, and their bearing on
1354	mantle dynamics; Geological Society of America Bulletin, v. 85, p. 1677-1690.
1355	Best, M.G. and Christiansen, E.H., 1991, Limited extension during peak Tertiary volcanism,
1356	Great Basin of Nevada and Utah: Journal of Geophysical Research, Solid Earth, v. 96, p.

1357 13509-13528. 1358 Best, M.G., Barr, D.L., Christiansen, E.H., Gromme, S., Deino, A.L. and Tingey, D.G., 2009, 1359 The Great Basin Altiplano during the middle Cenozoic ignimbrite flareup: Insights from 1360 volcanic rocks: International Geology Review, v. 51, p. 589-633. 1361 Beyene, M.A., 2011, Mesozoic burial, Mesozoic and Cenozoic exhumation of the Funeral 1362 Mountains core complex, Death Valley, Southeastern California: University of Nevada 1363 Las Vegas, MS thesis. 1364 Boehnke, P., Watson, E.B., Trail, D., Harrison, T.M. and Schmitt, A.K., 2013, Zircon saturation re-revisited: Chemical Geology, v. 351, p. 324-334. 1365 1366 Boettcher, S.S., Mosher, S., and Tosdal, R.M., 2002, Structural and tectonic evolution of 1367 Mesozoic basement-involved fold nappes and thrust faults in the Dome Rock Mountains, 1368 Arizona, in, Barth, A., ed., Contributions to Crustal Evolution of the Southwestern United 1369 States: Boulder, Colorado, Geological Society of America Special Paper 365, p. 73–97. 1370 Borisov, A. and Aranovich, L., 2019, Zircon solubility in silicate melts: New experiments and 1371 probability of zircon crystallization in deeply evolved basic melts: Chemical Geology, v. 1372 510, p. 103-112. 1373 Brandon, A.D. and Lambert, R.S., 1993, Geochemical characterization of mid-Cretaceous 1374 granitoids of the Kootenay Arc in the southern Canadian Cordillera: Canadian Journal of 1375 Earth Sciences, v. 30, p. 1076-1090. 1376 Brandon, A.D. and Lambert, R.S., 1994, Crustal melting in the Cordilleran Interior: the mid-1377 Cretaceous White Creek batholith in the southern Canadian Cordillera: Journal of 1378 Petrology, v. 35, p. 239-269. 1379 Brandon, A.D. and Smith, A.D., 1994, Mesozoic granitoid magmatism in southeast British

1380	Columbia: implications for the origin of granifold belts in the North American Cordillera:
1381	Journal of Geophysical Research: Solid Earth, v. 99, p. 11879-11896.
1382	Breitsprecher, K., Thorkelson, D.J., Groome, W.G., and Dostal, J., 2003, Geochemical
1383	confirmation of the Kula-Farallon slab window beneath the Pacific Northwest in Eocene
1384	time: Geology, v. 31, p. 351-354.
1385	Brown, K.L., Hart, W.K. and Stuck, R.J., 2018, Temporal and geochemical signatures in
1386	granitoids of northwestern Nevada: Evidence for the continuity of the Mesozoic
1387	magmatic arc through the western Great Basin: Lithosphere, v. 10, p. 327-350.
1388	Bryant, B., and Wooden, J.L., 2008, Geology of the Northern Part of the Harcuvar Complex,
1389	West-Central Arizona: U.S. Geological Survey Professional Paper 1752, 52p.
1390	Burchfiel, B.C. and Davis, G.A., 1975, Nature and controls of Cordilleran orogenesis, western
1391	United States: Extensions of an earlier synthesis: American Journal of Science, v. 275, p.
1392	363-396.
1393	Burri, T., Berger, A., and Engi, M., 2005, Tertiary migmatites in the Central Alps: regional
1394	distribution, field relations, conditions of formation, and tectonic implications:
1395	Schweizerische Mineralogische und Petrographische Mitteilungen, v. 85, p. 215-232.
1396	Butcher, L.A., Mahan, K.H. and Allaz, J.M., 2017, Late Cretaceous crustal hydration in the
1397	Colorado Plateau, USA, from xenolith petrology and monazite geochronology:
1398	Lithosphere, v. 9, p. 561-578.
1399	Camilleri, P.A. and Chamberlain, K.R., 1997, Mesozoic tectonics and metamorphism in the
1400	Pequop Mountains and Wood Hills region, northeast Nevada: Implications for the
1401	architecture and evolution of the Sevier orogen: Geological Society of America Bulletin,
1402	v. 109, p. 74-94.

1403 Campbell-Stone, E., John, B.E., Foster, D.A., Geissman, J.W. and Livaccari, R.F., 2000, 1404 Mechanisms for accommodation of Miocene extension: Low-angle normal faulting, 1405 magmatism, and secondary breakaway faulting in the southern Sacramento Mountains, 1406 southeastern California: Tectonics, v. 19, p. 566-587. 1407 Carl, B.S., Miller, C.F., and Foster, D.A., 1991, Western Old Woman Mountains shear zone: 1408 Evidence for late ductile extension in the Cordilleran orogenic belt: Geology, v. 19, p. 893-896. 1409 1410 Carlson, D.H., Fleck, R., Moye, F.J., and Fox, K.F., 1991, Geology, geochemistry, and isotopic 1411 character of the Colville Igneous Complex, northeastern Washington: Journal of 1412 Geophysical Research: Solid Earth, v. 96, p. 13313-13333. 1413 Carter, T.J., Kohn, B.P., Foster, D.A., Gleadow, A.J. and Woodhead, J.D., 2006, Late-stage 1414 evolution of the Chemehuevi and Sacramento detachment faults from apatite (U-Th)/He 1415 thermochronometry—Evidence for mid-Miocene accelerated slip: Geological Society of 1416 America Bulletin, v. 118, p. 689-709. 1417 Cassel, E.J., Smith, M.E., and Jicha, B.R., 2018, The impact of slab rollback on earth's surface: 1418 uplift and extension in the hinterland of the North American Cordillera: Geophysical 1419 Research Letters, v. 45. 1420 Castro, A., 2013, Tonalite-granodiorite suites as cotectic systems: a review of experimental 1421 studies with applications to granitoid petrogenesis: Earth-Science Reviews, v. 124, p. 68-95. 1422 Castro, A., Douce, A.E.P., Corretgé, L.G., Jesús, D., El-Biad, M., and El-Hmidi, H., 1999, 1423 1424 Origin of peraluminous granites and granodiorites, Iberian massif, Spain: an experimental 1425 test of granite petrogenesis: Contributions to Mineralogy and Petrology, v. 135, p. 2551426 276. 1427 Cawthorn, R.G. and Brown, P.A., 1976, A model for the formation and crystallization of 1428 corundum-normative calc-alkaline magmas through amphibole fractionation: The Journal 1429 of Geology, v. 84, p. 467-476. 1430 Cecil, M.R., Rotberg, G.L., Ducea, M.N., Saleeby, J.B., and Gehrels, G.E., 2012, Magmatic 1431 growth and batholithic root development in the northern Sierra Nevada, California: 1432 Geosphere, v. 8, p. 592-606. 1433 Chapman, J.B., Dafov, M.N., Gehrels, G., Ducea, M.N., Valley, J.W. and Ishida, A., 2018, 1434 Lithospheric architecture and tectonic evolution of the southwestern US Cordillera: 1435 Constraints from zircon Hf and O isotopic data: Geological Society of America Bulletin, 1436 v. 130, p. 2031-2046. 1437 Chapman, J.B., Ducea, M.N., DeCelles, P.G. and Profeta, L., 2015, Tracking changes in crustal 1438 thickness during orogenic evolution with Sr/Y: An example from the North American 1439 Cordillera; Geology, v. 43, p. 919-922. 1440 Chapman, J.B., Greig, R. and Haxel, G.B., 2020, Geochemical evidence for an orogenic plateau 1441 in the southern US and northern Mexican Cordillera during the Laramide orogeny: 1442 Geology, v. 48, p. 164-168. 1443 Chappell, B.W. and White, A.J., 2001, Two contrasting granite types: 25 years later: Australian 1444 Journal of Earth Sciences, v. 48, p. 489-499. 1445 Chappell, B.W., Bryant, C.J. and Wyborn, D., 2012, Peraluminous I-type granites: Lithos, v. 1446 153, p. 142-153. Chappell, B.W., White, A.J.R., and Wyborn, D., 1987, The importance of residual source 1447 1448 material (restite) in granite petrogenesis: Journal of Petrology v. 28, p. 11–38.

- 1449 Chen, J.H. and Moore, J.G., 1982, Uranium-lead isotopic ages from the Sierra Nevada batholith,
- 1450 California: Journal of Geophysical Research: Solid Earth, v. 87, p. 4761-4784.
- 1451 Clark, C., Fitzsimons, I.C., Healy, D. and Harley, S.L., 2011, How does the continental crust get
- really hot?: Elements, v. 7, p. 235-240.
- 1453 Clarke, D.B., 2019, The origins of strongly peraluminous granitoid rocks: The Canadian
- 1454 Mineralogist, v. 57, p. 529-550.
- 1455 Clarke, G.L., Daczko, N.R., Klepeis, K.A. and Rushmer, T., 2005, Roles for fluid and/or melt
- advection in forming high-P mafic migmatites, Fiordland, New Zealand: Journal of
- 1457 Metamorphic Geology, v. 23, p. 557-567.
- 1458 Clemens, J.D. and Droop, G.T.R., 1998, Fluids, P–T paths and the fates of anatectic melts in the
- Earth's crust: Lithos, v. 44, p. 21-36.
- 1460 Clemens, J.D. and Stevens, G., 2012, What controls chemical variation in granitic magmas?:
- 1461 Lithos, v. 134–135, p. 317–329.
- 1462 Clemens, J.D. and Vielzeuf, D., 1987, Constraints on melting and magma production in the
- 1463 crust: Earth and Planetary Science Letters, v. 86, p. 287-306.
- 1464 Collins, W.J., 1996, Lachlan Fold Belt granitoids: products of three-component mixing:
- 1465 Transactions of the Royal Society of Edinburgh: Earth Sciences v. 87, p. 171–181.
- 1466 Collins, W.J., Huang, H.Q. and Jiang, X., 2016, Water-fluxed crustal melting produces
- 1467 Cordilleran batholiths: Geology, v. 44, p. 143-146.
- 1468 Coney, P.J. and Harms, T.A., 1984, Cordilleran metamorphic core complexes: Cenozoic
- extensional relics of Mesozoic compression: Geology, v. 12, p. 550-554.
- 1470 Coney, P.J. and Reynolds, S.J., 1977, Cordilleran Benioff zones: Nature, v. 270, p. 403-406.
- 1471 Connolly, J.A.D. and Petrini, K., 2002, An automated strategy for calculation of phase diagram

14/2	sections and retrieval of rock properties as a function of physical conditions: Journal of
1473	Metamorphic Geology, v. 20, p. 697-708.
1474	Connolly, J.A.D., 1990, Multivariable phase diagrams; an algorithm based on generalized
1475	thermodynamics: American Journal of Science, v. 290, p. 666-718.
1476	Connolly, J.A.D., 2005, Computation of phase equilibria by linear programming: A tool for
1477	geodynamic modeling and its application to subduction zone decarbonation: Earth and
1478	Planetary Science Letters, v. 236, p. 524-541.
1479	Conrad, W.K., Nicholls, I.A. and Wall, V.J., 1988, Water-saturated and-undersaturated melting
1480	of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin
1481	of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences:
1482	Journal of Petrology, v. 29, p. 765-803.
1483	Constenius, K.N., 1996, Late Paleogene extensional collapse of the Cordilleran foreland fold and
1484	thrust belt: Geological Society of America Bulletin, v. 108, p. 20-39.
1485	Constenius, K.N., Esser, R.P., and Layer, P.W., 2003, Extensional collapse of the Charleston-
1486	Nebo salient and its relationship to space-time variations in Cordilleran orogenic belt
1487	tectonism and continental stratigraphy, in, Raynolds, R.G. and Flores, R.M., eds.,
1488	Cenozoic Systems of the Rocky Mountain Region: SEPM Rocky Mountain Section, p.
1489	303-353.
1490	Cooper, F.J., Platt, J.P., Anczkiewicz, R. and Whitehouse, M.J., 2010, Footwall dip of a core
1491	complex detachment fault: Thermobarometric constraints from the northern Snake Range
1492	(Basin and Range, USA): Journal of Metamorphic Geology, v. 28, p. 997-1020.
1493	Cooper, J.R. and Silver, L.T., 1964, Geology and ore deposits of the Dragoon quadrangle,
1494	Cochise County, Arizona: U.S. Geological Survey Professional Paper, v. 416, p. 165-168.

1495	Copeland, P. and Condie, K.C., 1986, Geochemistry and tectonic setting of lower Proterozoic
1496	supracrustal rocks of the Pinal Schist, southeastern Arizona: Geological Society of
1497	America Bulletin, v. 97, p. 1512-1520.
1498	Crowley, J.L., Brown, R.L. and Parrish, R.R., 2001, Diachronous deformation and a strain
1499	gradient beneath the Selkirk allochthon, northern Monashee complex, southeastern
1500	Canadian Cordillera: Journal of Structural Geology, v. 23, p. 1103-1121.
1501	Crowley, J.L., Brown, R.L., Gervais, F. and Gibson, H.D., 2008, Assessing inheritance of zircon
1502	and monazite in granitic rocks from the Monashee Complex, Canadian Cordillera:
1503	Journal of Petrology, v. 49, p. 1915-1929.
1504	Cubley, J.F., Pattison, D.R., Tinkham, D.K., and Fanning, C.M., 2013, U-Pb geochronological
1505	constraints on the timing of episodic regional metamorphism and rapid high-T
1506	exhumation of the Grand Forks complex, British Columbia: Lithos, v. 156, p. 241-267.
1507	Currie, C.A. and Hyndman, R.D., 2006, The thermal structure of subduction zone back arcs:
1508	Journal of Geophysical Research: Solid Earth, v. 111.
1509	Davis, G.H., 1979, Laramide folding and faulting in southeastern Arizona: American Journal of
1510	Science, v. 279, p. 543-569.
1511	Davis, G.H., Spencer, J.E., and Gehrels, G.E., 2019, Field-trip guide to the Catalina-Rincon
1512	metamorphic core complex, Tucson, Arizona: Geologic Excursions in Southwestern
1513	North America, Geological Society of America Field Trip Guide, v. 55.
1514	DeCelles, P.G. and Coogan, J.C., 2006, Regional structure and kinematic history of the Sevier
1515	fold-and-thrust belt, central Utah: Geological Society of America Bulletin, v. 118, p. 841
1516	864.
1517	DeCelles, P.G., 2004, Late Jurassic to Eocene evolution of the Cordilleran thrust belt and

1518	foreland basin system, western USA: American Journal of Science, v. 304, p. 105-168.
1519	DePaolo, D.J., 1981, Trace element and isotopic effects of combined wallrock assimilation and
1520	fractional crystallization: Earth and Planetary Science Letters, v. 53, p. 189-202.
1521	Dewey, J.F., 1988, Extensional collapse of orogens: Tectonics, v. 7, p. 1123-1139.
1522	Dewitt, Ed, and Reynolds, S.J., 1990, Late Cretaceous plutonism and cooling in the Maria fold
1523	and thrust belt, west-central Arizona: Geological Society of America Abstracts with
1524	Programs, v. 22, n. 3, p. 18.
1525	Dickinson, W.R. and Snyder, W.S., 1978, Plate tectonics of the Laramide orogeny, in, Matthews
1526	V., ed., Laramide Folding Associated with Basement Block Faulting in the Western
1527	United States: Geological Society of America Memoir 151, p. 355-366.
1528	Dickinson, W.R., 2004, Evolution of the North American Cordillera: Annual Review of Earth
1529	and Planetary Sciences, v. 32, p. 13-45.
1530	Dickinson, W.R., 2006, Geotectonic evolution of the Great Basin: Geosphere, v. 2, p. 353-368.
1531	Dickinson, W.R., Kay, S.M., and Ramos, V.A., 2009, Anatomy and global context of the North
1532	American Cordillera. Backbone of the Americas: Shallow subduction, plateau uplift, and
1533	ridge and terrane collision: Geological Society of America Memoir, v. 204, p. 1-29.
1534	Doughty, P.T., and Chamberlain, K.R., 2007, Age of Paleoproterozoic basement and related
1535	rocks in the Clearwater complex, northern Idaho, U.S.A., in, Link, P.K., and Lewis, R.L.,
1536	eds., Proterozoic geology of western North America and Siberia: Society of Economic
1537	Paleontologists and Mineralogists Special Publication 86, p. 9–35.
1538	Droop, G.T.R. and Brodie, K.H., 2012, Anatectic melt volumes in the thermal aureole of the
1539	Etive Complex, Scotland: The roles of fluid-present and fluid-absent melting: Journal of
1540	Metamorphic Geology, v. 30, p. 843–864.

1541	Druschke, P., Hanson, A.D., Wells, M.L., Rasbury, T., Stockli, D.F. and Gehrels, G., 2009,
1542	Synconvergent surface-breaking normal faults of Late Cretaceous age within the Sevier
1543	hinterland, east-central Nevada: Geology, v. 37, p. 447-450.
1544	du Bray, E.A., Ressel, M.W., and Barnes, C.G., 2007, Geochemical database for intrusive rocks
1545	of north-central and northeast Nevada: U.S. Geological Survey Data Series 244.
1546	Dumitru, T.A., Gans, P.B., Foster, D.A. and Miller, E.L., 1991, Refrigeration of the western
1547	Cordilleran lithosphere during Laramide shallow-angle subduction: Geology, v. 19, p.
1548	1145-1148.
1549	Duncan, I.J., 1984, Structural evolution of the Thor-Odin gneiss dome: Tectonophysics, v. 101,
1550	p. 87-130.
1551	Economos, R.C., Barth, A.P., Wooden, J.L., Howard, K.A., and Wiegand, B.A., 2010,
1552	Comparing batholith-source connections for the Cadiz Valley Batholith and a deeper
1553	sheeted intrusive complex in the Mojave Desert, CA through whole rock and pre-
1554	magmatic zircon geochemistry: Abstract V51E-02, 2010 AGU Annual Fall Meeting, San
1555	Francisco, California.
1556	Egger, A.E., Dumitru, T.A., Miller, E.L., Savage, C.F., and Wooden, J.L., 2003, Timing and
1557	nature of Tertiary plutonism and extension in the Grouse Creek Mountains, Utah:
1558	International Geology Review, v. 45, p. 497-532.
1559	Elison, M.W., 1995, Causes and consequences of Jurassic magmatism in the northern Great
1560	Basin: Implications for tectonic development, in, Miller, D.M. and Busby, C., eds.,
1561	Jurassic Magmatism and Tectonics of the North American Cordillera, Geological Society
1562	of America Special Paper, v. 299, p. 249-265.
1563	England, P. and Houseman, G., 1989, Extension during continental convergence, with

1564	application to the Tibetan Plateau: Journal of Geophysical Research: Solid Earth, v. 94, p.
1565	17561-17579.
1566	England, P.C. and Thompson, A., 1984, Pressure-temperature-time paths of regional
1567	metamorphism I. Heat transfer during the evolution of regions of thickened continental
1568	crust: Journal of Petrology, v. 25, p. 894-928.
1569	England, P.C. and Thompson, A., 1986, Some thermal and tectonic models for crustal melting in
1570	continental collision zones: Geological Society, London, Special Publications, v. 19, p.
1571	83-94.
1572	English, J.M., Johnston, S.T., and Wang, K., 2003, Thermal modelling of the Laramide orogeny:
1573	testing the flat-slab subduction hypothesis: Earth and Planetary Science Letters, v. 214, p.
1574	619-632.
1575	Erdman, M.E., Lee, C.T.A., Levander, A., and Jiang, H., 2016, Role of arc magmatism and
1576	lower crustal foundering in controlling elevation history of the Nevadaplano and
1577	Colorado Plateau: A case study of pyroxenitic lower crust from central Arizona, USA:
1578	Earth and Planetary Science Letters, v. 439, p. 48-57.
1579	Evans, S.L., Styron, R.H., van Soest, M.C., Hodges, K.V. and Hanson, A.D., 2015, Zircon and
1580	apatite (U-Th)/He evidence for Paleogene and Neogene extension in the Southern Snake
1581	Range, Nevada, USA: Tectonics, v. 34, p. 2142-2164.
1582	Farmer, G.L. and DePaolo, D.J., 1983, Origin of Mesozoic and Tertiary granite in the western
1583	United States and implications for Pre-Mesozoic crustal structure: 1. Nd and Sr isotopic
1584	studies in the geocline of the Northern Great Basin: Journal of Geophysical Research:
1585	Solid Earth, v. 88, p. 3379-3401.
1586	Farmer, G.L. and DePaolo, D.L. 1984. Origin of Mesozoic and Tertiary granite in the western

1587	United States and implications for Pre-Mesozoic crustal structure: 2. Nd and Sr isotopic
1588	studies of unmineralized and Cu-and Mo-mineralized granite in the Precambrian Craton:
1589	Journal of Geophysical Research: Solid Earth, v. 89, p. 10141-10160.
1590	Farmer, G.L., Bailey, T., and Elkins-Tanton, L.T., 2008, Mantle source volumes and the origin
1591	of the mid-Tertiary ignimbrite flare-up in the southern Rocky Mountains, western US:
1592	Lithos, v. 102, p. 279-294.
1593	Fayon, A.K., Peacock, S.M., Stump, E. and Reynolds, S.J., 2000, Fission track analysis of the
1594	footwall of the Catalina detachment fault, Arizona: Tectonic denudation, magmatism, and
1595	erosion: Journal of Geophysical Research: Solid Earth, v. 105, p. 11047-11062.
1596	Ferguson, C.A., Johnson, B.J., Skotnicki, J.S., Maher, J.D., Spencer, J.E., Gilbert, W.G.,
1597	Richard, S.M., Youberg, A., Demsey, K.A. and House, P.K., 2003, Geologic Map of the
1598	Tortolita Mountains, Pinal and Pima Counties, Arizona: Arizona Geological Survey
1599	Digital Geologic Map DGM-26.
1600	Ferrari, L., López-Martínez, M., and Rosas-Elguera, J., 2002, Ignimbrite flare-up and
1601	deformation in the southern Sierra Madre Occidental, western Mexico: Implications for
1602	the late subduction history of the Farallon plate: Tectonics, v. 21.
1603	Fitz-Díaz, E., Lawton, T.F., Juárez-Arriaga, E. and Chávez-Cabello, G., 2018. The Cretaceous-
1604	Paleogene Mexican orogen: Structure, basin development, magmatism and tectonics:
1605	Earth-Science Reviews, v. 183, p. 56-84.
1606	Fitzgerald, P.G., Reynolds, S.J., Stump, E., Foster, D.A. and Gleadow, A.J.W., 1993,
1607	Thermochronologic evidence for timing of denudation and rate of crustal extension of the
1608	South Mountains metamorphic core complex and Sierra Estrella, Arizona: Nuclear
1609	Tracks and Radiation Measurements, v. 21, p. 555-563.

1610 Force, E.R., 1997, Geology and mineral resources of the Santa Catalina Mountains, Southeastern 1611 Arizona: a cross-sectional approach: Mineral Resource Science Monograph, v. 1., Center 1612 for Mineral Resources, University of Arizona, 135p. 1613 Fornash, K. F., Patchett, P. J., Gehrels, G. E., and Spencer, J.E., 2013, Evolution of granitoids in 1614 the Catalina metamorphic core complex, southeastern Arizona: U-Pb, Nd, and Hf isotopic 1615 constraints: Contributions to Mineralogy and Petrology, v. 165, p. 1295–1310. 1616 Foster, D.A. and Fanning, M.C., 1997, Geochronology of the northern Idaho batholith and the 1617 Bitterroot metamorphic core complex: Magmatism preceding and contemporaneous with 1618 extension: Geological Society of America Bulletin, v. 109, p. 379-394. 1619 Foster, D.A. and John, B.E., 1999, Quantifying tectonic exhumation in an extensional orogen 1620 with thermochronology: examples from the southern Basin and Range Province: 1621 Geological Society, London, Special Publications, v. 154, p. 343-364. 1622 Foster, D.A., Doughty, P.T., Kalakay, T.J., Fanning, C.M., Coyner, S., Grice, W.C., Vogl, J., 1623 Till, A.B., Roeske, S.M. and Sample, J.C., 2007, Kinematics and timing of exhumation of 1624 metamorphic core complexes along the Lewis and Clark fault zone, northern Rocky 1625 Mountains, USA, in, Till, A.B., ed., Exhumation associated with continental strike-slip 1626 fault systems: Geological Society of America Special Paper, v. 434, p. 207-232. 1627 Foster, D.A., Grice, W.C. and Kalakay, T.J., 2010, Extension of the Anaconda metamorphic core 1628 complex: 40Ar/39Ar thermochronology and implications for Eocene tectonics of the 1629 northern Rocky Mountains and the Boulder batholith: Lithosphere, v. 2, p. 232-246. 1630 Foster, D.A., Harrison, T.M. and Miller, C.F., 1989, Age, inheritance, and uplift history of the 1631 Old Woman-Piute batholith, California and implications for K-feldspar age spectra; The 1632 Journal of Geology, v. 97, p. 232-243.

1633	Foster, D.A., Harrison, T.M., Miller, C.F. and Howard, K.A., 1990, The 40Ar/39Ar
1634	thermochronology of the eastern Mojave Desert, California, and adjacent western
1635	Arizona with implications for the evolution of metamorphic core complexes: Journal of
1636	Geophysical Research: Solid Earth, v. 95, p. 20005-20024.
1637	Foster, D.A., Schafer, C., Fanning, C.M. and Hyndman, D.W., 2001, Relationships between
1638	crustal partial melting, plutonism, orogeny, and exhumation: Idaho-Bitterroot batholith:
1639	Tectonophysics, v. 342, p. 313-350.
1640	Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. and Frost, C.D., 2001, A
1641	geochemical classification for granitic rocks: Journal of Petrology, v. 42, p. 2033-2048.
1642	Fryxell, J.E., 1988, Geologic map and description of stratigraphy and structure of the west-
1643	central Grant Range, Nye County, Nevada: Geological Society of America Map and
1644	Chart Series MCH064, 16p.
1645	Fuentes, F., DeCelles, P.G. and Constenius, K.N., 2012, Regional structure and kinematic history
1646	of the Cordilleran fold-thrust belt in northwestern Montana, USA: Geosphere, v. 8, p.
1647	1104-1128.
1648	Gans, P.B. and Gentry, B.J., 2016, Dike emplacement, footwall rotation, and the transition from
1649	magmatic to tectonic extension in the Whipple Mountains metamorphic core complex,
1650	southeastern California: Tectonics, v. 35, p. 2564-2608.
1651	Gans, P.B., 1989, Synextensional magmatism in the Basin and Range province: A case study
1652	from the eastern Great Basin: Geological Society of America Special Ppaper, v. 233, 53p.
1653	Gao, P., Zheng, Y.F. and Zhao, Z.F., 2016, Experimental melts from crustal rocks: a
1654	lithochemical constraint on granite petrogenesis; Lithos, v. 266, p. 133-157.
1655	Gaschnig, R.M., Vervoort, J.D., Lewis, R.S. and Tikoff, B., 2011, Isotopic evolution of the Idaho

1656 batholith and Challis intrusive province, northern US Cordillera: Journal of Petrology, v. 1657 52, p. 2397-2429. 1658 Gaschnig, R.M., Vervoort, J.D., Lewis, R.S. and Tikoff, B., 2013, Probing for Proterozoic and 1659 Archean crust in the northern US Cordillera with inherited zircon from the Idaho 1660 batholith: Geological Society of America Bulletin, v. 125, p. 73-88. 1661 Gaschnig, R.M., Vervoort, J.D., Lewis, R.S., and McClelland, W.C., 2010, Migrating 1662 magmatism in the northern US Cordillera: in situ U–Pb geochronology of the Idaho 1663 batholith: Contributions to Mineralogy and Petrology, v. 159, p. 863-883. 1664 Gehrels, G., Rusmore, M., Woodsworth, G., Crawford, M., Andronicos, C., Hollister, L., 1665 Patchett, J., Ducea, M., Butler, R., Klepeis, K., and Davidson, C., 2009, U-Th-Pb 1666 geochronology of the Coast Mountains batholith in north-coastal British Columbia: 1667 Constraints on age and tectonic evolution: Geological Society of America Bulletin, v. 1668 121, p. 1341-1361. Genier, F., Bussy, F., Epard, J.L., and Baumgartner, L., 2008, Water-assisted migmatization of 1669 1670 metagraywackes in a Variscan shear zone, Aiguilles-Rouges massif, western Alps: 1671 Lithos, v. 102, p. 575–597. 1672 Gervais, F. and Brown, R.L., 2011, Testing modes of exhumation in collisional orogens: 1673 Synconvergent channel flow in the southeastern Canadian Cordillera: Lithosphere, v. 3, 1674 p. 55-75. 1675 Gervasoni, F., Klemme, S., Rocha-Júnior, E.R., and Berndt, J., 2016, Zircon saturation in silicate 1676 melts: a new and improved model for aluminous and alkaline melts: Contributions to 1677 Mineralogy and Petrology, v. 171, n. 21. 1678 Ghosh, D.K. 1995, U–Pb geochronology of Jurassic to early Tertiary granitic intrusives from the

1679 Nelson-Castlegar area, southeastern British Columbia, Canada: Canadian Journal of 1680 Earth Sciences, v. 32, p. 1668–1680. 1681 Giallorenzo, M.A., Wells, M.L., Yonkee, W.A., Stockli, D.F. and Wernicke, B.P., 2018, Timing 1682 of exhumation, Wheeler Pass thrust sheet, southern Nevada and California: Late Jurassic 1683 to middle Cretaceous evolution of the southern Sevier fold-and-thrust belt: Geological 1684 Society of America Bulletin, v. 130, p. 558-579. 1685 González-Becuar, E., Pérez-Segura, E., Vega-Granillo, R., Solari, L., González-León, C.M., 1686 Solé, J. and Martínez, M.L., 2017, Laramide to Miocene syn-extensional plutonism in the 1687 Puerta del Sol area, central Sonora, Mexico: Revista Mexicana de Ciencias Geológicas, v. 1688 34, p. 45-61. 1689 González-León, C.M., Solari, L., Solé, J., Ducea, M.N., Lawton, T.F., Bernal, J.P., Becuar, E.G., 1690 Gray, F., Martínez, M.L. and Santacruz, R.L., 2011, Stratigraphy, geochronology, and 1691 geochemistry of the Laramide magmatic arc in north-central Sonora, Mexico: Geosphere, 1692 v. 7, p. 1392-1418. 1693 Goodwin, L.B. and Haxel, G.B., 1990, Structural evolution of the Southern Baboquivari 1694 Mountains, south-central Arizona and north-central Sonora: Tectonics, v. 9, p. 1077-1095. 1695 1696 Gordon, S.M., Whitney, D.L., Teyssier, C., Grove, M. and Dunlap, W.J., 2008, Timescales of 1697 migmatization, melt crystallization, and cooling in a Cordilleran gneiss dome: Valhalla 1698 complex, southeastern British Columbia: Tectonics, v. 27. 1699 Gottardi, R., McAleer, R., Casale, G., Borel, M., Iriondo, A. and Jepson, G., 2020, Exhumation 1700 of the Coyote Mountains metamorphic core complex (Arizona): implications for orogenic 1701 collapse of the southern North American Cordillera: Tectonics, 2019TC006050.

1702 Gottlieb, E.S., 2017, Geologic insights from zircon inheritance, Ph.D. dissertation, Stanford 1703 University, 354p. Grice, W.C., 2006, Exhumation and cooling history of the Middle Eocene Anaconda 1704 1705 metamorphic core complex, western Montana: University of Florida, PhD Dissertation. 1706 Grijalva-Noriega, F.J., and Roldan-Quintana, J, 1998, An overview of the Cenozoic tectonic and 1707 magmatic evolution of Sonora, northwestern Mexico: Revista Mexicana de Ciencias 1708 Geológicas, v. 15, p.145-156. 1709 Guevara, V., 2012, Structural, thermochronological, and stratigraphic constraints on the 1710 evolution of the Clearwater metamorphic core complex, Idaho.; University of Montana, 1711 MS Thesis. 1712 Hallett, B.W. and Spear, F.S., 2014, The P–T history of anatectic pelites of the Northern East 1713 Humboldt Range, Nevada: Evidence for tectonic loading, decompression, and anatexis: 1714 Journal of Petrology, v. 55, p. 3-36. 1715 Hallett, B.W. and Spear, F.S., 2015, Monazite, zircon, and garnet growth in migmatitic pelites as 1716 a record of metamorphism and partial melting in the East Humboldt Range, Nevada:. 1717 American Mineralogist, v. 100, p. 951-972. 1718 Hamilton, W., 1987, Mesozoic geology and tectonics of the Big Maria Mountains region, 1719 southeastern California. Mesozoic rocks of southern Arizona and adjacent areas: Arizona 1720 Geological Society Digest, v. 18, p. 33-47. Haney, E.M., 2008, Pressure-temperature evolution of metapelites within the Anaconda 1721 1722 metamorphic core complex, southwestern Montana: University of Montana, M.S. thesis. 1723 Harris, N. and Massey, J., 1994, Decompression and anatexis of Himalayan metapelites: 1724 Tectonics, v. 13, p. 1537-1546.

1725 Harris, N., Massey, J. and Inger, S., 1993, The role of fluids in the formation of High Himalayan 1726 leucogranites: Geological Society, London, Special Publications, v. 74, p. 391-400. 1727 Harris, N.B.W. and Inger, S., 1992, Trace element modelling of pelite-derived granites: 1728 Contributions to Mineralogy and Petrology, v. 110, p. 46-56. 1729 Hawkesworth, C., Turner, S., Gallagher, K., Hunter, A., Bradshaw, T. and Rogers, N., 1995, 1730 Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range: 1731 Journal of Geophysical Research: Solid Earth, v. 100, p. 10271-10286. 1732 Haxel, G.B., Tosdal, R.M., May, D.J. and Wright, J.E., 1984, Latest Cretaceous and early 1733 Tertiary orogenesis in south-central Arizona: Thrust faulting, regional metamorphism, 1734 and granitic plutonism: Geological Society of America Bulletin, v. 95, p. 631-653. 1735 Hayama, Y., Shibata, K. and Takeda, H., 1984, K-Ar ages of the low-grade metamorphic rocks 1736 in the Altar massif, northwest Sonora, Mexico: Journal of the Geological Society of Japan, v. 90, p. 589-596. 1737 1738 Henry, C.D. and John, D.A., 2013, Magmatism, ash-flow tuffs, and calderas of the ignimbrite 1739 flareup in the western Nevada volcanic field, Great Basin, USA: Geosphere, v. 9, p. 951-1008. 1740 1741 Henry, C.D., McGrew, A.J., Colgan, J.P., Snoke, A.W., Brueseke, M.E., Lee, J., and Evans, J.P., 1742 2011, Timing, distribution, amount, and style of Cenozoic extension in the northern Great 1743 Basin. Geologic Field Trips to the Basin and Range, Rocky Mountains, Snake River 1744 Plain, and Terranes of the US Cordillera: Geological Society of America Field Guide, v. 1745 21, p. 27-66. Hinchey, A.M., and Carr, S.D., 2006, The S-type Ladybird leucogranite suite of southeastern 1746 1747 British Columbia: Geochemical and isotopic evidence for a genetic link with migmatite

1748	formation in the North American basement gneisses of the Monashee complex: Lithos, v
1749	90, p. 223-248
1750	Hinchey, A.M., Carr, S.D., McNeill, P.D., and Rayner, N., 2006, Paleocene-Eocene high-grade
1751	metamorphism, anatexis, and deformation in the Thor-Odin dome, Monashee complex,
1752	southeastern British Columbia: Canadian Journal of Earth Sciences, v. 43, p. 1341-1365
1753	Hodges, K.V. and Walker, J.D., 1990, Petrologic constraints on the unroofing history of the
1754	Funeral Mountain metamorphic core complex, California: Journal of Geophysical
1755	Research: Solid Earth, v. 95, p. 8437-8445.
1756	Hodges, K.V. and Walker, J.D., 1992, Extension in the Cretaceous Sevier orogen, North
1757	American Cordillera: Geological Society of America Bulletin, v. 104, p. 560-569.
1758	Hodges, K.V., Snoke, A.W. and Hurlow, H.A., 1992, Thermal evolution of a portion of the
1759	Sevier hinterland: the northern Ruby Mountains-East Humboldt Range and Wood Hills,
1760	northeastern Nevada: Tectonics, v. 11, p. 154-164.
1761	Hoisch, T.D. and Simpson, C., 1993, Rise and tilt of metamorphic rocks in the lower plate of a
1762	detachment fault in the Funeral Mountains, Death Valley, California: Journal of
1763	Geophysical Research: Solid Earth, v. 98, p. 6805-6827.
1764	Hoisch, T.D., 1987, Heat transport by fluids during Late Cretaceous regional metamorphism in
1765	the Big Maria Mountains, southeastern California: Geological Society of America
1766	Bulletin, v. 98, p. 549-553.
1767	Hoisch, T.D., Wells, M.L., Beyene, M.A., Styger, S. and Vervoort, J.D., 2014, Jurassic
1768	Barrovian metamorphism in a western US Cordilleran metamorphic core complex,
1769	Funeral Mountains, California: Geology, v. 42, p. 399-402.
1770	Holk, G.J. and Taylor Jr, H.P., 1997, ¹⁸ O/ ¹⁶ O homogenization of the middle crust during

1771 anatexis: The Thor-Odin metamorphic core complex, British Columbia: Geology, v. 25, 1772 p. 31-34. Holk, G.J. and Taylor Jr, H.P., 2000, Water as a petrologic catalyst driving ¹⁸O/¹⁶O 1773 1774 homogenization and anatexis of the middle crust in the metamorphic core complexes of 1775 British Columbia: International Geology Review, v. 42, p. 97-130. 1776 Holland, T.J.B. and Powell, R., 2011, An improved and extended internally consistent 1777 thermodynamic dataset for phases of petrological interest, involving a new equation of 1778 state for solids: Journal of Metamorphic Geology, v. 29, p. 333-383. 1779 Holm, D.K. and Dokka, R.K., 1991, Major late Miocene cooling of the middle crust associated 1780 with extensional orogenesis in the Funeral Mountains, California: Geophysical Research 1781 Letters, v. 18, p. 1775-1778. 1782 Holtz, F. and Johannes, W., 1991, Genesis of peraluminous granites I. Experimental 1783 investigation of melt compositions at 3 and 5 kb and various H2O activities: Journal of 1784 Petrology, v. 32, p. 935-958. 1785 Howard, K.A. and John, B.E., 1987, Crustal extension along a rooted system of imbricate low-1786 angle faults: Colorado River extensional corridor, California and Arizona: Geological 1787 Society, London, Special Publications, v. 28, p. 299-311. 1788 Howard, K.A., 1980, Metamorphic infrastructure in the northern Ruby Mountains, Nevada, in, 1789 Crittenden, M.D., Coney, P.J., and Davis, G.H., eds., Cordilleran metamorphic core 1790 complexes: Geological Society of America Memoir, v. 153, p. 335-347. 1791 Howard, K.A., 2002, Geologic Map of the Sheep Hole Mountains 30'x 60'quadrangle, San 1792 Bernardino and Riverside Counties, California: U.S. Geological Survey Geologic 1793 Investigations Series I-2344.

1794 Howard, K.A., Wooden, J.L., Barnes, C.G., Premo, W.R., Snoke, A.W. and Lee, S.Y., 2011, 1795 Episodic growth of a Late Cretaceous and Paleogene intrusive complex of pegmatitic 1796 leucogranite, Ruby Mountains core complex, Nevada, USA: Geosphere, v. 7, p. 1220-1797 1248. Humphreys, E., Hessler, E., Dueker, K., Farmer, G.L., Erslev, E. and Atwater, T., 2003, How 1798 1799 Laramide-age hydration of North American lithosphere by the Farallon slab controlled 1800 subsequent activity in the western United States: International Geology Review, v. 45, p. 1801 575-595. 1802 Humphreys, E.D., 1995, Post-Laramide removal of the Farallon slab, western United States: 1803 Geology, v. 23, p. 987-990. 1804 Hyndman, D.W. and Foster, D.A., 1988, The role of tonalites and mafic dikes in the generation 1805 of the Idaho batholith: The Journal of Geology, v. 96, p. 31-46. 1806 Hyndman, D.W., 1983. The Idaho Batholith and associated plutons, Idaho and western Montana, 1807 in, Roddick, J.A., ed., Circum-Pacific Plutonic Terranes: Geological Society of America, 1808 Memoir, v. 159, p. 213-240. 1809 Inger, S. and Harris, N., 1993, Geochemical constraints on leucogranite magmatism in the 1810 Langtang Valley, Nepal Himalaya: Journal of Petrology, v. 34, p. 345-368. 1811 Isachsen, C., Gehrels, G., Freguson, C., Skotnicki, S., Richard, S. M., and Spencer, J. E., 1998, 1812 U-Pb zircon dates from nine granitic rocks in central and western Arizona: Arizona 1813 Geological Survey Open-File Report 98, 35p. 1814 James, D.E., 1981, The combined use of oxygen and radiogenic isotopes as indicators of crustal 1815 contamination: Annual Review of Earth and Planetary Sciences, v. 9, p. 311-344. 1816 Johannes, W., Ehlers, C., Kriegsman, L.M., and Mengel, K., 2003, The link between migmatites 1817 and S-type granites in the Turku area, southern Finland: Lithos, v. 68, p. 69-90. 1818 Johannes, W., Holtz, F., 1996, Petrogenesis and Experimental Petrology of Granitic Rocks, 1819 Springer, 335p. 1820 John, B.E. and Mukasa, S.B., 1990, Footwall rocks to the Mid-Tertiary Chemehuevi Detachment 1821 Fault: A window into the middle crust in the Southern Cordillera: Journal of Geophysical 1822 Research: Solid Earth, v. 95, p. 463-485. 1823 John, B.E. and Wooden, J., 1990, Petrology and geochemistry of the metaluminous to 1824 peraluminous Chemehuevi Mountains Plutonic Suite, southeastern California. The Nature 1825 and Origin of Cordilleran Magmatism: Geological Society of America Memoir, v. 174, p. 1826 71-98. 1827 John, B.E., 1988, Structural reconstruction and zonation of a tilted mid-crustal magma chamber: 1828 The felsic Chemehuevi Mountains plutonic suite: Geology, v. 16, p. 613-617. 1829 Johnson, K.M., Lewis, R.S., Bennett, E.H. and Kiilsgaard, T.H., 1988, Cretaceous and Tertiary 1830 intrusive rocks of south-central Idaho. Guidebook to the geology of central and southern 1831 Idaho: Idaho Geological Survey Bulletin, v. 27, p. 55-86. 1832 Johnson, M. G., 1977, Geology and mineral deposits of Pershing County, Nevada: Nevada 1833 Bureau of Mines and Geology Bulletin, 89p. 1834 Jones, C.H., Mahan, K.H., Butcher, L.A., Levandowski, W.B. and Farmer, G.L., 2015, 1835 Continental uplift through crustal hydration: Geology, v. 43, p. 355-358. 1836 Jones, J.V., 1999, Deformational, magmatic, and metamorphic history of the central Ruby 1837 Mountains, Elko County, Nevada, M.S. thesis, University of Wyoming. 1838 Kapp, J.D.A., Miller, C.F. and Miller, J.S., 2002, Ireteba pluton, Eldorado Mountains, Nevada: 1839 Late, deep-source, peraluminous magmatism in the Cordilleran Interior: The Journal of

1840 geology, v. 110, p. 649-669. 1841 Keith, S.B., S.J. Reynolds, P.E. Damon, M. Shafiqullah, D.E. Livingston and P.D. Pushkar, 1842 1980, Evidence for multiple intrusion and deformation within the Santa Catalina Rincon-1843 Tortolita crystalline complex, southeastern Arizona, in, Crittenden, M.D., Coney, P.J., 1844 and Davis, G.H., eds., Cordilleran Metamorphic Core Complexes: Geological Society of 1845 America Memoir 153, p. 217-267. 1846 Kemp, A.I., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., 1847 Gray, C.M., and Whitehouse, M.J., 2007, Magmatic and crustal differentiation history of 1848 granitic rocks from Hf-O isotopes in zircon: Science, v. 315, p. 980-983. 1849 Ketcham, R.A., 1996, Thermal models of core-complex evolution in Arizona and New Guinea: 1850 Implications for ancient cooling paths and present-day heat flow: Tectonics, v. 15, p. 1851 933-951. 1852 King, E.M. and Valley, J.W., 2001, The source, magmatic contamination, and alteration of the 1853 Idaho batholith: Contributions to Mineralogy and Petrology, v. 142, p. 72-88. 1854 King, E.M., Valley, J.W., Stockli, D.F. and Wright, J.E., 2004, Oxygen isotope trends of granitic 1855 magmatism in the Great Basin: Location of the Precambrian craton boundary as reflected 1856 in zircons: Geological Society of America Bulletin, v. 116, p. 451-462. 1857 Kistler, R.W. and Anderson, J.L., 1990, Two different lithosphere types in the Sierra Nevada, 1858 California. The nature and origin of Cordilleran magmatism: Geological Society of 1859 America Memoir, v. 174, p. 271-281. Kistler, R.W. and Peterman, Z.E., 1973, Variations in Sr, Rb, K, Na, and initial Sr87/Sr86 in 1860 1861 Mesozoic granitic rocks and intruded wall rocks in central California: Geological Society 1862 of America Bulletin, v. 84, p. 3489-3512.

1863 Kistler, R.W., Ghent, E.D. and O'Neil, J.R., 1981, Petrogenesis of garnet two-mica granites in 1864 the Ruby Mountains, Nevada: Journal of Geophysical Research: Solid Earth, v. 86, p. 1865 10591-10606. 1866 Knapp, J.H. and Heizler, M.T., 1990, Thermal history of crystalline nappes of the Maria fold and 1867 thrust belt, west central Arizona: Journal of Geophysical Research: Solid Earth, v. 95, p. 1868 20049-20073. 1869 Kohn, M.J., 2014, Himalayan metamorphism and its tectonic implications. Annual Review of 1870 Earth and Planetary Sciences, v. 42, p. 381-419. 1871 Konstantinou, A. and Miller, E., 2015, Evidence for a long-lived accommodation/transfer zone 1872 beneath the Snake River Plain: A possible influence on Neogene magmatism?: Tectonics, 1873 v. 34, p. 2387-2398. 1874 Konstantinou, A., Strickland, A., Miller, E., Vervoort, J., Fisher, C.M., Wooden, J., and Valley, 1875 J., 2013, Synextensional magmatism leading to crustal flow in the Albion-Raft River-1876 Grouse Creek metamorphic core complex, northeastern Basin and Range: Tectonics, v. 1877 32, p. 1384-1403. 1878 Konstantinou, A., Strickland, A., Miller, E.L. and Wooden, J.P., 2012, Multistage Cenozoic 1879 extension of the Albion-Raft River-Grouse Creek metamorphic core complex: 1880 Geochronologic and stratigraphic constraints: Geosphere, v. 8, p. 1429-1466. Kruckenberg, S.C., Whitney, D.L., Teyssier, C., Fanning, C.M. and Dunlap, W.J., 2008, 1881 1882 Paleocene-Eocene migmatite crystallization, extension, and exhumation in the hinterland 1883 of the northern Cordillera: Okanogan dome, Washington, USA: Geological Society of 1884 America Bulletin, v. 120, p. 912-929. 1885 Laberge, J.D. and Pattison, D.R.M., 2007, Geology of the western margin of the Grand Forks

1886 complex, southern British Columbia: high-grade Cretaceous metamorphism followed by 1887 early Tertiary extension on the Granby fault: Canadian Journal of Earth Sciences, v. 44, 1888 p. 199-228. 1889 Lang, J.R. and Titley, S.R., 1998, Isotopic and geochemical characteristics of Laramide 1890 magmatic systems in Arizona and implications for the genesis of porphyry copper 1891 deposits: Economic Geology, v. 93, p. 138-170. 1892 Le Breton, N. and Thompson, A.B., 1988, Fluid-absent (dehydration) melting of biotite in 1893 metapelites in the early stages of crustal anatexis: Contributions to Mineralogy and 1894 Petrology, v. 99, p. 226-237. 1895 Le Fort, P., Cuney, M., Deniel, C., France-Lanord, C., Sheppard, S.M.F., Upreti, B.N., and 1896 Vidal, P., 1987, Crustal generation of the Himalayan leucogranites: Tectonophysics, v. 1897 134, p. 39-57. 1898 Leclair, A.D., Parrish, R.R., and Archibald, D.A. 1993, Evidence for Cretaceous deformation in 1899 the Kootenay Arc on U-Pb and 40Ar/39Ar dating, southeastern British Columbia. 1900 Current Research, Part A: Geological Survey of Canada, Paper 93-1A, p. 207–220. 1901 Lederer, G.W., Cottle, J.M., Jessup, M.J., Langille, J.M. and Ahmad, T., 2013, Timescales of 1902 partial melting in the Himalayan middle crust: insight from the Leo Pargil dome, 1903 northwest India: Contributions to Mineralogy and Petrology, v. 166, p. 1415-1441. 1904 Lee, D. E., Stacey, J. S. D., and Fisher, L., 1986, Muscovite phenocrystic two-mica granites of 1905 NE Nevada are Late Cretaceous in age, in Shorter contributions to isotope research: U.S. 1906 Geological Survey Bulletin 1622, p. 31–39. 1907 Lee, D.E. and Christiansen, E.H., 1983, The granite problem as exposed in the southern Snake 1908 Range, Nevada: Contributions to Mineralogy and Petrology, v. 83, p. 99-116.

1909 Lee, D.E., and Marvin, R.F., 1981, Markedly discordant K-Ar ages for coexisting biotite and 1910 muscovite from a two-mica granite in the Toano Range, Elko County, Nevada: 1911 Isochron/West, no. 32, p. 19. 1912 Lee, D.E., Kistler, R.W., Friedman, I. and Van Loenen, R.E., 1981, Two-mica granites of 1913 northeastern Nevada: Journal of Geophysical Research: Solid Earth, v. 86, p. 10607-1914 10616. 1915 Lee, J. and Sutter, J.F., 1991, Incremental 40Ar/39Ar thermochronology of mylonitic rocks from 1916 the northern Snake Range, Nevada: Tectonics, v. 10, p. 77-100. 1917 Lee, J., Blackburn, T. and Johnston, S., 2017, Timing of mid-crustal ductile extension in the 1918 northern Snake Range metamorphic core complex, Nevada: Evidence from U/Pb zircon 1919 ages: Geosphere, v. 13, p. 439-459. 1920 Lee, S.Y., Barnes, C.G., Snoke, A.W., Howard, K.A. and Frost, C.D., 2003, Petrogenesis of 1921 Mesozoic, peraluminous granites in the Lamoille Canyon area, Ruby Mountains, Nevada, 1922 USA: Journal of Petrology, v. 44, p. 713-732. 1923 Levandowski, W., Jones, C.H., Butcher, L.A. and Mahan, K.H., 2018, Lithospheric density 1924 models reveal evidence for Cenozoic uplift of the Colorado Plateau and Great Plains by 1925 lower-crustal hydration: Geosphere, v. 14, p. 1150-1164. 1926 Leveille, R.A., and Stegen, R.J., 2012, The southwestern North America porphyry copper 1927 province, in, Hedenquist, J.W., Harris, M.O., and Camus, F., eds., Geology and Genesis 1928 of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe: 1929 Society of Economic Geologists Special Publication 16, p. 361–401. 1930 Li, X., Yuan, X., and Kind, R., 2007, The lithosphere-asthenosphere boundary beneath the

western United States: Geophysical Journal International, v. 170, p. 700-710.

1931

1932 Lima, R.D., Prior, M.G., Stockli, D.F. and Hayman, N.W., 2018, Protracted heating of the 1933 orogenic crust in Death Valley, California, USA: Geology, v. 46, p. 315-318. Liu, S. and Currie, C.A., 2016, Farallon plate dynamics prior to the Laramide orogeny: 1934 1935 Numerical models of flat subduction: Tectonophysics, v. 666, p. 33-47. 1936 Long, S.P. and Kohn, M.J., 2020, Distributed ductile thinning during thrust emplacement: A 1937 commonly overlooked exhumation mechanism: Geology, v. 48, p. 368-373. 1938 Long, S.P. and Soignard, E., 2016, Shallow-crustal metamorphism during Late Cretaceous 1939 anatexis in the Sevier hinterland plateau: Peak temperature conditions from the Grant 1940 Range, eastern Nevada, USA: Lithosphere, v. 8, p. 150-164. 1941 Long, S.P., Thomson, S.N., Reiners, P.W. and Di Fiori, R.V., 2015, Synorogenic extension 1942 localized by upper-crustal thickening: An example from the Late Cretaceous 1943 Nevadaplano: Geology, v. 43, p. 351-354. 1944 Lund Snee, J.E., Miller, E.L., Grove, M., Hourigan, J.K., and Konstantinou, A., 2016, Cenozoic 1945 paleogeographic evolution of the Elko Basin and surrounding region, northeast Nevada: 1946 Geosphere, v. 12, p. 464-500. 1947 Lund, K., Beard, S.L., and Colgan, J.P., 2014, Shrimp U-Pb dating of zircon reveals Oligocene, 1948 Late Cretaceous, and Late Jurassic ages in Troy granite, east-central Nevada: Geological 1949 Society of America Abstracts with Programs, v. 46, no. 5, p. 30. 1950 Luth, W.C., Jahns, R.H., and Tuttle, O.F., 1964, The granite system at pressures 4–10 kilobars: Journal of Geophysical Research, v. 69, p. 759–773. 1951 1952 MacCready, T., Snoke, A.W., Wright, J.E. and Howard, K.A., 1997, Mid-crustal flow during 1953 Tertiary extension in the Ruby Mountains core complex, Nevada: Geological Society of 1954 America Bulletin, v. 109, p. 1576-1594.

1955 Mahood, G.A., Nibler, G.E. and Halliday, A.N., 1996, Zoning patterns and petrologic processes 1956 in peraluminous magma chambers: Hall Canyon pluton, Panamint Mountains, California: Geological Society of America Bulletin, v. 108, p. 437-453. 1957 1958 Mallery, C., Barth, A., Roldan-Quintana, J., Haxel, G., Wooden, J., and Jacobson, C., 2018, A 1959 geochemical model of the origin of the Pan Tak Granite, the granite of Presumido Peak, 1960 and the granite of Sierra San Juan during the Laramide orogeny, southern Arizona and 1961 northern Sonora: Geological Society of America Annual Meeting, no. 315. 1962 Marvin, R.F., Zartman, R.E., Obradovich, J.D., and Harrison, J.E., 1984, Geochronometric and 1963 lead isotope data on samples from the Wallace 1 degrees by 2 degrees Quadrangle, 1964 Montana and Idaho: United States Geological Survey Miscellaneous Field Studies Map, 1965 MF-1354-G. 1966 Mattinson, C.G., Colgan, J.P., Metcalf, J.R., Miller, E.L. and Wooden, J.L., 2007, Late 1967 Cretaceous to Paleocene metamorphism and magmatism in the Funeral Mountains 1968 metamorphic core complex, Death Valley, California, in, Cloos, M., Carlson, W.D., 1969 Gilbert, M.C., Liou, J.G., and Sorenson, S.S., eds., Convergent margin terranes and 1970 associated regions: a tribute to W.G. Ernst: Geological Society of America Special Paper, 1971 v. 419, p. 205-223. 1972 May, D.J. and Haxel, G., 1980, Reconnaissance bedrock geologic map of the Sells quadrangle. 1973 Pima County, Arizona: US Geological Survey Miscellaneous Field Studies Map MF-1974 1166, scale, 1:62,500. 1975 McFarlane, D.N., 1981, Oreana tungsten-bearing pegmatite and related Rocky Canyon stock, 1976 Pershing County, Nevada: University of Nevada, Reno, MS thesis. 1977 McGrew, A.J. and Snee, L.W., 1994, 40Ar/39Ar thermochronologic constraints on the

1978 tectonothermal evolution of the northern East Humboldt Range metamorphic core 1979 complex, Nevada: Tectonophysics, v. 238, p. 425-450. 1980 McGrew, A.J., Peters, M.T., and Wright, J.E., 2000, Thermobarometric constraints on the 1981 tectonothermal evolution of the East Humboldt Range metamorphic core complex, 1982 Nevada: Geological Society of America Bulletin, v. 112, p. 45-60. 1983 Meijer, A., 2014, The Pinal Schist of southern Arizona: A Paleoproterozoic forearc complex 1984 with evidence of spreading ridge-trench interaction at ca. 1.65 Ga and a Proterozoic arc 1985 obduction event: Geological Society of America Bulletin, v. 126, p. 1145-1163. 1986 Miller, C.F. and Barton, M.D., 1990, Phanerozoic plutonism in the Cordilleran interior, USA, in 1987 Kay, S.M. and Rapela, C.W., eds., Plutonism from Antarctica to Alaska: Geological 1988 Society of America Special Paper, v. 241, p. 213-231. 1989 Miller, C.F. and Bradfish, L.J., 1980, An inner Cordilleran belt of muscovite-bearing plutons: 1990 Geology, v. 8, p. 412-416. 1991 Miller, C.F. and Wooden, J.L., 1994, Anatexis, hybridization and the modification of ancient 1992 crust: Mesozoic plutonism in the Old Woman Mountains area, California: Lithos, v. 32, 1993 p. 111-133. 1994 Miller, C.F., 1985, Are strongly peraluminous magmas derived from pelitic sedimentary 1995 sources?: The Journal of Geology, v. 93, p. 673-689. 1996 Miller, C.F., McDowell, S.M. and Mapes, R.W., 2003, Hot and cold granites? Implications of 1997 zircon saturation temperatures and preservation of inheritance: Geology, v. 31, p. 529-1998 532. 1999 Miller, C.F., Stoddard, E.F., Bradfish, L.J., and Dollase, W.A., 1981, Composition of plutonic 2000 muscovite: Genetic implications: Canadian Mineralogist, v. 19, p. 25–34.

2001 Miller, C.F., Wooden, J.L., Bennett, V.C., Wright, J.E., Solomon, G.C., and Hurst, R.W., 1990b, 2002 Petrogenesis of the composite peraluminous-metaluminous Old Woman-Piute range 2003 batholith, southeastern California: isotopic constraints, in, Anderson, J.L., ed., The 2004 Nature and Origin of Cordilleran Magmatism: Geological Society of America Memoir, v. 2005 174, p. 99-109. 2006 Miller, D.M., Hoisch, T.D. and Busby, C., 1995, Jurassic tectonics of northeastern Nevada and 2007 northwestern Utah from the perspective of barometric studies, in, Miller, D.M. and 2008 Busby, C., eds., Jurassic Magmatism and Tectonics of the North American Cordillera, 2009 Geological Society of America Special Paper, v. 299, p. 267-294. 2010 Miller, D.M., Nakata, J.K. and Glick, L.L., 1990, K-Ar ages of Jurassic to Tertiary plutonic and 2011 metamorphic rocks, northwestern Utah and northeastern Nevada: U.S. Geological Survey 2012 Bulletin, no. 1906. 2013 Miller, E.L. and Gans, P.B., 1989, Cretaceous crustal structure and metamorphism in the 2014 hinterland of the Sevier thrust belt, western US Cordillera: Geology, v. 17, p. 59-62. 2015 Miller, E.L., Dumitru, T.A., Brown, R.W. and Gans, P.B., 1999, Rapid Miocene slip on the 2016 Snake Range-Deep Creek range fault system, east-central Nevada: Geological Society of 2017 America Bulletin, v. 111, p. 886-905. 2018 Miller, E.L., Konstantinou, A., and Strickland, A., 2012, Comment on Geodynamics of 2019 synconvergent extension and tectonic mode switching: Constraints from the Sevier-2020 Laramide orogen by Michael L. Wells et al.: Tectonics, v. 31, 3p. 2021 Miller, F.K., Clark, L.D. and Engels, J.C., 1975, Geology of the Chewelah-Loon Lake area, 2022 Stevens and Spokane Counties, Washington: U.S. Geological Survey Professional Paper 2023 806, 50p.

2024 Miller, J.S., Glazner, A.F. and Crowe, D.E., 1996, Muscovite-garnet granites in the Mojave 2025 Desert: Relation to crustal structure of the Cretaceous arc: Geology, v. 24, p. 335-338. 2026 Miller, J.S., Glazner, A.F., Farmer, G.L., Suayah, I.B. and Keith, L.A., 2000, A Sr, Nd, and Pb 2027 isotopic study of mantle domains and crustal structure from Miocene volcanic rocks in 2028 the Mojave Desert, California: Geological Society of America Bulletin, v. 112, p. 1264-2029 1279. 2030 Miller, M.G. and Friedman, R.M., 1999, Early Tertiary magmatism and probable Mesozoic 2031 fabrics in the Black Mountains, Death Valley, California: Geology, v. 27, p. 19-22. 2032 Milliard, A.K., Ressel, M.W., Henry, C.D., Ricks, C., and Loptien, G., 2015, Spatial and 2033 temporal constraints on Carlin-type gold mineralization at the Pequop Mountains 2034 footwall to the Ruby Mountain-East Humboldt metamorphic core complex, in, Pennell, 2035 W.M. and Garside, L.J., New Concepts and Discoveries: Geological Society of Nevada 2036 Symposium, v. 1, p. 895-923. 2037 Misch, P. and Hazzard, J.C., 1962, Stratigraphy and metamorphism of Late Precambrian rocks in 2038 central northeastern Nevada and adjacent Utah: AAPG Bulletin, v. 46, p. 289-343. 2039 Molnar, P., England, P. and Martinod, J., 1993, Mantle dynamics, uplift of the Tibetan Plateau, 2040 and the Indian monsoon: Reviews of Geophysics, v. 31, p. 357-396. 2041 Monger, J.W.H., Price, R.A., and Tempelman-Kluit, D.J., 1982, Tectonic accretion and the 2042 origin of the two major metamorphic and plutonic welts in the Canadian Cordillera: 2043 Geology, v. 10, p. 70-75. 2044 Moye, F.J., Hackett, W.R., Blakley, J.D., and Snider, L.G., 1988, Regional geologic setting and 2045 volcanic stratigraphy of the Challis volcanic field, central Idaho. Guidebook to the 2046 geology of central and southern Idaho: Idaho Geological Survey Bulletin, v. 27, p. 87-97.

2047 Moynihan, D.P. and Pattison, D.R.M., 2013, Barrovian metamorphism in the central Kootenay 2048 Arc, British Columbia: petrology and isograd geometry: Canadian Journal of Earth 2049 Sciences, v. 50, p. 769-794. 2050 Nabelek, P.I., 2019, Petrogenesis of leucogranites in collisional orogens: Geological Society, 2051 London, Special Publications, v. 491, p. 179-207. 2052 Naney, M. T. 1983, Phase equilibria of rock-forming ferromagnesian silicates in granitic 2053 systems: American Journal of Science, v. 283, p. 993–1033. 2054 Nelson, J.L., Colpron, M. and Israel, S., 2013, The cordillera of British Columbia, Yukon, and 2055 Alaska: tectonics and metallogeny, in, Colpron, M., Bissig, T., Rusk, B.G., and 2056 Thompson, J.F.H., eds., Tectonics, Metallogeny, and Discovery: The North American 2057 Cordillera and Similar Accretionary Settings: Society of Economic Geologists Special 2058 Publication, v. 17, p. 53-109. 2059 Norlander, B.H., Whitney, D.L., Teyssier, C., and Vanderhaeghe, O. 2002, Partial melting and 2060 decompression of the Thor-Odin Dome, Shuswap metamorphic core complex, Canadian 2061 Cordillera: Lithos, v. 61, p. 103-125. 2062 Nourse, J.A., Anderson, T.H. and Silver, L.T., 1994, Tertiary metamorphic core complexes in 2063 Sonora, northwestern Mexico: Tectonics, v. 13, p. 1161-1182. 2064 Nourse, J.A., Jacques-Ayala, C., González-León, C.M. and Roldan-Quintana, J., 1995, Jurassic-2065 Cretaceous paleogeography of the Magdalena region, northern Sonora, and its influence 2066 on the positioning of Tertiary metamorphic core complexes, in, Jacques-Ayala, C., Gonzalez-Leon, C.M., and Roldan-Quintana, J., eds., Studies on the Mesozoic of Sonora 2067 2068 and adjacent areas: Geological Society of America Special Paper, v. 301, p. 59-78. 2069 O'Neill, J.M., Lonn, J.D., Lageson, D.R., and Kunk, M.J., 2004, Early Tertiary Anaconda

2070 metamorphic core complex, southwestern Montana: Canadian Journal of Earth Sciences, 2071 v. 41, p. 63-72. 2072 Parker, D.F., Ren, M., Adams, D.T., Tsai, H. and Long, L.E., 2012, Mid-Tertiary magmatism in 2073 western Big Bend National Park, Texas, USA: Evolution of basaltic source regions and 2074 generation of peralkaline rhyolite: Lithos, v. 144, p. 161-176. 2075 Parrish, R.R., Carr, S.D. and Parkinson, D.L., 1988, Eocene extensional tectonics and 2076 geochronology of the southern Omineca Belt, British Columbia and Washington: Tectonics, v. 7, p. 181-212. 2077 2078 Patiño Douce, A.E., 2005, Vapor-absent melting of tonalite at 15–32 kbar: Journal of Petrology, 2079 v. 46, p. 275–290. 2080 Patiño-Douce, A.E. and Beard, J.S., 1995, Dehydration-melting of biotite gneiss and quartz 2081 amphibolite from 3 to 15 kbar: Journal of Petrology, v. 36, p. 707-738. 2082 Patiño-Douce, A.E. and Beard, J.S., 1996, Effects of P, f(O2) and Mg/Fe ratio on dehydration 2083 melting of model metagreywackes: Journal of Petrology, v. 37, p. 999-1024. 2084 Patiño-Douce, A.E. and Harris, N., 1998, Experimental constraints on Himalayan anatexis: 2085 Journal of Petrology, v. 39, p. 689-710. 2086 Patiño-Douce, A.E., 1996, Effects of pressure and H2O content on the compositions of primary 2087 crustal melts: Earth and Environmental Science Transactions of the Royal Society of 2088 Edinburgh, v. 87, p. 11-21. 2089 Patiño-Douce, A.E., 1999, What do experiments tell us about the relative contributions of crust 2090 and mantle to the origin of granitic magmas?: Geological Society, London, Special 2091 Publication, v. 168, p. 55-75. 2092 Patiño-Douce, A.E., Humphreys, E.D. and Johnston, A.D., 1990, Anatexis and metamorphism in

2093 tectonically thickened continental crust exemplified by the Sevier hinterland, western 2094 North America: Earth and Planetary Science Letters, v. 97, p. 290-315. 2095 Pease, V., Foster, D., Wooden, J., O'Sullivan, P., Argent, J. and Fanning, C., 1999, The Northern 2096 Sacramento Mountains, southwest United States. Part II: Exhumation history and 2097 detachment faulting: Geological Society, London, Special Publications, v. 164, p. 199-2098 238. 2099 Peterman, E.M., Hourigan, J.K. and Grove, M., 2014, Experimental and geologic evaluation of monazite (U-Th)/He thermochronometry: Catnip Sill, Catalina Core Complex, Tucson, 2100 2101 AZ: Earth and Planetary Science Letters, v. 403, p. 48-55. 2102 Peto, P., 1976, An experimental investigation of melting reactions involving muscovite and 2103 paragonite in the silica-undersaturated portion of the system K2O-Na2O-Al2O3-SiO2-2104 H2O: Progress in Experimental Petrology, v. 3, p. 41-45. 2105 Porter, R., Hoisch, T. and Holt, W.E., 2017, The role of lower-crustal hydration in the tectonic 2106 evolution of the Colorado Plateau: Tectonophysics, v. 712, p. 221-231. 2107 Premo, W.R., Castiñeiras, P. and Wooden, J.L., 2008, SHRIMP-RG U-Pb isotopic systematics of 2108 zircon from the Angel Lake orthogneiss, East Humboldt Range, Nevada: Is this really 2109 Archean crust?: Geosphere, v. 4, p. 963-975. 2110 Prince, C., Harris, N. and Vance, D., 2001, Fluid-enhanced melting during prograde 2111 metamorphism: Journal of the Geological Society, v. 158, p. 233-241. 2112 Prior, M.G., Stockli, D.F. and Singleton, J.S., 2016, Miocene slip history of the Eagle Eye 2113 detachment fault, Harquahala Mountains metamorphic core complex, west-central 2114 Arizona: Tectonics, v. 35, p. 1913-1934. 2115 Rapp, R.P. and Watson, E.B., 1995, Dehydration melting of metabasalt at 8–32 kbar:

2116 implications for continental growth and crust-mantle recycling: Journal of Petrology, v. 2117 36, p. 891-931. 2118 Rapp, R.P., Watson, E.B. and Miller, C.F., 1991, Partial melting of amphibolite/eclogite and the 2119 origin of Archean trondhjemites and tonalites: Precambrian Research, v. 51, p. 1-25. 2120 Rehrig, W.A. and Reynolds, S., 1980, Geologic and geochronologic reconnaissance of a 2121 northwest-trending zone of metamorphic core complexes in southern and western 2122 Arizona: Geological Society of America Memoir, v. 153, p. 131-157. Rey, P.F., Teyssier, C. and Whitney, D.L., 2009, Extension rates, crustal melting, and core 2123 2124 complex dynamics: Geology, v. 37, p. 391-394. 2125 Reynolds, S. J., Wood, Steven E., and Pearthree, Philip A., Field, John J., 2002, Geologic Map of 2126 the White Tank Mountains, Central Arizona: Arizona Geological Survey Digital 2127 Geologic Map DGM-14, map scale 1:24,000. 2128 Richard, S.M., Fryxell, J.E. and Sutter, J.F., 1990, Tertiary structure and thermal history of the 2129 Harquahala and Buckskin Mountains, west central Arizona: Implications for denudation 2130 by a major detachment fault system: Journal of Geophysical Research: Solid Earth, v. 95, 2131 p. 19973-19987. 2132 Richard, S.M., Spencer, J.E., Ferguson, C.A., and Pearthree, P.A., 1999, Geologic map of the 2133 Picacho Mountains and Picacho Peak, Pinal County, southern Arizona. Arizona 2134 Geological Survey Open File Report, OFR-99-18, 43p. 2135 Rivers, T., Ketchum, J., Indares, A., and Hynes, A., 2002, The high pressure belt in the Grenville Province: architecture, timing and exhumation: Canadian Journal of Earth Sciences, v. 2136 2137 39, p. 867–893. 2138 Roldán-Quintana, J., 1991, Geology and chemical composition of the Jaralito and Aconchi

2139	batholiths in east-central Sonora, México, in, Perez-Segura, E. and Jacques-Ayala, C.,
2140	eds., Studies of Sonoran Geology: Geological Society of America Special Paper, v. 254,
2141	p. 69-80.
2142	Rosenberg, C.L. and Handy, M.R., 2005, Experimental deformation of partially melted granite
2143	revisited: implications for the continental crust: Journal of metamorphic Geology, v. 23,
2144	p. 19-28.
2145	Rudnick, R.L., 1992, Restites, Eu anomalies and the lower continental crust: Geochimica et
2146	Cosmochimica Acta, v. 56, p. 963-970.
2147	Runyon, S.E., Seedorff, E., Barton, M.D., Steele-MacInnis, M., Lecumberri-Sanchez, P., and
2148	Mazdab, F.K., 2019, Coarse muscovite veins and alteration in porphyry systems: Ore
2149	Geology Reviews, v. 113.
2150	Saleeby, J., 2003, Segmentation of the Laramide slab-Evidence from the southern Sierra Nevada
2151	region: Geological Society of America Bulletin, v. 115, p. 655-668.
2152	Sawyer, E.W., 1987, The role of partial melting and fractional crystallization in determining
2153	discordant migmatite leucosome compositions: Journal of Petrology, v. 28, p. 445-473.
2154	Scaillet, B., Pichavant, M. and Roux, J., 1995, Experimental crystallization of leucogranite
2155	magmas: Journal of Petrology, v. 36, p. 663-705.
2156	Schwindinger, M., Weinberg, R.F. and Clos, F., 2019, Wet or dry? The difficulty of identifying
2157	the presence of water during crustal melting: Journal of Metamorphic Geology, v. 37, p.
2158	339-358.
2159	Seedorff, E., Barton, M.D., Gehrels, G.E., Valencia, V.A., Johnson, D.A., Maher, D.J., Stavast,
2160	W.J., and Marsh, T.M., 2019, Temporal evolution of the Laramide arc: U-Pb
2161	geochronology of plutons associated with porphyry copper mineralization in east-central

2162 Arizona: Geological Society of America. Field Guide, v. 55, p. 369-400. 2163 Seedorff, E., Barton, M.D., Stavast, W.J. and Maher, D.J., 2008, Root zones of porphyry 2164 systems: Extending the porphyry model to depth: Economic Geology, v. 103, p. 939-956. 2165 Seedorff, E., Dilles, J.H., Proffett, J.M., Einaudi, M.T., Zurcher, L., Stavast, W.J.A., Johnson, 2166 D.A., and Barton, M.D., 2005, Porphyry deposits: Characteristics and origin of hypogene 2167 features, in Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P., eds., 2168 Economic Geology 100th Anniversary Volume, p. 251-298. 2169 Sevigny, J.H. and Parrish, R.R., 1993, Age and origin of late Jurassic and Paleocene granitoids, 2170 Nelson Batholith, southern British Columbia: Canadian Journal of Earth Sciences, v. 30, p. 2305-2314. 2171 2172 Shafiqullah, M., Damon, P.E., Lynch, D.J., Reynolds, S.J., Rehrig, W.A. and Raymond, R.H., 2173 1980, K-Ar geochronology and geologic history of southwestern Arizona and adjacent 2174 areas. Studies in western Arizona: Arizona Geological Society Digest, v. 12, p. 201-260. 2175 Shawe, D.R., Marvin, R.F., Andriessen, P.A.M., Mehnert, H.H. and Merritt, V.M., 1986, Ages of 2176 igneous and hydrothermal events in the Round Mountain and Manhattan gold districts, 2177 Nye County, Nevada: Economic Geology, v. 81, pp. 388-407. 2178 Siégel, C., Bryan, S.E., Allen, C.M. and Gust, D.A., 2018, Use and abuse of zircon-based 2179 thermometers: a critical review and a recommended approach to identify antecrystic 2180 zircons: Earth-Science Reviews, v. 176, p. 87-116. 2181 Silver, L.T. and Chappell, B.W., 1988, The Peninsular Ranges Batholith: an insight into the 2182 evolution of the Cordilleran batholiths of southwestern North America: Earth and 2183 Environmental Science Transactions of the Royal Society of Edinburgh, v. 79, p. 105-2184 121.

2185 Silverberg, D.S., 1990, The tectonic evolution of the Pioneer metamorphic core complex, south-2186 central Idaho: Massachusetts Institute of Technology, Ph.D. dissertation. 2187 Singleton, J.S., 2015, The transition from large-magnitude extension to distributed dextral 2188 faulting in the Buckskin-Rawhide metamorphic core complex, west-central Arizona: 2189 Tectonics, v. 34, p. 1685-1708. 2190 Singleton, J.S., Stockli, D.F., Gans, P.B. and Prior, M.G., 2014, Timing, rate, and magnitude of 2191 slip on the Buckskin-Rawhide detachment fault, west central Arizona: Tectonics, v. 33, p. 2192 1596-1615. 2193 Sizemore, T., Wielicki, M.M., Cemen, I., Stockli, D., Heizler, M. and Robinson, D., 2019, 2194 Structural evolution of central Death Valley, California, using new thermochronometry of 2195 the Badwater turtleback: Lithosphere, v. 11, p. 436-447. 2196 Sola, A.M., Hasalová, P., Weinberg, R.F., Suzaño, N.O., Becchio, R.A., Hongn, F.D. and 2197 Botelho, N., 2017, Low-P melting of metapelitic rocks and the role of H2O: Insights from 2198 phase equilibria modelling: Journal of Metamorphic Geology, v. 35, p. 1131-1159. 2199 Solar, G.S. and Brown, M., 2001, Petrogenesis of migmatites in Maine, USA: possible source of 2200 peraluminous leucogranite in plutons?: Journal of Petrology, v. 42, p. 789-823. 2201 Solomon, G.C. and Taylor Jr, H.P., 1989, Isotopic evidence for the origin of Mesozoic and 2202 Cenozoic granitic plutons in the northern Great Basin: Geology, v. 17, p. 591-594. 2203 Spencer, J.E., Isachsen, C.E., Ferguson, C.A., Richard, S.M., Skotnicki, S.J., Wooden, J., and 2204 Riggs, N.R., 2003, U-Pb isotope geochronologic data from 23 igneous rock units in 2205 central and southeastern Arizona: Arizona Geological Survey Open File Report, OFR-03-2206 08, 40p. 2207 Spencer, J.E. and Reynolds, S.J., 1990, Relationship between Mesozoic and Cenozoic

2208	tectonic features in west central Arizona and adjacent southeastern California: Journal of
2209	Geophysical Research: Solid Earth, v. 95, p. 539-555.
2210	Stevens, G. and Clemens, J.D., 1993, Fluid-absent melting and the roles of fluids in the
2211	lithosphere: a slanted summary?: Chemical Geology, v. 108, p. 1-17.
2212	Stevens, G., Clemens, J.D. and Droop, G.T., 1997, Melt production during granulite-facies
2213	anatexis: experimental data from "primitive" metasedimentary protoliths: Contributions
2214	to Mineralogy and Petrology, v. 128, p. 352-370.
2215	Stevens, G., Villaros, A., and Moyen, J.F., 2007, Selective peritectic garnet entrainment as the
2216	origin of geochemical diversity in S-type granites: Geology, v. 35, p. 9-12.
2217	Stevens, L.M., Baldwin, J.A., Cottle, J.M. and Kylander-Clark, A.R.C., 2015, Phase equilibria
2218	modelling and LASS monazite petrochronology: P-T-t constraints on the evolution of
2219	the Priest River core complex, northern Idaho: Journal of Metamorphic Geology, v. 33, p
2220	385-411.
2221	Stevens, L.M., Baldwin, J.A., Crowley, J.L., Fisher, C.M. and Vervoort, J.D., 2016. Magmatism
2222	as a response to exhumation of the Priest River complex, northern Idaho: Constraints
2223	from zircon U-Pb geochronology and Hf isotopes. Lithos, 262, pp.285-297.
2224	Stewart, J. H., 1980, Geology of Nevada: Nevada Bureau of Mines and Geology Special
2225	Publication, v. 4, 136p.
2226	Stewart, J.H., McKee, E.H., and Stager, H.K., 1977, Geology and mineral deposits of Lander
2227	County, Nevada: Nevada Bureau of Mines and Geology Bulletin, v. 88, 106p.
2228	Stewart, J.H., McManamin, M.A., and Morales-Ramirez, J.M., 1984, Upper Proterozoic and
2229	Cambrian rocks in the Caborca region, Sonora, Mexico - Physical stratigraphy,
2230	biostratigraphy, paleocurrent studies, and regional relations: U.S. Geological Survey

2231	Professional Paper 1309, 36p.
2232	Strickland, A., Miller, E.L., Wooden, J.L., Kozdon, R. and Valley, J.W., 2011, Syn-extensional
2233	plutonism and peak metamorphism in the Albion-Raft River-Grouse Creek metamorphic
2234	core complex: American Journal of Science, v. 311, p. 261-314.
2235	Sylvester, A.G., Ortel, G., Nelson, C.A. and Christie, J.M., 1978, Papoose Flat pluton: A granitic
2236	blister in the Inyo Mountains, California: Geological Society of America Bulletin, v. 89,
2237	p. 1205-1219.
2238	Syracuse, E.M., van Keken, P.E., and Abers, G.A., 2010, The global range of subduction zone
2239	thermal models: Physics of the Earth and Planetary Interiors, v. 183, p. 73-90.
2240	Terrien, J., 2012, The Role of Magmatism in the Catalina Metamorphic Core Complex, Arizona:
2241	Insights from Integrated Thermochronology, Gravity and Aeromagnetic Data: Syracuse
2242	University, Ph.D. Dissertation.
2243	Teyssier, C. and Whitney, D.L., 2002, Gneiss domes and orogeny: Geology, v. 30, p. 1139-1142.
2244	Thompson, A.B. and Connolly, J.A., 1995, Melting of the continental crust: some thermal and
2245	petrological constraints on anatexis in continental collision zones and other tectonic
2246	settings: Journal of Geophysical Research: Solid Earth, v. 100, p. 15565-15579.
2247	Thompson, A.B., 1983, Fluid-absent metamorphism: Journal of the Geological Society, v. 140,
2248	p. 533–547.
2249	Valencia-Moreno, M., Ruiz, J., Barton, M.D., Patchett, P.J., Zürcher, L., Hodkinson, D.G. and
2250	Roldán-Quintana, J., 2001. A chemical and isotopic study of the Laramide granitic belt of
2251	northwestern Mexico: Identification of the southern edge of the North American
2252	Precambrian basement: Geological Society of America Bulletin, v. 113, p. 1409-1422.
2253	van der Molen, I. and Paterson, M.S., 1979, Experimental deformation of partially-melted

2254 granite: Contributions to Mineralogy and Petrology, v. 70, p. 299-318. 2255 Vanderhaeghe, O. and Teyssier, C., 1997, Formation of the Shuswap metamorphic core complex 2256 during late-orogenic collapse of the Canadian Cordillera: role of ductile thinning and 2257 partial melting of the mid-to lower crust: Geodinamica Acta, v. 10, p. 41-58. 2258 Vanderhaeghe, O. and Teyssier, C., 2001, Partial melting and flow of orogens: Tectonophysics, 2259 v. 342, p. 451-472. Vanderhaeghe, O., 2009, Migmatites, granites and orogeny: Flow modes of partially-molten 2260 2261 rocks and magmas associated with melt/solid segregation in orogenic belts: 2262 Tectonophysics, v. 477, p. 119-134. 2263 Vanderhaeghe, O., Teyssier, C., and Wysoczanski, R., 1999, Structural and geochronological 2264 constraints on the role of partial melting during the formation of the Shuswap 2265 metamorphic core complex at the latitude of the Thor-Odin dome, British Columbia: 2266 Canadian Journal of Earth Science, v. 36, p. 917-943. 2267 Vanderhaeghe, O., Teyssier, C., McDougall, I., and Dunlap, W.J., 2003, Cooling and 2268 exhumation of the Shuswap Metamorphic Core Complex constrained by 40Ar/39Ar thermochronology: Geological Society of America Bulletin, v. 115, p. 200-216. 2269 2270 Vielzeuf, D. and Montel, J.M., 1994, Partial melting of metagreywackes. Part I. Fluid-absent 2271 experiments and phase relationships: Contributions to Mineralogy and Petrology, v. 117, 2272 p. 375-393. 2273 Vielzeuf, D. and Schmidt, M.W., 2001, Melting relations in hydrous systems revisited: 2274 application to metapelites, metagreywackes and metabasalts: Contributions to 2275 Mineralogy and Petrology, v. 141, p. 251-267. 2276 Villaros, A., Laurent, O., Couzinié, S., Moyen, J.F. and Mintrone, M., 2018, Plutons and domes:

2277 the consequences of anatectic magma extraction—example from the southeastern French Massif Central: International Journal of Earth Sciences, v. 107, p. 2819-2842. 2278 Vogl, J.J., Foster, D.A., Fanning, C.M., Kent, K.A., Rodgers, D.W. and Diedesch, T., 2012, 2279 2280 Timing of extension in the Pioneer metamorphic core complex with implications for the 2281 spatial-temporal pattern of Cenozoic extension and exhumation in the northern US 2282 Cordillera: Tectonics, v. 31. 2283 Wallace, C.A., Lidke, D.J., Elliott, J.E., Desmarais, N.R., Obradovich, J.D., Lopez, D.A., Zarske, 2284 S.E., Heise, B.A., Blaskowski, M.J., and Lean, J.S., 1992, Geologic map of the 2285 Anaconda-Pintlar Wilderness and contiguous roadless area, Granite, Deer Lodge, 2286 Beaverhead, and Ravalli counties, western Montana: U.S. Geological Survey 2287 Miscellaneous Field Studies Map 1633-C. 2288 Watson, E.B. and Harrison, T.M., 1983, Zircon saturation revisited: temperature and 2289 composition effects in a variety of crustal magma types: Earth and Planetary Science 2290 Letters, v. 64, p. 295-304. 2291 Watts, K.E., John, D.A., Colgan, J.P., Henry, C.D., Bindeman, I.N., and Schmitt, A.K., 2016, 2292 Probing the volcanic-plutonic connection and the genesis of crystal-rich rhyolite in a 2293 deeply dissected supervolcano in the Nevada Great Basin: source of the Late Eocene 2294 Caetano Tuff: Journal of Petrology, v. 57, p. 1599-1644. Webster, E.R., Pattison, D. and DuFrane, S.A., 2017, Geochronological constraints on 2295 2296 magmatism and polyphase deformation and metamorphism in the southern Omineca Belt, 2297 British Columbia: Canadian Journal of Earth Sciences, v. 54, p. 529-549. 2298 Weinberg, R.F. and Hasalová, P., 2015, Water-fluxed melting of the continental crust: A review: 2299 Lithos, v. 212, p. 158-188.

2300 Weinberg, R.F., 2016, Himalayan leucogranites and migmatites: nature, timing and duration of 2301 anatexis. Journal of Metamorphic Geology, v. 34, p. 821-843. 2302 Wells, M.L. and Hoisch, T.D., 2008, The role of mantle delamination in widespread Late 2303 Cretaceous extension and magmatism in the Cordilleran orogen, western United States: 2304 Geological Society of America Bulletin, v. 120, p. 515-530. 2305 Wells, M.L. and Hoisch, T.D., 2012, Reply to comment by E.L. Miller et al. on Geodynamics of 2306 synconvergent extension and tectonic mode switching: Constraints from the Sevier-2307 Laramide orogen: Tectonics, v. 31. 2308 Wells, M.L., Hoisch, T.D., Cruz-Uribe, A.M. and Vervoort, J.D., 2012, Geodynamics of 2309 synconvergent extension and tectonic mode switching: Constraints from the Sevier-2310 Laramide orogen: Tectonics, v. 31. 2311 Wells, M.L., Spell, T.L., Grove, M., 2002, Late Cretaceous intrusion and extensional exhumation 2312 of the Cadiz Valley batholith, Iron Mountains, southeastern California: Geological 2313 Society of America Annual Meeting, Abstracts with Programs. 2314 Whitehouse, M.J., Stacey, J.S. and Miller, F.K., 1992, Age and nature of the basement in 2315 northeastern Washington and northern Idaho: isotopic evidence from Mesozoic and 2316 Cenozoic granitoids: The Journal of Geology, v. 100, p. 691-701. Whitmeyer, S.J. and Karlstrom, K.E., 2007, Tectonic model for the Proterozoic growth of North 2317 2318 America: Geosphere, v. 3, p. 220-259. 2319 Whitney, D.L., Paterson, S.R., Schmidt, K.L., Glazner, A.F. and Kopf, C.F., 2004, Growth and 2320 demise of continental arcs and orogenic plateaux in the North American Cordillera: From 2321 Baja to British Columbia, in Grocott, J., McCaffrey, K.J.W., Taylor, G., and Tikoff, B., 2322 eds., Vertical coupling and decoupling in the lithosphere: Geological Society, London,

2323	Special Publication, v. 227, p. 167-175.
2324	Whitney, D.L., Teyssier, C. and Fayon, A.K., 2004b, Isothermal decompression, partial melting
2325	and exhumation of deep continental crust: Geological Society, London, Special
2326	Publications, v. 227, p. 313-326.
2327	Whitney, D.L., Teyssier, C. and Vanderhaeghe, O., 2004, Gneiss domes and crustal flow, in,
2328	Whitney, D.L., Teyssier, C., and Siddoway, C.S., eds., Gneiss domes in orogeny:
2329	Geological Society of America Special Paper, v. 380, p. 15-34.
2330	Whitney, D.L., Teyssier, C., Rey, P., and Buck, W.R., 2013, Continental and oceanic core
2331	complexes: Geological Society of America Bulletin, v. 125, p. 273-298.
2332	Wolfram, L.C., Weinberg, R.F., Nebel, O., Hamza, K., Hasalová, P., Míková, J., and Becchio,
2333	R., 2019, A 60-Myr record of continental back-arc differentiation through cyclic melting:
2334	Nature Geoscience, v. 12, p. 215-219.
2335	Wong, M.S. and Gans, P.B., 2008, Geologic, structural, and thermochronologic constraints on
2336	the tectonic evolution of the Sierra Mazatán core complex, Sonora, Mexico: New insights
2337	into metamorphic core complex formation: Tectonics, v. 27.
2338	Wong, M.S., Gans, P.B. and Scheier, J., 2010, The 40Ar/39Ar thermochronology of core
2339	complexes and other basement rocks in Sonora, Mexico: Implications for Cenozoic
2340	tectonic evolution of northwestern Mexico. Journal of Geophysical Research: Solid
2341	Earth, v. 115.
2342	Wong, M.S., O'Brien, H.P., Bunting, K.C., and Gans, P.B., 2011, 40Ar/39Ar K-feldspar
2343	thermochronology of the Harcuvar core complex, western Arizona: New insight into the
2344	timing of extension and degree of footwall tilt: Geological Society of America Annual
2345	Meeting, Abstracts with Programs, v. 43, p. 53.

2346	Wooden, J.L., Kistler, R.W., and Tosdal, R.M., 1999, Strontium, lead, and oxygen isotopic data
2347	for granitoid and volcanic rocks from the northern Great Basin and Sierra Nevada,
2348	California, Nevada and Utah: U.S. Geological Survey Open-File Report 99-569, 20p.
2349	Wright, J.E. and Haxel, G., 1982, A garnet-two-mica granite, Coyote Mountains, southern
2350	Arizona: Geologic setting, uranium-lead isotopic systematics of zircon, and nature of the
2351	granite source region: Geological Society of America Bulletin, v. 93, p. 1176-1188.
2352	Wright, J.E. and Snoke, A.W., 1993, Tertiary magmatism and mylonitization in the Ruby-East
2353	Humboldt metamorphic core complex, northeastern Nevada: U-Pb geochronology and Si
2354	Nd, and Pb isotope geochemistry: Geological Society of America Bulletin, v. 105, p. 935
2355	952.
2356	Wright, J.E. and Wooden, J.L., 1991, New Sr, Nd, and Pb isotopic data from plutons in the
2357	northern Great Basin: Implications for crustal structure and granite petrogenesis in the
2358	hinterland of the Sevier thrust belt: Geology, v. 19, p. 457-460.
2359	Wust, S.L., 1986, Regional correlation of extension directions in Cordilleran metamorphic core
2360	complexes: Geology, v. 14, p. 828-830.
2361	Wyld, S.J., 2002, Structural evolution of a Mesozoic backarc fold-and-thrust belt in the US
2362	Cordillera: New evidence from northern Nevada: Geological Society of America
2363	Bulletin, v. 114, p. 1452-1468.
2364	Wyllie, P.J. and Wolf, M.B., 1993, Amphibolite dehydration-melting: sorting out the solidus:
2365	Geological Society, London, Special Publications, v. 76, p. 405-416.
2366	Wyllie, P.J., 1977, Crustal anatexis: an experimental review: Tectonophysics, v. 43, p. 41-71.
2367	Yardley, B.W. and Barber, J.P., 1991, Melting reactions in the Connemara Schists: the role of
2368	water infiltration in the formation of amphibolite facies migmatites: American

2369 Mineralogist, v. 76, p. 848-856. 2370 Yonkee, W.A. and Weil, A.B., 2015, Tectonic evolution of the Sevier and Laramide belts within 2371 the North American Cordillera orogenic system: Earth-Science Reviews, v. 150, p. 531-2372 593. 2373 Zen, E.A., 1986, Aluminum enrichment in silicate melts by fractional crystallization: some 2374 mineralogic and petrographic constraints: Journal of Petrology, v. 27, p. 1095-1117. Zen, E.A., 1988, Phase Relations of Peraluminous Granitic Rocks and Their Petrogenetic 2375 2376 Implications: Annual Review of Earth and Planetary Sciences, v. 16, p. 21–51. 2377 2378 2379 **Figure and Table Captions** 2380 2381 Fig. 1: Overview map of the North American Cordilleran Anatectic Belt (CAB). Feature 2382 locations were compiled from previously published works including core complexes (Rehrig and 2383 Reynolds, 1980; Armstrong, 1982; Wust, 1986; Roldán-Quintana, 1991; Nourse et al., 1994; 2384 1995; Foster and John, 1999; Miller et al., 1999; Foster et al., 2001; 2007; 2010; Vanderhaeghe 2385 et al., 2003; Laberge and Pattison, 2007; Kruckenberg et al., 2008; Howard et al., 2011; 2386 Konstantinou et al., 2013; Hoisch et al., 2014; Singleton et al., 2015; Stevens et al., 2016; Lee et al., 2017; Gottardi et al., 2020), Sevier thrust belt and Laramide deformation front (Yonkee and 2387 Weil, 2015; Fitz-Díaz et al., 2018),), and ⁸⁷Sr/⁸⁶Sr_i isopleths (Armstrong 1988; Kistler and 2388 2389 Anderson, 1990; Miller et al., 2000; Valencia-Moreno et al., 2001). CAB locations, data, and 2390 data sources presented in Table 1 and Supplementary File 2. Map projection: UTM, NAD 83

2391

Zone 12N.

2393 Fig. 2: A comparison between the A) North American Cordilleran Anatectic Belt (CAB) and the 2394 B) Himalayan leucogranite belt, both shaded orange and shown at the same scale. Blue polygons 2395 are metamorphic core complexes in the CAB and leucogranite bodies in the Himalaya (Whitney 2396 et al., 2013; Kohn, 2014). 2397 2398 Fig. 3: A) Cordilleran Anatectic Belt (CAB) rocks (blue circles) are silica-rich (SiO₂ > 70 wt. %) 2399 and peraluminous with aluminum saturation indices (ASI) of ca. 1.0-1.3. Silica-rich, 2400 peraluminous compositions can also be generated from originally metaluminous intrusive rocks 2401 with protracted fractional crystallization or assimilation as represented by the Chemehuevi 2402 Mountains plutonic suite, California (orange squares; John and Wooden, 1990) and the White 2403 Creek batholith, Kootenay arc, British Columbia (red diamonds; Brandon and Lambert, 1993). 2404 B.) A down-plunge cross-section view of the Chemehuevi Mountains plutonic suite shows zoned 2405 or nested intrusive rocks with increasing ASI toward the center (modified from John, 1988; John 2406 and Wooden, 1990), which is not observed in CAB intrusive suites. Data and data sources are 2407 presented in Supplementary File 2. 2408 2409 Fig. 4: Pairs of unaltered and hydrothermally altered intrusive rocks from the southern U.S. 2410 Cordillera that display elevated Rb/Sr and peraluminosity as a result of hydrothermal alteration, ASI = aluminum saturation index. Cordilleran Anatectic Belt rocks (blue polygons) generally 2411 2412 have ASI < 1.3. Data and data sources are presented in Supplementary File 2. 2413

2392

2414

Fig. 5. Cordilleran Anatectic Belt rocks (blue circles) generally plot as granite on a normative

Ab–An–Or ternary diagram and overlap with metasedimentary melt compositions for water-absent dehydration melting experiments (Patiño Douce and Beard, 1995; Patiño Douce and Harris, 1998; Patiño Douce, 2005) rather than water-excess melting experiments (Conrad et al., 1988; Patiño Douce and Harris, 1998). Data and data sources are presented in Supplementary File 2.

Fig. 6: The majority of Cordilleran Anatectic Belt (CAB) rocks (blue circles) have compositions consistent with peraluminous leucogranite melts produced by experimental melting of mica-rich metasedimentary rocks (shaded blue) rather than amphibolite (black outline). CAB rock compositions are also largely distinct from S-type granite and Cordilleran granite. The Chemehuevi Mountains plutonic suite (orange squares; John and Wooden, 1990) and White Creek batholith (red diamonds; Brandon and Lambert, 1993) are shown for comparison. Compositional fields are from Patiño-Douce (1999). Data and data sources are presented in Supplementary File 2.

Fig. 7. The North American Cordilleran Anatectic Belt (CAB) crosses many Proterozoic to Archean basement provinces/terranes. The northern and central CAB overlaps with areas where Proterozoic rocks are present in the Cordilleran passive margin sequence (Miogeocline), which has been proposed as one possible protolith. Metasedimentary rocks from the Mesoproterozoic Belt-Purcell Basin and Paleoproterozoic Pinal Basin have also been proposed as possible protoliths. The inferred edge of North American basement is based on the position of the 87 Sr/ 86 Sr_i = 0.706 isopleth (Fig. 1). Map projection: UTM, NAD 83 Zone 12N.

Fig. 8. A histogram and kernel density estimate (red curve) of zircon saturation temperatures (Watson and Harrison, 1983) for rocks in the Cordilleran Anatectic Belt (CAB). The uncertainty of the average is based on the standard deviation (1σ). Data and data sources are presented in Supplementary File 2. A kernel density estimate (blue curve) shows the maximum (peak) temperatures in migmatite within the CAB as reported by previous studies (Table 1).

Fig. 9: A plot of age vs. latitude for crystallization ages of rocks in the Cordilleran Anatectic Belt (CAB; green rectangles), rapid exhumation/cooling ages for the Cordilleran metamorphic core complexes (blue squares), and timing for the onset of extension in the core complexes (red circles) (Table 1). Most major core complexes are labelled for reference. Data and data sources are presented in Supplementary Files 1 and 2.

Fig. 10: A) Time-temperature and B) pressure-temperature (P-T) diagrams for the Ruby-East Humboldt metamorphic core complex (modified from Henry et al., 2011) used to illustrate periods of rapid cooling and near-isothermal decompression in the Cordilleran core complexes in general. Rapid cooling is chiefly identified using thermochronology (AHe = apatite U-Th/He, AFT = apatite fission track, ZFT = zircon fission track) whereas periods of near-isothermal decompression are not well-resolved or recorded at all by thermochronometers and may have occurred up to several 10s of Myr prior to rapid exhumation.

Fig. 11: Melt reactions for metasedimentary protoliths showing solidus curves for water-present melting (Stevens and Clemens, 1993), muscovite dehydration melting (Patiño Douce and Harris, 1998; P76 = Peto, 1976), biotite dehydration melting (Vielzeuf and Montel, 1994), and

amphibole dehydration melting (Wyllie and Wolf, 1993). The range of calculated zircon saturation temperatures (ZST) from the Cordilleran Anatectic Belt is shown in blue and presented in Fig. 8.

Fig. 12: A) Cordilleran Anatectic Belt (CAB) rocks (blue circles) plot along Rb/Sr vs. Sr trends consistent with water-absent muscovite dehydration melting and fractional crystallization of plagioclase. Black arrows show trends produced by melting experiments and red arrows show trends expected from crystallization of the phase listed (modified from Inger and Harris, 1993).

B) Strongly positive (> 3) Eu anomalies were suggested by Prince et al. (2001) to distinguish water-excess melting. Feldspar-rich cumulate rocks may also have positive Eu anomalies, but can be recognized by their low total REE (Rudnick, 1992). Data and data sources are presented in Supplementary File 2.

Fig. 13: An isobaric (5 kbar) temperature-X_{H2O} assemblage diagram for a quartz- and muscovite-rich metasedimentary rock from the Pinal Schist that illustrates differences between water-absent, water-deficient, and water-excess melting. Constructed using Perple_X (Connolly, 2005). See text for modeling details. Average zircon saturation temperatures calculated for the Cordilleran Anatectic Belt are shaded red (Fig. 8).

2481 Table 1:

Summary of details for locations in the North American Cordilleran Anatectic Belt. Data Sources: 1 = Sevigny and Parrish (1993); 2 = Armstrong (1991); 3 = Crowley et al., 2001; 4 =

```
2484
        Crowley et al., 2008); 5 = Norlander et al. (2002); 6 = Carr, 1992; 7 = Holk and Taylor (1997); 8
2485
        = Holk and Taylor (2000); 9 = Vanderhaeghe et al. (1999); 10 = Vanderhaeghe et al. (2003); 11
2486
        = Hinchey et al. (2006); 12 = Leclair et al. (1993); 13 = Brandon and Lambert (1993); 14 =
2487
        Brandon and Lambert (1994); 15 = Brandon and Smith (1994); 16 = Spear and Parrish (1996);
2488
        17 = Spear (2004); 18 = Gordon et al. (2008); 19 = Laberge and Pattinson (2007); 20 = Cubley
2489
        and Pattinson (2012); 21 = Cubley et al. (2013); 22 = Carlson et al. (1991); 23 = Hansen and
2490
        Goodge (1998); 24 = Kruckenberg et al. (2008); 25 = Doughty and Price (1999); 26 = Stevens et
2491
        al. (2015); 27 = Stevens et al. (2016); 28 = Whitehouse et al. (1992); 29 = Asmerom et al.
2492
        (1988); 30 = Guevara (2012); 31 = Foster (2007); 32 = Doughty and Chamberlain (2007); 33 =
2493
        Foster and Raza (2002); 34 = Gaschnig et al. (2010); 35 = Gaschnig et al. (2011); 36 = Foster et
2494
        al. (2001); 37 = King and Valley (2001); 38 = Wallace et al. (1992); 39 = Foster et al. (2010); 40
2495
        = Silverberg (1990); 41 = Vogl (2012); 42 = Lee and Marvin (1981); 43 = Miller et al. (1990);
2496
        44 = Wright and Wooden (1991); 45 = Wooden et al. (1999); 46 = McGrew and Snee (1994); 47
2497
        = Lee et al. (2003); 48 = Howard et al. (2011); 49 = Henry et al. (2011); 50 = Hallet and Spear
2498
        (2014); 51 = Hallet and Spear (2015); 52 = Barton (1987); 53 = Evan et al. (2015); 54 = Lee et
2499
        al. (2017); 55 = Lee and Christiansen (1983); 56 = King et al. (2004); 57 = Gotlieb et al. (2017);
2500
        58 = Miller et al. (1999); 59 = Fryxell (1988); 60 = Lund et al. (2014); 61 = Long and Soignard
2501
        (2016); 62 = Applegate et al. (1992); 63 = Holm and Dokka (1991); 64 = Mattinson et al. (2007);
2502
        65 = Sizemore et al. (2019); 66 = Lima et al. (2018); 67 = Mahood et al. (1996); 68 = Miller and
```

2503

2504

2505

2506

Wooden (1994); 69 = Bryant and Wooden (2008); 70 = Wong et al. (2011); 71 = DeWitt and

(2016); 75 = Richard et al. (1990); 76 = Shaw and Gilbert (1990); 77 = Shafiqullah et al. (1980);

78 = Gottardi et al. (2018); 79 = Spencer et al. (2003); 80 = S. Scoggin (unpublished); 81 = Long

Reynolds (1990); 72 = Singleton et al. (2014); 73 = Isachsen et al. (1999); 74 = Prior et al.

```
et al. (1995); 82 = Creasey et al. (1977); 83 = J. Chapman (unpublished); 84 = Fornash et al. (2013); 85 = Fayon et al. (2000); 86 = Terrien (2012); 87 = Peterman et al. (2014); 88 = Davis et al. (2019); 89 = Ducea et al. (2020); 90 = G. Haxel (unpublished); 91 = Wright and Haxel (1982); 92 = Gottardi et al. (2020); 93 = C. Pridmore (unpublished); 94 = Arnold (1986); 95 = Goodwin and Haxel (1990); 96 = Anderson et al. (1980); 97 = Mallery et al. (2018); 98 = Wong et al. (2010); 99 = Roldán-Quintana (1991); 100 = González-León et al. (2011); 101 = González-Becuar et al. (2017); 102 = Wong and Gans (2008).
```