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Abstract 15 

 The North American Cordilleran Anatectic Belt (CAB) is a ~3,000 km long region in the 16 

hinterland of the Cordillera that comprises numerous exposures of Late Cretaceous to Eocene 17 

intrusive rocks and anatectic rocks associated with crustal melting.  As such, it is comparable in 18 

size and volume to major anatectic provinces including the Himalayan leucogranite belt.  The 19 

CAB rocks are chiefly peraluminous, muscovite-bearing leucogranite produced primarily by 20 

anatexis of Proterozoic to Archean metasedimentary rocks.  The CAB rocks lack extrusive 21 

equivalents and were typically emplaced as thick sheets, laccoliths, and dike/sill complexes.  The 22 

extent, location, and age of the CAB suggests that it is integral to understanding the tectonic 23 
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evolution of North America, however, the belt is rarely considered as a whole.  This paper 24 

reviews localities associated with crustal melting in the CAB and compiles geochemical, 25 

geochronologic, and isotopic data to evaluate the melt conditions and processes that generated 26 

these rocks.  The geochemistry and partial melting temperatures (ca. 675-775 °C) support water-27 

absent muscovite dehydration melting and/or water-deficient melting as the primary melt 28 

reactions and are generally inconsistent with water-excess melting and high-temperature (biotite 29 

to amphibole) dehydration melting.  The CAB rocks are oldest in the central U.S. Cordillera and 30 

become younger towards both the north and south.  At any single location, partial melting 31 

appears to have been a protracted process (≥10 Myr) and evidence for re-melting and 32 

remobilization of magmas is common.  End-member hypotheses for the origin of the CAB 33 

include decompression, crustal thickening, fluid-flux melting, and increased heat flux from the 34 

mantle.  Different parts of the CAB support different hypotheses and no single model may be 35 

able to explain the entirety of the anatectic event.  Regardless, the CAB is a distinct component 36 

of the Cordilleran orogenic system.   37 

 38 

Keywords: two-mica granite, peraluminous, crustal melting, anatexis, metamorphic core 39 

complex, decompression, fluid-flux, leucogranite, orogenic plateau, magmatism 40 

 41 

1. Introduction 42 

 The North American Cordillera is an archetypal Cordilleran (ocean-continent subduction) 43 

orogenic system and has been the foundation for many tectonic and geodynamic concepts 44 

(Burchfiel and Davis, 1975; DeCelles, 2004; Dickinson, 2004; Yonkee and Weil, 2015; Fritz-45 

Díaz et al., 2018).  One of the fundamental components of the North American Cordillera is a 46 
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belt of Mesozoic to Cenozoic, peraluminous, muscovite-bearing granite (sensu lato) exposures in 47 

the orogenic hinterland, stretching from southern British Columbia, Canada to northern Sonora, 48 

Mexico (Miller and Bradfish, 1980; Miller and Barton, 1990) (Fig. 1).  These rocks are located 49 

landward, or cratonward, of the Mesozoic Cordilleran coastal batholiths (e.g., the Sierra Nevada, 50 

Coast Mountains, and Peninsular Ranges batholiths) and are colloquially called the belt of two-51 

mica (biotite + muscovite) granites. The belt of peraluminous, muscovite-bearing granite is 52 

generally considered to have formed by crustal melting (anatexis) (Miller and Bradfish, 1980; 53 

Lee et al., 1981; Farmer and DePaolo, 1983; Haxel et al., 1984; Miller and Barton, 1990; Patiño-54 

Douce et al., 1990; Wright and Wooden, 1991).  However, detailed experimental and field 55 

studies suggest that a variety of processes could have created these peraluminous compositions 56 

and mineral assemblages, including crustal anatexis, fractional crystallization, crustal 57 

assimilation, hydrothermal alteration, high-pressure differentiation, and localized melting of 58 

country rock during the emplacement of mantle-derived magmas (see review in Patiño-Douce, 59 

1999 and Clarke, 2019).  Likewise, depending on the source rock, crustal melting may not 60 

always produce strongly peraluminous compositions (see review in Gao et al., 2016).   61 

 The primary goal of this review is to update the classic compilation of Miller and 62 

Bradfish (1980) and to distinguish igneous bodies and suites related to crustal melting from 63 

peraluminous, muscovite-bearing rocks generated by other processes.  Crustal melting is defined 64 

here as partial melting of pre-existing crustal rocks that does not directly involve the formation, 65 

crystallization, and differentiation of mantle-derived mafic magmas (cf., Clemens, 2020).  We 66 

refer to these rocks as the North American Cordilleran Anatectic Belt (CAB).  Anatectic belts are 67 

generally associated with continental collisional orogens including the Himalayan (e.g., Kohn, 68 

2014; Weinberg, 2016), Grenville (Rivers et al., 2002), and Alpine orogens (Burri et al., 2005).  69 
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The CAB is one of the best examples of an anatectic province related to Cordilleran-style 70 

orogenesis and may provide an analog for deep crustal processes in other Cordilleran orogenic 71 

systems.  With an along-strike length of ~3,000 km, the scale of the CAB rivals or exceeds the 72 

size of major continental collision-related anatectic belts, making it one of the largest anatectic 73 

provinces globally, regardless of tectonic setting (Fig. 2).  Thinking about this belt in terms of 74 

process (crustal anatexis) rather than composition (aluminosity) or mineralogy (presence of 75 

muscovite) yields insight into the tectonic and thermal evolution of the North American 76 

Cordillera (Miller and Gans, 1989; Hodges and Walker, 1992; Foster et al., 2001; Vanderhaeghe 77 

and Teyssier, 2001; Whitney et al., 2004; Wells and Hoisch, 2008; Bendick and Baldwin, 2009; 78 

Gervais and Brown, 2011; Konstantinou and Miller, 2015).   79 

 First, we describe how CAB rocks produced by crustal melting are distinguished from 80 

granitic bodies produced by other processes with an emphasis on locations previously included in 81 

the compilation by Miller and Bradfish (1980).  Next, we document locations of crustal melting in 82 

the CAB and compile geologic, geochronologic, geochemical, and isotopic data for each 83 

occurrence.  This information is summarized and the shared characteristics and commonalities 84 

among the CAB rocks are presented.  Then, melt conditions and processes are evaluated, including 85 

water-absent dehydration melting, water-deficient melting, and water-excess (fluid-flux) melting.  86 

Finally, we evaluate the various tectonic mechanisms that have been proposed to have caused 87 

crustal melting. 88 

 89 

2. Geologic Setting 90 

 The North American Cordillera was constructed as a result of prolonged eastward 91 

subduction of the oceanic Farallon and Kula plates beneath the North American plate during 92 
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Triassic to Eocene time and the accretion of various terranes during this interval of time 93 

(Dickinson, 2006).  This paper focuses on the Cordillera between 53° N and 29° N, which is the 94 

range of latitudes where the CAB is exposed. The orogenic system comprises several key 95 

fundamental tectonic components including a retroarc thrust belt, orogenic hinterland, and a 96 

continental arc (Fig. 1).   97 

 98 

2.1. The retroarc and orogenic interior 99 

 The thin-skinned Sevier retroarc thrust belt extends from northernmost Canada to the 100 

Mojave region of southeast California (Fig. 1) and was active during the Early Cretaceous to 101 

Paleogene (Yonkee and Weil., 2015).  The thrust belt records up to 350 km of horizontal 102 

shortening (DeCelles and Coogan, 2006) and precursor thrust belts like the Luning-Fencemaker, 103 

Central Nevada, and Eastern Sierra thrust belts accommodated another ~100 km of shortening 104 

during early Mesozoic time (Wyld, 2002).  To the east (cratonward) of the Sevier thrust belt is 105 

the Laramide foreland belt that was most active from 80 to 40 Ma and temporally overlaps with 106 

the end of Sevier deformation (Copeland et al., 2017).  The Laramide foreland belt is 107 

characterized by thick-skinned, basement-involved deformation with limited horizontal 108 

shortening (<50 km) (Yonkee and Weil, 2015).   109 

 Pre-Sevier, Sevier, and Laramide-related shortening thickened the crust in the orogenic 110 

hinterland and created a high-elevation plateau, called the Nevadaplano in the central U.S. 111 

Cordillera (DeCelles, 2004) and the Arizonaplano in the southern U.S. and northern Mexican 112 

Cordillera (Chapman et al., 2020).  Maximum crustal thickness estimates range from 50 to 65 km 113 

in the U.S. and Mexican Cordillera (Coney and Harms, 1984; Chapman et al., 2015; 2020) and 114 

may have been as high as 80 km in southeastern British Columbia (Hinchey and Carr, 2006).  115 
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Exposures of recumbently folded and stacked nappes in metamorphic core complexes like the 116 

Ruby-East Humboldt Mountains suggest that upper crustal shortening was balanced by middle to 117 

lower crustal shortening and thickening (McGrew et al., 2000).   118 

 The regions of thickest crust in the orogenic hinterland during the Cretaceous to early 119 

Paleogene are thought to roughly coincide with the current position of the Cordilleran 120 

metamorphic core complexes (Coney and Harms, 1984), which were most active from 60 Ma to 121 

10 Ma (Bendick and Baldwin, 2009; Konstantinou and Miller, 2015; Gottardi et al., 2020).  122 

There is also a close spatial correlation between the CAB and the Cordilleran metamorphic core 123 

complexes (Fig. 1).  We adopt the terminology of Whitney et al. (2013) who divided the 124 

Cordilleran core complexes into northern, central, and southern belts.  The northern belt 125 

encompasses core complexes from the Shuswap complex (British Columbia, Canada) to the 126 

Pioneer Mountains (Idaho, USA).  The central belt extends from the Raft River-Albion-Grouse 127 

Creek complex (Utah-Idaho, USA) to the Black Mountains (California, USA).  The southern belt 128 

stretches from the Sacramento Mountains (California, USA) to Sierra Mazatán (Sonora, 129 

Mexico).  We use the same geographic divisions when referring to the northern, central, and 130 

southern CAB hereafter. 131 

 132 

2.2. Cordilleran magmatism 133 

 The North American Cordillera has a rich magmatic history related to subduction and 134 

extension that overlaps with the CAB in both time and space.  The North American Cordilleran 135 

continental arc is chiefly preserved as the belt of giant Mesozoic Cordilleran coastal batholiths 136 

including the Peninsular Ranges, Sierra Nevada, Idaho, and Coast Mountains batholiths located 137 

west of the CAB (Fig. 1).  However, magmatism extended into the orogenic interior, particularly 138 
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during the Jurassic, and some Jurassic igneous rocks were originally included in the belt of 139 

muscovite-bearing granite of Miller and Bradfish (1980).  In southern British Columbia, the 140 

Jurassic Kootenay arc overlaps spatially with the CAB and includes units such as the Kuskanax 141 

and Nelson suites that range in composition from diorite to peraluminous two-mica ± garnet 142 

granite (Armstrong, 1988; Ghosh, 1995).  In the Great Basin region, Jurassic igneous rocks 143 

located in a hinterland/back-arc position spatially overlap with the CAB and range in 144 

composition from gabbro to peraluminous, two-mica granite (e.g., Dawley Canyon granite; 145 

Kistler et al., 1981; Barton et al., 2011).  Subsequent to Miller and Bradfish’s (1980) study of 146 

muscovite-bearing granite, petrologic and isotopic studies indicated that Jurassic to Early 147 

Cretaceous magmatism that spatially overlaps with the CAB was chiefly produced from 148 

subduction-related (mantle-involved) melting and overwhelmingly tends to be metaluminous or 149 

weakly peraluminous (Farmer and DePaolo, 1983; Miller and Barton, 1990; Wright and Wooden 150 

1991; Brandon and Smith, 1994).  Strongly peraluminous, Jurassic-age rocks, like the Dawley 151 

Canyon granite, may be related to localized crustal melting associated with the intrusion of mafic 152 

magmas at depth (Jones, 1999).  In the eastern Great Basin, Jurassic magmatism has also been 153 

linked to mantle upwelling during back-arc extension (Elison, 1995; Miller and Hoisch, 1995; 154 

Miller and Barton, 1990) as well as a slab break-off event (Dickinson, 2006).  We do not include 155 

any Jurassic or older rocks in the CAB. 156 

 157 

2.2.1. Laramide magmatism 158 

 Subduction-related, calc-alkaline, metaluminous magmatism ended in the Mesozoic 159 

coastal batholiths during the Late Cretaceous (Chen and Moore, 1982; Silver and Chappell, 160 

1988; Gehrels et al., 2009; Gaschnig et al., 2010; Cecil et al., 2012).  In the U.S. and Mexican 161 
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Cordillera, subduction-related magmatism then migrated eastward, sometimes referred to as the 162 

“magmatic sweep,” as the subduction angle shallowed during the Laramide Orogeny (Coney and 163 

Reynolds, 1977; Constenius et al., 2003; Yonkee and Weil, 2015; Fitz-Díaz et al., 2018).  This 164 

eastward sweep was most pronounced to the north and south of the central U.S. Cordillera - the 165 

Great Basin region today.  The central U.S. Cordillera contains only scattered evidence for 166 

magmatic activity during the Laramide Orogeny and has been referred to as a magmatic gap that 167 

is associated with low-angle subduction (Dickinson and Snyder, 1978).  We refer to igneous 168 

rocks produced during this eastward sweep of magmatism as “Laramide magmatism” or the 169 

“Laramide arc,” as it is referred to in the southern U.S. and northern Mexican Cordillera (Lang 170 

and Titley, 1998; González-León et al., 2011; Leveille and Stegen, 2012; Seedorf et al., 2019).  171 

Laramide magmatism is compositionally distinct from rocks in the CAB and is generally 172 

characterized as calc-alkaline, quartz-poor to intermediate, metaluminous, containing biotite + 173 

hornblende ± clinopyroxene, and is more isotopically juvenile than rocks associated with the 174 

CAB (Barton, 1990; 1996).  The eastward migration of subduction-related, Laramide magmatism 175 

reached or passed through the future position of the CAB during the Late Cretaceous to early 176 

Paleogene.  Magmatism associated with the Laramide magmatic sweep is generally older than 177 

anatectic intrusive rocks in the CAB, but in some cases the two igneous suites overlap both 178 

spatially and temporally (e.g., Wright and Haxel, 1982; Miller and Barton, 1990).   179 

 180 

2.2.2. Mid-Cenozoic ignimbrite flare-up 181 

 Soon after Laramide magmatism reached its most eastward extent during the Laramide 182 

orogeny, magmatism rapidly swept back westward toward the trench, producing the mid-183 

Cenozoic (née mid-Tertiary) ignimbrite flare-up and several large-volume volcanic eruptive 184 
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centers (Ferrari et al., 2002; Best et al., 2009).  The mid-Cenozoic ignimbrite flare-up is related 185 

to the foundering or rapid roll-back of the previously shallowly-dipping Farallon plate 186 

(Humphreys et al., 2003).  The majority of mid-Cenozoic flare-up magmatism has been 187 

interpreted to have originated by melting of hydrated mantle lithosphere to produce mafic 188 

magmas that then experienced various degrees of fractional crystallization and assimilation 189 

within the crust to produce a range of compositions (basaltic to rhyolitic) (Farmer et al., 2008; 190 

Henry and John, 2013).  In some locations, intrusion of mantle-derived mafic magmas into the 191 

crust locally caused crustal melting and produced magmas with similar geochemical and isotopic 192 

compositions to the CAB rocks (e.g., Watts et al., 2016).  In the northern and central U.S. 193 

Cordillera, the mid-Cenozoic flare-up migrated southward while in the southern U.S. and 194 

Mexican Cordillera, the flare-up migrated west-northwestward (Armstrong and Ward, 1991; 195 

Humphreys, 1995).  The oldest flare-up related rocks in the Canadian and northern U.S. 196 

Cordillera are the Eocene Kamloops-Challis-Absaroka volcanics (Moye et al., 1988; 197 

Breitsprecher et al., 2003) and the oldest related rocks in the southern U.S. and Mexican 198 

Cordillera are the Eocene volcanic rocks in the Big Bend National Park region in Texas, USA 199 

(Barker, 1987; Parker et al., 2012).  Igneous rocks related to the mid-Cenozoic ignimbrite flare-200 

up (including intrusive rocks) are generally younger than rocks in the CAB (Konstantinou and 201 

Miller, 2015).  There is a close temporal association between the migration or passage of the 202 

ignimbrite flare-up and the onset of extension in the Cordilleran metamorphic core complexes 203 

(Gans, 1989; Best and Christiansen, 1991).  Closely following the mid-Cenozoic ignimbrite 204 

flare-up, widespread magmatism associated with lithospheric extension commenced and 205 

continues to the present in the Basin and Range province (Best and Brimhall, 1974; 206 

Hawkesworth et al., 1995).   207 
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 208 

3. Examples of peraluminous, muscovite-bearing rocks not produced by crustal melting 209 

 In our review of North American Cordilleran magmatism, we identified many examples 210 

of Mesozoic to Cenozoic peraluminous, muscovite-bearing granites that were produced by 211 

processes other than crustal melting, including fractional crystallization, crustal assimilation, 212 

hydrothermal alteration, and localized crustal melting associated with mantle-derived mafic 213 

intrusions.  Below, we provide a few examples with an emphasis on locations previously 214 

included in the compilation by Miller and Bradfish (1980).   215 

 216 

3.1. Fractional Crystallization and Crustal Assimilation 217 

 Fractional crystallization of pyroxene or subaluminous amphibole (aluminum saturation 218 

index [ASI] = ~0.5) can lead to peraluminous compositions during magmatic differentiation 219 

(Cawthorn and Brown, 1976; Zen, 1986).  Throughout this contribution, we use ASI = molecular 220 

Al2O3 / [CaO – (3.33*P2O5) + Na2O + K2O] (Frost et al., 2001).  Assimilation of aluminous 221 

sedimentary country rock during differentiation may also result in peraluminous compositions 222 

(Barbarin, 1996).  In both cases, the simplest way to recognize these processes is to examine 223 

whether or not the felsic peraluminous rocks in question are part of a co-magmatic suite that 224 

ranges in composition and exhibits chemical or isotopic evidence for fractional crystallization or 225 

assimilation (e.g., decreasing εNdi with increasing SiO2) (DePaolo, 1981).   226 

 An example of peraluminous granite created by fractional crystallization is the Late 227 

Cretaceous (ca. 90 Ma) Chemehuevi Mountains plutonic suite in California, USA, which is part 228 

of the Chemehuevi metamorphic core complex (John, 1988; John and Mukasa, 1990).  The 229 

Chemehuevi Mountains plutonic suite has evolved Pb and Sr isotopic values, similar to nearby 230 
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Proterozoic-age crust, and is compositionally and temporally zoned with older, metaluminous to 231 

weakly peraluminous biotite granodiorite on the margins and younger, peraluminous two-mica ± 232 

garnet granite in the center, forming a “bullseye” map pattern (John and Wooden, 1990) (Fig. 3).  233 

The occurrence of cogenetic magmas of variable composition as well as the nested geometry 234 

suggest that the strongly peraluminous granite differentiated from a more mafic, metaluminous 235 

magma and the evolved isotopic compositions suggest that the magma assimilated significant 236 

amounts of Proterozoic crust (John, 1988; John and Wooden, 1990).  In contrast, igneous suites 237 

in the CAB generally have a comparatively limited compositional range, usually lacking 238 

intermediate to low SiO2 and metaluminous members (Fig. 3).  The Chemehuevi Mountains 239 

plutonic suite and similarly aged suites nearby have been interpreted to be part of the Cordilleran 240 

(Laramide) arc and to have formed by (mantle-derived) mafic magma influx, hybridization, and 241 

partial remelting of the lower crust (Miller and Wooden, 1994; Economos et al., 2010).   242 

 243 

3.2. Hydrothermal Alteration 244 

 Hydrothermal alteration can also influence the apparent peraluminosity of an intrusive 245 

rock unit (Luth et al., 1964; Miller et al., 1981; Zen, 1988; Clarke et al., 2005).  There are many 246 

different forms of hydrothermal alteration, broadly categorized by the elements gained in 247 

comparison to the original protolith composition (e.g., Seedorff et al., 2005; 2008).  Greisen 248 

alteration and coarse muscovite alteration are characterized by the dominant hydrothermal 249 

mineral assemblage muscovite-quartz ± albite ± K-feldspar with or without additional accessory 250 

minerals. Coarse muscovite alteration is commonly formed during fluid exsolution from a 251 

metaluminous intrusion and results in a relative increase in Al and Rb and relative decrease in Ca 252 

and Sr as muscovite ± end-member albite replaces plagioclase (Runyon et al., 2019).  As a result, 253 
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peraluminosity for coarse muscovite altered rocks is commonly higher than the original igneous 254 

composition (Fig. 4).  Another form of hydrothermal alteration that may affect peraluminosity is 255 

hydrolytic (acidic) alteration, which strips cations from the host rock.  In hydrolytic alteration, 256 

feldspar is commonly altered to fine-grained muscovite (sericite) or clay and original mafic 257 

minerals may be altered to chlorite with or without accessory minerals.  In these cases, cations 258 

like Na, Ca, and K are more easily mobilized into the fluid than Al, resulting in an apparent 259 

increase in peraluminosity (Fig. 4).  These two examples are among the more well-known types 260 

of hydrothermal alteration that could increase peraluminosity, however, there are many factors 261 

including fluid composition, intensity of alteration, host rock composition, and 262 

pressure/temperature conditions that will all influence the apparent changes in peraluminosity 263 

during hydrothermal alteration of a given rock. 264 

 In coarse muscovite alteration, muscovite is commonly found as dispersed, euhedral 265 

booklets, replaces igneous minerals (e.g., biotite, feldspars, amphibole), and occurs in veins, and 266 

fractures, and small “vugs” or open space that can develop in areas of pervasive wall-rock 267 

replacement (Runyon et al., 2019).  Hydrothermal versus magmatic muscovite can be 268 

distinguished both chemically (e.g., Ti content) and texturally (Miller et al., 1981).  269 

Hydrothermally altered rocks may also be hyperaluminous, with an aluminum saturation index 270 

(ASI) > 1.3 (Clarke, 2019) and have very high Rb/Sr ratios – with values significantly higher 271 

than unaltered anatectic rocks (Fig. 4).   272 

 Many of the muscovite-bearing granite locations originally documented in Miller and 273 

Bradfish (1980) have been hydrothermally altered (e.g., Barton, 1987).  An example of 274 

hydrothermal alteration creating an apparently strongly peraluminous, muscovite granite is the 275 

Texas Canyon stock in the Little Dragoon Mountains, Arizona (Cooper and Silver, 1964). 276 
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Unaltered samples of the Texas Canyon stock are commonly biotite ± muscovite quartz 277 

monzonite in composition and metaluminous to weakly peraluminous. Coarse muscovite 278 

alteration is strongly developed within the Texas Canyon quartz monzonite, ranging from 279 

incomplete replacement of biotite by hydrothermal muscovite to pervasive wall-rock 280 

replacement by muscovite-albite-K-feldspar ± fluorite mineral assemblages (Runyon et al., 281 

2019). The alteration is well-developed over large areal extents (Cooper and Silver, 1964) and 282 

samples of the coarse muscovite altered Texas Canyon quartz monzonite have a significantly 283 

higher ASI than unaltered samples (Fig. 4).  284 

 285 

3.3. Localized Melting from Mantle-Derived Intrusions 286 

 Another way to create peraluminous granite is to locally melt the crust by underplating or 287 

intrusion of mantle-derived (basaltic) magmas (Barbarin, 1996).  The majority of Phanerozoic 288 

granite suites in the North American Cordillera are hybrids with both mantle and crustal inputs, 289 

however, added heat or exsolved fluids from basaltic rocks can generate crustal melts with little 290 

to no geochemical or isotopic mantle signature (Patiño-Douce, 1999; Annen et al., 2006).  As a 291 

result, peraluminous granite generated in this fashion is particularly difficult to distinguish from 292 

instances of crustal melting that does not involve the intrusion of mantle-derived mafic magmas.  293 

Recognition of a mantle-derived, basaltic precursor is mainly achieved through thermal 294 

arguments (e.g., a regional heating event) or by exposure of the basaltic intrusions themselves 295 

(including as mafic enclaves) and/or igneous rocks derived from these intrusions (e.g., Ireteba 296 

pluton, Eldorado Mountains, Nevada; Kapp et al., 2002).   297 

 An example of this process to create peraluminous granite comes from the Raft River-298 

Albion-Grouse Creek metamorphic core complex.  When examined in isolation, the 32-25 Ma 299 
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Cassia plutonic complex in the Albion Range and northern Grouse Creek Mountains is a good 300 

candidate for a crust-derived magma.  The Cassia plutonic complex is 1) silica rich (> 70 wt. % 301 

SiO2), 2) peraluminous (ASI=1.0-1.2), 3) isotopically very evolved (εNdi < -25; 87Sr/86Sri > 302 

0.71), 4) was emplaced into amphibolite-grade metamorphic rocks during or close to peak 303 

pressure-temperature conditions (4 kbar, 650°C), and 5) is syn-kinematic with early core 304 

complex extension (Egger et al., 2003; Strickland et al., 2011; Konstantinou et al., 2013).  305 

However, emplacement of the Cassia plutonic complex was immediately preceded by the 306 

intrusion of the 42-31 Ma Emigrant Pass plutonic complex, which ranges from mafic to felsic 307 

compositions (55-75 wt. % SiO2), is more isotopically primitive, and ranges from metaluminous 308 

to peraluminous compositions (Egger et al., 2003; Strickland et al., 2011; Konstantinou et al., 309 

2013).  In addition, both the Emigrant Pass and Cassia plutonic complexes have mantle-like, 310 

autocrystic (not inherited) zircon δ18O compositions (Strickland et al., 2011).  Added heat from 311 

the mantle-derived Emigrant Pass magmatic event has been interpreted to have locally melted 312 

the crust to produce the Cassia plutonic suite (Strickland et al., 2011; Konstantinou et al., 2013).  313 

Rocks of the Cassia plutonic complex were included in the belt of muscovite-bearing granite of 314 

Miller and Bradfish (1980) but are excluded from our compilation of rocks in the CAB. 315 

 In the compilation and summary of CAB rocks presented below, locations that involved 316 

mantle-derived magmas were excluded.  We omitted locations that contain cogenetic igneous 317 

rocks interpreted as primitive magmas or products of assimilation and/or fractional 318 

crystallization from primitive magmas.  This distinction follows previous classification schemes 319 

that suggest only peraluminous leucogranite represents crustal melts with no mantle-input and 320 

that all other granitic rocks are crust-mantle hybrids, including the Cordilleran coastal batholiths 321 

(Collins, 1996; Patiño-Douce, 1999; Annen et al., 2006; Kemp et al., 2007).  Alternative models 322 
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for producing metaluminous granite of intermediate composition (representative of the 323 

Cordilleran coastal batholiths) by crustal anatexis include restite unmixing (Chappell et al., 1987) 324 

and peritectic assemblage entrainment (Clemens and Stevens, 2012).   325 

 326 

4. The North American Cordilleran Anatectic Belt  327 

 The CAB includes most of the anatectic rocks in the Omineca Crystalline Belt in 328 

southern British Columbia, Canada (Monger et al., 1982; Parrish et al., 1988; Nelson et al., 329 

2013), the “Late Cretaceous-Cenozoic plutonic suite” of Wright and Wooden (1991) and “S-type 330 

subzone” of Solomon and Taylor (1989) in the eastern Great Basin region of the United States, 331 

the “strongly peraluminous suite” of “Cordilleran Interior plutonism” of Miller and Barton 332 

(1990) in the U.S. Cordillera, the “compositionally restricted granites” of Haxel et al. (1984) in 333 

southern Arizona, U.S.A., and the “Aconchi granitic suite” in Mexico (Grijalva-Noriega and 334 

Roldan-Quintana, 1998).  In the following section, we list and briefly describe all main 335 

exposures of anatectic rocks that collectively form the CAB.  A summary of this information is 336 

presented in Table 1.  We acknowledge that there are likely additional locations we are unaware 337 

of that were unintentionally omitted from the compilation.  Following the descriptions, some of 338 

the shared characteristics of the CAB rocks are discussed. 339 

 340 

4.1. The Northern Belt 341 

4.1.1. The Shuswap Complex 342 

 The Shuswap is the largest Cordilleran metamorphic core complex and contains several 343 

migmatite-cored gneiss domes that are often treated as core complexes individually, including 344 

the Matton, Frenchman’s Cap, Thor-Odin, Valhalla, Okanagan, and Grand Forks-Kettle 345 



16 

 

complexes (Vanderhaege et al., 1999) (Fig. 1).  Peraluminous granites interpreted as anatectic 346 

melts are found throughout the Shuswap complex as leucosome in migmatite and as numerous 347 

intrusive bodies (plutons, dikes, sills, laccoliths, and veins).  Among the more well-known 348 

intrusive bodies are the large, sheet-like Ladybird, Airy, and Adams River leucogranites, which 349 

have been interpreted to be derived from partial melting in migmatite (Sevigny and Parrish, 350 

1993; Hinchey and Carr, 2006).  The ages of Shuswap migmatite and leucogranite range from 61 351 

to 49 Ma and exhibit a wide range of ages (≥ 10 Myr) in most individual locations (Vanderhaege 352 

et al., 1999; Hinchey et al., 2006; Gordon et al., 2008; Kruckenberg et al., 2008; Cubley et al., 353 

2013).  Metamorphic rocks and migmatite in the Shuswap complex record prograde 354 

metamorphism from ca. 85 to 55 Ma, with peak pressure and temperature conditions of 8-12 355 

kbar and 700-850 °C ca. 60 to 55 Ma (see review in Bendick and Baldwin, 2009), coincident 356 

with or slightly older than the age of crustal melting.   357 

 358 

4.1.2. Mid-Cretaceous Kootenay Arc 359 

 Partly overlapping and east of the Shuswap metamorphic core complex is the Kootenay 360 

arc, which contains a suite of mid-Cretaceous (117-95 Ma; Leclair et al., 1993) intrusions that 361 

have been associated with crustal melting (Brandon and Lambert, 1993; 1994; Brandon and 362 

Smith, 1994) and were included in the belt of muscovite-bearing granite of Miller and Bradfish 363 

(1980).  These rocks include the White Creek, Fry Creek, Horsethief Creek, Battle Range, 364 

Bugaboo, and Bayonne batholiths (Fig. 1).  The batholiths are typically zoned or nested and 365 

contain a wide range of compositions (60-78 wt. % SiO2) from metaluminous quartz 366 

monzodiorite to biotite-hornblende granodiorite to strongly peraluminous two-mica granite 367 

(Brandon and Lambert, 1993; 1994; Brandon and Smith, 1994).  Whole rock δ18O (7.1-11.2 ‰) 368 
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increases and radiogenic isotope ratios become more evolved (-5 to -20 εNdi; 0.707-0.74 369 

87Sr/86Sr) with increasing differentiation of the magmatic suite with the most evolved values 370 

represented by the two-mica granite (Brandon and Lambert, 1993; 1994; Brandon and Smith, 371 

1994).  These compositional trends are consistent with crustal contamination of a basaltic 372 

precursor during differentiation.  However, Brandon and Lambert (1994) note that there are no 373 

nearby exposures of basalt, that low Cr and Ni contents and weak negative Eu anomalies are 374 

inconsistent with fractional crystallization of plagioclase from a basaltic source, and that the 375 

more mafic mid-Cretaceous igneous rock compositions are similar to experimental melt 376 

compositions of amphibolite (Rapp et al., 1991; Beard and Lofgren, 1991).  The mid-Cretaceous 377 

Kootenay arc rocks were interpreted to form by dehydration melting as a zone of anatexis 378 

migrated upward through the crust; initially melting Proterozoic amphibolite to tonalitic gneiss to 379 

produce the quartz monzodiorite and biotite-amphibole granodiorite and then melting 380 

Proterozoic metapelites to produce the two-mica granite (Brandon and Lambert, 1993; 1994; 381 

Brandon and Smith, 1994).  The mid-Cretaceous suite was emplaced at 2-4 kbar and postdates 382 

Early Cretaceous (144-134 Ma) regional Barrovian metamorphism that records peak pressures 383 

and temperatures of 6-7 kbar and 650-700 °C (Moynihan and Pattison, 2013; Webster et al., 384 

2017).  The mid-Cretaceous Kootenay arc is significantly older (20-80 Myr) than the rest of the 385 

CAB (Table 1) and crustal melting has been associated with accretion events on the plate margin 386 

specific to this longitude (ca. 50 °N) that may not be relevant to other parts of the CAB (Monger 387 

et al., 1982; Brandon and Lambert, 1993; 1994).   388 

 389 

4.1.3. Priest River-Clearwater Complexes 390 

 Prograde metamorphism occurred from ca. 75 to 64 Ma in the Priest River metamorphic 391 
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core complex, with peak pressure and temperature conditions of 10 kbar and 790 °C, followed by 392 

nearly isothermal decompression ca. 60-57 Ma (Stevens et al., 2015) (Fig. 1).  Migmatite 393 

exposures are estimated to contain 25-45% leucosome and are classified as metatexite (Stevens 394 

et al., 2016).  Crustal anatexis, via dehydration melting, occurred during both prograde 395 

metamorphism and decompression with a majority of melt crystallization occurring ca. 54-44 Ma 396 

(Stevens et al., 2015).  Intrusive rocks in the Priest River complex are generally Late Cretaceous 397 

or Eocene in age.  The Late Cretaceous intrusive rocks (e.g., Spokane granite) partly precede 398 

prograde metamorphism, span a range of compositions including two-mica granite, and have 399 

radiogenic isotopic compositions that may require the involvement of a mantle-derived juvenile 400 

component (Whitehouse et al., 1992), which suggests that they are not crustal melts and are not 401 

included in the CAB.  The Eocene intrusive rocks (e.g., Silver Point, Wrencoe, Rathdrum 402 

plutons) overlap in age (50-45 Ma) with leucosome in migmatite and include biotite-hornblende-403 

bearing and biotite-bearing granite (Miller et al., 1975; Stevens et al., 2016) that have been 404 

interpreted to be crustal melts of Proterozoic basement (metapelite to orthogneiss) based on their 405 

highly evolved isotopic composition (zircon εHfi = -22 to -27; εNdi = -19 to -21; Whitehouse et 406 

al., 1992; Stevens et al., 2016) and are included in the CAB.  Eocene magmatism also occurs 407 

outside (in the hanging wall) of the complex including the peraluminous two-mica granite in the 408 

Loon Lake batholith that has been attributed to crustal melting (Asmerom et al., 1988).   409 

 The Clearwater metamorphic core complex experienced peak metamorphism at 8-11 kbar 410 

and 650-750 °C during ca. 64-56 Ma, followed by the onset of decompression at ca. 59 Ma 411 

(Doughty and Chamberlain, 2007).  Migmatite is absent, but intrusion of muscovite-bearing 412 

granite (e.g., Roundtop, Beaver Creek, Bungalow plutons) during the early Eocene (ca. 50-45 413 

Ma) may record crustal melting at depth (Marvin et al., 1984; Foster et al., 2007).  Undated 414 
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pegmatitic two-mica leucogranite dikes and sills also intrude and cross-cut Proterozoic 415 

metasedimentary units (Guevara, 2012). 416 

 417 

4.1.4. The Idaho Batholith & Bitterroot Complex 418 

 Unlike the other large Mesozoic coastal arc batholiths, the Idaho batholith was emplaced 419 

entirely into Proterozoic basement and is dominated by peraluminous granite including the 83-67 420 

Ma peraluminous Atlanta suite in the Atlanta lobe and the 66-53 Ma (mostly 55-53 Ma; e.g., 421 

Bear Creek and Paradise plutons) peraluminous Bitterroot suite in the Bitterroot lobe (Hyndman, 422 

1983; Johnson et al., 1988; Foster et al., 2007; Gaschnig et al., 2010) (Fig. 1).  Whether the 423 

peraluminous suites represent crustal melts or extensive crustal assimilation has been a topic of 424 

debate for the last half-century (see review in Gaschnig et al., 2011).  Emplacement of both 425 

peraluminous suites was immediately preceded by cogenetic metaluminous arc magmatism and 426 

the batholith generally exhibits increasingly evolved radiogenic isotopes through time (Gashnig 427 

et al., 2011).  These patterns, along with the presence of mafic igneous rocks that overlap in age 428 

with the Bitterroot suite (Hyndman and Foster, 1988) and mantle-like zircon δ18O (King and 429 

Valley, 2001), support models linking the formation of the Idaho batholith to injection of mantle-430 

derived magmas that eventually led to melting of continental crust.  However, the highly evolved 431 

isotopic compositions and limited compositional range of the peraluminous suites suggest that if 432 

mantle-derived magmas were involved in petrogenesis of the suites, they likely provided heat 433 

and not mass input (Gaschnig et al., 2011).  Gaschnig et al. (2011) interpreted the Atlanta 434 

peraluminous suite to have formed by dehydration melting of greywacke or biotite-bearing 435 

granitic rocks and the Bitterroot suite to have formed by dehydration melting of orthogneiss, 436 

both at relatively high pressure. 437 
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 The Bitterroot peraluminous suite is located within the Bitterroot metamorphic core 438 

complex and has been interpreted in terms of core complex formation as well as part of the 439 

Cordilleran coastal batholith system.  The region experienced crustal thickening and prograde 440 

metamorphism during the Sevier-Laramide orogeny (80-50 Ma) and the intrusion of the 441 

Bitterroot peraluminous suite (“main phase” plutons) as a series of thick (3-4 km) sills and 442 

laccoliths has been interpreted to be related to anatexis of Proterozoic basement gneisses (Foster 443 

et al., 2001; 2010).  Migmatite is locally exposed in the Bitterroot metamorphic core complex 444 

and records anatectic melting (leucosome and pegmatite intrusions) at ~53 Ma and peak 445 

metamorphic pressures and temperatures of 7-8 kbar and 650-750 °C, resulting in muscovite 446 

breakdown (Foster et al., 2001).   447 

 448 

4.1.5. Anaconda-Pioneer Complexes 449 

 The Anaconda metamorphic core complex shares many similarities with the Priest River, 450 

Clearwater, and Bitterroot complexes and they are linked by the dextral Lewis and Clark fault 451 

zone (Foster et al., 2007) (Fig. 1).  The footwall of the Anaconda complex exposes recumbently 452 

folded nappes that record deformation and metamorphism related to crustal thickening during the 453 

Late Cretaceous (80-75 Ma) with peak pressures and temperatures of 4-6 kbar and 600-700 °C 454 

(Grice, 2006; Haney, 2008).  Eocene plutons and abundant pegmatite and aplite dikes and sills 455 

intrude Proterozoic host rocks, which are locally migmatitic (Foster et al., 2007).  The Eocene 456 

(53-50 Ma) intrusive rocks include the Hearst Lake pluton, a peraluminous, two-mica 457 

leucogranite (Wallace et al., 1992; Foster et al., 2007). 458 

 The footwall of the Pioneer metamorphic core complex locally contains migmatite and is 459 

pervasively intruded by leucogranite dikes and sills with crystallization ages of 52-46 Ma, which 460 
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overlap in age with the Pioneer Intrusive Suite (50-48 Ma) (Silverberg, 1990; Vogl et al., 2012).  461 

 462 

4.2. The Central Belt 463 

4.2.1. Ruby-East Humboldt Core Complex 464 

 Fold nappes exposed in the core of the Ruby-East Humboldt metamorphic core complex 465 

and thrust faults in nearby mountain ranges record crustal thickening and prograde 466 

metamorphism, starting during the mid-Cretaceous (ca. 100-95 Ma) and peaking during the Late 467 

Cretaceous (ca. 85-80 Ma) (Camilleri and Chamberlain, 1997; McGrew et al., 2000; Hallet and 468 

Spear, 2015) (Fig. 1).  Metamorphic rocks indicate that the complex experienced decompression 469 

from ca. 85-55 Ma, although the amount of decompression (1-6 kbar) varies and there is little to 470 

no upper crustal or basinal record of this event (Hodges et al., 1992; McGrew et al., 2000; Henry 471 

et al., 2011; Hallet and Spear, 2014; 2015).  Some authors have related decompression to vertical 472 

ductile thinning (Hallet and Spear, 2014; Long and Kohn, 2020).  Migmatite is exposed at deep 473 

structural levels in the complex (Howard, 1980) and partial melting in these migmatites has been 474 

linked to pervasive intrusion of leucogranite at higher structural levels during the Late 475 

Cretaceous (Lee et al., 2003; Premo et al., 2008).  Late Cretaceous pegmatitic leucogranite is the 476 

dominant intrusive component of the Ruby-East Humboldt complex and forms an injection 477 

complex of innumerable dikes and sills (Howard et al., 2011).  The pegmatitic leucogranite has 478 

been interpreted to have formed by muscovite dehydration melting of Proterozoic metapelite and 479 

to be related to crustal anatexis during both prograde metamorphism and decompression (Wright 480 

and Snoke, 1993; McGrew et al., 2000; Lee et al., 2003; Howard et al., 2011; Hallet and Spear, 481 

2014; 2015).  A younger population (46-29 Ma) of leucogranite bodies is also present in the 482 

Ruby-East Humboldt complex and overlaps in age with a compositionally expanded suite of 483 
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igneous rocks (e.g., Harrison Pass pluton) ranging from gabbro to two-mica granite that involve 484 

a mantle-derived component (Barnes et al., 2001; Lee et al., 2003; Howard et al., 2011).  These 485 

younger rocks are volumetrically less significant and geochemically and isotopically distinct 486 

from the Late Cretaceous pegmatitic granite (Barnes et al., 2001; Lee et al., 2003).  Howard et al. 487 

(2011) suggested that mafic underplating during the younger phase of magmatism (Eocene-488 

Oligocene) provided heat ± fluids that resulted in additional crustal melting and re-melting and 489 

remobilization of the Late Cretaceous pegmatitic granite.  Regionally, Eocene-Oligocene 490 

magmatism is related to the mid-Cenozoic ignimbrite flare-up and rollback of the Farallon slab 491 

(Humphreys, 1995; Konstantinou and Miller, 2015) and is not included in the CAB.   492 

 East of the Ruby-East Humboldt complex, Late Cretaceous two-mica ± garnet 493 

leucogranite, pegmatite, and aplite dikes interpreted to have formed by crustal melting are 494 

present in the Wood Hills, Pequop Mountains, and Toano Range (Lee and Marvin, 1981; Miller 495 

et al., 1990; Camilleri and Chamberlain, 1997; Milliard et al., 2015).  The 77-72 Ma Toano 496 

Springs pluton in the Toano Range marks the northeastern extent of Late Cretaceous crustal 497 

anatexis in the Great Basin as interpreted by Wright and Wooden (1991). 498 

 499 

4.2.2. Snake Range-Kern Mountains-Deep Creek Range 500 

 The Snake Range, Kern Mountains, and Deep Creek Range are part of a single 501 

metamorphic core complex/extensional fault system (Miller et al., 1999), herein referred to as the 502 

Snake Range complex (Fig. 1).  No migmatite is exposed in the Snake Range complex, but the 503 

region experienced peak metamorphism during the Late Cretaceous (90-70 Ma) associated with 504 

the Sevier orogeny (Miller and Gans, 1989).  Metamorphic rocks in the footwall record 505 

maximum pressures and temperatures of 6-8 kbar and 500-650 °C (Cooper et al., 2010).  Late 506 
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Cretaceous (ca. 86-70 Ma), strongly peraluminous, two-mica granite (e.g., Lexington Creek, Pole 507 

Canyon-Can Young Canyon, Tungstonia plutons) in the Snake Range complex have been 508 

interpreted to be crustal melts formed by dehydration melting of Proterozoic metapelite (Lee et 509 

al. 1981, Lee et al., 1986; Farmer and DePaolo et al., 1983; Lee and Christiansen 1983; Wright 510 

and Wooden, 1991; Gottlieb, 2017).  Eocene peraluminous, muscovite-bearing granite (e.g., 511 

Young Canyon-Kious Basin plutons; ~37 Ma) is also present in the Snake Range complex (Lee 512 

and Christiansen 1983) and may have formed in a similar way to the Eocene peraluminous rocks 513 

in the Ruby-Humboldt Mountains (i.e., associated with the mid-Cenozoic ignimbrite flare-up).  514 

The Eocene intrusive rocks have more juvenile 87Sr/S6Sr ratios, are more oxidized, and have 515 

lower δ18O ratios compared to the strongly peraluminous Cretaceous intrusions (Lee and 516 

Christiansen 1983; King et al., 2004).   517 

 Swarms of pegmatitic leucogranite sills and dikes are common in the Snake Range 518 

complex as well as in neighboring ranges (e.g., Schell Creek Range) and may also be associated 519 

with crustal anatexis (Lee et al., 1981; Miller and Gans, 1989).  Miller et al. (1999) reported an 520 

age of 82 Ma on a leucogranite dike in the Smith Creek region, Kern Mountains.  Two-mica 521 

granite, potentially equivalent with the strongly peraluminous Cretaceous intrusions in the Snake 522 

Range, is also exposed in some surrounding ranges, including the ca. 84 Ma Troy Granite in the 523 

Grant Range (Fryxell, 1988; Lund et al., 2014) and the ca. 84 Ma McCullough Butte and Rocky 524 

Canyon plutons in the Fish Creek Range (Barton, 1987).   525 

 526 

4.2.3. Central Great Basin Two-Mica Granite 527 

 All the rocks in the central CAB described in the preceding sections (Sections 4.2.1 and 528 

4.2.2) occur east of the 87Sr/86Sr = 0.708 isopleth and east of the Roberts Mountain thrust, which 529 
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marks a suture zone separating accreted (para)allochthonous terranes to the west from North 530 

American cratonic basement to the east (Kistler and Peterman, 1973; Stewart, 1980).  Small 531 

exposures of Late Cretaceous, peraluminous, two-mica granite occur throughout the Great Basin 532 

region west of the 87Sr/86Sr = 0.708 isopleth (Fig. 1).  These granites are interpreted to have a 533 

significant sedimentary input and were included in previous compilations of strongly 534 

peraluminous rocks (Miller and Bradfish, 1980; Barton, 1987; 1990; Miller and Barton, 1990; 535 

Barton and Trim, 1991).  In Nevada, these granites include the Pipe Springs (80 Ma) and Round 536 

Mountain plutons (95 Ma) in the Toquima Range (Shawe et al., 1986), the Birch Creek pluton 537 

(89 Ma) in the Toiyabe Range (Stewart et al., 1977), and the New York Canyon and Rocky 538 

Canyon plutons (73-71 Ma) in the Humboldt and Stillwater Ranges (Johnson et al., 1977; 539 

McFarlane, 1981; Barton and Trim, 1991).  In eastern California, these include the Birch Creek 540 

and Papoose Flat plutons (83-82 Ma) in the White and Inyo Mountains (Sylvester et al., 1978; 541 

Barton, 2000).  Two-mica granite intrusions in the central Great Basin are generally considered 542 

to be satellites of the Sierra Nevada batholith and occur along with more common Late 543 

Cretaceous metaluminous intrusive rocks (Sylvester et al., 1978; McFarlane, 1981; Barton, 1987; 544 

2000; Brown et al., 2018).  Besides slightly more juvenile radiogenic isotopic compositions 545 

(compared to the eastern Great Basin), these rocks have lower zircon δ18O ratios (King et al., 546 

2004) and, where studied in detail, are associated with rare mafic dikes and enclaves (e.g., 547 

Barton, 2000).  Late Cretaceous, two-mica granite in the central Great Basin has been interpreted 548 

to be an evolved, high-pressure equivalent to more metaluminous, calc-alkaline continental arc 549 

rocks (Patiño-Douce, 1999) or related to increased mantle heat flow (e.g., basaltic underplating 550 

or intrusion, mantle upwelling; Barton, 1990).  Wright and Wooden (1991) suggested that none 551 

of the Late Cretaceous two-mica granite located west of 87Sr/86Sr = 0.708 isopleth are crustal 552 
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melts and they are not included in the CAB here. 553 

 554 

4.3. The Southern Belt 555 

4.3.1. Death Valley area, California 556 

 The Funeral Mountains metamorphic core complex contains migmatite that record Late 557 

Cretaceous prograde metamorphism and maximum pressures and temperatures of 7-9 kbar and 558 

600-700 °C during ca. 90-70 Ma (Hodges and Walker, 1990; Hoisch and Simpson, 1993; 559 

Mattinson et al., 2007) (Fig. 1).  The migmatite is cut by Paleocene (64-62 Ma) two-mica 560 

leucogranite dikes and sills that were emplaced syn-kinematically and have been interpreted to 561 

have formed by water-excess to water-deficient melting of muscovite-bearing metasedimentary 562 

rocks (Mattinson et al., 2007).   563 

 Leucogranite dikes and pegmatite (59-55 Ma) are also present in the Black Mountains 564 

metamorphic core complex in the Badwater, Mormon Point, and Copper Canyon turtlebacks 565 

(antiformal footwall corrugations) (Miller and Friedman, 1999; Lima et al., 2018) and in the 566 

Panamint Mountains (Mahood et al., 1996).  The ~72 Ma Hall Canyon pluton, a two-mica 567 

granodiorite, in the Panamint Mountains was interpreted by Mahood et al. (1996) to be a product 568 

of water-absent biotite dehydration melting.   569 

 Late Cretaceous muscovite-garnet granite is found south and west of Death Valley in the 570 

western Mojave Desert region and is interpreted to have formed in part by partial melting and 571 

assimilation of Pelona-Orocopia-Rand Schist, which was underplated in this area during 572 

Laramide low-angle subduction (Miller et al., 1996; 2000; Grove et al., 2003).  Despite 573 

significant involvement of the Pelona-Orocopia-Rand Schist in the source region, these 574 

muscovite-garnet granites are still interpreted to be subduction-related and to have originated in 575 
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the upper mantle (Miller et al., 1996; Saleeby, 2003).  They are considered distinct from the 576 

Cordilleran interior belt of muscovite-granite (Miller and Barton, 1990; Miller et al., 1996), and 577 

are not included in the CAB. 578 

 579 

4.3.2. Colorado River Extensional Corridor 580 

 The Colorado River extensional corridor extends from southern Nevada to the Phoenix, 581 

Arizona area and consists of a series of top-to-the-northeast metamorphic core complexes and 582 

extensional fault systems (Howard and John, 1987).  Numerous magmatic rocks occur 583 

throughout this corridor that have been or could be interpreted as crustally-derived magmas.  The 584 

Ireteba pluton (~66 Ma) in the Eldorado Mountains, Nevada is a two-mica ± garnet granite that 585 

was included in the belt of muscovite-bearing granite of Miller and Bradfish (1980).  However, 586 

the Ireteba granite shows extensive interaction with mafic magmas and has been interpreted to be 587 

related to injection of juvenile basaltic magmas causing melting of the crust (Kapp et al., 2002).   588 

 Late Cretaceous peraluminous granite in the Sacramento and Chemehuevi core 589 

complexes, California has been interpreted to be related to fractional crystallization and crustal 590 

assimilation of mantle-derived magmas as discussed in Section 3.1 (John and Wooden, 1980).  591 

Likewise, Late Cretaceous (~89 Ma) peraluminous granite in the Whipple Mountains 592 

metamorphic core complex has been interpreted to have formed in a subduction setting and 593 

involved a mantle input (Anderson and Cullers, 1990).   594 

 Late Cretaceous (75-70 Ma), strongly peraluminous two-mica granite in the Old Woman-595 

Piute batholith, California (e.g., Sweetwater Wash, Lazy Daisy, Painted Rock plutons) has been 596 

interpreted to represent crustal melts with limited mantle input (Foster et al., 1989; Miller et al., 597 

1990b; Miller and Wooden, 1994).  The strongly-peraluminous plutons were emplaced along 598 
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with metaluminous rocks of the same age, show a spectrum of major element and isotopic 599 

compositions, and in some cases are nested within the metaluminous rocks, similar to the 600 

peraluminous granite in the Chemehuevi Mountains (John and Wooden, 1990; Miller et al., 601 

1990).  However, the peraluminous stocks in the Old Woman-Piute batholiths have been 602 

interpreted to reflect anatexis of a hybridized lower crustal source consisting of older basement 603 

rocks and mantle-derived Jurassic arc igneous rocks (Miller et al., 1990; Miller and Wooden, 604 

1994).  The nearby Iron Mountains, California also contain Late Cretaceous (ca. 75-70 Ma) 605 

strongly peraluminous two-mica ± garnet granite equivalent to the Old Woman-Piute batholith 606 

(Wells et al., 2002; Wells and Hoisch, 2008).  The Iron Mountains intrusive suite and nearby 607 

Coxcomb intrusive suite comprise the Cadiz Valley batholith, which has been interpreted to be 608 

subduction-related (Howard, 2002; Economos et al., 2010).   609 

 Widespread exposures of two-mica ± garnet leucogranite occur in the Buckskin-610 

Rawhide, Harcuvar, Harquahala, and White Tank metamorphic core complexes, Arizona, 611 

including the Tank Pass granite (ca. 80-78 Ma; DeWitt and Reynolds, 1990; Bryant and 612 

Wooden, 2008), the Brown’s Canyon granite (ca. 72 Ma; Richard et al., 1990; Isachsen et al., 613 

1998), and the White Tank granite (ca. 72 Ma; Reynolds et al., 2002; Prior et al., 2016) which 614 

intruded primarily as large sills, but also form dense networks of smaller dikes and sills.  615 

Locally, areas of particularly voluminous intrusions have been referred to as migmatitic injection 616 

complexes (Bryant and Wooden, 2008), although evidence for in situ melting during the Late 617 

Cretaceous is not documented in Arizona.  Bryant and Wooden (2008) report a ~110 Ma 618 

mylonitized, “migmatitic” gneiss in the Harcuvar Mountains, and Knapp and Heizler (1990) 619 

report a ~67 Ma partially mylonitized, “migmatitic” gneiss in the Mesquite Mountains, Arizona. 620 

 621 
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4.3.3. Southern Arizona 622 

 Strongly peraluminous, two-mica ± garnet leucogranite is exposed throughout southern 623 

Arizona, primarily within the footwalls of metamorphic core complexes.  The Paleocene to 624 

Eocene (ca. 60-45 Ma) Wilderness Suite in the Catalina-Rincon metamorphic core complex was 625 

emplaced as series of thick (≤ 2 km) sills and has been interpreted to have formed by crustal 626 

melting of Proterozoic Oracle granite (Keith, 1980; Farmer and DePaolo, 1984; Force, 1997; 627 

Fornash et al., 2013; Davis et al., 2019) or from other unexposed lithologies (Ketcham, 1996).  628 

Equivalent rocks (e.g., Fresnal Canyon granite) are exposed in the Picacho and Tortolita 629 

Mountains core complexes as well (Banks, 1980; Spencer et al., 2003; Ferguson et al., 2003).  630 

The Wilderness suite was estimated to have been emplaced at 3-4 kbar and ca. 625-725 °C 631 

(Anderson et al., 1988).   632 

 The Pan Tak granite in the Coyote Mountains core complex and the Presumido Peak 633 

granite in the Pozo Verde Mountains core complex are both ~58 Ma, two-mica ± garnet 634 

leucogranites that have been interpreted to have formed by crustal anatexis of Proterozoic 635 

basement, potentially the Pinal schist (Wright and Haxel, 1982; Goodwin and Haxel, 1990).  636 

Haxel et al. (1984) report similar peraluminous granite in the Kupk Hills, Sierra Blanca, and 637 

Comobabi core complexes.  Apart from the southern Arizona metamorphic core complexes, 638 

peraluminous two-mica leucogranite occurrences include the Texas Canyon stock (~55 Ma), 639 

Senita Basin granite, and Artesa Mountains granite (Cooper and Silver, 1964; May and Haxel, 640 

1980; Shafiqullah et al., 1980; Haxel et al., 1984; Chapman et al., 2018).  Arnold (1986) 641 

interpreted the Gunnery Range batholith and Texas Canyon stock (Fig. 1) to represent crustal 642 

melting of a deep granulitic source terrane, although the strongly peraluminous compositions of 643 

the Texas Canyon stock may be related to hydrothermal alteration as discussed in Section 3.2 644 
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(Runyon et al., 2019).  645 

 646 

4.3.4. Northern Sonora 647 

 The Aconchi suite in northern Sonora comprises Late Cretaceous to Paleogene two-mica 648 

± garnet leucogranite that has been interpreted as crustal melts and has been mapped throughout 649 

the region, primarily within the footwalls of metamorphic core complexes, including in the 650 

Mesquital (59-51 Ma), Tubutama, Carnero (ca. 55 Ma), Tortuga, Guacomea (78 Ma), 651 

Magdalena, Madera, Aconchi (58-55 Ma), Puerta del Sol (68-59 Ma), and Mazatán (58 Ma) 652 

complexes (Anderson et al., 1980; Hayama et al., 1984; Nourse et al. 1994; Nourse, 1995; 653 

Grijalva-Noriega and Roldan-Quintana, 1998; González-León et al., 2011; González-Becuar et 654 

al., 2017; Mallery et al., 2018).  Relatively little information is available on many of these 655 

localities, although the intrusions are often described as laterally extensive sills, laccoliths, small 656 

plutons, and networks of small dikes and sills.  The largest exposure is the Aconchi-El Jaralito 657 

batholith located between the Mazatán and Aconchi complexes, which contains the Huépac (58-658 

55 Ma) and El Babizo leucogranites (71 Ma) among others (Roldán-Quintana, 1991; González-659 

León et al., 2011).  Late Cretaceous to Paleocene (68-59 Ma) orthogneiss migmatite is reported 660 

from the Puerta del Sol complex and has been interpreted as the source for the El Pajarito (68 661 

Ma) garnet-bearing leucogranite (González-Becuar et al., 2017).  The youngest leucogranite in 662 

the Puerta del Sol complex is the ~42 Ma El Oquimonis granite, a two-mica + garnet 663 

leucogranite (González-Becuar et al., 2017).   664 

 665 

5. Common Characteristics of the Cordilleran Anatectic Belt 666 

 The most straightforward way to recognize igneous rocks produced by crustal anatexis is 667 
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to observe them in situ – leucosome in migmatite.  Leucosome often represents the initial stages 668 

of crustal anatexis and has been interpreted to feed larger-scale intrusive bodies or represent 669 

crystal fractionation from these bodies (Solar and Brown, 2001; Johannes et al., 2003).  670 

Migmatite (of similar age to the CAB) is common in the northern CAB, but rare to absent in the 671 

central and southern CAB.  In some locations, leucosomes have been shown to be the source for 672 

more voluminous CAB magmas (e.g., Ladybird Suite in the Shuswap complex; Hinchey and 673 

Carr, 2006).  However, in most instances a direct relationship between migmatitic leucosomes 674 

and CAB magmas has not been demonstrated.  Most exposures of migmatite associated with the 675 

CAB record mid-crustal (5-10 kbar), amphibolite facies conditions (Table 1).  In rare cases, 676 

evidence is present suggesting that significant leucosome accumulation ± melt extraction took 677 

place at these conditions (e.g., Priest River complex; Stevens et al., 2015; 2016).  In the majority 678 

of locations, however, CAB igneous rocks were derived from deep structural levels not exposed 679 

at the surface. 680 

 The emplacement geometry of CAB igneous rocks varies greatly, but commonly forms 681 

dike and sill networks, injection complexes, or large sheets and laccoliths (e.g., Ruby-East 682 

Humboldt complex and Catalina-Rincon complex; Howard et al., 2011; Fornash et al., 2013).  683 

This is similar to the geometry of igneous bodies in other major anatectic provinces (e.g., 684 

Manaslu laccolith in the Himalaya leucogranite belt, LeFort et al., 1987).  Where CAB rocks are 685 

exposed as stocks or plutons, they are commonly pervasively intruded by late-phase pegmatite 686 

and aplite dikes that are generally interpreted to have been derived from closed-system 687 

crystallization of water-bearing felsic magmas (e.g., Coyote Mountains complex; Wright and 688 

Haxel, 1982).  To our knowledge, there are no extrusive rocks equivalent to the intrusive rocks 689 

of the CAB.  The inferred high water contents of the CAB melts likely caused them to reach their 690 
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solidus and freeze at moderate pressure (depth) during ascent (Miller, 1985; Clemens and Droop, 691 

1998), which may explain the lack of extrusive equivalents. 692 

 693 

5.1. Geochemistry, Isotopic Composition, and Protoliths 694 

 The CAB igneous rocks are silica-rich (≥ 70 wt. % SiO2; Fig. 3; Table 1), consistent with 695 

experimentally produced melts from a wide range of crustal protoliths (e.g., greywacke, schist, 696 

gneiss; Patiño-Douce, 1999).  The paucity of anatectic rocks of intermediate composition (< 70 697 

wt. % SiO2) suggest that crustal melting of more mafic source rocks (e.g., basaltic amphibolite) 698 

is less common (Beard and Lofgren, 1991; Patiño-Douce and Beard, 1995; Rapp and Watson, 699 

1995; Gao et al., 2016).  CAB rocks are usually identified in the field as leucogranite and are 700 

geochemically and mineralogically classified as granite or rarely, as trondhjemite (Fig. 5).  701 

Potassium feldspar is common, but always significantly less abundant than plagioclase.  702 

Compositions range from alkalic to calcic on modified alkali–lime index (MALI; Na2O + K2O – 703 

CaO) diagrams, consistent with global compilations of leucogranites (Frost et al., 2001).  CAB 704 

rocks are weakly to moderately peraluminous (ASI = 1.0-1.3; Fig. 3; Table 1) and are corundum 705 

normative with modal minerals more aluminous than biotite, chiefly muscovite and garnet, 706 

characteristic of crustal melting of metasedimentary protoliths (Castro et al., 1999; Chappell et 707 

al., 2012).  Biotite is generally more abundant than muscovite and cordierite is very rare, which 708 

is one of the reasons why the CAB rocks are not strictly classified as S-type granites (White et 709 

al., 1986; Chappell and White, 2001).  Another difference between the CAB and classic S-type 710 

granites is that magnetite, rather than ilmenite, is the dominant opaque oxide in CAB rocks 711 

(White et al., 1986), which suggests that the CAB magmas may be more oxidized.  Crustal melts 712 

originating from (meta)sedimentary protoliths containing small amounts of organic material tend 713 
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to be reduced (fO2 < FMQ) (Nabelek, 2019).  However, there has been no comprehensive 714 

investigation of the oxidation state of CAB rocks.  Peraluminous S-type granites as well as 715 

peraluminous, calc-alkaline Cordilleran (subduction-related) granite are enriched in FeO, MgO, 716 

and TiO2 compared to CAB rocks (Patiño-Douce, 1999; Fig. 6).  Despite their geochemical and 717 

mineralogical differences, CAB rocks have been informally referred to as S-type granites 718 

because the large majority have been interpreted to have formed from melting of 719 

metasedimentary protoliths (Miller and Bradfish, 1980; Patiño-Douce et al., 1990; Wright and 720 

Wooden, 1991).  Additional geochemical data for CAB rocks is presented below in Section 6, 721 

focusing on melt processes. 722 

 The CAB rocks exhibit highly evolved radiogenic isotopic compositions (e.g., low εNd(t), 723 

εHf(t), high 87Sr/86Sri; Table 1) that reflect the composition and age of local basement rocks.  In 724 

North America, the 87Sr/86Sri = 0.706 isopleth (“0.706 line”) is often interpreted to represent the 725 

western edge of autochthonous, North American crystalline basement (Kistler and Peterman, 726 

1973) and the CAB is almost everywhere located east (cratonward) of this isopleth (Fig. 1).  For 727 

the Great Basin region, Wright and Wooden (1991) suggested that Mesozoic to Cenozoic crustal 728 

melting was limited to areas east of the 87Sr/86Sri = 0.708 isopleth and east of the εNdi = -7 729 

isopleth (Farmer and DePaolo, 1983), although the relationship between these isopleths and the 730 

CAB is less clear to the north and south (Fig. 1).  The CAB crosses multiple Archean to 731 

Proterozoic basement/lithospheric provinces including, from north to south, the Rae craton, 732 

Hearne craton, Medicine Hat block, Selway terrane, Grouse Creek block, Mojave province, 733 

Yavapai province, Mazatzal province, and Caborca block (Whitmeyer and Karlstrom, 2007; Fig. 734 

7).   735 

 CAB rocks generally have high δ18O ratios (2-5 ‰ above mantle array values) as 736 
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reflected in whole rock and single mineral (e.g., quartz, zircon) analyses (Table 1).  The high 737 

δ18O ratios have been interpreted to reflect crustal melting of metasedimentary rocks, rather than 738 

(meta)igneous rocks (Solomon and Taylor, 1989; King et al., 2004; Gottlieb, 2017).  In the 739 

northern and central CAB, upper Proterozoic metasedimentary rocks are present as part of the 740 

Cordilleran passive margin sequence (Cordilleran Miogeocline) and are often cited as a possible 741 

protolith (e.g., Neoproterozoic McCoy Creek Group, Ruby-East Humboldt complex; Lee et al., 742 

2003).  Metasedimentary members of the Mesoproterozoic Belt-Purcell Supergroup and the 743 

overlying Neoproterozoic Windermere Supergroup have also been suggested as potential 744 

protoliths in the northern CAB (e.g., Shuswap complex; Norlander et al., 1992).  The southern 745 

CAB does not contain metasedimentary rocks associated with the Mesoproterozoic basins or 746 

Neoproterozoic metasedimentary rocks associated the Cordilleran passive margin sequence 747 

(Stewart et al., 1984) (Fig. 7).  Paleoproterozoic metasedimentary rocks in the Pinal Basin in 748 

southern Arizona and northern Sonora (Meijer., 2014; Bickford et al., 2019) have been proposed 749 

as a potential source for the southern CAB (e.g., Pinal Schist; Haxel et al., 1984).  Proterozoic 750 

(meta)igneous rocks and Jurassic arc rocks in the southern CAB have also been mentioned as 751 

possible protoliths (Miller and Wooden, 1994; Fornash et al., 2013; Mallery et al., 2018).   752 

 753 

5.2. Melt Temperature Estimates 754 

 Zircon saturation temperatures were calculated using the calibration of Watson and 755 

Harrison (1983) for CAB rocks that meet the compositional criteria for this thermometer (Table 756 

1).  The dataset indicates an average temperature of 724 ± 48 °C (1σ) (Fig. 8).  The calibration of 757 

Watson and Harrison (1983) results in higher calculated zircon saturation temperatures than 758 

other recently revised calibrations (Boehnke et al., 2013; Gervasoni et al., 2016; Borisov and 759 
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Aranovich, 2019) and can be considered a maximum estimate.  For intrusive rocks, zircon 760 

saturation temperature has been used as a proxy for the temperature of partial melting or magma 761 

temperature (e.g., Collins et al., 2016).  Zircon saturation temperature is a dynamic variable that 762 

predicts when zircon saturation begins in a cooling magma and increases during crystallization 763 

(Clemens et al., 2020).  Siegel et al. (2018) suggest that magma temperature and zircon 764 

saturation temperature are only approximately equal when SiO2 contents increase to a certain 765 

value, which was determined to be 64-74 wt. % based on a limited dataset.  For higher SiO2 766 

values, calculated zircon saturation temperatures may overestimate the magma temperature.  767 

Because CAB rocks have SiO2 > 70 wt. %, we interpret the calculated zircon saturation 768 

temperatures to be close to or a slight overestimate of the partial melting temperature.  In 769 

addition, almost all zircon U-Pb analyses of CAB rocks report inherited (antecrystic or 770 

xenocrystic) zircon components (Applegate et al., 1992; Wright and Snoke, 1993; Vanderhaege 771 

et al., 1999; Vogl et al., 2012; Gaschnig et al., 2013; Stevens et al., 2016; Davis et al., 2019).  772 

Intrusions with abundant inherited zircon indicate saturation at the source and suggest that 773 

calculated zircon saturation temperatures are a maximum since part of the bulk Zr concentration 774 

is from inherited crystals rather than the melt (Miller et al., 2003; Barth and Wooden, 2006).  775 

Our compilation of CAB rocks also contains some analyses of late-stage, highly fractionated 776 

melts (chiefly aplite and pegmatite dikes).  Zircon saturation temperatures of these rocks can be 777 

interpreted as minimum estimates of magma temperature at the time of melt segregation (Miller 778 

et al., 2003).   779 

 Peak metamorphic temperature estimates from migmatite in the central and northern 780 

CAB are plotted in Figure 8 and show a broad maxima from 650-825 °C that overlaps with the 781 

average CAB zircon saturation temperature.  For individual localities, zircon saturation 782 
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temperatures are consistently 50-100 °C lower than estimates of peak metamorphic temperatures 783 

obtained using equilibria thermobarometry or pseudosection analysis (Table 1).  Kohn (2014) 784 

made a similar observation in his review of the Himalayan leucogranite belt.   785 

 786 

5.3. Age Relationships 787 

 A compilation of crystallization or emplacement ages of rocks in the CAB are presented 788 

in Figure 9 and Table 1.  Ages range from 92 to 42 Ma, with the majority of ages between 80 and 789 

50 Ma.  Ages are youngest in the northern and southern CAB and oldest in the central CAB.  The 790 

age pattern suggests that anatectic magmatism started in the central U.S. Cordillera and 791 

simultaneously migrated (or “swept”) northward and southward with crustal melting shutting 792 

down in its wake.  Many locations in the CAB only have a few dated samples, but where 793 

sufficient geochronologic data are available, the duration of anatexis is typically protracted, 794 

lasting 10 Myr or more.  Examples of well-studied locations with a wide range of ages include 795 

the Shuswap complex (60-50 Ma; Vanderhaege et al., 1999; Hinchey et al., 2006; Gordon et al., 796 

2008; Kruckenberg et al., 2008), the Ruby-East Humboldt complex (70-40 Ma; Howard et al., 797 

2011), and the Catalina-Rincon complex (65-45 Ma; Fornash et al., 2013; Davis et al., 2019).  798 

Similar observations have been made in the Himalayan leucogranite belt with anatectic 799 

magmatism lasting ~10 Myr in any single location (Lederer et al., 2013; Weinberg, 2016).  The 800 

reasons for protracted anatexis in the CAB are unclear but may be related to fluid and/or magma 801 

pulses, magma mixing and age hybridization, slow fractionation and cooling, evolving 802 

metamorphic and thermal conditions, or combinations of these.  Despite the uncertainty, 803 

prolonged remobilization and reworking of melts appears to have been a common feature of 804 

CAB intrusive rocks.  Protracted periods of crustal melting imply that either the source region 805 
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was not completely melted (fusible components remain to be melted later) or that conditions 806 

changed throughout the melt process (e.g., increasing temperature) so that melting could 807 

proceed.  Apart from the Kootenay arc (Brandon and Lambert, 1993; 1994; Brandon and Smith, 808 

1994) (e.g., White Creek batholith; Figs. 3 and 6), there is no geochemical evidence that more 809 

refractory minerals or restitic components were melted during later stages of crustal melting in 810 

the CAB. 811 

 Figure 9 also shows the timing for the onset of extension and the period of most rapid 812 

cooling for the Cordilleran metamorphic core complexes (see Supplementary File 1 for the data 813 

compilation).  The period of most rapid cooling is generally constrained by thermochronological 814 

data and represented by the steepest segment of time-temperature cooling histories (Fig. 10).  815 

The onset of extension is constrained by thermochronological data as well as by other geologic 816 

data (e.g., timing of normal faulting, extensional basins, P-T-t modelling, etc.).  The period of 817 

rapid cooling/exhumation occured shortly after (≤ 5 Myr) the onset of extension for most core 818 

complexes, except for the central belt of core complexes where it may have been delayed by up 819 

to ca. 30 Myr (Fig. 9).  Extension and exhumation in these areas is thought to have occurred in 820 

two or more stages (Miller et al., 1999; Henry et al., 2011; Konstantinou et al., 2012).  The 821 

younger stage is generally associated with extensional tectonics, whereas the older stage of 822 

extension has been related to gravitational collapse of tectonically thickened crust and/or heating, 823 

magmatism, and uplift accompanying delamination/roll-back of the Farallon slab (McGrew and 824 

Snee, 1994; Humphreys, 1995; Constenius, 1996; Dickinson et al., 2009; Konstantinou et al., 825 

2013; Cassel et al., 2018).  The timing of core complex extension and the age of CAB 826 

magmatism overlap in the northern CAB, however, extension/exhumation is up to 50 Myr 827 

younger than crustal melting in the central and southern CAB.   828 
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 829 

6. Melting Conditions and Processes 830 

 The following section explores melting conditions, processes, and sources using 831 

compiled geochemical compositions of the CAB rocks (Supplementary File 2).  One of the 832 

fundamental questions we seek to address is the role of water in the production of the CAB.  We 833 

refer to water regardless of its state (vapor or liquid) and use water as a more general term for 834 

mixed-fluid solutions (e.g., containing CO2).  We distinguish three types of partial melting based 835 

on the amount of available water; water-absent melting, water-excess melting, and water-836 

deficient melting (cf., Clemens et al., 2020).   837 

 We use the term water-absent melting synonymously with dehydration melting to 838 

describe conditions in which the water present is entirely structurally bound in hydrous minerals, 839 

chiefly mica and amphibole.  Water released from these minerals during dehydration melting is 840 

dissolved into the melt, which is water-undersaturated.  Water-absent melting is buffered by the 841 

amount and type of hydrous minerals.  Muscovite dehydration melting occurs at the lowest 842 

temperatures (ca. 700 °C at 5 kbar), followed by biotite dehydration melting (ca. 800 °C at 5 843 

kbar) and then amphibole dehydration melting (ca. 900 °C at 5 kbar) (Patiño-Douce and Harris, 844 

1998) (Fig. 11).  Amphibole dehydration melting is relatively uncommon in orogenic anatectic 845 

terranes because of the high temperatures (>850 °C) required (Thompson and Connolly, 1995).  846 

For metapelitic rocks, muscovite dehydration melting reactions (Reaction 1; Peto, 1976) produce 847 

K-feldspar and sillimanite (or kyanite) as peritectic products and biotite dehydration melting 848 

reactions (Reaction 2; Le Breton and Thompson, 1988) produce peritectic K-feldspar and 849 

cordierite (or garnet at high-pressure). 850 

Ms + Pl + Qtz = Kfs + Als + Melt   (1) 851 
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Bt + Als + Pl + Qtz = Kfs + Crd/Grt + Melt  (2) 852 

 Water-excess melting describes melting in water-saturated conditions where water 853 

remains present in the protolith above the (wet) solidus and the melt is water-saturated.  Most 854 

experimental studies with added water are water-excess experiments and for most studies water-855 

excess, water-flux, and fluid-flux melting are synonymous (e.g., Patiño Douce, 1996).  Water-856 

excess melting requires an external source of water to sustain melting and is buffered by the 857 

amount of available water.  Water-excess melting of metasedimentary protoliths, including 858 

muscovite- and/or biotite-bearing schist (Reactions 3-5; Yardley and Barber, 1991; Patiño-Douce 859 

and Harris, 1998; Vielzeuf and Schmidt, 2001) and metagreywacke (Reaction 6; Genier et al., 860 

2008) occurs at relatively low temperatures (ca. 650 °C at 5 kbar) and may or may not produce 861 

an aluminosilicate (including garnet) peritectic phase.   862 

Ms + Pl + Qtz + H2O = Melt    (3) 863 

Bt + Als + Kfs + Qtz + H2O = Crd/Grt + Melt (4) 864 

Ms + Bt + Kfs + Pl + Qtz + H2O = Melt  (5) 865 

Qtz + Kfs + Pl + H2O = Melt    (6) 866 

 Water-deficient melting describes an intermediate condition (between water-absent and 867 

water-excess melting) where a free water phase is present (e.g., pore-space fluid), but limited.  In 868 

this case, the protolith is water-undersaturated and excess water is consumed at or just above the 869 

wet solidus.  Melting continues along a dehydration path after the excess water is exhausted.  870 

Water-deficient melting is generally rock-buffered and produces water-undersaturated melts 871 

(aH2O<1) above the wet solidus (Nabelek, 2019).  Water-absent and water-excess melting are 872 

end-members and can be distinguished geochemically (see review in Weinberg and Hasalovà, 873 

2015), however, water-deficient melting is considered geochemically indistinguishable from 874 
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dehydration melting and is generally only inferred based on melt volumes and temperature 875 

(Schwindinger et al., 2018; 2019). 876 

 877 

6.1. Water-Absent Melting vs. Water-Excess Melting 878 

 In this section, we use CAB geochemistry to evaluate the roles of water-absent and 879 

water-excess melting in generating these rocks.  Although there are various hypotheses 880 

concerning the tectonic mechanisms involved (see discussion in Section 7 below), the large 881 

majority of anatectic rocks in the CAB have been previously interpreted to have formed by 882 

dehydration melting (Coney and Harms, 1984; Haxel et al., 1984; Armstrong, 1988; Miller and 883 

Gans, 1989; Barton, 1990; Patiño-Douce et al., 1990; Wright and Wooden, 1991; Brandon and 884 

Lambert, 1993; Mahood et al., 1996; Vanderhaege et al., 1999; Foster et al., 2001; Norlander et 885 

al., 2002; Teyssier and Whitney, 2002; Lee et al., 2003; Hinchey et al., 2006; Mattinson et al., 886 

2007; Gaschnig et al., 2011; Stevens et al., 2015).  An exception is the Big Maria Mountains, 887 

California that contain field and petrographic evidence for widespread fluid infiltration during 888 

Late Cretaceous metamorphism (Hoisch, 1987).  The metamorphic rocks in the Big Maria 889 

Mountains are not migmatitic but are intruded by numerous pegmatitic leucogranite dikes that 890 

have been interpreted to result from water-excess/fluid-flux melting (Hamilton, 1987; Hoisch, 891 

1987).  The fluid source in the Big Maria Mountains could be metamorphic reactions within the 892 

crust, crystallizing magmas at depth (Hoisch, 1987), or the dehydrating Farallon slab (Wells and 893 

Hoisch, 2008).   894 

 Micas have high Rb and low Sr concentrations, whereas plagioclase has the opposite – 895 

low Rb and high Sr concentrations.  Water-absent melting, involving the breakdown of 896 

muscovite and biotite, enriches the melt in Rb.  Restitic feldspar increases during muscovite 897 
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dehydration melting, depleting the melt in Sr, but does not increase during (relatively higher 898 

temperature) biotite dehydration melting, causing little change in Sr concentrations in the melt 899 

(Harris and Inger, 1992).  As a result, mica dehydration melting is often associated with 900 

geochemical trends showing increasing Rb/Sr and decreasing Sr (muscovite dehydration) or near 901 

constant Sr (biotite dehydration) concentrations (Inger and Harris, 1993).  Conversely, water-902 

excess melting breaks down plagioclase before mica, resulting in increased Sr in the melt and 903 

low Rb/Sr that remains relatively constant during melt evolution (Conrad et al., 1988; Harris and 904 

Inger, 1992; Inger and Harris, 1993).  There is no absolute value of Rb/Sr that can be used to 905 

discriminate water-absent melting from water-excess melting, but Harris et al. (1993) suggested 906 

that water-excess melting was unlikely for granite with Rb/Sr >3.5 for most metasedimentary 907 

protoliths.  Figure 12A shows that the rocks of the CAB have a wide range of Rb/Sr values (4 908 

orders of magnitude) and follow Rb/Sr geochemical trends consistent with muscovite 909 

dehydration melting.  However, this trend is also consistent with fractional crystallization of 910 

feldspar (particularly plagioclase) and could be produced by strongly differentiated rocks with 911 

high Rb/Sr and cumulates with low Rb/Sr.   912 

 Melting of feldspar during water-excess melting has also been linked to positive Eu 913 

anomalies.  Prince et al. (2001) used strongly positive (> 3) Eu anomalies in Eocene Himalayan 914 

leucogranites to identify water-excess melting.  Negative Eu anomalies are generally produced 915 

by fractional crystallization of feldspar and positive Eu anomalies may record a complementary 916 

feldspar-rich cumulate (Sawyer, 1987; Rudnick, 1992).  Cumulates may also be recognized by 917 

low total REE, which increases for more strongly fractionated melts.  Fig. 12B plots Eu anomaly 918 

vs. total REE for CAB rocks and shows that rocks with weak positive Eu anomalies (1-3) also 919 

have low total REE and are probably cumulates.  Removal of trivalent REE during 920 
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crystallization of accessory phases can also produce low total REE and positive Eu anomalies 921 

(Bea and Montero, 1999).  Few CAB rocks have strong positive Eu anomalies associated with 922 

water-excess melting or other processes (Fig. 12B).  923 

 Potassium concentration relative to Na and Ca (or normative orthoclase relative to albite 924 

and anorthite) in melts produced from crustal anatexis is another method used to qualitatively 925 

assess the role of water-excess melting.  The melting of plagioclase prior to mica, particularly 926 

biotite, during water-excess melting results in melts with tonalite to trondhjemite compositions 927 

(Conrad et al. 1988; Scaillet et al. 1995; Patiño-Douce, 1996).  Conversely, the preferential 928 

melting of mica prior to plagioclase during water-absent melting results in more potassic 929 

compositions and rocks with significant modal K-feldspar.  With few exceptions, CAB intrusive 930 

rocks have normative Ab/Or (albite/orthoclase) ratios < 2 and do not have the tonalite or 931 

trondhjemite compositions produced experimentally by water-excess melting of 932 

metasedimentary protoliths (Patiño-Douce and Beard,1996; Patiño-Douce, 1996; Patiño-Douce 933 

and Harris, 1998) (Fig. 5).  Studies have also proposed that ferromagnesian contents increase 934 

during water-excess melting (e.g., FeOtotal > 2 wt. %; Weinberg and Hasalovà, 2015), but are 935 

sequestered by refractory residual mineral phases during water-absent melting of 936 

metasedimentary protoliths (Naney, 1983; Holtz and Johannes, 1991; Patiño-Douce, 1996).  The 937 

majority of CAB rocks have low total FeO (< 2 wt. %), consistent with water-absent melting. 938 

 The geochemistry and magma temperature estimates (Fig. 8) for the CAB are most 939 

consistent with muscovite dehydration (water-absent) melting at middle to lower crustal 940 

pressures (≥ 5 kbar) (Fig. 11) and the composition of the CAB rocks compare favorably to 941 

experimental studies of muscovite dehydration melting (e.g., Patiño-Douce, 1999).  Textural 942 

heterogeneity and numerous pegmatite and aplite dikes/sills associated with the CAB indicate 943 
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exsolution of water throughout the crystallization processes from relatively hydrous melts.  944 

These observations further support muscovite dehydration melting over biotite dehydration 945 

melting.  Biotite dehydration melting at higher temperature requires less water to stabilize the 946 

melt and produces relatively dry melts that are more texturally homogenous (Clemens and 947 

Vielzeuf 1987; Villaros et al., 2018; Nabelek, 2019).  Muscovite dehydration melting of 948 

metasedimentary protoliths at 750 °C and 5 kbar results in ca. 6 wt. % H2O in the melt compared 949 

to ca. 2 wt. % H2O at 850 °C for biotite breakdown at the same pressure (Patiño Douce and 950 

Beard, 1995; Patiño Douce and Harris, 1998; Castro, 2013).   951 

 952 

6.2. Water-Deficient Melting 953 

 There are two main problems with invoking water-absent, muscovite dehydration melting 954 

as the dominant processes to produce the CAB rocks.  Both problems can potentially be resolved 955 

if water-deficient melting is involved.  The first problem is that muscovite dehydration melting 956 

may not produce enough melt volume to initiate melt migration and accumulation (Clemens and 957 

Vielzeuf, 1987; Barton, 1990; Patiño Douce et al., 1990; Wells and Hoisch, 2008).  Melt 958 

extraction is thought to be limited by a melt-connectivity threshold (~7 % melt), at which point 959 

melt/solid segregation can occur if the solid residue is able to deform and/or compact (Rosenberg 960 

and Handy, 2005; Vanderhaeghe, 2009).  Under inefficient melt extraction conditions, a 961 

migmatite may accumulate large amounts of leucosome/melt (diatexite) until the solid-liquid 962 

threshold (20-40% melt) is reached and the migmatite starts to behave as a crystal mush (van der 963 

Molen and Paterson, 1979).  A very muscovite-rich (20-30 %) schistose protolith could generate 964 

ca. 10 % melt during muscovite dehydration melting (Wyllie, 1977), but most metasedimentary 965 

compositions are estimated to produce <5 % melt by volume (Patiño Douce et al., 1990; 966 
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Johannes and Holtz, 1996; Droop and Brodie, 2012).  Biotite dehydration melting of common 967 

metasedimentary protoliths can produce up to 40 % melt (Miller et al., 1985; Clemens and 968 

Vielzeuf, 1987; Patiño Douce et al., 1990; Stevens et al., 1997), but the geochemical data and 969 

melting temperature estimates discussed above do not appear to support biotite dehydration 970 

melting.   971 

 Many locations in the CAB expose significant (approaching batholith-scale) volumes of 972 

muscovite-bearing peraluminous granite related to crustal melting that suggest relatively large 973 

melt fractions.  For example, ~600 km3 of CAB rocks are exposed in the Lamoille Canyon area 974 

in the Ruby-East Humboldt core complex and several times that amount is estimated to be 975 

present in the subsurface (Howard et al., 2011).  Unless melt is being drained laterally from areas 976 

beyond the Ruby-East Humboldt Mountains, 5-10 % melting cannot produce the observed rock 977 

volumes.  Water-deficient melting that incorporates small amounts of externally-derived water 978 

(~1 wt. % added) can result in large increases in melt fractions, 2-3 times larger than by 979 

dehydration melting alone – resulting in a 10-20 % increase in melt volume (Sola et al., 2017; 980 

Nabelek, 2019; Schwindinger et al., 2019).  981 

 To illustrate this issue, we constructed an isobaric (5 kbar) temperature-XH2O assemblage 982 

diagram for a muscovite-rich metasedimentary protolith (Fig. 13).  The whole rock starting 983 

composition was modeled after a muscovite-bearing quartz wacke from the Pinal Schist in 984 

Arizona (sample “B” in Copeland and Condie, 1986).  This composition is comparable to other 985 

muscovite-bearing metasedimentary rocks from the Neoproterozoic Cordilleran passive margin 986 

sequence (e.g., McCoy Creek Group in Nevada; Misch and Hazzard, 1962) and comparable to 987 

generic metasedimentary rocks compositions used in modeling partial melting of other anatectic 988 

provinces (cf., Nabelek, 2019), but is more quartz-rich than the most melt-fertile rocks (e.g., 989 
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muscovite schist).  Closed-system phase assemblages and melt volumes were calculated with 990 

Perple_X version 6.8.7. (Connolly, 1990; 2005; Connolly and Petrini, 2002) in the 991 

NCKMASHTO model system (Na2O,CaO, K2O, Al2O3, SiO2, H2O, TiO2, O2, FeOt, and MgO), 992 

using a quartz-fayalite-magnetite assemblage for fO2 buffering and thermodynamic data from 993 

Holland and Powell (2011).  One way to read the assemblage diagram in Fig. 13 is to consider 994 

the average zircon saturation temperature estimate for the CAB and examine changes in melt 995 

content (shown as volume precent) as the amount of water in the protolith is increased (moving 996 

to the right along the x-axis).  Muscovite dehydration melting occurs at ~0.7 wt. % H2O, which 997 

is the amount of structurally bound water in mica in the protolith, not a free fluid phase.  Water-998 

absent muscovite dehydration melting produces < 5 % melt.  Water-excess melting occurs above 999 

~2.3 wt. % H2O, at which point free water remains in the protolith above the solidus (pink line 1000 

labeled “melt in”) and > 20 % melt is produced.  Water-deficient melting (ca. 0.7-2.3 wt. % H2O) 1001 

consumes all free water at the solidus and produces water-undersaturated melts but results in 1002 

significant increases of melt volume.  For example, 1 wt. % of free water in the protolith (1.7 wt. 1003 

% H2O in Fig. 13) increases melt volume from 1.2 % (water-absent, muscovite dehydration 1004 

melting) to 16.9 % at 725 °C.  Debate continues about whether any amount of free water is 1005 

reasonable to expect in the middle to lower crust (Thompson, 1983; Weinberg and Hasalovà, 1006 

2015). 1007 

 The second problem with muscovite dehydration melting is that, despite relatively low 1008 

FeO and MgO values in CAB rocks, biotite is very common, which requires partial melting of a 1009 

phase more mafic than muscovite.  Additional Fe and Mg can be added to the melt with added 1010 

water (water-deficient or water-excess) melting (Holtz and Johannes, 1991; Patiño-Douce, 1011 

1996).  Water-deficient melting is one possible mechanism to increase ferromagnesian 1012 
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components in CAB melts, although our modeling (Fig. 13) as well as other studies of water-1013 

deficient melting (Schwindinger et al., 2018) have indicated relatively small to insignificant 1014 

increases in FeO and MgO (≤ 0.5 wt. %) from water-absent melting.  Other processes such as 1015 

restite/peritectic mineral entrainment have also been proposed to increase Fe and Mg in crustal 1016 

melts (Stevens et al., 2007).  The importance of water-deficient melting has only recently been 1017 

emphasized globally (e.g., Nabelek, 2019) and it has not been previously considered for intrusive 1018 

suites in the CAB, but it deserves future investigation. 1019 

 1020 

7. Tectonic Causes of Crustal Melting 1021 

 There is no consensus on the underlying causes of Late Cretaceous to Paleogene crustal 1022 

anatexis in the CAB, but hypotheses can be generally grouped into four categories: 1) 1023 

decompression melting, 2) melting resulting from radiogenic heating and thermal relaxation 1024 

following crustal thickening, 3) melting resulting from the introduction of slab-derived fluids, 1025 

and 4) melting associated with increased heat flux from the mantle.  These hypotheses are not all 1026 

mutually exclusive and there is no requirement for a single process to explain the entire CAB.  1027 

However, the CAB occupies a relatively narrow time interval and appears to be a coherent 1028 

spatial feature, which supports treating it as a distinct component of the North American 1029 

Cordilleran orogenic system, on par with other components such as the continental arc and 1030 

retroarc thrust belt.  Previous researchers have favored different hypotheses in the northern, 1031 

central, and southern CAB, but it is instructive to consider how hypotheses favored in one region 1032 

may be extended or extrapolated into other areas. 1033 

 1034 
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7.1. Decompression Melting Related to Exhumation 1035 

 There is a close spatial association between the CAB and the Cordilleran metamorphic 1036 

core complexes (Fig. 1), suggesting a possible petrogenetic relationship as well (Armstrong, 1037 

1982).  One possible scenario is that core complex extension and exhumation caused 1038 

decompression melting.  Decompression melting is a form of dehydration melting and is 1039 

commonly invoked when melting and exhumation of the crust are contemporaneous (Harris and 1040 

Massey, 1994). Decompression melting has received the most attention in the northern CAB, 1041 

particular within the Shuswap complex, where anatectic crystallization ages, cooling ages, 1042 

extension timing, and the timing of near-isothermal decompression in reconstructed P-T paths all 1043 

overlap (Vanderhaeghe et al., 1999; Norlander et al., 2002; Teyssier and Whitney, 2002; 1044 

Whitney et al, 2004b; Gordon et al., 2008; Stevens et al., 2016) (Fig. 9).  The Shuswap complex 1045 

is cored by several migmatitic gneiss domes that display structural fabrics and geometries 1046 

supporting vertical motion within the domes and flattening above the domes – consistent with 1047 

diapiric-like rise of the deep crust (e.g., Duncan, 1984; Whitney et al., 2004).  Relatively hot, 1048 

ductile middle-to-lower crust is a prerequisite for diapirism although a variety of processes could 1049 

trigger initial ascent, including a density inversion resulting from underthrusting of 1050 

(meta)sedimentary rocks into the deep crust, low-degrees of partial melting causing density 1051 

reduction, focused erosion at the surface, localized crustal thickening or buckling, and rapid 1052 

tectonic denudation (Teyssier and Whitney, 2002).  Estimates for diapir-related exhumation rates 1053 

from migmatitc gneiss domes in the Shuswap complex are ca. 20 km/Myr, which is significantly 1054 

faster than tectonic exhumation associated with extension (Whitney et al., 2004; 2013).  Rapid 1055 

decompression should produce a narrow range of ages, which is at odds with the wide range of 1056 

ages (≥ 10 Myr) and the remobilization of melts prior to emplacement observed in some CAB 1057 



47 

 

localities.  Furthermore, (re)melting events related to repeated or prolonged decompression are 1058 

difficult to reconcile with dehydration melting as the protolith becomes increasingly refractory 1059 

and requires increasingly high temperatures to make new melts.  Regardless, once upward 1060 

movement and decompression is initiated, there is a positive feedback between melting, viscosity 1061 

reduction, and exhumation resulting in relatively large volumes (≥ 20%) of dehydration-related 1062 

leucocratic melt (Whitney et al., 2004b; Rey et al., 2009), consistent with some locations in the 1063 

northern CAB (e.g., Priest River complex, Stevens et al., 2015; 2016).  The positive P-T slope of 1064 

dehydration melting solidi suggests that melting can occur throughout the decompression process 1065 

and that emplacement in the middle-to-upper crust is efficient. 1066 

 Decompression melting is considered less likely in the central and southern CAB, in part 1067 

because the timing of extension and exhumation is younger than crustal melting (Fig. 9).  1068 

However, P-T paths from metamorphic rocks in many Cordilleran core complexes suggest that 1069 

decompression is a near-isothermal process that would not be expected to be recorded by 1070 

thermochronometers.  For example, by some estimates, the Ruby-East Humboldt complex 1071 

experienced ~4 kbar (~15 km) decompression at ca. 750-650 °C from ca. 85-55 Ma (McGrew et 1072 

al., 2000; Henry et al., 2011) (Fig. 10), which largely overlaps with the crystallization ages of 1073 

CAB rocks in the complex (Howard et al., 2011).  How this period of decompression occurred is 1074 

unclear because the complex exposes a series of stacked and folded nappes, rather than discrete 1075 

gneiss domes or evidence for diapirism (Howard, 1980).  Deep structural levels within the Ruby-1076 

East Humboldt complex show some evidence for lateral crustal flow (MacCready et al., 1997) 1077 

and numerical models suggest that relatively slow extension rates may have kept the complex 1078 

from developing more defined migmatitic gneiss domes (Rey et al., 2009).  Another possibility is 1079 

that the recumbently folded nappes in the Ruby Mountains record flattening strain during Late 1080 



48 

 

Cretaceous to Eocene decompression and that they sit above an even deeper structural level (not 1081 

exposed) that records vertical, diapir-like exhumation.  Regardless, diapiric exhumation of the 1082 

lower crust has not been seriously proposed to have generated anatectic melting in North 1083 

America outside of the northern CAB. 1084 

 There is also evidence for syn-convergent, Late Cretaceous extension (prior to core 1085 

complex extensional faulting) in the central and southern CAB (Carl et al., 1991; Wells and 1086 

Hoisch, 2008; Druschke et al., 2009; Wells et al., 2012; Long et al., 2015).  In some cases, this 1087 

extension has been proposed to have caused decompression melting.  Examples include the Iron 1088 

Mountains and Old Woman Mountains in southeast California (Wells and Hoisch, 2008) and the 1089 

Death Valley region (Hodges and Walker, 1990; Applegate et al., 1992; Applegate and Hodges, 1090 

1995).  However, the amount of Late Cretaceous extension documented in the U.S Cordillera is 1091 

limited (Miller et al., 2012; Lund-Snee et al., 2016) and it is uncertain whether there was enough 1092 

extension to cause widespread decompression melting. 1093 

 Relating anatectic melting to near-isothermal decompression in the central and northern 1094 

CAB is possible because migmatite and metamorphic rocks are exposed, enabling P-T-t paths to 1095 

be reconstructed and deep crustal strain to be evaluated.  These types of rocks are generally not 1096 

exposed in the southern CAB, specifically in Arizona and Sonora, and as a result, decompression 1097 

melting has not been seriously proposed or evaluated in that region.  However, one end-member 1098 

interpretation is that intrusive rocks in the southern CAB signify a period of decompression in 1099 

the deep crust that is otherwise inscrutable.  As such, the northern core complexes and CAB may 1100 

provide a template for understanding deep crustal process in the southern U.S. and northern 1101 

Mexican Cordillera.   1102 

 1103 
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7.2. Radiogenic Heat and Thermal Relaxation 1104 

 Radiogenic heating and relaxation of isotherms following crustal thickening has also 1105 

been proposed to account for CAB rocks (Haxel et al., 1984; Miller and Gans, 1989; Patiño-1106 

Douce et al., 1990; Wright and Wooden, 1991).  The Laramide orogeny (ca. 80-40 Ma) overlaps 1107 

in age with the CAB, however, Laramide deformation is chiefly characterized by slip on high-1108 

angle reverse faults that produced limited horizontal shortening and hence limited crustal 1109 

thickening (Yonkee and Weil, 2015).  In addition, thermal models suggest that maximum 1110 

temperatures in the middle to lower crust are attained 40-60 Myr after (instantaneous) crustal 1111 

thickening (England and Thompson, 1984; 1986; Clark et al., 2011), ruling out Laramide-age 1112 

crustal thickening as a cause of crustal anatexis in the CAB.  In contrast, the Sevier orogeny 1113 

caused significant crustal thickening and the time elapsed between the end of shortening (ca. 1114 

100-80 Ma) and the onset of crustal melting in the CAB is ca. 10-50 Myr, consistent with the 1115 

thermal models.  These models implicitly assume that the crust, perhaps in the form of an 1116 

orogenic plateau, remained thick after the end of crustal thickening.  Anatexis resulting from 1117 

crustal thickening was modelled explicitly for the North American Cordillera by Patiño-Douce et 1118 

al. (1990) who suggested that a 10-15 km thick migmatite layer at 30-40 km depth would 1119 

develop by the end of the Sevier orogeny if the crust was thickened to 50-55 km, consistent with 1120 

estimates of crustal thickness for the Nevadaplano (Coney and Harms, 1984; Chapman et al., 1121 

2015).  Modeling by both Patiño-Douce et al. (1990) and England and Thompson (1984, 1986) 1122 

assumed that free water was not present in the melt source region and that relatively high 1123 

temperatures (> 850 °C) were required to produce biotite dehydration melting in order to 1124 

generate the melt volumes (20-40%) observed.  To generate these high temperatures, the models 1125 

required mid-crustal layers with moderately high radiogenic heat production (>2 μW/m3).  The 1126 
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high temperatures required for biotite-dehydration melting are one of the main arguments against 1127 

crustal thickening as a primary mechanism to generate the CAB rocks (e.g., Wells and Hoisch, 1128 

2008; 2012; Wells et al., 2012).  If water-excess or water-deficient melting are important 1129 

processes in the origin of the CAB, then melting at lower temperatures and the production of 1130 

large melt volumes is less problematic for hypotheses relating anatexis to crustal thickening (Fig. 1131 

13). 1132 

 Much of the southern CAB is located southeast of the deformational limit of the Sevier 1133 

thrust belt (Fig. 1) and southeast of the Maria contractional belt in western Arizona and southeast 1134 

California (Spencer and Reynolds, 1990; Boettcher et al., 2002).  This region (southern Arizona 1135 

and Sonora) experienced limited shortening during the Laramide orogeny, but the amount of 1136 

documented shortening (ca. 30 km; Davis et al., 1979; Haxel et al., 1984) is not enough to 1137 

significantly thicken the crust.  Nonetheless, geochemical data suggest that the crust in southern 1138 

Arizona and northern Sonora was relatively thick (55-60 km) during Late Cretaceous to early 1139 

Paleogene time (Chapman et al., 2020), which may be related to magmatic thickening (Erdman 1140 

et al., 2016).  If the southern CAB is related to crustal thickening and radiogenic heating, then 1141 

the age of the intrusive rocks could be interpreted as the age of peak metamorphism in the deep 1142 

crust, which is otherwise unconstrained.   1143 

 Total horizontal shortening in the Sevier thrust belt is greatest (~350 km) in the central 1144 

U.S. Cordillera (DeCelles and Coogan, 2006) and decreases to the north (e.g., Fuentes et al., 1145 

2012) and to the south (e.g., Giallorenzo et al., 2018).  This fact may help explain why the 1146 

central CAB is older than the northern and southern CAB – because the crust was thickened 1147 

more and/or faster and reached peak metamorphic conditions earlier.  The wide range of ages 1148 

and evidence for melt remobilization in the CAB (e.g., Catalina-Rincon complex, Davis et al., 1149 
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2019; Ducea et al., 2020) is consistent with melts formed during prograde metamorphism that 1150 

remained at high temperature and pressure, existing at near-solidus or partially-molten conditions 1151 

until melt extraction or exhumation.   1152 

 1153 

7.3. Water Present Melting 1154 

 Melting involving free water in the parent rock has not received much attention as a 1155 

significant cause for anatexis in the CAB.  As mentioned in Section 6, Hoisch (1987) suggested 1156 

that fluids exsolved from crystallizing magmas at depth resulted in water-flux melting in the Big 1157 

Maria Mountains, California and hypothesized that crustal melting in the nearby Old Woman 1158 

Mountains, California may be analogous.  Wells and Hoisch (2008) proposed that delamination 1159 

and mantle upwelling was a primary cause of crustal melting throughout the CAB (see next 1160 

section), but they also suggested that dehydration of the Farallon slab could have played a role.  1161 

The timing of low-angle subduction of the Farallon slab beneath the CAB matches closely with 1162 

the age of CAB intrusive rocks.  Many studies have suggested that the mantle lithosphere was 1163 

hydrated during the Laramide orogeny (Dumitru et al., 1991; Humphreys et al., 2003; Farmer et 1164 

al., 2008) and several studies in the last decade have suggested that the lower crust was hydrated 1165 

as well (Jones et al., 2015; Butcher et al., 2017; Porter et al., 2017; Levandowski et al., 2018).  1166 

Other potential sources of free water include metamorphic reactions within the crust (e.g., 1167 

underthrusting of crustal lithologies) and small amounts of relict water in pore spaces.   1168 

 The geochemistry of the CAB rocks does not support water-excess melting (Fig. 12), but 1169 

it is consistent with water-deficient melting, which is difficult to distinguish from water-absent 1170 

melting by geochemistry alone.  The relatively low calculated zircon saturation temperatures for 1171 

the CAB may even require some degree of water-added melting because some temperature 1172 
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estimates are below the solidus for muscovite dehydration melting (Fig. 11).  Melts produced by 1173 

water-absent and water-deficient melting are both water-undersaturated and are more likely to 1174 

ascend through the crust to form intrusive bodies.  Periodic fluid influx could also explain the 1175 

wide range of crystallization ages at individual CAB locations. 1176 

 1177 

7.4. Mantle Heat Flux 1178 

 The two main hypotheses proposed for CAB rocks that involve increased mantle heat 1179 

flow are 1) asthenospheric upwelling following delamination and 2) mantle upwelling above a 1180 

subducting slab.  The delamination hypothesis suggests that upwelling following delamination of 1181 

the mantle lithosphere resulted in decompression melting of the asthenosphere and basaltic 1182 

underplating/intrusion that provided additional heat to melt the overlying crust (Wells and 1183 

Hoisch, 2008; 2012; Wells et al., 2012).  Delamination is common in areas of thickened crust 1184 

(e.g., England and Houseman, 1989), consistent with the position of the CAB and 1185 

reconstructions of the orogenic interior and the Nevadaplano (Coney and Harms, 1984; DeCelles 1186 

et al., 2004).  The delamination model has been applied specifically in the Great Basin and 1187 

Mojave regions where melting is generally Late Cretaceous in age (Wells and Hoisch, 2008).  1188 

The model could be extended to the northern and southern CAB, where melting is generally 1189 

early to middle Paleogene in age, if delamination migrated spatially through time or if there were 1190 

separate delamination events.  However, geophysical studies suggest that many parts of the 1191 

northern and southern CAB have intact, ancient, cratonic (or peri-cratonic) mantle lithosphere 1192 

preserved, which suggests delamination has not occurred (e.g., Li et al., 2007).   1193 

 The subduction hypothesis suggests that the upwelling arm of corner flow (also called 1194 

counterflow or induced mantle flow) in the mantle wedge above a subducting slab may steadily 1195 
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heat up the base of the lithosphere and could eventually cause crustal melting (Armstrong, 1982; 1196 

Farmer and DePaolo, 1983; Barton, 1990).  A variation of this model was proposed for the Death 1197 

Valley region and suggests that asthenospheric upwelling above steepened portions of the 1198 

Farallon slab may have caused crustal melting (Lima et al., 2018).  Some studies have suggested 1199 

that thermal convection or other processes in (non-extending) back-arc regions may produce 1200 

temperatures high-enough to cause crustal melting (Currie and Hyndman, 2006; Wolfram et al., 1201 

2019).  But most studies indicate that corner-flow and normal subduction processes (including 1202 

changes in slab dip) do not provide enough heat to cause (water-absent) crustal melting in the 1203 

upper plate, particularly during periods of low-angle to flat-slab subduction when the upper 1204 

mantle and lithosphere are cooled by the slab (English et al., 2003; Liu and Currie, 2016).  The 1205 

timing and progression direction of Farallon slab roll-back in the U.S. Cordillera is also at odds 1206 

with the timing and progression direction of the CAB.  Flare-up magmatism related to slab roll-1207 

back is oldest in the northern and southern U.S. Cordillera and youngest in the central U.S. 1208 

Cordillera (Humphreys, 1995), whereas the CAB is oldest in the central U.S. Cordillera and 1209 

becomes younger to the north and south (Fig. 9).  Nonetheless, individual parts of the CAB 1210 

coincide with the timing of Farallon slab roll-back and have been interpreted to be related to 1211 

mantle upwelling or mantle-derived magmatic intrusion (e.g., Konstantinou and Miller, 2015).   1212 

 Both the delamination and subduction hypotheses suggest that mantle processes are 1213 

required to produce temperatures high enough (> 800 °C) to cause biotite dehydration melting to 1214 

explain the large volumes of CAB rocks (Wells and Hoisch, 2012; Barton, 1990).  This is not 1215 

supported by the zircon saturation temperatures (Fig. 8), assuming that those temperatures are 1216 

representative of partial melting temperatures (see Section 5.2).  The rarity of mantle-derived 1217 

magmatic products in CAB locations is another argument against a significant role for the mantle 1218 
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in the formation of the CAB (e.g., Wright and Wooden, 1991).   1219 

 1220 

8. Conclusions 1221 

 The North American Cordilleran Anatectic Belt (CAB) is a chain of Late Cretaceous to 1222 

Eocene intrusive rocks and anatectic rocks produced by crustal melting that is exposed from 1223 

southern British Columbia, Canada to northern Sonora, Mexico in the interior, or hinterland, of 1224 

the North American Cordilleran orogenic system.  The duration of melting at any given location 1225 

was often protracted, lasting ~10 Myr, and characterized by repeated melt remobilization and 1226 

reworking.  The CAB rocks are generally leucocratic (SiO2 > 70 wt. %), peraluminous (ASI > 1227 

1.0), contain igneous muscovite ± garnet, have evolved radiogenic isotopic compositions 1228 

(87Sr/86Sri > 0.706), and have elevated (crustal-like) δ18O.  The CAB was chiefly produced by 1229 

partial melting of metasedimentary rocks (e.g., schist, greywacke) and has no little or no mantle-1230 

derived component, including partial melting of basalt/amphibolite.  Geochemically, the CAB 1231 

rocks are consistent with muscovite dehydration melting and/or water-deficient melting, but not 1232 

water-excess melting.  Zircon saturation temperatures for the CAB cluster between 600-800 °C 1233 

with an average of 724 ± 48 °C, which is too low for biotite or amphibole dehydration melting.  1234 

CAB rocks were primarily emplaced as sills, dikes, laccoliths, or large sheeted complexes and 1235 

lack extrusive equivalents.  Late aplite and pegmatite dikes are common and suggest relatively 1236 

hydrous melts, which is also consistent with muscovite dehydration melting or water-added 1237 

melting.  A small amount of free water during melting may be required by the relatively large 1238 

melt volumes within the CAB, supporting water-deficient conditions.  The source of this free 1239 

water is unknown, but may have been in relict pore fluids, exsolved from magmas, produced by 1240 

metamorphic reactions, or liberated by dehydration of the Farallon slab.  Crystallization ages of 1241 
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rocks in the CAB overlap with the timing of the Laramide orogeny and many of these rocks were 1242 

emplaced during a period of low-angle to flat-slab subduction when the Farallon slab was located 1243 

beneath the CAB. 1244 

 There is a close spatial correlation between the CAB and the belt of Cordilleran 1245 

metamorphic core complexes, and a large majority of the rocks in the CAB are found in the 1246 

footwalls of core complexes.  Only in a few locations, however, have CAB intrusive rocks been 1247 

demonstrated to have originated from melting of the rocks (i.e., migmatite) exposed at the 1248 

surface in the core complexes.  An unanswered question in the CAB is whether the prevalence of 1249 

crustal melting in core complexes is related to the core complexes themselves or is an artifact of 1250 

core complexes exposing middle to lower crust, where the CAB magmas appear to have been 1251 

commonly emplaced.  In the northern CAB, the timing for core complex extension/exhumation 1252 

and anatexis overlap, supporting a shared origin between the two and emphasizing the role of 1253 

decompression melting.  This overlap in ages is not observed in the central and southern CAB 1254 

where core complex extension/exhumation is up to 50 Myr younger than crustal melting, 1255 

suggesting that mechanisms other than decompression melting are required there. 1256 

 The CAB formed in a region of previously thickened crust, interpreted as an orogenic 1257 

plateau.  Radiogenic heating and relaxation of isotherms following crustal thickening during the 1258 

Sevier orogeny may explain crustal melting, particularly in the central CAB where horizontal 1259 

shortening in the retroarc thrust belt is the greatest.  Horizontal shortening during the Laramide 1260 

orogeny was not large enough to significantly thicken the crust structurally.  In addition, the 1261 

oldest rocks in the CAB occur in the central CAB and are younger to the north and to the south.  1262 

Melting associated with crustal thickening may not be applicable to the southern CAB because 1263 

the Sevier thrust belt did not extend that far south and crustal shortening was limited.   1264 
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 A prominent role of delamination, mantle upwelling, or other mechanisms that increase 1265 

mantle heat flux in producing the CAB is difficult to assess but appears unlikely.  Most locations 1266 

in the CAB do not contain mantle-derived, co-genetic igneous rocks and those that do have been 1267 

interpreted to reflect processes other than crustal anatexis.  Arguments that a component of 1268 

elevated mantle heat flow is required to produce temperatures high enough to initiate biotite 1269 

dehydration melting to account for large melt volumes are not supported by thermometry or 1270 

geochemistry, and estimated melt volumes can best be reconciled with water-deficient melting.   1271 
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 2377 

 2378 

Figure and Table Captions 2379 

 2380 

Fig. 1: Overview map of the North American Cordilleran Anatectic Belt (CAB).  Feature 2381 

locations were compiled from previously published works including core complexes (Rehrig and 2382 

Reynolds, 1980; Armstrong, 1982; Wust, 1986; Roldán-Quintana, 1991; Nourse et al., 1994; 2383 

1995; Foster and John, 1999; Miller et al., 1999; Foster et al., 2001; 2007; 2010; Vanderhaeghe 2384 

et al., 2003; Laberge and Pattison, 2007; Kruckenberg et al., 2008; Howard et al., 2011; 2385 

Konstantinou et al., 2013; Hoisch et al., 2014; Singleton et al., 2015; Stevens et al., 2016; Lee et 2386 

al., 2017; Gottardi et al., 2020), Sevier thrust belt and Laramide deformation front (Yonkee and 2387 

Weil, 2015; Fitz-Díaz et al., 2018), ), and 87Sr/86Sri isopleths (Armstrong 1988; Kistler and 2388 

Anderson, 1990; Miller et al., 2000; Valencia-Moreno et al., 2001).  CAB locations, data, and 2389 

data sources presented in Table 1 and Supplementary File 2.  Map projection: UTM, NAD 83 2390 

Zone 12N. 2391 
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 2392 

Fig. 2: A comparison between the A) North American Cordilleran Anatectic Belt (CAB) and the 2393 

B) Himalayan leucogranite belt, both shaded orange and shown at the same scale.  Blue polygons 2394 

are metamorphic core complexes in the CAB and leucogranite bodies in the Himalaya (Whitney 2395 

et al., 2013; Kohn, 2014). 2396 

 2397 

Fig. 3: A) Cordilleran Anatectic Belt (CAB) rocks (blue circles) are silica-rich (SiO2 > 70 wt. %) 2398 

and peraluminous with aluminum saturation indices (ASI) of ca. 1.0-1.3.  Silica-rich, 2399 

peraluminous compositions can also be generated from originally metaluminous intrusive rocks 2400 

with protracted fractional crystallization or assimilation as represented by the Chemehuevi 2401 

Mountains plutonic suite, California (orange squares; John and Wooden, 1990) and the White 2402 

Creek batholith, Kootenay arc, British Columbia (red diamonds; Brandon and Lambert, 1993).  2403 

B.) A down-plunge cross-section view of the Chemehuevi Mountains plutonic suite shows zoned 2404 

or nested intrusive rocks with increasing ASI toward the center (modified from John, 1988; John 2405 

and Wooden, 1990), which is not observed in CAB intrusive suites.  Data and data sources are 2406 

presented in Supplementary File 2. 2407 

 2408 

Fig. 4: Pairs of unaltered and hydrothermally altered intrusive rocks from the southern U.S. 2409 

Cordillera that display elevated Rb/Sr and peraluminosity as a result of hydrothermal alteration, 2410 

ASI = aluminum saturation index.  Cordilleran Anatectic Belt rocks (blue polygons) generally 2411 

have ASI < 1.3.  Data and data sources are presented in Supplementary File 2. 2412 

 2413 

Fig. 5.  Cordilleran Anatectic Belt rocks (blue circles) generally plot as granite on a normative 2414 
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Ab–An–Or ternary diagram and overlap with metasedimentary melt compositions for water-2415 

absent dehydration melting experiments (Patiño Douce and Beard, 1995; Patiño Douce and 2416 

Harris, 1998; Patiño Douce, 2005) rather than water-excess melting experiments (Conrad et al., 2417 

1988; Patiño Douce and Harris, 1998). Data and data sources are presented in Supplementary 2418 

File 2. 2419 

 2420 

Fig. 6:  The majority of Cordilleran Anatectic Belt (CAB) rocks (blue circles) have compositions 2421 

consistent with peraluminous leucogranite melts produced by experimental melting of mica-rich 2422 

metasedimentary rocks (shaded blue) rather than amphibolite (black outline). CAB rock 2423 

compositions are also largely distinct from S-type granite and Cordilleran granite.  The 2424 

Chemehuevi Mountains plutonic suite (orange squares; John and Wooden, 1990) and White 2425 

Creek batholith (red diamonds; Brandon and Lambert, 1993) are shown for comparison.  2426 

Compositional fields are from Patiño-Douce (1999).  Data and data sources are presented in 2427 

Supplementary File 2.  2428 

 2429 

Fig. 7. The North American Cordilleran Anatectic Belt (CAB) crosses many Proterozoic to 2430 

Archean basement provinces/terranes. The northern and central CAB overlaps with areas where 2431 

Proterozoic rocks are present in the Cordilleran passive margin sequence (Miogeocline), which 2432 

has been proposed as one possible protolith.  Metasedimentary rocks from the Mesoproterozoic 2433 

Belt-Purcell Basin and Paleoproterozoic Pinal Basin have also been proposed as possible 2434 

protoliths.  The inferred edge of North American basement is based on the position of the 2435 

87Sr/86Sri = 0.706 isopleth (Fig. 1).  Map projection: UTM, NAD 83 Zone 12N. 2436 

 2437 
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Fig. 8. A histogram and kernel density estimate (red curve) of zircon saturation temperatures 2438 

(Watson and Harrison, 1983) for rocks in the Cordilleran Anatectic Belt (CAB).  The uncertainty 2439 

of the average is based on the standard deviation (1σ).  Data and data sources are presented in 2440 

Supplementary File 2.  A kernel density estimate (blue curve) shows the maximum (peak) 2441 

temperatures in migmatite within the CAB as reported by previous studies (Table 1).   2442 

 2443 

Fig. 9: A plot of age vs. latitude for crystallization ages of rocks in the Cordilleran Anatectic Belt 2444 

(CAB; green rectangles), rapid exhumation/cooling ages for the Cordilleran metamorphic core 2445 

complexes (blue squares), and timing for the onset of extension in the core complexes (red 2446 

circles) (Table 1).  Most major core complexes are labelled for reference.  Data and data sources 2447 

are presented in Supplementary Files 1 and 2. 2448 

 2449 

Fig. 10: A) Time-temperature and B) pressure-temperature (P-T) diagrams for the Ruby-East 2450 

Humboldt metamorphic core complex (modified from Henry et al., 2011) used to illustrate 2451 

periods of rapid cooling and near-isothermal decompression in the Cordilleran core complexes in 2452 

general.  Rapid cooling is chiefly identified using thermochronology (AHe = apatite U-Th/He, 2453 

AFT = apatite fission track, ZFT = zircon fission track) whereas periods of near-isothermal 2454 

decompression are not well-resolved or recorded at all by thermochronometers and may have 2455 

occurred up to several 10s of Myr prior to rapid exhumation. 2456 

 2457 

Fig. 11:  Melt reactions for metasedimentary protoliths showing solidus curves for water-present 2458 

melting (Stevens and Clemens, 1993), muscovite dehydration melting (Patiño Douce and Harris, 2459 

1998; P76 = Peto, 1976), biotite dehydration melting (Vielzeuf and Montel, 1994), and 2460 
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amphibole dehydration melting (Wyllie and Wolf, 1993).  The range of calculated zircon 2461 

saturation temperatures (ZST) from the Cordilleran Anatectic Belt is shown in blue and 2462 

presented in Fig. 8. 2463 

 2464 

Fig. 12:  A) Cordilleran Anatectic Belt (CAB) rocks (blue circles) plot along Rb/Sr vs. Sr trends 2465 

consistent with water-absent muscovite dehydration melting and fractional crystallization of 2466 

plagioclase.  Black arrows show trends produced by melting experiments and red arrows show 2467 

trends expected from crystallization of the phase listed (modified from Inger and Harris, 1993).  2468 

B) Strongly positive (> 3) Eu anomalies were suggested by Prince et al. (2001) to distinguish 2469 

water-excess melting.  Feldspar-rich cumulate rocks may also have positive Eu anomalies, but 2470 

can be recognized by their low total REE (Rudnick, 1992).  Data and data sources are presented 2471 

in Supplementary File 2. 2472 

 2473 

Fig. 13: An isobaric (5 kbar) temperature-XH2O assemblage diagram for a quartz- and muscovite-2474 

rich metasedimentary rock from the Pinal Schist that illustrates differences between water-2475 

absent, water-deficient, and water-excess melting.  Constructed using Perple_X (Connolly, 2476 

2005).  See text for modeling details.  Average zircon saturation temperatures calculated for the 2477 

Cordilleran Anatectic Belt are shaded red (Fig. 8).   2478 

 2479 

 2480 

Table 1:  2481 

Summary of details for locations in the North American Cordilleran Anatectic Belt.  Data 2482 

Sources: 1 = Sevigny and Parrish (1993); 2 = Armstrong (1991); 3 = Crowley et al., 2001; 4 = 2483 
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Crowley et al., 2008); 5 = Norlander et al. (2002); 6 = Carr, 1992; 7 = Holk and Taylor (1997); 8 2484 

= Holk and Taylor (2000); 9 = Vanderhaeghe et al. (1999); 10 = Vanderhaeghe et al. (2003); 11 2485 

= Hinchey et al. (2006); 12 = Leclair et al. (1993); 13 = Brandon and Lambert (1993); 14 = 2486 

Brandon and Lambert (1994); 15 = Brandon and Smith (1994); 16 = Spear and Parrish (1996); 2487 

17 = Spear (2004); 18 = Gordon et al. (2008); 19 = Laberge and Pattinson (2007); 20 = Cubley 2488 

and Pattinson (2012); 21 = Cubley et al. (2013); 22 = Carlson et al. (1991); 23 = Hansen and 2489 

Goodge (1998); 24 = Kruckenberg et al. (2008); 25 = Doughty and Price (1999); 26 = Stevens et 2490 

al. (2015); 27 = Stevens et al. (2016); 28 = Whitehouse et al. (1992); 29 = Asmerom et al. 2491 

(1988); 30 = Guevara (2012); 31 = Foster (2007); 32 = Doughty and Chamberlain (2007); 33 = 2492 

Foster and Raza (2002); 34 = Gaschnig et al. (2010); 35 = Gaschnig et al. (2011); 36 = Foster et 2493 
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