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Abstract

The North American Cordilleran Anatectic Belt (CAB) is a ~3,000 km long region in the
hinterland of the Cordillera that comprises numerous exposures of Late Cretaceous to Eocene
intrusive rocks and anatectic rocks associated with crustal melting. As such, it is comparable in
size and volume to major anatectic provinces including the Himalayan leucogranite belt. The
CAB rocks are chiefly peraluminous, muscovite-bearing leucogranite produced primarily by
anatexis of Proterozoic to Archean metasedimentary rocks. The CAB rocks lack extrusive
equivalents and were typically emplaced as thick sheets, laccoliths, and dike/sill complexes. The

extent, location, and age of the CAB suggests that it is integral to understanding the tectonic
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evolution of North America, however, the belt is rarely considered as a whole. This paper
reviews localities associated with crustal melting in the CAB and compiles geochemical,
geochronologic, and isotopic data to evaluate the melt conditions and processes that generated
these rocks. The geochemistry and partial melting temperatures (ca. 675-775 °C) support water-
absent muscovite dehydration melting and/or water-deficient melting as the primary melt
reactions and are generally inconsistent with water-excess melting and high-temperature (biotite
to amphibole) dehydration melting. The CAB rocks are oldest in the central U.S. Cordillera and
become younger towards both the north and south. At any single location, partial melting
appears to have been a protracted process (=10 Myr) and evidence for re-melting and
remobilization of magmas is common. End-member hypotheses for the origin of the CAB
include decompression, crustal thickening, fluid-flux melting, and increased heat flux from the
mantle. Different parts of the CAB support different hypotheses and no single model may be
able to explain the entirety of the anatectic event. Regardless, the CAB is a distinct component

of the Cordilleran orogenic system.

Keywords: two-mica granite, peraluminous, crustal melting, anatexis, metamorphic core

complex, decompression, fluid-flux, leucogranite, orogenic plateau, magmatism

1. Introduction

The North American Cordillera is an archetypal Cordilleran (ocean-continent subduction)
orogenic system and has been the foundation for many tectonic and geodynamic concepts
(Burchfiel and Davis, 1975; DeCelles, 2004; Dickinson, 2004; Yonkee and Weil, 2015; Fritz-

Diaz et al., 2018). One of the fundamental components of the North American Cordillera is a
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belt of Mesozoic to Cenozoic, peraluminous, muscovite-bearing granite (sensu lato) exposures in
the orogenic hinterland, stretching from southern British Columbia, Canada to northern Sonora,
Mexico (Miller and Bradfish, 1980; Miller and Barton, 1990) (Fig. 1). These rocks are located
landward, or cratonward, of the Mesozoic Cordilleran coastal batholiths (e.g., the Sierra Nevada,
Coast Mountains, and Peninsular Ranges batholiths) and are colloquially called the belt of two-
mica (biotite + muscovite) granites. The belt of peraluminous, muscovite-bearing granite is
generally considered to have formed by crustal melting (anatexis) (Miller and Bradfish, 1980;
Lee et al., 1981; Farmer and DePaolo, 1983; Haxel et al., 1984; Miller and Barton, 1990; Patifio-
Douce et al., 1990; Wright and Wooden, 1991). However, detailed experimental and field
studies suggest that a variety of processes could have created these peraluminous compositions
and mineral assemblages, including crustal anatexis, fractional crystallization, crustal
assimilation, hydrothermal alteration, high-pressure differentiation, and localized melting of
country rock during the emplacement of mantle-derived magmas (see review in Patifio-Douce,
1999 and Clarke, 2019). Likewise, depending on the source rock, crustal melting may not
always produce strongly peraluminous compositions (see review in Gao et al., 2016).

The primary goal of this review is to update the classic compilation of Miller and
Bradfish (1980) and to distinguish igneous bodies and suites related to crustal melting from
peraluminous, muscovite-bearing rocks generated by other processes. Crustal melting is defined
here as partial melting of pre-existing crustal rocks that does not directly involve the formation,
crystallization, and differentiation of mantle-derived mafic magmas (cf., Clemens, 2020). We
refer to these rocks as the North American Cordilleran Anatectic Belt (CAB). Anatectic belts are
generally associated with continental collisional orogens including the Himalayan (e.g., Kohn,

2014; Weinberg, 2016), Grenville (Rivers et al., 2002), and Alpine orogens (Burri et al., 2005).
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The CAB is one of the best examples of an anatectic province related to Cordilleran-style
orogenesis and may provide an analog for deep crustal processes in other Cordilleran orogenic
systems. With an along-strike length of ~3,000 km, the scale of the CAB rivals or exceeds the
size of major continental collision-related anatectic belts, making it one of the largest anatectic
provinces globally, regardless of tectonic setting (Fig. 2). Thinking about this belt in terms of
process (crustal anatexis) rather than composition (aluminosity) or mineralogy (presence of
muscovite) yields insight into the tectonic and thermal evolution of the North American
Cordillera (Miller and Gans, 1989; Hodges and Walker, 1992; Foster et al., 2001; Vanderhaeghe
and Teyssier, 2001; Whitney et al., 2004; Wells and Hoisch, 2008; Bendick and Baldwin, 2009;
Gervais and Brown, 2011; Konstantinou and Miller, 2015).

First, we describe how CAB rocks produced by crustal melting are distinguished from
granitic bodies produced by other processes with an emphasis on locations previously included in
the compilation by Miller and Bradfish (1980). Next, we document locations of crustal melting in
the CAB and compile geologic, geochronologic, geochemical, and isotopic data for each
occurrence. This information is summarized and the shared characteristics and commonalities
among the CAB rocks are presented. Then, melt conditions and processes are evaluated, including
water-absent dehydration melting, water-deficient melting, and water-excess (fluid-flux) melting.
Finally, we evaluate the various tectonic mechanisms that have been proposed to have caused

crustal melting.

2. Geologic Setting
The North American Cordillera was constructed as a result of prolonged eastward

subduction of the oceanic Farallon and Kula plates beneath the North American plate during
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Triassic to Eocene time and the accretion of various terranes during this interval of time
(Dickinson, 2006). This paper focuses on the Cordillera between 53° N and 29° N, which is the
range of latitudes where the CAB is exposed. The orogenic system comprises several key
fundamental tectonic components including a retroarc thrust belt, orogenic hinterland, and a

continental arc (Fig. 1).

2.1. The retroarc and orogenic interior

The thin-skinned Sevier retroarc thrust belt extends from northernmost Canada to the
Mojave region of southeast California (Fig. 1) and was active during the Early Cretaceous to
Paleogene (Yonkee and Weil., 2015). The thrust belt records up to 350 km of horizontal
shortening (DeCelles and Coogan, 2006) and precursor thrust belts like the Luning-Fencemaker,
Central Nevada, and Eastern Sierra thrust belts accommodated another ~100 km of shortening
during early Mesozoic time (Wyld, 2002). To the east (cratonward) of the Sevier thrust belt is
the Laramide foreland belt that was most active from 80 to 40 Ma and temporally overlaps with
the end of Sevier deformation (Copeland et al., 2017). The Laramide foreland belt is
characterized by thick-skinned, basement-involved deformation with limited horizontal
shortening (<50 km) (Yonkee and Weil, 2015).

Pre-Sevier, Sevier, and Laramide-related shortening thickened the crust in the orogenic
hinterland and created a high-elevation plateau, called the Nevadaplano in the central U.S.
Cordillera (DeCelles, 2004) and the Arizonaplano in the southern U.S. and northern Mexican
Cordillera (Chapman et al., 2020). Maximum crustal thickness estimates range from 50 to 65 km
in the U.S. and Mexican Cordillera (Coney and Harms, 1984; Chapman et al., 2015; 2020) and

may have been as high as 80 km in southeastern British Columbia (Hinchey and Carr, 2006).
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Exposures of recumbently folded and stacked nappes in metamorphic core complexes like the
Ruby-East Humboldt Mountains suggest that upper crustal shortening was balanced by middle to
lower crustal shortening and thickening (McGrew et al., 2000).

The regions of thickest crust in the orogenic hinterland during the Cretaceous to early
Paleogene are thought to roughly coincide with the current position of the Cordilleran
metamorphic core complexes (Coney and Harms, 1984), which were most active from 60 Ma to
10 Ma (Bendick and Baldwin, 2009; Konstantinou and Miller, 2015; Gottardi et al., 2020).

There is also a close spatial correlation between the CAB and the Cordilleran metamorphic core
complexes (Fig. 1). We adopt the terminology of Whitney et al. (2013) who divided the
Cordilleran core complexes into northern, central, and southern belts. The northern belt
encompasses core complexes from the Shuswap complex (British Columbia, Canada) to the
Pioneer Mountains (Idaho, USA). The central belt extends from the Raft River-Albion-Grouse
Creek complex (Utah-Idaho, USA) to the Black Mountains (California, USA). The southern belt
stretches from the Sacramento Mountains (California, USA) to Sierra Mazatan (Sonora,
Mexico). We use the same geographic divisions when referring to the northern, central, and

southern CAB hereafter.

2.2. Cordilleran magmatism

The North American Cordillera has a rich magmatic history related to subduction and
extension that overlaps with the CAB in both time and space. The North American Cordilleran
continental arc is chiefly preserved as the belt of giant Mesozoic Cordilleran coastal batholiths
including the Peninsular Ranges, Sierra Nevada, Idaho, and Coast Mountains batholiths located

west of the CAB (Fig. 1). However, magmatism extended into the orogenic interior, particularly
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during the Jurassic, and some Jurassic igneous rocks were originally included in the belt of
muscovite-bearing granite of Miller and Bradfish (1980). In southern British Columbia, the
Jurassic Kootenay arc overlaps spatially with the CAB and includes units such as the Kuskanax
and Nelson suites that range in composition from diorite to peraluminous two-mica + garnet
granite (Armstrong, 1988; Ghosh, 1995). In the Great Basin region, Jurassic igneous rocks
located in a hinterland/back-arc position spatially overlap with the CAB and range in
composition from gabbro to peraluminous, two-mica granite (e.g., Dawley Canyon granite;
Kistler et al., 1981; Barton et al., 2011). Subsequent to Miller and Bradfish’s (1980) study of
muscovite-bearing granite, petrologic and isotopic studies indicated that Jurassic to Early
Cretaceous magmatism that spatially overlaps with the CAB was chiefly produced from
subduction-related (mantle-involved) melting and overwhelmingly tends to be metaluminous or
weakly peraluminous (Farmer and DePaolo, 1983; Miller and Barton, 1990; Wright and Wooden
1991; Brandon and Smith, 1994). Strongly peraluminous, Jurassic-age rocks, like the Dawley
Canyon granite, may be related to localized crustal melting associated with the intrusion of mafic
magmas at depth (Jones, 1999). In the eastern Great Basin, Jurassic magmatism has also been
linked to mantle upwelling during back-arc extension (Elison, 1995; Miller and Hoisch, 1995;
Miller and Barton, 1990) as well as a slab break-off event (Dickinson, 2006). We do not include

any Jurassic or older rocks in the CAB.

2.2.1. Laramide magmatism
Subduction-related, calc-alkaline, metaluminous magmatism ended in the Mesozoic
coastal batholiths during the Late Cretaceous (Chen and Moore, 1982; Silver and Chappell,

1988; Gehrels et al., 2009; Gaschnig et al., 2010; Cecil et al., 2012). In the U.S. and Mexican
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Cordillera, subduction-related magmatism then migrated eastward, sometimes referred to as the
“magmatic sweep,” as the subduction angle shallowed during the Laramide Orogeny (Coney and
Reynolds, 1977; Constenius et al., 2003; Yonkee and Weil, 2015; Fitz-Diaz et al., 2018). This
eastward sweep was most pronounced to the north and south of the central U.S. Cordillera - the
Great Basin region today. The central U.S. Cordillera contains only scattered evidence for
magmatic activity during the Laramide Orogeny and has been referred to as a magmatic gap that
is associated with low-angle subduction (Dickinson and Snyder, 1978). We refer to igneous
rocks produced during this eastward sweep of magmatism as “Laramide magmatism” or the
“Laramide arc,” as it is referred to in the southern U.S. and northern Mexican Cordillera (Lang
and Titley, 1998; Gonzalez-Leon et al., 2011; Leveille and Stegen, 2012; Seedorf et al., 2019).
Laramide magmatism is compositionally distinct from rocks in the CAB and is generally
characterized as calc-alkaline, quartz-poor to intermediate, metaluminous, containing biotite +
hornblende + clinopyroxene, and is more isotopically juvenile than rocks associated with the
CAB (Barton, 1990; 1996). The eastward migration of subduction-related, Laramide magmatism
reached or passed through the future position of the CAB during the Late Cretaceous to early
Paleogene. Magmatism associated with the Laramide magmatic sweep is generally older than
anatectic intrusive rocks in the CAB, but in some cases the two igneous suites overlap both

spatially and temporally (e.g., Wright and Haxel, 1982; Miller and Barton, 1990).

2.2.2. Mid-Cenozoic ignimbrite flare-up
Soon after Laramide magmatism reached its most eastward extent during the Laramide
orogeny, magmatism rapidly swept back westward toward the trench, producing the mid-

Cenozoic (née mid-Tertiary) ignimbrite flare-up and several large-volume volcanic eruptive
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centers (Ferrari et al., 2002; Best et al., 2009). The mid-Cenozoic ignimbrite flare-up is related
to the foundering or rapid roll-back of the previously shallowly-dipping Farallon plate
(Humphreys et al., 2003). The majority of mid-Cenozoic flare-up magmatism has been
interpreted to have originated by melting of hydrated mantle lithosphere to produce mafic
magmas that then experienced various degrees of fractional crystallization and assimilation
within the crust to produce a range of compositions (basaltic to rhyolitic) (Farmer et al., 2008;
Henry and John, 2013). In some locations, intrusion of mantle-derived mafic magmas into the
crust locally caused crustal melting and produced magmas with similar geochemical and isotopic
compositions to the CAB rocks (e.g., Watts et al., 2016). In the northern and central U.S.
Cordillera, the mid-Cenozoic flare-up migrated southward while in the southern U.S. and
Mexican Cordillera, the flare-up migrated west-northwestward (Armstrong and Ward, 1991;
Humphreys, 1995). The oldest flare-up related rocks in the Canadian and northern U.S.
Cordillera are the Eocene Kamloops-Challis-Absaroka volcanics (Moye et al., 1988;
Breitsprecher et al., 2003) and the oldest related rocks in the southern U.S. and Mexican
Cordillera are the Eocene volcanic rocks in the Big Bend National Park region in Texas, USA
(Barker, 1987; Parker et al., 2012). Igneous rocks related to the mid-Cenozoic ignimbrite flare-
up (including intrusive rocks) are generally younger than rocks in the CAB (Konstantinou and
Miller, 2015). There is a close temporal association between the migration or passage of the
ignimbrite flare-up and the onset of extension in the Cordilleran metamorphic core complexes
(Gans, 1989; Best and Christiansen, 1991). Closely following the mid-Cenozoic ignimbrite
flare-up, widespread magmatism associated with lithospheric extension commenced and
continues to the present in the Basin and Range province (Best and Brimhall, 1974;

Hawkesworth et al., 1995).
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3. Examples of peraluminous, muscovite-bearing rocks not produced by crustal melting
In our review of North American Cordilleran magmatism, we identified many examples
of Mesozoic to Cenozoic peraluminous, muscovite-bearing granites that were produced by
processes other than crustal melting, including fractional crystallization, crustal assimilation,
hydrothermal alteration, and localized crustal melting associated with mantle-derived mafic
intrusions. Below, we provide a few examples with an emphasis on locations previously

included in the compilation by Miller and Bradfish (1980).

3.1. Fractional Crystallization and Crustal Assimilation

Fractional crystallization of pyroxene or subaluminous amphibole (aluminum saturation
index [ASI] = ~0.5) can lead to peraluminous compositions during magmatic differentiation
(Cawthorn and Brown, 1976; Zen, 1986). Throughout this contribution, we use ASI = molecular
ALOs / [CaO — (3.33*P20s) + Na2O + K20] (Frost et al., 2001). Assimilation of aluminous
sedimentary country rock during differentiation may also result in peraluminous compositions
(Barbarin, 1996). In both cases, the simplest way to recognize these processes is to examine
whether or not the felsic peraluminous rocks in question are part of a co-magmatic suite that
ranges in composition and exhibits chemical or isotopic evidence for fractional crystallization or
assimilation (e.g., decreasing eNdi with increasing SiO2) (DePaolo, 1981).

An example of peraluminous granite created by fractional crystallization is the Late
Cretaceous (ca. 90 Ma) Chemehuevi Mountains plutonic suite in California, USA, which is part
of the Chemehuevi metamorphic core complex (John, 1988; John and Mukasa, 1990). The

Chemehuevi Mountains plutonic suite has evolved Pb and Sr isotopic values, similar to nearby

10
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Proterozoic-age crust, and is compositionally and temporally zoned with older, metaluminous to
weakly peraluminous biotite granodiorite on the margins and younger, peraluminous two-mica +
garnet granite in the center, forming a “bullseye” map pattern (John and Wooden, 1990) (Fig. 3).
The occurrence of cogenetic magmas of variable composition as well as the nested geometry
suggest that the strongly peraluminous granite differentiated from a more mafic, metaluminous
magma and the evolved isotopic compositions suggest that the magma assimilated significant
amounts of Proterozoic crust (John, 1988; John and Wooden, 1990). In contrast, igneous suites
in the CAB generally have a comparatively limited compositional range, usually lacking
intermediate to low SiO2 and metaluminous members (Fig. 3). The Chemehuevi Mountains
plutonic suite and similarly aged suites nearby have been interpreted to be part of the Cordilleran
(Laramide) arc and to have formed by (mantle-derived) mafic magma influx, hybridization, and

partial remelting of the lower crust (Miller and Wooden, 1994; Economos et al., 2010).

3.2. Hydrothermal Alteration

Hydrothermal alteration can also influence the apparent peraluminosity of an intrusive
rock unit (Luth et al., 1964; Miller et al., 1981; Zen, 1988; Clarke et al., 2005). There are many
different forms of hydrothermal alteration, broadly categorized by the elements gained in
comparison to the original protolith composition (e.g., Seedorff et al., 2005; 2008). Greisen
alteration and coarse muscovite alteration are characterized by the dominant hydrothermal
mineral assemblage muscovite-quartz + albite + K-feldspar with or without additional accessory
minerals. Coarse muscovite alteration is commonly formed during fluid exsolution from a
metaluminous intrusion and results in a relative increase in Al and Rb and relative decrease in Ca

and Sr as muscovite + end-member albite replaces plagioclase (Runyon et al., 2019). As a result,
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peraluminosity for coarse muscovite altered rocks is commonly higher than the original igneous
composition (Fig. 4). Another form of hydrothermal alteration that may affect peraluminosity is
hydrolytic (acidic) alteration, which strips cations from the host rock. In hydrolytic alteration,
feldspar is commonly altered to fine-grained muscovite (sericite) or clay and original mafic
minerals may be altered to chlorite with or without accessory minerals. In these cases, cations
like Na, Ca, and K are more easily mobilized into the fluid than Al, resulting in an apparent
increase in peraluminosity (Fig. 4). These two examples are among the more well-known types
of hydrothermal alteration that could increase peraluminosity, however, there are many factors
including fluid composition, intensity of alteration, host rock composition, and
pressure/temperature conditions that will all influence the apparent changes in peraluminosity
during hydrothermal alteration of a given rock.

In coarse muscovite alteration, muscovite is commonly found as dispersed, euhedral
booklets, replaces igneous minerals (e.g., biotite, feldspars, amphibole), and occurs in veins, and
fractures, and small “vugs” or open space that can develop in areas of pervasive wall-rock
replacement (Runyon et al., 2019). Hydrothermal versus magmatic muscovite can be
distinguished both chemically (e.g., Ti content) and texturally (Miller et al., 1981).
Hydrothermally altered rocks may also be hyperaluminous, with an aluminum saturation index
(ASI) > 1.3 (Clarke, 2019) and have very high Rb/Sr ratios — with values significantly higher
than unaltered anatectic rocks (Fig. 4).

Many of the muscovite-bearing granite locations originally documented in Miller and
Bradfish (1980) have been hydrothermally altered (e.g., Barton, 1987). An example of
hydrothermal alteration creating an apparently strongly peraluminous, muscovite granite is the

Texas Canyon stock in the Little Dragoon Mountains, Arizona (Cooper and Silver, 1964).
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Unaltered samples of the Texas Canyon stock are commonly biotite + muscovite quartz
monzonite in composition and metaluminous to weakly peraluminous. Coarse muscovite
alteration is strongly developed within the Texas Canyon quartz monzonite, ranging from
incomplete replacement of biotite by hydrothermal muscovite to pervasive wall-rock
replacement by muscovite-albite-K-feldspar + fluorite mineral assemblages (Runyon et al.,
2019). The alteration is well-developed over large areal extents (Cooper and Silver, 1964) and
samples of the coarse muscovite altered Texas Canyon quartz monzonite have a significantly

higher ASI than unaltered samples (Fig. 4).

3.3. Localized Melting from Mantle-Derived Intrusions

Another way to create peraluminous granite is to locally melt the crust by underplating or
intrusion of mantle-derived (basaltic) magmas (Barbarin, 1996). The majority of Phanerozoic
granite suites in the North American Cordillera are hybrids with both mantle and crustal inputs,
however, added heat or exsolved fluids from basaltic rocks can generate crustal melts with little
to no geochemical or isotopic mantle signature (Patifio-Douce, 1999; Annen et al., 2006). As a
result, peraluminous granite generated in this fashion is particularly difficult to distinguish from
instances of crustal melting that does not involve the intrusion of mantle-derived mafic magmas.
Recognition of a mantle-derived, basaltic precursor is mainly achieved through thermal
arguments (e.g., a regional heating event) or by exposure of the basaltic intrusions themselves
(including as mafic enclaves) and/or igneous rocks derived from these intrusions (e.g., Ireteba
pluton, Eldorado Mountains, Nevada; Kapp et al., 2002).

An example of this process to create peraluminous granite comes from the Raft River-

Albion-Grouse Creek metamorphic core complex. When examined in isolation, the 32-25 Ma
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Cassia plutonic complex in the Albion Range and northern Grouse Creek Mountains is a good
candidate for a crust-derived magma. The Cassia plutonic complex is 1) silica rich (> 70 wt. %
Si02), 2) peraluminous (ASI=1.0-1.2), 3) isotopically very evolved (eNd; < -25; 87Sr/36Sr; >
0.71), 4) was emplaced into amphibolite-grade metamorphic rocks during or close to peak
pressure-temperature conditions (4 kbar, 650°C), and 5) is syn-kinematic with early core
complex extension (Egger et al., 2003; Strickland et al., 2011; Konstantinou et al., 2013).
However, emplacement of the Cassia plutonic complex was immediately preceded by the
intrusion of the 42-31 Ma Emigrant Pass plutonic complex, which ranges from mafic to felsic
compositions (55-75 wt. % Si0Oz), is more isotopically primitive, and ranges from metaluminous
to peraluminous compositions (Egger et al., 2003; Strickland et al., 2011; Konstantinou et al.,
2013). In addition, both the Emigrant Pass and Cassia plutonic complexes have mantle-like,
autocrystic (not inherited) zircon §'*0 compositions (Strickland et al., 2011). Added heat from
the mantle-derived Emigrant Pass magmatic event has been interpreted to have locally melted
the crust to produce the Cassia plutonic suite (Strickland et al., 2011; Konstantinou et al., 2013).
Rocks of the Cassia plutonic complex were included in the belt of muscovite-bearing granite of
Miller and Bradfish (1980) but are excluded from our compilation of rocks in the CAB.

In the compilation and summary of CAB rocks presented below, locations that involved
mantle-derived magmas were excluded. We omitted locations that contain cogenetic igneous
rocks interpreted as primitive magmas or products of assimilation and/or fractional
crystallization from primitive magmas. This distinction follows previous classification schemes
that suggest only peraluminous leucogranite represents crustal melts with no mantle-input and
that all other granitic rocks are crust-mantle hybrids, including the Cordilleran coastal batholiths

(Collins, 1996; Patifio-Douce, 1999; Annen et al., 2006; Kemp et al., 2007). Alternative models
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for producing metaluminous granite of intermediate composition (representative of the
Cordilleran coastal batholiths) by crustal anatexis include restite unmixing (Chappell et al., 1987)

and peritectic assemblage entrainment (Clemens and Stevens, 2012).

4. The North American Cordilleran Anatectic Belt

The CAB includes most of the anatectic rocks in the Omineca Crystalline Belt in
southern British Columbia, Canada (Monger et al., 1982; Parrish et al., 1988; Nelson et al.,
2013), the “Late Cretaceous-Cenozoic plutonic suite” of Wright and Wooden (1991) and “S-type
subzone” of Solomon and Taylor (1989) in the eastern Great Basin region of the United States,
the “strongly peraluminous suite” of “Cordilleran Interior plutonism” of Miller and Barton
(1990) in the U.S. Cordillera, the “compositionally restricted granites” of Haxel et al. (1984) in
southern Arizona, U.S.A., and the “Aconchi granitic suite” in Mexico (Grijalva-Noriega and
Roldan-Quintana, 1998). In the following section, we list and briefly describe all main
exposures of anatectic rocks that collectively form the CAB. A summary of this information is
presented in Table 1. We acknowledge that there are likely additional locations we are unaware
of that were unintentionally omitted from the compilation. Following the descriptions, some of

the shared characteristics of the CAB rocks are discussed.

4.1. The Northern Belt
4.1.1. The Shuswap Complex
The Shuswap is the largest Cordilleran metamorphic core complex and contains several

migmatite-cored gneiss domes that are often treated as core complexes individually, including

the Matton, Frenchman’s Cap, Thor-Odin, Valhalla, Okanagan, and Grand Forks-Kettle
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complexes (Vanderhaege et al., 1999) (Fig. 1). Peraluminous granites interpreted as anatectic
melts are found throughout the Shuswap complex as leucosome in migmatite and as numerous
intrusive bodies (plutons, dikes, sills, laccoliths, and veins). Among the more well-known
intrusive bodies are the large, sheet-like Ladybird, Airy, and Adams River leucogranites, which
have been interpreted to be derived from partial melting in migmatite (Sevigny and Parrish,
1993; Hinchey and Carr, 2006). The ages of Shuswap migmatite and leucogranite range from 61
to 49 Ma and exhibit a wide range of ages (= 10 Myr) in most individual locations (Vanderhaege
et al., 1999; Hinchey et al., 2006; Gordon et al., 2008; Kruckenberg et al., 2008; Cubley et al.,
2013). Metamorphic rocks and migmatite in the Shuswap complex record prograde
metamorphism from ca. 85 to 55 Ma, with peak pressure and temperature conditions of 8-12
kbar and 700-850 °C ca. 60 to 55 Ma (see review in Bendick and Baldwin, 2009), coincident

with or slightly older than the age of crustal melting.

4.1.2. Mid-Cretaceous Kootenay Arc

Partly overlapping and east of the Shuswap metamorphic core complex is the Kootenay
arc, which contains a suite of mid-Cretaceous (117-95 Ma; Leclair et al., 1993) intrusions that
have been associated with crustal melting (Brandon and Lambert, 1993; 1994; Brandon and
Smith, 1994) and were included in the belt of muscovite-bearing granite of Miller and Bradfish
(1980). These rocks include the White Creek, Fry Creek, Horsethief Creek, Battle Range,
Bugaboo, and Bayonne batholiths (Fig. 1). The batholiths are typically zoned or nested and
contain a wide range of compositions (60-78 wt. % Si02) from metaluminous quartz
monzodiorite to biotite-hornblende granodiorite to strongly peraluminous two-mica granite

(Brandon and Lambert, 1993; 1994; Brandon and Smith, 1994). Whole rock §'%0 (7.1-11.2 %o)
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increases and radiogenic isotope ratios become more evolved (-5 to -20 eNd;; 0.707-0.74
87Sr/%6Sr) with increasing differentiation of the magmatic suite with the most evolved values
represented by the two-mica granite (Brandon and Lambert, 1993; 1994; Brandon and Smith,
1994). These compositional trends are consistent with crustal contamination of a basaltic
precursor during differentiation. However, Brandon and Lambert (1994) note that there are no
nearby exposures of basalt, that low Cr and Ni contents and weak negative Eu anomalies are
inconsistent with fractional crystallization of plagioclase from a basaltic source, and that the
more mafic mid-Cretaceous igneous rock compositions are similar to experimental melt
compositions of amphibolite (Rapp et al., 1991; Beard and Lofgren, 1991). The mid-Cretaceous
Kootenay arc rocks were interpreted to form by dehydration melting as a zone of anatexis
migrated upward through the crust; initially melting Proterozoic amphibolite to tonalitic gneiss to
produce the quartz monzodiorite and biotite-amphibole granodiorite and then melting
Proterozoic metapelites to produce the two-mica granite (Brandon and Lambert, 1993; 1994;
Brandon and Smith, 1994). The mid-Cretaceous suite was emplaced at 2-4 kbar and postdates
Early Cretaceous (144-134 Ma) regional Barrovian metamorphism that records peak pressures
and temperatures of 6-7 kbar and 650-700 °C (Moynihan and Pattison, 2013; Webster et al.,
2017). The mid-Cretaceous Kootenay arc is significantly older (20-80 Myr) than the rest of the
CAB (Table 1) and crustal melting has been associated with accretion events on the plate margin
specific to this longitude (ca. 50 °N) that may not be relevant to other parts of the CAB (Monger

et al., 1982; Brandon and Lambert, 1993; 1994).

4.1.3. Priest River-Clearwater Complexes

Prograde metamorphism occurred from ca. 75 to 64 Ma in the Priest River metamorphic

17



392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

core complex, with peak pressure and temperature conditions of 10 kbar and 790 °C, followed by
nearly isothermal decompression ca. 60-57 Ma (Stevens et al., 2015) (Fig. 1). Migmatite
exposures are estimated to contain 25-45% leucosome and are classified as metatexite (Stevens
et al., 2016). Crustal anatexis, via dehydration melting, occurred during both prograde
metamorphism and decompression with a majority of melt crystallization occurring ca. 54-44 Ma
(Stevens et al., 2015). Intrusive rocks in the Priest River complex are generally Late Cretaceous
or Eocene in age. The Late Cretaceous intrusive rocks (e.g., Spokane granite) partly precede
prograde metamorphism, span a range of compositions including two-mica granite, and have
radiogenic isotopic compositions that may require the involvement of a mantle-derived juvenile
component (Whitehouse et al., 1992), which suggests that they are not crustal melts and are not
included in the CAB. The Eocene intrusive rocks (e.g., Silver Point, Wrencoe, Rathdrum
plutons) overlap in age (50-45 Ma) with leucosome in migmatite and include biotite-hornblende-
bearing and biotite-bearing granite (Miller et al., 1975; Stevens et al., 2016) that have been
interpreted to be crustal melts of Proterozoic basement (metapelite to orthogneiss) based on their
highly evolved isotopic composition (zircon eHfi = -22 to -27; eNdi = -19 to -21; Whitehouse et
al., 1992; Stevens et al., 2016) and are included in the CAB. Eocene magmatism also occurs
outside (in the hanging wall) of the complex including the peraluminous two-mica granite in the
Loon Lake batholith that has been attributed to crustal melting (Asmerom et al., 1988).

The Clearwater metamorphic core complex experienced peak metamorphism at 8-11 kbar
and 650-750 °C during ca. 64-56 Ma, followed by the onset of decompression at ca. 59 Ma
(Doughty and Chamberlain, 2007). Migmatite is absent, but intrusion of muscovite-bearing
granite (e.g., Roundtop, Beaver Creek, Bungalow plutons) during the early Eocene (ca. 50-45

Ma) may record crustal melting at depth (Marvin et al., 1984; Foster et al., 2007). Undated
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pegmatitic two-mica leucogranite dikes and sills also intrude and cross-cut Proterozoic

metasedimentary units (Guevara, 2012).

4.1.4. The Idaho Batholith & Bitterroot Complex

Unlike the other large Mesozoic coastal arc batholiths, the Idaho batholith was emplaced
entirely into Proterozoic basement and is dominated by peraluminous granite including the 83-67
Ma peraluminous Atlanta suite in the Atlanta lobe and the 66-53 Ma (mostly 55-53 Ma; e.g.,
Bear Creek and Paradise plutons) peraluminous Bitterroot suite in the Bitterroot lobe (Hyndman,
1983; Johnson et al., 1988; Foster et al., 2007; Gaschnig et al., 2010) (Fig. 1). Whether the
peraluminous suites represent crustal melts or extensive crustal assimilation has been a topic of
debate for the last half-century (see review in Gaschnig et al., 2011). Emplacement of both
peraluminous suites was immediately preceded by cogenetic metaluminous arc magmatism and
the batholith generally exhibits increasingly evolved radiogenic isotopes through time (Gashnig
et al., 2011). These patterns, along with the presence of mafic igneous rocks that overlap in age
with the Bitterroot suite (Hyndman and Foster, 1988) and mantle-like zircon 8'%0 (King and
Valley, 2001), support models linking the formation of the Idaho batholith to injection of mantle-
derived magmas that eventually led to melting of continental crust. However, the highly evolved
isotopic compositions and limited compositional range of the peraluminous suites suggest that if
mantle-derived magmas were involved in petrogenesis of the suites, they likely provided heat
and not mass input (Gaschnig et al., 2011). Gaschnig et al. (2011) interpreted the Atlanta
peraluminous suite to have formed by dehydration melting of greywacke or biotite-bearing
granitic rocks and the Bitterroot suite to have formed by dehydration melting of orthogneiss,

both at relatively high pressure.
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The Bitterroot peraluminous suite is located within the Bitterroot metamorphic core
complex and has been interpreted in terms of core complex formation as well as part of the
Cordilleran coastal batholith system. The region experienced crustal thickening and prograde
metamorphism during the Sevier-Laramide orogeny (80-50 Ma) and the intrusion of the
Bitterroot peraluminous suite (“main phase” plutons) as a series of thick (3-4 km) sills and
laccoliths has been interpreted to be related to anatexis of Proterozoic basement gneisses (Foster
et al., 2001; 2010). Migmatite is locally exposed in the Bitterroot metamorphic core complex
and records anatectic melting (leucosome and pegmatite intrusions) at ~53 Ma and peak
metamorphic pressures and temperatures of 7-8 kbar and 650-750 °C, resulting in muscovite

breakdown (Foster et al., 2001).

4.1.5. Anaconda-Pioneer Complexes

The Anaconda metamorphic core complex shares many similarities with the Priest River,
Clearwater, and Bitterroot complexes and they are linked by the dextral Lewis and Clark fault
zone (Foster et al., 2007) (Fig. 1). The footwall of the Anaconda complex exposes recumbently
folded nappes that record deformation and metamorphism related to crustal thickening during the
Late Cretaceous (80-75 Ma) with peak pressures and temperatures of 4-6 kbar and 600-700 °C
(Grice, 2006; Haney, 2008). Eocene plutons and abundant pegmatite and aplite dikes and sills
intrude Proterozoic host rocks, which are locally migmatitic (Foster et al., 2007). The Eocene
(53-50 Ma) intrusive rocks include the Hearst Lake pluton, a peraluminous, two-mica
leucogranite (Wallace et al., 1992; Foster et al., 2007).

The footwall of the Pioneer metamorphic core complex locally contains migmatite and is

pervasively intruded by leucogranite dikes and sills with crystallization ages of 52-46 Ma, which
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overlap in age with the Pioneer Intrusive Suite (50-48 Ma) (Silverberg, 1990; Vogl et al., 2012).

4.2. The Central Belt

4.2.1. Ruby-East Humboldt Core Complex

Fold nappes exposed in the core of the Ruby-East Humboldt metamorphic core complex
and thrust faults in nearby mountain ranges record crustal thickening and prograde
metamorphism, starting during the mid-Cretaceous (ca. 100-95 Ma) and peaking during the Late
Cretaceous (ca. 85-80 Ma) (Camilleri and Chamberlain, 1997; McGrew et al., 2000; Hallet and
Spear, 2015) (Fig. 1). Metamorphic rocks indicate that the complex experienced decompression
from ca. 85-55 Ma, although the amount of decompression (1-6 kbar) varies and there is little to
no upper crustal or basinal record of this event (Hodges et al., 1992; McGrew et al., 2000; Henry
et al., 2011; Hallet and Spear, 2014; 2015). Some authors have related decompression to vertical
ductile thinning (Hallet and Spear, 2014; Long and Kohn, 2020). Migmatite is exposed at deep
structural levels in the complex (Howard, 1980) and partial melting in these migmatites has been
linked to pervasive intrusion of leucogranite at higher structural levels during the Late
Cretaceous (Lee et al., 2003; Premo et al., 2008). Late Cretaceous pegmatitic leucogranite is the
dominant intrusive component of the Ruby-East Humboldt complex and forms an injection
complex of innumerable dikes and sills (Howard et al., 2011). The pegmatitic leucogranite has
been interpreted to have formed by muscovite dehydration melting of Proterozoic metapelite and
to be related to crustal anatexis during both prograde metamorphism and decompression (Wright
and Snoke, 1993; McGrew et al., 2000; Lee et al., 2003; Howard et al., 2011; Hallet and Spear,
2014; 2015). A younger population (46-29 Ma) of leucogranite bodies is also present in the

Ruby-East Humboldt complex and overlaps in age with a compositionally expanded suite of
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484  igneous rocks (e.g., Harrison Pass pluton) ranging from gabbro to two-mica granite that involve
485  a mantle-derived component (Barnes et al., 2001; Lee et al., 2003; Howard et al., 2011). These
486  younger rocks are volumetrically less significant and geochemically and isotopically distinct
487  from the Late Cretaceous pegmatitic granite (Barnes et al., 2001; Lee et al., 2003). Howard et al.
488  (2011) suggested that mafic underplating during the younger phase of magmatism (Eocene-
489  Oligocene) provided heat + fluids that resulted in additional crustal melting and re-melting and
490  remobilization of the Late Cretaceous pegmatitic granite. Regionally, Eocene-Oligocene

491  magmatism is related to the mid-Cenozoic ignimbrite flare-up and rollback of the Farallon slab
492  (Humphreys, 1995; Konstantinou and Miller, 2015) and is not included in the CAB.

493 East of the Ruby-East Humboldt complex, Late Cretaceous two-mica + garnet

494  leucogranite, pegmatite, and aplite dikes interpreted to have formed by crustal melting are

495  present in the Wood Hills, Pequop Mountains, and Toano Range (Lee and Marvin, 1981; Miller
496  etal., 1990; Camilleri and Chamberlain, 1997; Milliard et al., 2015). The 77-72 Ma Toano

497  Springs pluton in the Toano Range marks the northeastern extent of Late Cretaceous crustal
498  anatexis in the Great Basin as interpreted by Wright and Wooden (1991).

499

500  4.2.2. Snake Range-Kern Mountains-Deep Creek Range

501 The Snake Range, Kern Mountains, and Deep Creek Range are part of a single

502  metamorphic core complex/extensional fault system (Miller et al., 1999), herein referred to as the
503  Snake Range complex (Fig. 1). No migmatite is exposed in the Snake Range complex, but the
504  region experienced peak metamorphism during the Late Cretaceous (90-70 Ma) associated with
505  the Sevier orogeny (Miller and Gans, 1989). Metamorphic rocks in the footwall record

506  maximum pressures and temperatures of 6-8 kbar and 500-650 °C (Cooper et al., 2010). Late
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Cretaceous (ca. 86-70 Ma), strongly peraluminous, two-mica granite (e.g., Lexington Creek, Pole
Canyon-Can Young Canyon, Tungstonia plutons) in the Snake Range complex have been
interpreted to be crustal melts formed by dehydration melting of Proterozoic metapelite (Lee et
al. 1981, Lee et al., 1986; Farmer and DePaolo et al., 1983; Lee and Christiansen 1983; Wright
and Wooden, 1991; Gottlieb, 2017). Eocene peraluminous, muscovite-bearing granite (e.g.,
Young Canyon-Kious Basin plutons; ~37 Ma) is also present in the Snake Range complex (Lee
and Christiansen 1983) and may have formed in a similar way to the Eocene peraluminous rocks
in the Ruby-Humboldt Mountains (i.e., associated with the mid-Cenozoic ignimbrite flare-up).
The Eocene intrusive rocks have more juvenile 8’Sr/5%Sr ratios, are more oxidized, and have
lower §'%0 ratios compared to the strongly peraluminous Cretaceous intrusions (Lee and
Christiansen 1983; King et al., 2004).

Swarms of pegmatitic leucogranite sills and dikes are common in the Snake Range
complex as well as in neighboring ranges (e.g., Schell Creek Range) and may also be associated
with crustal anatexis (Lee et al., 1981; Miller and Gans, 1989). Miller et al. (1999) reported an
age of 82 Ma on a leucogranite dike in the Smith Creek region, Kern Mountains. Two-mica
granite, potentially equivalent with the strongly peraluminous Cretaceous intrusions in the Snake
Range, is also exposed in some surrounding ranges, including the ca. 84 Ma Troy Granite in the
Grant Range (Fryxell, 1988; Lund et al., 2014) and the ca. 84 Ma McCullough Butte and Rocky

Canyon plutons in the Fish Creek Range (Barton, 1987).

4.2.3. Central Great Basin Two-Mica Granite
All the rocks in the central CAB described in the preceding sections (Sections 4.2.1 and

4.2.2) occur east of the 8’Sr/%®Sr = 0.708 isopleth and east of the Roberts Mountain thrust, which
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marks a suture zone separating accreted (para)allochthonous terranes to the west from North
American cratonic basement to the east (Kistler and Peterman, 1973; Stewart, 1980). Small
exposures of Late Cretaceous, peraluminous, two-mica granite occur throughout the Great Basin
region west of the 3’Sr/**Sr = 0.708 isopleth (Fig. 1). These granites are interpreted to have a
significant sedimentary input and were included in previous compilations of strongly
peraluminous rocks (Miller and Bradfish, 1980; Barton, 1987; 1990; Miller and Barton, 1990;
Barton and Trim, 1991). In Nevada, these granites include the Pipe Springs (80 Ma) and Round
Mountain plutons (95 Ma) in the Toquima Range (Shawe et al., 1986), the Birch Creek pluton
(89 Ma) in the Toiyabe Range (Stewart et al., 1977), and the New York Canyon and Rocky
Canyon plutons (73-71 Ma) in the Humboldt and Stillwater Ranges (Johnson et al., 1977;
McFarlane, 1981; Barton and Trim, 1991). In eastern California, these include the Birch Creek
and Papoose Flat plutons (83-82 Ma) in the White and Inyo Mountains (Sylvester et al., 1978;
Barton, 2000). Two-mica granite intrusions in the central Great Basin are generally considered
to be satellites of the Sierra Nevada batholith and occur along with more common Late
Cretaceous metaluminous intrusive rocks (Sylvester et al., 1978; McFarlane, 1981; Barton, 1987;
2000; Brown et al., 2018). Besides slightly more juvenile radiogenic isotopic compositions
(compared to the eastern Great Basin), these rocks have lower zircon §'%0 ratios (King et al.,
2004) and, where studied in detail, are associated with rare mafic dikes and enclaves (e.g.,
Barton, 2000). Late Cretaceous, two-mica granite in the central Great Basin has been interpreted
to be an evolved, high-pressure equivalent to more metaluminous, calc-alkaline continental arc
rocks (Patifio-Douce, 1999) or related to increased mantle heat flow (e.g., basaltic underplating
or intrusion, mantle upwelling; Barton, 1990). Wright and Wooden (1991) suggested that none

of the Late Cretaceous two-mica granite located west of 87Sr/36Sr = 0.708 isopleth are crustal
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melts and they are not included in the CAB here.

4.3. The Southern Belt

4.3.1. Death Valley area, California

The Funeral Mountains metamorphic core complex contains migmatite that record Late
Cretaceous prograde metamorphism and maximum pressures and temperatures of 7-9 kbar and
600-700 °C during ca. 90-70 Ma (Hodges and Walker, 1990; Hoisch and Simpson, 1993;
Mattinson et al., 2007) (Fig. 1). The migmatite is cut by Paleocene (64-62 Ma) two-mica
leucogranite dikes and sills that were emplaced syn-kinematically and have been interpreted to
have formed by water-excess to water-deficient melting of muscovite-bearing metasedimentary
rocks (Mattinson et al., 2007).

Leucogranite dikes and pegmatite (59-55 Ma) are also present in the Black Mountains
metamorphic core complex in the Badwater, Mormon Point, and Copper Canyon turtlebacks
(antiformal footwall corrugations) (Miller and Friedman, 1999; Lima et al., 2018) and in the
Panamint Mountains (Mahood et al., 1996). The ~72 Ma Hall Canyon pluton, a two-mica
granodiorite, in the Panamint Mountains was interpreted by Mahood et al. (1996) to be a product
of water-absent biotite dehydration melting.

Late Cretaceous muscovite-garnet granite is found south and west of Death Valley in the
western Mojave Desert region and is interpreted to have formed in part by partial melting and
assimilation of Pelona-Orocopia-Rand Schist, which was underplated in this area during
Laramide low-angle subduction (Miller et al., 1996; 2000; Grove et al., 2003). Despite
significant involvement of the Pelona-Orocopia-Rand Schist in the source region, these

muscovite-garnet granites are still interpreted to be subduction-related and to have originated in
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the upper mantle (Miller et al., 1996; Saleeby, 2003). They are considered distinct from the
Cordilleran interior belt of muscovite-granite (Miller and Barton, 1990; Miller et al., 1996), and

are not included in the CAB.

4.3.2. Colorado River Extensional Corridor

The Colorado River extensional corridor extends from southern Nevada to the Phoenix,
Arizona area and consists of a series of top-to-the-northeast metamorphic core complexes and
extensional fault systems (Howard and John, 1987). Numerous magmatic rocks occur
throughout this corridor that have been or could be interpreted as crustally-derived magmas. The
Ireteba pluton (~66 Ma) in the Eldorado Mountains, Nevada is a two-mica + garnet granite that
was included in the belt of muscovite-bearing granite of Miller and Bradfish (1980). However,
the Ireteba granite shows extensive interaction with mafic magmas and has been interpreted to be
related to injection of juvenile basaltic magmas causing melting of the crust (Kapp et al., 2002).

Late Cretaceous peraluminous granite in the Sacramento and Chemehuevi core
complexes, California has been interpreted to be related to fractional crystallization and crustal
assimilation of mantle-derived magmas as discussed in Section 3.1 (John and Wooden, 1980).
Likewise, Late Cretaceous (~89 Ma) peraluminous granite in the Whipple Mountains
metamorphic core complex has been interpreted to have formed in a subduction setting and
involved a mantle input (Anderson and Cullers, 1990).

Late Cretaceous (75-70 Ma), strongly peraluminous two-mica granite in the Old Woman-
Piute batholith, California (e.g., Sweetwater Wash, Lazy Daisy, Painted Rock plutons) has been
interpreted to represent crustal melts with limited mantle input (Foster et al., 1989; Miller et al.,

1990b; Miller and Wooden, 1994). The strongly-peraluminous plutons were emplaced along

26



599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

with metaluminous rocks of the same age, show a spectrum of major element and isotopic
compositions, and in some cases are nested within the metaluminous rocks, similar to the
peraluminous granite in the Chemehuevi Mountains (John and Wooden, 1990; Miller et al.,
1990). However, the peraluminous stocks in the Old Woman-Piute batholiths have been
interpreted to reflect anatexis of a hybridized lower crustal source consisting of older basement
rocks and mantle-derived Jurassic arc igneous rocks (Miller et al., 1990; Miller and Wooden,
1994). The nearby Iron Mountains, California also contain Late Cretaceous (ca. 75-70 Ma)
strongly peraluminous two-mica + garnet granite equivalent to the Old Woman-Piute batholith
(Wells et al., 2002; Wells and Hoisch, 2008). The Iron Mountains intrusive suite and nearby
Coxcomb intrusive suite comprise the Cadiz Valley batholith, which has been interpreted to be
subduction-related (Howard, 2002; Economos et al., 2010).

Widespread exposures of two-mica + garnet leucogranite occur in the Buckskin-
Rawhide, Harcuvar, Harquahala, and White Tank metamorphic core complexes, Arizona,
including the Tank Pass granite (ca. 80-78 Ma; DeWitt and Reynolds, 1990; Bryant and
Wooden, 2008), the Brown’s Canyon granite (ca. 72 Ma; Richard et al., 1990; Isachsen et al.,
1998), and the White Tank granite (ca. 72 Ma; Reynolds et al., 2002; Prior et al., 2016) which
intruded primarily as large sills, but also form dense networks of smaller dikes and sills.
Locally, areas of particularly voluminous intrusions have been referred to as migmatitic injection
complexes (Bryant and Wooden, 2008), although evidence for in sifu melting during the Late
Cretaceous is not documented in Arizona. Bryant and Wooden (2008) report a ~110 Ma
mylonitized, “migmatitic” gneiss in the Harcuvar Mountains, and Knapp and Heizler (1990)

report a ~67 Ma partially mylonitized, “migmatitic” gneiss in the Mesquite Mountains, Arizona.
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4.3.3. Southern Arizona

Strongly peraluminous, two-mica + garnet leucogranite is exposed throughout southern
Arizona, primarily within the footwalls of metamorphic core complexes. The Paleocene to
Eocene (ca. 60-45 Ma) Wilderness Suite in the Catalina-Rincon metamorphic core complex was
emplaced as series of thick (<2 km) sills and has been interpreted to have formed by crustal
melting of Proterozoic Oracle granite (Keith, 1980; Farmer and DePaolo, 1984; Force, 1997,
Fornash et al., 2013; Davis et al., 2019) or from other unexposed lithologies (Ketcham, 1996).
Equivalent rocks (e.g., Fresnal Canyon granite) are exposed in the Picacho and Tortolita
Mountains core complexes as well (Banks, 1980; Spencer et al., 2003; Ferguson et al., 2003).
The Wilderness suite was estimated to have been emplaced at 3-4 kbar and ca. 625-725 °C
(Anderson et al., 1988).

The Pan Tak granite in the Coyote Mountains core complex and the Presumido Peak
granite in the Pozo Verde Mountains core complex are both ~58 Ma, two-mica + garnet
leucogranites that have been interpreted to have formed by crustal anatexis of Proterozoic
basement, potentially the Pinal schist (Wright and Haxel, 1982; Goodwin and Haxel, 1990).
Haxel et al. (1984) report similar peraluminous granite in the Kupk Hills, Sierra Blanca, and
Comobabi core complexes. Apart from the southern Arizona metamorphic core complexes,
peraluminous two-mica leucogranite occurrences include the Texas Canyon stock (~55 Ma),
Senita Basin granite, and Artesa Mountains granite (Cooper and Silver, 1964; May and Haxel,
1980; Shafiqullah et al., 1980; Haxel et al., 1984; Chapman et al., 2018). Arnold (1986)
interpreted the Gunnery Range batholith and Texas Canyon stock (Fig. 1) to represent crustal
melting of a deep granulitic source terrane, although the strongly peraluminous compositions of

the Texas Canyon stock may be related to hydrothermal alteration as discussed in Section 3.2

28



645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

(Runyon et al., 2019).

4.3.4. Northern Sonora

The Aconchi suite in northern Sonora comprises Late Cretaceous to Paleogene two-mica
+ garnet leucogranite that has been interpreted as crustal melts and has been mapped throughout
the region, primarily within the footwalls of metamorphic core complexes, including in the
Mesquital (59-51 Ma), Tubutama, Carnero (ca. 55 Ma), Tortuga, Guacomea (78 Ma),
Magdalena, Madera, Aconchi (58-55 Ma), Puerta del Sol (68-59 Ma), and Mazatan (58 Ma)
complexes (Anderson et al., 1980; Hayama et al., 1984; Nourse et al. 1994; Nourse, 1995;
Grijalva-Noriega and Roldan-Quintana, 1998; Gonzalez-Leon et al., 2011; Gonzalez-Becuar et
al., 2017; Mallery et al., 2018). Relatively little information is available on many of these
localities, although the intrusions are often described as laterally extensive sills, laccoliths, small
plutons, and networks of small dikes and sills. The largest exposure is the Aconchi-El Jaralito
batholith located between the Mazatan and Aconchi complexes, which contains the Huépac (58-
55 Ma) and El Babizo leucogranites (71 Ma) among others (Roldan-Quintana, 1991; Gonzalez-
Leon et al., 2011). Late Cretaceous to Paleocene (68-59 Ma) orthogneiss migmatite is reported
from the Puerta del Sol complex and has been interpreted as the source for the El Pajarito (68
Ma) garnet-bearing leucogranite (Gonzalez-Becuar et al., 2017). The youngest leucogranite in
the Puerta del Sol complex is the ~42 Ma El Oquimonis granite, a two-mica + garnet

leucogranite (Gonzalez-Becuar et al., 2017).

5. Common Characteristics of the Cordilleran Anatectic Belt

The most straightforward way to recognize igneous rocks produced by crustal anatexis is
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to observe them in situ — leucosome in migmatite. Leucosome often represents the initial stages
of crustal anatexis and has been interpreted to feed larger-scale intrusive bodies or represent
crystal fractionation from these bodies (Solar and Brown, 2001; Johannes et al., 2003).
Migmatite (of similar age to the CAB) is common in the northern CAB, but rare to absent in the
central and southern CAB. In some locations, leucosomes have been shown to be the source for
more voluminous CAB magmas (e.g., Ladybird Suite in the Shuswap complex; Hinchey and
Carr, 2006). However, in most instances a direct relationship between migmatitic leucosomes
and CAB magmas has not been demonstrated. Most exposures of migmatite associated with the
CAB record mid-crustal (5-10 kbar), amphibolite facies conditions (Table 1). In rare cases,
evidence is present suggesting that significant leucosome accumulation + melt extraction took
place at these conditions (e.g., Priest River complex; Stevens et al., 2015; 2016). In the majority
of locations, however, CAB igneous rocks were derived from deep structural levels not exposed
at the surface.

The emplacement geometry of CAB igneous rocks varies greatly, but commonly forms
dike and sill networks, injection complexes, or large sheets and laccoliths (e.g., Ruby-East
Humboldt complex and Catalina-Rincon complex; Howard et al., 2011; Fornash et al., 2013).
This is similar to the geometry of igneous bodies in other major anatectic provinces (e.g.,
Manaslu laccolith in the Himalaya leucogranite belt, LeFort et al., 1987). Where CAB rocks are
exposed as stocks or plutons, they are commonly pervasively intruded by late-phase pegmatite
and aplite dikes that are generally interpreted to have been derived from closed-system
crystallization of water-bearing felsic magmas (e.g., Coyote Mountains complex; Wright and
Haxel, 1982). To our knowledge, there are no extrusive rocks equivalent to the intrusive rocks

of the CAB. The inferred high water contents of the CAB melts likely caused them to reach their
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solidus and freeze at moderate pressure (depth) during ascent (Miller, 1985; Clemens and Droop,

1998), which may explain the lack of extrusive equivalents.

5.1. Geochemistry, Isotopic Composition, and Protoliths

The CAB igneous rocks are silica-rich (> 70 wt. % SiO2; Fig. 3; Table 1), consistent with
experimentally produced melts from a wide range of crustal protoliths (e.g., greywacke, schist,
gneiss; Patifio-Douce, 1999). The paucity of anatectic rocks of intermediate composition (< 70
wt. % Si102) suggest that crustal melting of more mafic source rocks (e.g., basaltic amphibolite)
is less common (Beard and Lofgren, 1991; Patifio-Douce and Beard, 1995; Rapp and Watson,
1995; Gao et al., 2016). CAB rocks are usually identified in the field as leucogranite and are
geochemically and mineralogically classified as granite or rarely, as trondhjemite (Fig. 5).
Potassium feldspar is common, but always significantly less abundant than plagioclase.
Compositions range from alkalic to calcic on modified alkali-lime index (MALIL; Na2O + K2O —
CaO) diagrams, consistent with global compilations of leucogranites (Frost et al., 2001). CAB
rocks are weakly to moderately peraluminous (ASI = 1.0-1.3; Fig. 3; Table 1) and are corundum
normative with modal minerals more aluminous than biotite, chiefly muscovite and garnet,
characteristic of crustal melting of metasedimentary protoliths (Castro et al., 1999; Chappell et
al., 2012). Biotite is generally more abundant than muscovite and cordierite is very rare, which
is one of the reasons why the CAB rocks are not strictly classified as S-type granites (White et
al., 1986; Chappell and White, 2001). Another difference between the CAB and classic S-type
granites is that magnetite, rather than ilmenite, is the dominant opaque oxide in CAB rocks
(White et al., 1986), which suggests that the CAB magmas may be more oxidized. Crustal melts

originating from (meta)sedimentary protoliths containing small amounts of organic material tend
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to be reduced (fO2 < FMQ) (Nabelek, 2019). However, there has been no comprehensive
investigation of the oxidation state of CAB rocks. Peraluminous S-type granites as well as
peraluminous, calc-alkaline Cordilleran (subduction-related) granite are enriched in FeO, MgO,
and TiO2 compared to CAB rocks (Patifio-Douce, 1999; Fig. 6). Despite their geochemical and
mineralogical differences, CAB rocks have been informally referred to as S-type granites
because the large majority have been interpreted to have formed from melting of
metasedimentary protoliths (Miller and Bradfish, 1980; Patifio-Douce et al., 1990; Wright and
Wooden, 1991). Additional geochemical data for CAB rocks is presented below in Section 6,
focusing on melt processes.

The CAB rocks exhibit highly evolved radiogenic isotopic compositions (e.g., low eNd),
eHf{y), high ¥’Sr/*®Sr;; Table 1) that reflect the composition and age of local basement rocks. In
North America, the 8’Sr/*®Sr; = 0.706 isopleth (“0.706 line”) is often interpreted to represent the
western edge of autochthonous, North American crystalline basement (Kistler and Peterman,
1973) and the CAB is almost everywhere located east (cratonward) of this isopleth (Fig. 1). For
the Great Basin region, Wright and Wooden (1991) suggested that Mesozoic to Cenozoic crustal
melting was limited to areas east of the 3’Sr/%6Sri = 0.708 isopleth and east of the eNd; = -7
isopleth (Farmer and DePaolo, 1983), although the relationship between these isopleths and the
CAB is less clear to the north and south (Fig. 1). The CAB crosses multiple Archean to
Proterozoic basement/lithospheric provinces including, from north to south, the Rae craton,
Hearne craton, Medicine Hat block, Selway terrane, Grouse Creek block, Mojave province,
Yavapai province, Mazatzal province, and Caborca block (Whitmeyer and Karlstrom, 2007; Fig.
7).

CAB rocks generally have high §'%0 ratios (2-5 %o above mantle array values) as
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reflected in whole rock and single mineral (e.g., quartz, zircon) analyses (Table 1). The high
830 ratios have been interpreted to reflect crustal melting of metasedimentary rocks, rather than
(meta)igneous rocks (Solomon and Taylor, 1989; King et al., 2004; Gottlieb, 2017). In the
northern and central CAB, upper Proterozoic metasedimentary rocks are present as part of the
Cordilleran passive margin sequence (Cordilleran Miogeocline) and are often cited as a possible
protolith (e.g., Neoproterozoic McCoy Creek Group, Ruby-East Humboldt complex; Lee et al.,
2003). Metasedimentary members of the Mesoproterozoic Belt-Purcell Supergroup and the
overlying Neoproterozoic Windermere Supergroup have also been suggested as potential
protoliths in the northern CAB (e.g., Shuswap complex; Norlander et al., 1992). The southern
CAB does not contain metasedimentary rocks associated with the Mesoproterozoic basins or
Neoproterozoic metasedimentary rocks associated the Cordilleran passive margin sequence
(Stewart et al., 1984) (Fig. 7). Paleoproterozoic metasedimentary rocks in the Pinal Basin in
southern Arizona and northern Sonora (Meijer., 2014; Bickford et al., 2019) have been proposed
as a potential source for the southern CAB (e.g., Pinal Schist; Haxel et al., 1984). Proterozoic
(meta)igneous rocks and Jurassic arc rocks in the southern CAB have also been mentioned as

possible protoliths (Miller and Wooden, 1994; Fornash et al., 2013; Mallery et al., 2018).

5.2. Melt Temperature Estimates

Zircon saturation temperatures were calculated using the calibration of Watson and
Harrison (1983) for CAB rocks that meet the compositional criteria for this thermometer (Table
1). The dataset indicates an average temperature of 724 + 48 °C (1o) (Fig. 8). The calibration of
Watson and Harrison (1983) results in higher calculated zircon saturation temperatures than

other recently revised calibrations (Boehnke et al., 2013; Gervasoni et al., 2016; Borisov and
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Aranovich, 2019) and can be considered a maximum estimate. For intrusive rocks, zircon
saturation temperature has been used as a proxy for the temperature of partial melting or magma
temperature (e.g., Collins et al., 2016). Zircon saturation temperature is a dynamic variable that
predicts when zircon saturation begins in a cooling magma and increases during crystallization
(Clemens et al., 2020). Siegel et al. (2018) suggest that magma temperature and zircon
saturation temperature are only approximately equal when SiO2 contents increase to a certain
value, which was determined to be 64-74 wt. % based on a limited dataset. For higher SiO2
values, calculated zircon saturation temperatures may overestimate the magma temperature.
Because CAB rocks have Si02 > 70 wt. %, we interpret the calculated zircon saturation
temperatures to be close to or a slight overestimate of the partial melting temperature. In
addition, almost all zircon U-Pb analyses of CAB rocks report inherited (antecrystic or
xenocrystic) zircon components (Applegate et al., 1992; Wright and Snoke, 1993; Vanderhaege
et al., 1999; Vogl et al., 2012; Gaschnig et al., 2013; Stevens et al., 2016; Davis et al., 2019).
Intrusions with abundant inherited zircon indicate saturation at the source and suggest that
calculated zircon saturation temperatures are a maximum since part of the bulk Zr concentration
is from inherited crystals rather than the melt (Miller et al., 2003; Barth and Wooden, 2006).
Our compilation of CAB rocks also contains some analyses of late-stage, highly fractionated
melts (chiefly aplite and pegmatite dikes). Zircon saturation temperatures of these rocks can be
interpreted as minimum estimates of magma temperature at the time of melt segregation (Miller
et al., 2003).

Peak metamorphic temperature estimates from migmatite in the central and northern
CAB are plotted in Figure 8 and show a broad maxima from 650-825 °C that overlaps with the

average CAB zircon saturation temperature. For individual localities, zircon saturation
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temperatures are consistently 50-100 °C lower than estimates of peak metamorphic temperatures
obtained using equilibria thermobarometry or pseudosection analysis (Table 1). Kohn (2014)

made a similar observation in his review of the Himalayan leucogranite belt.

5.3. Age Relationships

A compilation of crystallization or emplacement ages of rocks in the CAB are presented
in Figure 9 and Table 1. Ages range from 92 to 42 Ma, with the majority of ages between 80 and
50 Ma. Ages are youngest in the northern and southern CAB and oldest in the central CAB. The
age pattern suggests that anatectic magmatism started in the central U.S. Cordillera and
simultaneously migrated (or “swept”) northward and southward with crustal melting shutting
down in its wake. Many locations in the CAB only have a few dated samples, but where
sufficient geochronologic data are available, the duration of anatexis is typically protracted,
lasting 10 Myr or more. Examples of well-studied locations with a wide range of ages include
the Shuswap complex (60-50 Ma; Vanderhaege et al., 1999; Hinchey et al., 2006; Gordon et al.,
2008; Kruckenberg et al., 2008), the Ruby-East Humboldt complex (70-40 Ma; Howard et al.,
2011), and the Catalina-Rincon complex (65-45 Ma; Fornash et al., 2013; Davis et al., 2019).
Similar observations have been made in the Himalayan leucogranite belt with anatectic
magmatism lasting ~10 Myr in any single location (Lederer et al., 2013; Weinberg, 2016). The
reasons for protracted anatexis in the CAB are unclear but may be related to fluid and/or magma
pulses, magma mixing and age hybridization, slow fractionation and cooling, evolving
metamorphic and thermal conditions, or combinations of these. Despite the uncertainty,
prolonged remobilization and reworking of melts appears to have been a common feature of

CAB intrusive rocks. Protracted periods of crustal melting imply that either the source region
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was not completely melted (fusible components remain to be melted later) or that conditions
changed throughout the melt process (e.g., increasing temperature) so that melting could
proceed. Apart from the Kootenay arc (Brandon and Lambert, 1993; 1994; Brandon and Smith,
1994) (e.g., White Creek batholith; Figs. 3 and 6), there is no geochemical evidence that more
refractory minerals or restitic components were melted during later stages of crustal melting in
the CAB.

Figure 9 also shows the timing for the onset of extension and the period of most rapid
cooling for the Cordilleran metamorphic core complexes (see Supplementary File 1 for the data
compilation). The period of most rapid cooling is generally constrained by thermochronological
data and represented by the steepest segment of time-temperature cooling histories (Fig. 10).
The onset of extension is constrained by thermochronological data as well as by other geologic
data (e.g., timing of normal faulting, extensional basins, P-T-t modelling, etc.). The period of
rapid cooling/exhumation occured shortly after (< 5 Myr) the onset of extension for most core
complexes, except for the central belt of core complexes where it may have been delayed by up
to ca. 30 Myr (Fig. 9). Extension and exhumation in these areas is thought to have occurred in
two or more stages (Miller et al., 1999; Henry et al., 2011; Konstantinou et al., 2012). The
younger stage is generally associated with extensional tectonics, whereas the older stage of
extension has been related to gravitational collapse of tectonically thickened crust and/or heating,
magmatism, and uplift accompanying delamination/roll-back of the Farallon slab (McGrew and
Snee, 1994; Humphreys, 1995; Constenius, 1996; Dickinson et al., 2009; Konstantinou et al.,
2013; Cassel et al., 2018). The timing of core complex extension and the age of CAB
magmatism overlap in the northern CAB, however, extension/exhumation is up to 50 Myr

younger than crustal melting in the central and southern CAB.
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6. Melting Conditions and Processes

The following section explores melting conditions, processes, and sources using
compiled geochemical compositions of the CAB rocks (Supplementary File 2). One of the
fundamental questions we seek to address is the role of water in the production of the CAB. We
refer to water regardless of its state (vapor or liquid) and use water as a more general term for
mixed-fluid solutions (e.g., containing CO2). We distinguish three types of partial melting based
on the amount of available water; water-absent melting, water-excess melting, and water-
deficient melting (cf., Clemens et al., 2020).

We use the term water-absent melting synonymously with dehydration melting to
describe conditions in which the water present is entirely structurally bound in hydrous minerals,
chiefly mica and amphibole. Water released from these minerals during dehydration melting is
dissolved into the melt, which is water-undersaturated. Water-absent melting is buffered by the
amount and type of hydrous minerals. Muscovite dehydration melting occurs at the lowest
temperatures (ca. 700 °C at 5 kbar), followed by biotite dehydration melting (ca. 800 °C at 5
kbar) and then amphibole dehydration melting (ca. 900 °C at 5 kbar) (Patifo-Douce and Harris,
1998) (Fig. 11). Amphibole dehydration melting is relatively uncommon in orogenic anatectic
terranes because of the high temperatures (>850 °C) required (Thompson and Connolly, 1995).
For metapelitic rocks, muscovite dehydration melting reactions (Reaction 1; Peto, 1976) produce
K-feldspar and sillimanite (or kyanite) as peritectic products and biotite dehydration melting
reactions (Reaction 2; Le Breton and Thompson, 1988) produce peritectic K-feldspar and
cordierite (or garnet at high-pressure).

Ms + Pl + Qtz = Kfs + Als + Melt (1)
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Bt + Als + Pl + Qtz = Kfs + Crd/Grt + Melt (2)

Water-excess melting describes melting in water-saturated conditions where water
remains present in the protolith above the (wet) solidus and the melt is water-saturated. Most
experimental studies with added water are water-excess experiments and for most studies water-
excess, water-flux, and fluid-flux melting are synonymous (e.g., Patifio Douce, 1996). Water-
excess melting requires an external source of water to sustain melting and is buffered by the
amount of available water. Water-excess melting of metasedimentary protoliths, including
muscovite- and/or biotite-bearing schist (Reactions 3-5; Yardley and Barber, 1991; Patifio-Douce
and Harris, 1998; Vielzeuf and Schmidt, 2001) and metagreywacke (Reaction 6; Genier et al.,
2008) occurs at relatively low temperatures (ca. 650 °C at 5 kbar) and may or may not produce
an aluminosilicate (including garnet) peritectic phase.

Ms + PI + Qtz + H20 = Melt 3)
Bt + Als + Kfs + Qtz + H20 = Crd/Grt + Melt 4)
Ms + Bt + Kfs + Pl + Qtz + H2O = Melt (%)
Qtz + Kfs + P1 + H20 = Melt (6)

Water-deficient melting describes an intermediate condition (between water-absent and
water-excess melting) where a free water phase is present (e.g., pore-space fluid), but limited. In
this case, the protolith is water-undersaturated and excess water is consumed at or just above the
wet solidus. Melting continues along a dehydration path after the excess water is exhausted.
Water-deficient melting is generally rock-buffered and produces water-undersaturated melts
(aH20<1) above the wet solidus (Nabelek, 2019). Water-absent and water-excess melting are
end-members and can be distinguished geochemically (see review in Weinberg and Hasalova,

2015), however, water-deficient melting is considered geochemically indistinguishable from
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dehydration melting and is generally only inferred based on melt volumes and temperature

(Schwindinger et al., 2018; 2019).

6.1. Water-Absent Melting vs. Water-Excess Melting

In this section, we use CAB geochemistry to evaluate the roles of water-absent and
water-excess melting in generating these rocks. Although there are various hypotheses
concerning the tectonic mechanisms involved (see discussion in Section 7 below), the large
majority of anatectic rocks in the CAB have been previously interpreted to have formed by
dehydration melting (Coney and Harms, 1984; Haxel et al., 1984; Armstrong, 1988; Miller and
Gans, 1989; Barton, 1990; Patifio-Douce et al., 1990; Wright and Wooden, 1991; Brandon and
Lambert, 1993; Mahood et al., 1996; Vanderhaege et al., 1999; Foster et al., 2001; Norlander et
al., 2002; Teyssier and Whitney, 2002; Lee et al., 2003; Hinchey et al., 2006; Mattinson et al.,
2007; Gaschnig et al., 2011; Stevens et al., 2015). An exception is the Big Maria Mountains,
California that contain field and petrographic evidence for widespread fluid infiltration during
Late Cretaceous metamorphism (Hoisch, 1987). The metamorphic rocks in the Big Maria
Mountains are not migmatitic but are intruded by numerous pegmatitic leucogranite dikes that
have been interpreted to result from water-excess/fluid-flux melting (Hamilton, 1987; Hoisch,
1987). The fluid source in the Big Maria Mountains could be metamorphic reactions within the
crust, crystallizing magmas at depth (Hoisch, 1987), or the dehydrating Farallon slab (Wells and
Hoisch, 2008).

Micas have high Rb and low Sr concentrations, whereas plagioclase has the opposite —
low Rb and high Sr concentrations. Water-absent melting, involving the breakdown of

muscovite and biotite, enriches the melt in Rb. Restitic feldspar increases during muscovite
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dehydration melting, depleting the melt in Sr, but does not increase during (relatively higher
temperature) biotite dehydration melting, causing little change in Sr concentrations in the melt
(Harris and Inger, 1992). As a result, mica dehydration melting is often associated with
geochemical trends showing increasing Rb/Sr and decreasing Sr (muscovite dehydration) or near
constant Sr (biotite dehydration) concentrations (Inger and Harris, 1993). Conversely, water-
excess melting breaks down plagioclase before mica, resulting in increased Sr in the melt and
low Rb/Sr that remains relatively constant during melt evolution (Conrad et al., 1988; Harris and
Inger, 1992; Inger and Harris, 1993). There is no absolute value of Rb/Sr that can be used to
discriminate water-absent melting from water-excess melting, but Harris et al. (1993) suggested
that water-excess melting was unlikely for granite with Rb/Sr >3.5 for most metasedimentary
protoliths. Figure 12A shows that the rocks of the CAB have a wide range of Rb/Sr values (4
orders of magnitude) and follow Rb/Sr geochemical trends consistent with muscovite
dehydration melting. However, this trend is also consistent with fractional crystallization of
feldspar (particularly plagioclase) and could be produced by strongly differentiated rocks with
high Rb/Sr and cumulates with low Rb/Sr.

Melting of feldspar during water-excess melting has also been linked to positive Eu
anomalies. Prince et al. (2001) used strongly positive (> 3) Eu anomalies in Eocene Himalayan
leucogranites to identify water-excess melting. Negative Eu anomalies are generally produced
by fractional crystallization of feldspar and positive Eu anomalies may record a complementary
feldspar-rich cumulate (Sawyer, 1987; Rudnick, 1992). Cumulates may also be recognized by
low total REE, which increases for more strongly fractionated melts. Fig. 12B plots Eu anomaly
vs. total REE for CAB rocks and shows that rocks with weak positive Eu anomalies (1-3) also

have low total REE and are probably cumulates. Removal of trivalent REE during
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crystallization of accessory phases can also produce low total REE and positive Eu anomalies
(Bea and Montero, 1999). Few CAB rocks have strong positive Eu anomalies associated with
water-excess melting or other processes (Fig. 12B).

Potassium concentration relative to Na and Ca (or normative orthoclase relative to albite
and anorthite) in melts produced from crustal anatexis is another method used to qualitatively
assess the role of water-excess melting. The melting of plagioclase prior to mica, particularly
biotite, during water-excess melting results in melts with tonalite to trondhjemite compositions
(Conrad et al. 1988; Scaillet et al. 1995; Patifio-Douce, 1996). Conversely, the preferential
melting of mica prior to plagioclase during water-absent melting results in more potassic
compositions and rocks with significant modal K-feldspar. With few exceptions, CAB intrusive
rocks have normative Ab/Or (albite/orthoclase) ratios <2 and do not have the tonalite or
trondhjemite compositions produced experimentally by water-excess melting of
metasedimentary protoliths (Patifilo-Douce and Beard,1996; Patifio-Douce, 1996; Patifio-Douce
and Harris, 1998) (Fig. 5). Studies have also proposed that ferromagnesian contents increase
during water-excess melting (e.g., FeOrwotal > 2 wt. %; Weinberg and Hasalova, 2015), but are
sequestered by refractory residual mineral phases during water-absent melting of
metasedimentary protoliths (Naney, 1983; Holtz and Johannes, 1991; Patifio-Douce, 1996). The
majority of CAB rocks have low total FeO (< 2 wt. %), consistent with water-absent melting.

The geochemistry and magma temperature estimates (Fig. 8) for the CAB are most
consistent with muscovite dehydration (water-absent) melting at middle to lower crustal
pressures (= 5 kbar) (Fig. 11) and the composition of the CAB rocks compare favorably to
experimental studies of muscovite dehydration melting (e.g., Patifio-Douce, 1999). Textural

heterogeneity and numerous pegmatite and aplite dikes/sills associated with the CAB indicate
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exsolution of water throughout the crystallization processes from relatively hydrous melts.

These observations further support muscovite dehydration melting over biotite dehydration
melting. Biotite dehydration melting at higher temperature requires less water to stabilize the
melt and produces relatively dry melts that are more texturally homogenous (Clemens and
Vielzeuf 1987; Villaros et al., 2018; Nabelek, 2019). Muscovite dehydration melting of
metasedimentary protoliths at 750 °C and 5 kbar results in ca. 6 wt. % H20 in the melt compared
to ca. 2 wt. % H20 at 850 °C for biotite breakdown at the same pressure (Patifio Douce and

Beard, 1995; Patifio Douce and Harris, 1998; Castro, 2013).

6.2. Water-Deficient Melting

There are two main problems with invoking water-absent, muscovite dehydration melting
as the dominant processes to produce the CAB rocks. Both problems can potentially be resolved
if water-deficient melting is involved. The first problem is that muscovite dehydration melting
may not produce enough melt volume to initiate melt migration and accumulation (Clemens and
Vielzeuf, 1987; Barton, 1990; Patifio Douce et al., 1990; Wells and Hoisch, 2008). Melt
extraction is thought to be limited by a melt-connectivity threshold (~7 % melt), at which point
melt/solid segregation can occur if the solid residue is able to deform and/or compact (Rosenberg
and Handy, 2005; Vanderhaeghe, 2009). Under inefficient melt extraction conditions, a
migmatite may accumulate large amounts of leucosome/melt (diatexite) until the solid-liquid
threshold (20-40% melt) is reached and the migmatite starts to behave as a crystal mush (van der
Molen and Paterson, 1979). A very muscovite-rich (20-30 %) schistose protolith could generate
ca. 10 % melt during muscovite dehydration melting (Wyllie, 1977), but most metasedimentary

compositions are estimated to produce <5 % melt by volume (Patifio Douce et al., 1990;
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Johannes and Holtz, 1996; Droop and Brodie, 2012). Biotite dehydration melting of common
metasedimentary protoliths can produce up to 40 % melt (Miller et al., 1985; Clemens and
Vielzeuf, 1987; Patifio Douce et al., 1990; Stevens et al., 1997), but the geochemical data and
melting temperature estimates discussed above do not appear to support biotite dehydration
melting.

Many locations in the CAB expose significant (approaching batholith-scale) volumes of
muscovite-bearing peraluminous granite related to crustal melting that suggest relatively large
melt fractions. For example, ~600 km® of CAB rocks are exposed in the Lamoille Canyon area
in the Ruby-East Humboldt core complex and several times that amount is estimated to be
present in the subsurface (Howard et al., 2011). Unless melt is being drained laterally from areas
beyond the Ruby-East Humboldt Mountains, 5-10 % melting cannot produce the observed rock
volumes. Water-deficient melting that incorporates small amounts of externally-derived water
(~1 wt. % added) can result in large increases in melt fractions, 2-3 times larger than by
dehydration melting alone — resulting in a 10-20 % increase in melt volume (Sola et al., 2017,
Nabelek, 2019; Schwindinger et al., 2019).

To illustrate this issue, we constructed an isobaric (5 kbar) temperature-Xmn20 assemblage
diagram for a muscovite-rich metasedimentary protolith (Fig. 13). The whole rock starting
composition was modeled after a muscovite-bearing quartz wacke from the Pinal Schist in
Arizona (sample “B” in Copeland and Condie, 1986). This composition is comparable to other
muscovite-bearing metasedimentary rocks from the Neoproterozoic Cordilleran passive margin
sequence (e.g., McCoy Creek Group in Nevada; Misch and Hazzard, 1962) and comparable to
generic metasedimentary rocks compositions used in modeling partial melting of other anatectic

provinces (cf., Nabelek, 2019), but is more quartz-rich than the most melt-fertile rocks (e.g.,
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muscovite schist). Closed-system phase assemblages and melt volumes were calculated with
Perple X version 6.8.7. (Connolly, 1990; 2005; Connolly and Petrini, 2002) in the
NCKMASHTO model system (Na20,Ca0O, K20, Al203, SiO2, H20, TiO2, Oz, FeOt, and MgO),
using a quartz-fayalite-magnetite assemblage for fO2 buffering and thermodynamic data from
Holland and Powell (2011). One way to read the assemblage diagram in Fig. 13 is to consider
the average zircon saturation temperature estimate for the CAB and examine changes in melt
content (shown as volume precent) as the amount of water in the protolith is increased (moving
to the right along the x-axis). Muscovite dehydration melting occurs at ~0.7 wt. % H20, which
is the amount of structurally bound water in mica in the protolith, not a free fluid phase. Water-
absent muscovite dehydration melting produces < 5 % melt. Water-excess melting occurs above
~2.3 wt. % H20, at which point free water remains in the protolith above the solidus (pink line
labeled “melt in””) and > 20 % melt is produced. Water-deficient melting (ca. 0.7-2.3 wt. % H20)
consumes all free water at the solidus and produces water-undersaturated melts but results in
significant increases of melt volume. For example, 1 wt. % of free water in the protolith (1.7 wt.
% H20 in Fig. 13) increases melt volume from 1.2 % (water-absent, muscovite dehydration
melting) to 16.9 % at 725 °C. Debate continues about whether any amount of free water is
reasonable to expect in the middle to lower crust (Thompson, 1983; Weinberg and Hasalova,
2015).

The second problem with muscovite dehydration melting is that, despite relatively low
FeO and MgO values in CAB rocks, biotite is very common, which requires partial melting of a
phase more mafic than muscovite. Additional Fe and Mg can be added to the melt with added
water (water-deficient or water-excess) melting (Holtz and Johannes, 1991; Patifio-Douce,

1996). Water-deficient melting is one possible mechanism to increase ferromagnesian
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components in CAB melts, although our modeling (Fig. 13) as well as other studies of water-
deficient melting (Schwindinger et al., 2018) have indicated relatively small to insignificant
increases in FeO and MgO (< 0.5 wt. %) from water-absent melting. Other processes such as
restite/peritectic mineral entrainment have also been proposed to increase Fe and Mg in crustal
melts (Stevens et al., 2007). The importance of water-deficient melting has only recently been
emphasized globally (e.g., Nabelek, 2019) and it has not been previously considered for intrusive

suites in the CAB, but it deserves future investigation.

7. Tectonic Causes of Crustal Melting

There is no consensus on the underlying causes of Late Cretaceous to Paleogene crustal
anatexis in the CAB, but hypotheses can be generally grouped into four categories: 1)
decompression melting, 2) melting resulting from radiogenic heating and thermal relaxation
following crustal thickening, 3) melting resulting from the introduction of slab-derived fluids,
and 4) melting associated with increased heat flux from the mantle. These hypotheses are not all
mutually exclusive and there is no requirement for a single process to explain the entire CAB.
However, the CAB occupies a relatively narrow time interval and appears to be a coherent
spatial feature, which supports treating it as a distinct component of the North American
Cordilleran orogenic system, on par with other components such as the continental arc and
retroarc thrust belt. Previous researchers have favored different hypotheses in the northern,
central, and southern CAB, but it is instructive to consider how hypotheses favored in one region

may be extended or extrapolated into other areas.
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7.1. Decompression Melting Related to Exhumation

There is a close spatial association between the CAB and the Cordilleran metamorphic
core complexes (Fig. 1), suggesting a possible petrogenetic relationship as well (Armstrong,
1982). One possible scenario is that core complex extension and exhumation caused
decompression melting. Decompression melting is a form of dehydration melting and is
commonly invoked when melting and exhumation of the crust are contemporaneous (Harris and
Massey, 1994). Decompression melting has received the most attention in the northern CAB,
particular within the Shuswap complex, where anatectic crystallization ages, cooling ages,
extension timing, and the timing of near-isothermal decompression in reconstructed P-T paths all
overlap (Vanderhaeghe et al., 1999; Norlander et al., 2002; Teyssier and Whitney, 2002;
Whitney et al, 2004b; Gordon et al., 2008; Stevens et al., 2016) (Fig. 9). The Shuswap complex
is cored by several migmatitic gneiss domes that display structural fabrics and geometries
supporting vertical motion within the domes and flattening above the domes — consistent with
diapiric-like rise of the deep crust (e.g., Duncan, 1984; Whitney et al., 2004). Relatively hot,
ductile middle-to-lower crust is a prerequisite for diapirism although a variety of processes could
trigger initial ascent, including a density inversion resulting from underthrusting of
(meta)sedimentary rocks into the deep crust, low-degrees of partial melting causing density
reduction, focused erosion at the surface, localized crustal thickening or buckling, and rapid
tectonic denudation (Teyssier and Whitney, 2002). Estimates for diapir-related exhumation rates
from migmatitc gneiss domes in the Shuswap complex are ca. 20 km/Myr, which is significantly
faster than tectonic exhumation associated with extension (Whitney et al., 2004; 2013). Rapid
decompression should produce a narrow range of ages, which is at odds with the wide range of

ages (= 10 Myr) and the remobilization of melts prior to emplacement observed in some CAB
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localities. Furthermore, (re)melting events related to repeated or prolonged decompression are
difficult to reconcile with dehydration melting as the protolith becomes increasingly refractory
and requires increasingly high temperatures to make new melts. Regardless, once upward
movement and decompression is initiated, there is a positive feedback between melting, viscosity
reduction, and exhumation resulting in relatively large volumes (= 20%) of dehydration-related
leucocratic melt (Whitney et al., 2004b; Rey et al., 2009), consistent with some locations in the
northern CAB (e.g., Priest River complex, Stevens et al., 2015; 2016). The positive P-T slope of
dehydration melting solidi suggests that melting can occur throughout the decompression process
and that emplacement in the middle-to-upper crust is efficient.

Decompression melting is considered less likely in the central and southern CAB, in part
because the timing of extension and exhumation is younger than crustal melting (Fig. 9).
However, P-T paths from metamorphic rocks in many Cordilleran core complexes suggest that
decompression is a near-isothermal process that would not be expected to be recorded by
thermochronometers. For example, by some estimates, the Ruby-East Humboldt complex
experienced ~4 kbar (~15 km) decompression at ca. 750-650 °C from ca. 85-55 Ma (McGrew et
al., 2000; Henry et al., 2011) (Fig. 10), which largely overlaps with the crystallization ages of
CAB rocks in the complex (Howard et al., 2011). How this period of decompression occurred is
unclear because the complex exposes a series of stacked and folded nappes, rather than discrete
gneiss domes or evidence for diapirism (Howard, 1980). Deep structural levels within the Ruby-
East Humboldt complex show some evidence for lateral crustal flow (MacCready et al., 1997)
and numerical models suggest that relatively slow extension rates may have kept the complex
from developing more defined migmatitic gneiss domes (Rey et al., 2009). Another possibility is

that the recumbently folded nappes in the Ruby Mountains record flattening strain during Late
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Cretaceous to Eocene decompression and that they sit above an even deeper structural level (not
exposed) that records vertical, diapir-like exhumation. Regardless, diapiric exhumation of the
lower crust has not been seriously proposed to have generated anatectic melting in North
America outside of the northern CAB.

There is also evidence for syn-convergent, Late Cretaceous extension (prior to core
complex extensional faulting) in the central and southern CAB (Carl et al., 1991; Wells and
Hoisch, 2008; Druschke et al., 2009; Wells et al., 2012; Long et al., 2015). In some cases, this
extension has been proposed to have caused decompression melting. Examples include the Iron
Mountains and Old Woman Mountains in southeast California (Wells and Hoisch, 2008) and the
Death Valley region (Hodges and Walker, 1990; Applegate et al., 1992; Applegate and Hodges,
1995). However, the amount of Late Cretaceous extension documented in the U.S Cordillera is
limited (Miller et al., 2012; Lund-Snee et al., 2016) and it is uncertain whether there was enough
extension to cause widespread decompression melting.

Relating anatectic melting to near-isothermal decompression in the central and northern
CAB is possible because migmatite and metamorphic rocks are exposed, enabling P-T-t paths to
be reconstructed and deep crustal strain to be evaluated. These types of rocks are generally not
exposed in the southern CAB, specifically in Arizona and Sonora, and as a result, decompression
melting has not been seriously proposed or evaluated in that region. However, one end-member
interpretation is that intrusive rocks in the southern CAB signify a period of decompression in
the deep crust that is otherwise inscrutable. As such, the northern core complexes and CAB may
provide a template for understanding deep crustal process in the southern U.S. and northern

Mexican Cordillera.
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7.2. Radiogenic Heat and Thermal Relaxation

Radiogenic heating and relaxation of isotherms following crustal thickening has also
been proposed to account for CAB rocks (Haxel et al., 1984; Miller and Gans, 1989; Patifio-
Douce et al., 1990; Wright and Wooden, 1991). The Laramide orogeny (ca. 80-40 Ma) overlaps
in age with the CAB, however, Laramide deformation is chiefly characterized by slip on high-
angle reverse faults that produced limited horizontal shortening and hence limited crustal
thickening (Yonkee and Weil, 2015). In addition, thermal models suggest that maximum
temperatures in the middle to lower crust are attained 40-60 Myr after (instantaneous) crustal
thickening (England and Thompson, 1984; 1986; Clark et al., 2011), ruling out Laramide-age
crustal thickening as a cause of crustal anatexis in the CAB. In contrast, the Sevier orogeny
caused significant crustal thickening and the time elapsed between the end of shortening (ca.
100-80 Ma) and the onset of crustal melting in the CAB is ca. 10-50 Myr, consistent with the
thermal models. These models implicitly assume that the crust, perhaps in the form of an
orogenic plateau, remained thick after the end of crustal thickening. Anatexis resulting from
crustal thickening was modelled explicitly for the North American Cordillera by Patifio-Douce et
al. (1990) who suggested that a 10-15 km thick migmatite layer at 30-40 km depth would
develop by the end of the Sevier orogeny if the crust was thickened to 50-55 km, consistent with
estimates of crustal thickness for the Nevadaplano (Coney and Harms, 1984; Chapman et al.,
2015). Modeling by both Patifio-Douce et al. (1990) and England and Thompson (1984, 1986)
assumed that free water was not present in the melt source region and that relatively high
temperatures (> 850 °C) were required to produce biotite dehydration melting in order to
generate the melt volumes (20-40%) observed. To generate these high temperatures, the models

required mid-crustal layers with moderately high radiogenic heat production (>2 pW/m?®). The
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high temperatures required for biotite-dehydration melting are one of the main arguments against
crustal thickening as a primary mechanism to generate the CAB rocks (e.g., Wells and Hoisch,
2008; 2012; Wells et al., 2012). If water-excess or water-deficient melting are important
processes in the origin of the CAB, then melting at lower temperatures and the production of
large melt volumes is less problematic for hypotheses relating anatexis to crustal thickening (Fig.
13).

Much of the southern CAB is located southeast of the deformational limit of the Sevier
thrust belt (Fig. 1) and southeast of the Maria contractional belt in western Arizona and southeast
California (Spencer and Reynolds, 1990; Boettcher et al., 2002). This region (southern Arizona
and Sonora) experienced limited shortening during the Laramide orogeny, but the amount of
documented shortening (ca. 30 km; Davis et al., 1979; Haxel et al., 1984) is not enough to
significantly thicken the crust. Nonetheless, geochemical data suggest that the crust in southern
Arizona and northern Sonora was relatively thick (55-60 km) during Late Cretaceous to early
Paleogene time (Chapman et al., 2020), which may be related to magmatic thickening (Erdman
et al., 2016). If the southern CAB is related to crustal thickening and radiogenic heating, then
the age of the intrusive rocks could be interpreted as the age of peak metamorphism in the deep
crust, which is otherwise unconstrained.

Total horizontal shortening in the Sevier thrust belt is greatest (~350 km) in the central
U.S. Cordillera (DeCelles and Coogan, 2006) and decreases to the north (e.g., Fuentes et al.,
2012) and to the south (e.g., Giallorenzo et al., 2018). This fact may help explain why the
central CAB is older than the northern and southern CAB — because the crust was thickened
more and/or faster and reached peak metamorphic conditions earlier. The wide range of ages

and evidence for melt remobilization in the CAB (e.g., Catalina-Rincon complex, Davis et al.,
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2019; Ducea et al., 2020) is consistent with melts formed during prograde metamorphism that
remained at high temperature and pressure, existing at near-solidus or partially-molten conditions

until melt extraction or exhumation.

7.3. Water Present Melting

Melting involving free water in the parent rock has not received much attention as a
significant cause for anatexis in the CAB. As mentioned in Section 6, Hoisch (1987) suggested
that fluids exsolved from crystallizing magmas at depth resulted in water-flux melting in the Big
Maria Mountains, California and hypothesized that crustal melting in the nearby Old Woman
Mountains, California may be analogous. Wells and Hoisch (2008) proposed that delamination
and mantle upwelling was a primary cause of crustal melting throughout the CAB (see next
section), but they also suggested that dehydration of the Farallon slab could have played a role.
The timing of low-angle subduction of the Farallon slab beneath the CAB matches closely with
the age of CAB intrusive rocks. Many studies have suggested that the mantle lithosphere was
hydrated during the Laramide orogeny (Dumitru et al., 1991; Humphreys et al., 2003; Farmer et
al., 2008) and several studies in the last decade have suggested that the lower crust was hydrated
as well (Jones et al., 2015; Butcher et al., 2017; Porter et al., 2017; Levandowski et al., 2018).
Other potential sources of free water include metamorphic reactions within the crust (e.g.,
underthrusting of crustal lithologies) and small amounts of relict water in pore spaces.

The geochemistry of the CAB rocks does not support water-excess melting (Fig. 12), but
it is consistent with water-deficient melting, which is difficult to distinguish from water-absent
melting by geochemistry alone. The relatively low calculated zircon saturation temperatures for

the CAB may even require some degree of water-added melting because some temperature
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estimates are below the solidus for muscovite dehydration melting (Fig. 11). Melts produced by
water-absent and water-deficient melting are both water-undersaturated and are more likely to
ascend through the crust to form intrusive bodies. Periodic fluid influx could also explain the

wide range of crystallization ages at individual CAB locations.

7.4. Mantle Heat Flux

The two main hypotheses proposed for CAB rocks that involve increased mantle heat
flow are 1) asthenospheric upwelling following delamination and 2) mantle upwelling above a
subducting slab. The delamination hypothesis suggests that upwelling following delamination of
the mantle lithosphere resulted in decompression melting of the asthenosphere and basaltic
underplating/intrusion that provided additional heat to melt the overlying crust (Wells and
Hoisch, 2008; 2012; Wells et al., 2012). Delamination is common in areas of thickened crust
(e.g., England and Houseman, 1989), consistent with the position of the CAB and
reconstructions of the orogenic interior and the Nevadaplano (Coney and Harms, 1984; DeCelles
et al., 2004). The delamination model has been applied specifically in the Great Basin and
Mojave regions where melting is generally Late Cretaceous in age (Wells and Hoisch, 2008).
The model could be extended to the northern and southern CAB, where melting is generally
early to middle Paleogene in age, if delamination migrated spatially through time or if there were
separate delamination events. However, geophysical studies suggest that many parts of the
northern and southern CAB have intact, ancient, cratonic (or peri-cratonic) mantle lithosphere
preserved, which suggests delamination has not occurred (e.g., Li et al., 2007).

The subduction hypothesis suggests that the upwelling arm of corner flow (also called

counterflow or induced mantle flow) in the mantle wedge above a subducting slab may steadily
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1196  heat up the base of the lithosphere and could eventually cause crustal melting (Armstrong, 1982;
1197  Farmer and DePaolo, 1983; Barton, 1990). A variation of this model was proposed for the Death
1198  Valley region and suggests that asthenospheric upwelling above steepened portions of the

1199  Farallon slab may have caused crustal melting (Lima et al., 2018). Some studies have suggested
1200  that thermal convection or other processes in (non-extending) back-arc regions may produce
1201  temperatures high-enough to cause crustal melting (Currie and Hyndman, 2006; Wolfram et al.,
1202 2019). But most studies indicate that corner-flow and normal subduction processes (including
1203 changes in slab dip) do not provide enough heat to cause (water-absent) crustal melting in the
1204  upper plate, particularly during periods of low-angle to flat-slab subduction when the upper
1205  mantle and lithosphere are cooled by the slab (English et al., 2003; Liu and Currie, 2016). The
1206  timing and progression direction of Farallon slab roll-back in the U.S. Cordillera is also at odds
1207  with the timing and progression direction of the CAB. Flare-up magmatism related to slab roll-
1208  back is oldest in the northern and southern U.S. Cordillera and youngest in the central U.S.

1209  Cordillera (Humphreys, 1995), whereas the CAB is oldest in the central U.S. Cordillera and
1210  becomes younger to the north and south (Fig. 9). Nonetheless, individual parts of the CAB

1211  coincide with the timing of Farallon slab roll-back and have been interpreted to be related to
1212 mantle upwelling or mantle-derived magmatic intrusion (e.g., Konstantinou and Miller, 2015).
1213 Both the delamination and subduction hypotheses suggest that mantle processes are

1214 required to produce temperatures high enough (> 800 °C) to cause biotite dehydration melting to
1215  explain the large volumes of CAB rocks (Wells and Hoisch, 2012; Barton, 1990). This is not
1216  supported by the zircon saturation temperatures (Fig. 8), assuming that those temperatures are
1217  representative of partial melting temperatures (see Section 5.2). The rarity of mantle-derived

1218  magmatic products in CAB locations is another argument against a significant role for the mantle
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in the formation of the CAB (e.g., Wright and Wooden, 1991).

8. Conclusions

The North American Cordilleran Anatectic Belt (CAB) is a chain of Late Cretaceous to
Eocene intrusive rocks and anatectic rocks produced by crustal melting that is exposed from
southern British Columbia, Canada to northern Sonora, Mexico in the interior, or hinterland, of
the North American Cordilleran orogenic system. The duration of melting at any given location
was often protracted, lasting ~10 Myr, and characterized by repeated melt remobilization and
reworking. The CAB rocks are generally leucocratic (Si02 > 70 wt. %), peraluminous (ASI >
1.0), contain igneous muscovite + garnet, have evolved radiogenic isotopic compositions
(¥’Sr/3%Sr; > 0.706), and have elevated (crustal-like) §'*0. The CAB was chiefly produced by
partial melting of metasedimentary rocks (e.g., schist, greywacke) and has no little or no mantle-
derived component, including partial melting of basalt/amphibolite. Geochemically, the CAB
rocks are consistent with muscovite dehydration melting and/or water-deficient melting, but not
water-excess melting. Zircon saturation temperatures for the CAB cluster between 600-800 °C
with an average of 724 + 48 °C, which is too low for biotite or amphibole dehydration melting.
CAB rocks were primarily emplaced as sills, dikes, laccoliths, or large sheeted complexes and
lack extrusive equivalents. Late aplite and pegmatite dikes are common and suggest relatively
hydrous melts, which is also consistent with muscovite dehydration melting or water-added
melting. A small amount of free water during melting may be required by the relatively large
melt volumes within the CAB, supporting water-deficient conditions. The source of this free
water is unknown, but may have been in relict pore fluids, exsolved from magmas, produced by

metamorphic reactions, or liberated by dehydration of the Farallon slab. Crystallization ages of
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rocks in the CAB overlap with the timing of the Laramide orogeny and many of these rocks were
emplaced during a period of low-angle to flat-slab subduction when the Farallon slab was located
beneath the CAB.

There is a close spatial correlation between the CAB and the belt of Cordilleran
metamorphic core complexes, and a large majority of the rocks in the CAB are found in the
footwalls of core complexes. Only in a few locations, however, have CAB intrusive rocks been
demonstrated to have originated from melting of the rocks (i.e., migmatite) exposed at the
surface in the core complexes. An unanswered question in the CAB is whether the prevalence of
crustal melting in core complexes is related to the core complexes themselves or is an artifact of
core complexes exposing middle to lower crust, where the CAB magmas appear to have been
commonly emplaced. In the northern CAB, the timing for core complex extension/exhumation
and anatexis overlap, supporting a shared origin between the two and emphasizing the role of
decompression melting. This overlap in ages is not observed in the central and southern CAB
where core complex extension/exhumation is up to 50 Myr younger than crustal melting,
suggesting that mechanisms other than decompression melting are required there.

The CAB formed in a region of previously thickened crust, interpreted as an orogenic
plateau. Radiogenic heating and relaxation of isotherms following crustal thickening during the
Sevier orogeny may explain crustal melting, particularly in the central CAB where horizontal
shortening in the retroarc thrust belt is the greatest. Horizontal shortening during the Laramide
orogeny was not large enough to significantly thicken the crust structurally. In addition, the
oldest rocks in the CAB occur in the central CAB and are younger to the north and to the south.
Melting associated with crustal thickening may not be applicable to the southern CAB because

the Sevier thrust belt did not extend that far south and crustal shortening was limited.
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A prominent role of delamination, mantle upwelling, or other mechanisms that increase
mantle heat flux in producing the CAB is difficult to assess but appears unlikely. Most locations
in the CAB do not contain mantle-derived, co-genetic igneous rocks and those that do have been
interpreted to reflect processes other than crustal anatexis. Arguments that a component of
elevated mantle heat flow is required to produce temperatures high enough to initiate biotite
dehydration melting to account for large melt volumes are not supported by thermometry or

geochemistry, and estimated melt volumes can best be reconciled with water-deficient melting.
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Figure and Table Captions

Fig. 1: Overview map of the North American Cordilleran Anatectic Belt (CAB). Feature
locations were compiled from previously published works including core complexes (Rehrig and
Reynolds, 1980; Armstrong, 1982; Wust, 1986; Roldan-Quintana, 1991; Nourse et al., 1994;
1995; Foster and John, 1999; Miller et al., 1999; Foster et al., 2001; 2007; 2010; Vanderhaeghe
et al., 2003; Laberge and Pattison, 2007; Kruckenberg et al., 2008; Howard et al., 2011;
Konstantinou et al., 2013; Hoisch et al., 2014; Singleton et al., 2015; Stevens et al., 2016; Lee et
al., 2017; Gottardi et al., 2020), Sevier thrust belt and Laramide deformation front (Yonkee and
Weil, 2015; Fitz-Diaz et al., 2018), ), and ¥’Sr/%6Sr; isopleths (Armstrong 1988; Kistler and
Anderson, 1990; Miller et al., 2000; Valencia-Moreno et al., 2001). CAB locations, data, and
data sources presented in Table 1 and Supplementary File 2. Map projection: UTM, NAD 83

Zone 12N.
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Fig. 2: A comparison between the A) North American Cordilleran Anatectic Belt (CAB) and the
B) Himalayan leucogranite belt, both shaded orange and shown at the same scale. Blue polygons

are metamorphic core complexes in the CAB and leucogranite bodies in the Himalaya (Whitney

et al., 2013; Kohn, 2014).

Fig. 3: A) Cordilleran Anatectic Belt (CAB) rocks (blue circles) are silica-rich (Si02 > 70 wt. %)
and peraluminous with aluminum saturation indices (ASI) of ca. 1.0-1.3. Silica-rich,
peraluminous compositions can also be generated from originally metaluminous intrusive rocks
with protracted fractional crystallization or assimilation as represented by the Chemehuevi
Mountains plutonic suite, California (orange squares; John and Wooden, 1990) and the White
Creek batholith, Kootenay arc, British Columbia (red diamonds; Brandon and Lambert, 1993).
B.) A down-plunge cross-section view of the Chemehuevi Mountains plutonic suite shows zoned
or nested intrusive rocks with increasing ASI toward the center (modified from John, 1988; John
and Wooden, 1990), which is not observed in CAB intrusive suites. Data and data sources are

presented in Supplementary File 2.

Fig. 4: Pairs of unaltered and hydrothermally altered intrusive rocks from the southern U.S.
Cordillera that display elevated Rb/Sr and peraluminosity as a result of hydrothermal alteration,
ASI = aluminum saturation index. Cordilleran Anatectic Belt rocks (blue polygons) generally

have ASI < 1.3. Data and data sources are presented in Supplementary File 2.

Fig. 5. Cordilleran Anatectic Belt rocks (blue circles) generally plot as granite on a normative
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2428
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2430

2431

2432

2433

2434

2435

2436

2437

Ab—An—Or ternary diagram and overlap with metasedimentary melt compositions for water-
absent dehydration melting experiments (Patifio Douce and Beard, 1995; Patifio Douce and
Harris, 1998; Patifio Douce, 2005) rather than water-excess melting experiments (Conrad et al.,
1988; Patifio Douce and Harris, 1998). Data and data sources are presented in Supplementary

File 2.

Fig. 6: The majority of Cordilleran Anatectic Belt (CAB) rocks (blue circles) have compositions
consistent with peraluminous leucogranite melts produced by experimental melting of mica-rich
metasedimentary rocks (shaded blue) rather than amphibolite (black outline). CAB rock
compositions are also largely distinct from S-type granite and Cordilleran granite. The
Chemehuevi Mountains plutonic suite (orange squares; John and Wooden, 1990) and White
Creek batholith (red diamonds; Brandon and Lambert, 1993) are shown for comparison.
Compositional fields are from Patifio-Douce (1999). Data and data sources are presented in

Supplementary File 2.

Fig. 7. The North American Cordilleran Anatectic Belt (CAB) crosses many Proterozoic to
Archean basement provinces/terranes. The northern and central CAB overlaps with areas where
Proterozoic rocks are present in the Cordilleran passive margin sequence (Miogeocline), which
has been proposed as one possible protolith. Metasedimentary rocks from the Mesoproterozoic
Belt-Purcell Basin and Paleoproterozoic Pinal Basin have also been proposed as possible
protoliths. The inferred edge of North American basement is based on the position of the

87Sr/%Sr; = 0.706 isopleth (Fig. 1). Map projection: UTM, NAD 83 Zone 12N.
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Fig. 8. A histogram and kernel density estimate (red curve) of zircon saturation temperatures
(Watson and Harrison, 1983) for rocks in the Cordilleran Anatectic Belt (CAB). The uncertainty
of the average is based on the standard deviation (15). Data and data sources are presented in
Supplementary File 2. A kernel density estimate (blue curve) shows the maximum (peak)

temperatures in migmatite within the CAB as reported by previous studies (Table 1).

Fig. 9: A plot of age vs. latitude for crystallization ages of rocks in the Cordilleran Anatectic Belt
(CAB; green rectangles), rapid exhumation/cooling ages for the Cordilleran metamorphic core
complexes (blue squares), and timing for the onset of extension in the core complexes (red
circles) (Table 1). Most major core complexes are labelled for reference. Data and data sources

are presented in Supplementary Files 1 and 2.

Fig. 10: A) Time-temperature and B) pressure-temperature (P-T) diagrams for the Ruby-East
Humboldt metamorphic core complex (modified from Henry et al., 2011) used to illustrate
periods of rapid cooling and near-isothermal decompression in the Cordilleran core complexes in
general. Rapid cooling is chiefly identified using thermochronology (AHe = apatite U-Th/He,
AFT = apatite fission track, ZFT = zircon fission track) whereas periods of near-isothermal
decompression are not well-resolved or recorded at all by thermochronometers and may have

occurred up to several 10s of Myr prior to rapid exhumation.

Fig. 11: Melt reactions for metasedimentary protoliths showing solidus curves for water-present
melting (Stevens and Clemens, 1993), muscovite dehydration melting (Patifio Douce and Harris,

1998; P76 = Peto, 1976), biotite dehydration melting (Vielzeuf and Montel, 1994), and
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2479
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amphibole dehydration melting (Wyllie and Wolf, 1993). The range of calculated zircon
saturation temperatures (ZST) from the Cordilleran Anatectic Belt is shown in blue and

presented in Fig. 8.

Fig. 12: A) Cordilleran Anatectic Belt (CAB) rocks (blue circles) plot along Rb/Sr vs. Sr trends
consistent with water-absent muscovite dehydration melting and fractional crystallization of
plagioclase. Black arrows show trends produced by melting experiments and red arrows show
trends expected from crystallization of the phase listed (modified from Inger and Harris, 1993).
B) Strongly positive (> 3) Eu anomalies were suggested by Prince et al. (2001) to distinguish
water-excess melting. Feldspar-rich cumulate rocks may also have positive Eu anomalies, but
can be recognized by their low total REE (Rudnick, 1992). Data and data sources are presented

in Supplementary File 2.

Fig. 13: An isobaric (5 kbar) temperature-Xm20 assemblage diagram for a quartz- and muscovite-
rich metasedimentary rock from the Pinal Schist that illustrates differences between water-
absent, water-deficient, and water-excess melting. Constructed using Perple X (Connolly,
2005). See text for modeling details. Average zircon saturation temperatures calculated for the

Cordilleran Anatectic Belt are shaded red (Fig. 8).

Table 1:
Summary of details for locations in the North American Cordilleran Anatectic Belt. Data

Sources: 1 = Sevigny and Parrish (1993); 2 = Armstrong (1991); 3 = Crowley et al., 2001; 4 =
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2501

2502

2503

2504

2505
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Crowley et al., 2008); 5 = Norlander et al. (2002); 6 = Carr, 1992; 7 = Holk and Taylor (1997); 8
= Holk and Taylor (2000); 9 = Vanderhaeghe et al. (1999); 10 = Vanderhaeghe et al. (2003); 11
= Hinchey et al. (2006); 12 = Leclair et al. (1993); 13 = Brandon and Lambert (1993); 14 =
Brandon and Lambert (1994); 15 = Brandon and Smith (1994); 16 = Spear and Parrish (1996);
17 = Spear (2004); 18 = Gordon et al. (2008); 19 = Laberge and Pattinson (2007); 20 = Cubley
and Pattinson (2012); 21 = Cubley et al. (2013); 22 = Carlson et al. (1991); 23 = Hansen and
Goodge (1998); 24 = Kruckenberg et al. (2008); 25 = Doughty and Price (1999); 26 = Stevens et
al. (2015); 27 = Stevens et al. (2016); 28 = Whitehouse et al. (1992); 29 = Asmerom et al.
(1988); 30 = Guevara (2012); 31 = Foster (2007); 32 = Doughty and Chamberlain (2007); 33 =
Foster and Raza (2002); 34 = Gaschnig et al. (2010); 35 = Gaschnig et al. (2011); 36 = Foster et
al. (2001); 37 = King and Valley (2001); 38 = Wallace et al. (1992); 39 = Foster et al. (2010); 40
= Silverberg (1990); 41 = Vogl (2012); 42 = Lee and Marvin (1981); 43 = Miller et al. (1990);
44 = Wright and Wooden (1991); 45 = Wooden et al. (1999); 46 = McGrew and Snee (1994); 47
= Lee et al. (2003); 48 = Howard et al. (2011); 49 = Henry et al. (2011); 50 = Hallet and Spear
(2014); 51 = Hallet and Spear (2015); 52 = Barton (1987); 53 = Evan et al. (2015); 54 = Lee et
al. (2017); 55 = Lee and Christiansen (1983); 56 = King et al. (2004); 57 = Gotlieb et al. (2017);
58 = Miller et al. (1999); 59 = Fryxell (1988); 60 = Lund et al. (2014); 61 = Long and Soignard
(2016); 62 = Applegate et al. (1992); 63 = Holm and Dokka (1991); 64 = Mattinson et al. (2007);
65 = Sizemore et al. (2019); 66 = Lima et al. (2018); 67 = Mahood et al. (1996); 68 = Miller and
Wooden (1994); 69 = Bryant and Wooden (2008); 70 = Wong et al. (2011); 71 = DeWitt and
Reynolds (1990); 72 = Singleton et al. (2014); 73 = Isachsen et al. (1999); 74 = Prior et al.
(2016); 75 = Richard et al. (1990); 76 = Shaw and Gilbert (1990); 77 = Shafiqullah et al. (1980);

78 = Gottardi et al. (2018); 79 = Spencer et al. (2003); 80 = S. Scoggin (unpublished); 81 = Long
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2507

2508

2509

2510

2511

2512

2513

2514

et al. (1995); 82 = Creasey et al. (1977); 83 = J. Chapman (unpublished); 84 = Fornash et al.
(2013); 85 = Fayon et al. (2000); 86 = Terrien (2012); 87 = Peterman et al. (2014); 88 = Davis et
al. (2019); 89 = Ducea et al. (2020); 90 = G. Haxel (unpublished); 91 = Wright and Haxel
(1982); 92 = Gottardi et al. (2020); 93 = C. Pridmore (unpublished); 94 = Arnold (1986); 95 =
Goodwin and Haxel (1990); 96 = Anderson et al. (1980); 97 = Mallery et al. (2018); 98 = Wong
et al. (2010); 99 = Roldan-Quintana (1991); 100 = Gonzalez-Leodn et al. (2011); 101 = Gonzalez-

Becuar et al. (2017); 102 = Wong and Gans (2008).
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