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Abstract

In this paper we study the spectral features, on fractal-like graphs, of Hamil-
tonians which exhibit the special property of perfect quantum state transfer
(PQST): the transmission of quantum states without dissipation. The essential
goal is to develop the theoretical framework for understanding the interplay
between PQST, spectral properties, and the geometry of the underlying graph,
in order to design novel protocols for applications in quantum information sci-
ence. We present a new lifting and gluing construction, and use this to prove
results concerning an inductive spectral structure, applicable to a wide variety
of fractal-like graphs. We illustrate this construction with explicit examples for
several classes of diamond graphs.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The transfer of a quantum state from one location in a quantum network to another is a fun-
damental task in quantum information technologies, and such a transfer is called perfect if
it is realized with probability one, that is, without dissipation. Perfect quantum state transfer
(we write shortly PQST) has potential applications to the design of sub-protocols for quantum
information and quantum computation [Kay10, CVZ17, KLY 17a]. Depending on the applica-
tion, various quantum systems are employed. Typical designs involve information carriers like
photons in optical systems [GKH'01], or phonons in ion traps [LDM ™03, SKHR™03]. Other
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promising devices are spin chains. The study of PQST on spin chains was pioneered by Bose
[Bos03, Bos07], who considered a 1D chain of N qubits coupled by a time-independent Hamil-
tonian. His work generated intense theoretical interest, in particular in questions concerning
how to manipulate and engineer Hamiltonians such that a PQST is achieved. Manufactur-
ing such manipulated Hamiltonians will provide pre-fabricated devices for quantum computer
architectures, which takes input in one location and outputs it at another without needing to
interact with the device. This approach is robust to noise and hence much less prone to errors. A
number of one-dimensional cases, where PQST can be achieved, have been found in some XX
chains with inhomogeneous couplings, see [Kay10, Bos07, CDEL04, BB05a, BBO5b, KSO05,
ACNO™10, BFFT12, God12b, BGS08, God12a, VZ12¢, QWLI13], and references therein.
Also, it was shown that in some cases it was possible to achieve almost PQST, which happens
under much less restrictive conditions than a PQST [BAC™10, BBVBI11, VZ12a]. Recently
there has been active interest to generalize these results to graphs with potentials and to graphs
that are not one-dimensional [PRK11, KLY 17a, KLY 17b, KMP*19, KRA12, VZ12b]. These
works illustrate the fact that PQST is a rare phenomenon, for which the construction of explicit
examples remains rather non-trivial. Intending to investigate the rich interplay between quan-
tum state transfer and geometries beyond one-dimensional graphs, we showed in a previous
paper [DDMT?20] that PQST is possible on the large and diverse class of fractal-type diamond
graphs. A significant interest in these graphs lies in the fact that their limit spaces constitute
a family of fractals, which present different geometrical properties, including a wide range
of Hausdorff and spectral dimensions. These graphs have provided an important collection of
structures with interesting physical and mathematical properties and a broad variety of geome-
tries, see [MT95, ADT09, HK10, NT08, AR18, AR19, Tep08, MT03, BCH* 17]. The structure
of these graphs is such that they combine spectral properties of Dyson hierarchical models and
transport properties of one-dimensional chains. The methods that we use are discretized ver-
sions of the methods recently developedin [AR18, AR19] (see also [ARHTT18, ST20]), which
provides a construction of Green’s functions for diamond fractals.

In this paper we generalize the construction in [DDMT20] and show that it works for any
graph possessing a transversal decomposition (see assumption 2.11). More precisely, on such
a graph, a Hamiltonian based on nearest-neighbor coupling and with a certain transversal pro-
jective structure (see assumption 2.8) can be engineered to admit a PQST. One of the new
features we present in this paper is that we can transport quantum state from multiple sites on
such graphs to another set of such sites. For more details, see theorem 2.13. The primary goal
of this paper is to demonstrate new spectral properties of the graphs on which a PQST can
be achieved. To this end we firstly need to understand the spectrum of the Hamiltonians we
construct. Advantageous settings to accomplish this task are projective limit-type spaces. Anal-
ysis on projective limit spaces is an active area of current research [CK13b, CK13a]. Barlow
and Evans used projective limits to produce a new class of state spaces for Markov processes
[BEO4]. The spectra of Laplacians on Barlow—Evans type projective limit spaces were studied
in [ST20], see also [KS13, KKP™12]. We proceed in this paper in the same spirit but dealing
with Hamiltonians instead of Laplacians. To this end, we provide a discretized version of a
sequence of projective limit spaces [ST20, definition 2.1, page 3]. By doing so, we are able
to construct a sequence of graphs {G;};>¢ and equip each G; with a Hamiltonian H; such that
PQST can be achieved (under some additional assumptions). Next, we provide a complete
description of the spectrum of H; and for the convenience of the reader, we state the result in
the following theorem, see the proof of theorem 4.10 for further details.

Theorem 1.1. Let i be a nonnegative integer and let H; be the Hamiltonian lifted from a
Jacobi matrix J on Gy to G;. Then there exists a collection J = Jo, J1, ..., I of submatrices
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of J such that
o) =oc@Uad)U---Ualn).

In particular, if the Jacobi matrix J corresponds to the case of PQST in the 1D chain Gy then
H; realizes POST on G;. Therefore, the above-given formula describes spectra of Hamiltonians
realizing POST on G;.

The Jacobi matrices Jo, . . ., J,, are easily determined by the construction scheme that gener-
ates G; from Gy. As we will see, the Jacobi matrices J, . . ., J,, reflect geometrical information
of the graph G;. Moreover, this result provides a straightforward algorithm to determine the
spectrum o(H;). In section 5, we demonstrate how to apply this result on two models of
diamond-type graphs and show that in this case the corresponding PSQT Hamiltonians have
multiple eigenvalues, which to the best of our knowledge seems to be unnoticed until now.
These models are a particular case of the Berker lattice construction [BO79] and have been ini-
tially the focus of considerable work in statistical mechanics (see, for example [DdI83, LTS83,
Col85]).

Our work is part of a long term study of mathematical physics on fractals and self-similar
graphs [Bel92a, Bel92b, BCDT08a, BCDT08b, ADT09, ADT10, ABD*12, Dunl2, Akk13,
ADLI13, ARKT16, ACD*20, HM20, MDDT20], in which novel features of quantum processes
on fractals can be associated with the unusual spectral and geometric properties of fractals
compared to regular graphs and smooth manifolds.

Our results and constructions are mathematically rigorous, and correspond to physical
implementations which are common to using graph models in physics. We do not present
a complete literature list, but note that original motivation of Bose et a/ [BB05a, BBO5b,
BBVBI11, Bos03] uses quantum chains, commonly modeling arrangements of cold atoms.
Our construction allows the same physical implementation as in [BB05a, BBOSb, BBVBI11,
Bos03]. There is substantial recent interest in the analysis of spin chains of more compli-
cated arrangements than one-dimensional, see [KLY 17a, KLY 17b] and references therein, and
this is the subject of our work. In comparison to [DDMT20], we extended a collection of
graphs, and obtained more information about eigenvalues and eigenfunctions. Although it is
not our objective to investigate other implementations, we note that possible connections may
exist to work of Rammal, Bellissard et al, see [Bel92a, Ram84, GWRT87] and references
therein.

The paper is organized as follows. section 2 starts with the definition of a transversal layer,
which is one of the fundamental concepts for our construction (see remark 2.2 for some intu-
ition). Then, we build up the technique of constructing Hamiltonians H that realize PQST
and as a matter of fact enlarge the class of such Hamiltonians. Next, section 3 gives a partial
description of spectra of the Hamiltonians H by providing some generic spectral statements.
After that, section 4 defines a discrete version of a projective limit space, on which a more
precise spectral description is given in theorem 4.10. Section 5 demonstrates how to apply
theorem 4.10 to two models of diamond-type graphs. Section 6 discusses the results in further
geometrical structures.

2. PQST on graphs

In this section, we extend the study of PQST on diamond fractal graphs [DDMT20] to a more
general class of graphs. Let G = (V(G), E(G)) be a finite connected graph with a vertex set
V(G) and an edge set E(G). We equip G with the geodesic metric d: V(G) x V(G) — R, i.e.
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forx,y € V(G), d(x,y) gives the number of edges in a shortest path connecting x and y. Suppose
A C V(G) is a non-empty set of vertices. The distance of A to a vertex x € V(G) is defined as

d(x;A) = min{d(x,y):y € A}.

The following definition generalizes the concept of the intrinsically transversal layers intro-
duced in [DDMT20]. This concept can be found in [HOO7, page 76] under the name
stratification and plays a crucial role in the quantum decomposition of a graph adjacency
matrix.

Definition 2.1. LetA C V(G),A # @ and n € N. An nth transversal layer with respect to A
is defined as

I, '(n) = {x € V(G): d(x;A) = n},

where I, : V(G) — N, II4(x) = d(x;A). A transversal decomposition of G with respect to A
is defined as V(G) = |J,IT, ' (n). Note that IT, ' (0) = A.

Remark 2.2. The concept of transversal layer is crucial for our construction since the ref-
erence set A plays the role of sender sites and the last nonempty transversal layer is the set of
receiver sites. In other words, we perfectly transfer data from A to the farthest layer. Moreover,
in a sense each layer acts as a site in the 1D case modulo the lifting procedure described in this
section.

A quantum state on G is represented by a complex-valued function on the vertices V(G) and
such a function is also referred to as a wave function. The following Hilbert space will be used
as a domain of the constructed Hamiltonian, which realizes PQST on G.

Definition 2.3. Let A C V(G), A # @. For two wave functions ¢ and ¢ define the inner
product

W] |e)s = Y _px)p@pax), @.1)
xeV
where the weights are given by p4(x) = m with n = II4(x) and \H;l(n)| denotes the
A n

number of vertices in the transversal layer IT !(n) that contains x. Clearly, the space L*(G) =
{¢ | ¥: V(G) — C} of quantum states on G equipped with this inner product is a Hilbert
space.

Another concept that our construction relies on is a radial function. Within the above-given
settings, a wave function is said to be radial with respect to A if its values depend only on the
distance from A.

Definition2.4. LetV(G) = Uﬁlv:o H;l(n) be a transversal decomposition of G with respect
to A, for some A C V(G), A # @. The subspace of radial functions with respect to A is
defined by

L4(G) = {¢ € L(G) | ¥(x) = (y) if Ta(x) = T, ()}
The projection of L*(G) onto L2 4(G) is denoted by Proj : L*(G) — L2,,(G).

The advantage of the transversal decomposition V(G) = Uf:;o H;l(n) is that it induces
an auxiliary 1D chain (path graph) Dy = (V(Dy), E(Dy)) with a set of vertices V(Dy) =
{0,...,N}andasetofedges E(Dy) = {(n — 1,n): 1 < n < N}. A transversal layer IT, ' (n) is
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identified with the vertex n in the sense that the vertices n — 1 and n are defined to be adjacent
in the 1D chain if and only if their corresponding transversal layers are adjacent. To reduce
the PQST problem from the graph G to the auxiliary 1D chain Dy, we introduce the following
Hilbert space L?(Dy) = {¢ | ¢ : V(Dy) — C} equipped with the standard inner product

(W] @) Z Y(n)p(n). 2.2)

n=0

Moreover we project a wave function in L?(G) to a wave function in L>(Dy) through averaging
its values on the transversal layers:

P:IXG) — [ADy), ¥ — Pi(n) = i 1( )| Z P(x).
;')

Lemma 2.5. Let P* be the adjoint operator of P, i.e. (PY| @) = (| P*¢) , for 1 € L*(G)
and @ € L*(Dy). Then P* is given by
P* LA (Dy) — LX(G), ¢ = P p(x) = o(T14(x)).

Proof. A simple calculation shows that

Pyl ) ZP¢(n)¢(n) D @@L D) = (V| P7p) 5.

n=0 xeV

We will use the following lemma later.

Lemma 2.6. Letldp, : L*(Dy) — L2(Dy) be the identity operator on L*(Dy). Then

(a) The range of P* is Lmd(G)

(b) KerP = (Lrad(G))J‘.

(¢c) PP* =lIdp,.

(d) P*P = Proj.

Proof. (a) and (c) follow by definition. (b) Use Ker P = (Range P*)*. (d) Decompose

¥ = Proj ¢ + 9L, i.e. Proj ¢ € L2(G) and v-, € (L2,(G))*. By (b) it follows P*Py) =
P*P Projvy = Proj ¢, where the last equality holds by the definitions of P and P*. ([

In what follows, we will need the following mappings.

Definition 2.7 Let V(G) = IT,'(0) UTIL,'(1)... UTL,'(N) be a transversal decomposi-
tion of G with respect to A for some A C V(G), A # @ and N € N. We define the following
mappings:

(a) The left-hand side degree of a vertex deg _:

deg :TI,'(1)...UTL,'(N) —N.

Letx € IT, L(n) for some n € {1,...,N}. The mapping deg _(x) assigns the vertex x the
number of edges that connect x to vertices in H;l(n —1).
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(b) The right-hand side degree of a vertex deg 4:
deg, :II,'(0)...UIL'W — 1) - N.

Let x € IT,"(n) for some n € {0,...,N — 1}. The mapping deg | (x) assigns the vertex
x the number of edges that connect x to vertices in IT, lm+ 1.

(c) The same transversal layer degree of a vertex degg:
deg, : II,'(0)... UTI,'(N) — N.

Let x € II,'(n) for some n € {0,...,N}. The mapping dego(x) assigns the vertex x the
number of edges that connect x to vertices in the same transversal layer H;l(n).

A Hamiltonian on G is a self-adjoint operator H acting on L*(G). It was observed in
[DDMT?20] that constructing a Hamiltonian, which is not only adapted to the graph structure
but also to the given transversal decomposition of the diamond-type graphs, leads indeed to a
Hamiltonian that realizes a PQST. Motivated by these observations, we impose the following
assumptions on H:

Assumption 2.8 (Assumptions on the Hamiltonian). The self-adjoint operator H
acting on L*(G) is assumed to satisfy the following properties:

(a) Nearest-neighbor coupling: for x,y € V(G), let (x| H|y), = 0if x and y are not connected
by an edge, i.e., the transition matrix element from the quantum state |y) to |x) is zero if
the vertices y and x are not adjacent in G.

(b) Radial coupling: for x1,y,,x2,y, € V(G) such that both x;, y, and x5, y, are adjacent, we
set

(x1|Hly1), = (x2| H|y2),

if IT4(x1) = Is(x2) and IT4(y1) = ILa(y2),
i.e., the transition matrix elements are compatible with the transversal decomposition
of F.

(c) Forx,y € II,'(n),n € {0,...,N} we assume (x| H|x), = (y| H|y),. Moreover, if x,y €
IT, ' (n) are adjacent, then we assume (x| H|y), = (x| H|x),.

Remark 2.9. Fora vertex x € V(G), the quantum state |x) corresponds to the one-excitation
state at the vertex x, i.e.

) = 1 on vertex x
o on V(G) \ {x}.

A Hamiltonian H on G is related to an operator on the 1D chain Dy by
J = PHF", 2.3)

which acts on L*(Dy). Similarly, we denote the one-excitation states in L>(Dy) by
|n) =(0,...,1,...,0) where the 1 occupies the nth position. The following proposition gives
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a simple criterion for determining whether the constructed Hamiltonian H is self-adjoint or
not.

Proposition 2.10. Ler V(G) = Ui,v:o H;l(n) be a transversal decomposition of G with

respect to A, for some A C V(G), A # @ and let assumption 2.8 hold. Then, the Hamilto-
nian H is self-adjoint with respect to the inner product (2.1) if and only if J is self-adjoint with
respect to the inner product (2.2).

Proof. Note that equation (2.3) implies that J satisfies the nearest-neighbor coupling con-
dition. Hence it is sufficient to consider adjacent vertices, x € II,'(n) = {x;,...,x;} and
yeIL'(n+1)={y1,...,ym} forsome n € {0,...,N — 1}. We observe

(1l 30+ 1) = (arl + -+ Qo Hy) + o+ [Hy,)
= > deg, (x;) (x| Hy),,

€Il (n)

where the second equality holds by the radial coupling assumption. Similarly,

@nln+1) =" Y deg () (Hx|y),.
V€L (1)
The statement follows as the matching identity
Y degi(x)= > deg (w)

eI () V€L (nt1)

holds. It gives, in fact, the number of edges between the transversal layers H;l(n) and
H;l(n + 1). We consider now the diagonal elements

(n|Jn) = ((x1| + - -+ (xD(Hxp) + - - - + [Hx,,))
D" (degy(xi) + 1) (x| Hx),.

X€ML (n)

Similarly, we have (Jn|n) = >° 1, (degy(x;) + 1) (Hx|x),. O
t A
From now on, we require that the graph G satisfies the following assumption.

Assumption 2.11 (Assumptions on the graph G). Let G be a finite connected graph.
We assume there exists A C V(G), A # @ that transversally decomposes V(G) = Uf:;o H;l(n)
in such a way that the following holds:

(a) The mappings deg , deg_ and deg, are constant on a transversal layer, i.e., for x,y €
IT, ' (n) we have
deg (x) =deg (y), deg_(x)=deg (y), degy(x) = degy(y).
The following lemma follows in exactly the same way as [DDMT20, lemma 2].

Lemma 2.12. Under the assumptions 2.8 and 2.11, we can prove that the subspace L2, ,(G)
is invariant under H.

Recall that our primary motivation is to understand how quantum systems beyond a 1D
chain can be engineered to produce sub-protocols of PQST. Let G be a graph transversally
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Figure 1. (Left) This graph does not satisfy the graph assumption 2.11 with respect to
A = {x.}. However, it is possible to construct a Hamiltonian that admits PQST from
A ={x_} to B= {xr}. (Right) The same graph satisfies the graph assumption 2.11
with respect to A = {xr1, xL2}. Theorem 2.13 implies the possibility of constructing a
Hamiltonian that admits PQST from A = {xr1,x.2} to B = {xr}.

decomposed with respect to A, satisfying the assumption 2.11 and associated with the 1D chain
Dy. We set A = {xL1,...,xL,n} and define the quantum state |[A) = |xL;) + ... |xL.). Note
that |[A) = P*|0) € L2,(G). Similarly, we define the quantum state |B) = P*|N) € L2,(G).
The following theorem provides a sufficient condition of how to design a Hamiltonian on G

that achieves a perfect transfer of the quantum state |A) into |B).

Theorem 2.13. Under the assumptions 2.8 and 2.11, if a PQST on the 1D chain Dy is
achieved, i.e., there exists T > 0 such that ¢V |0) = €' |N) for some phase ¢, then a PQST
on G is also achieved with the same time T and phase ¢, i.e.,

¢™|A) = ¢ |B) and ¢™ |B) = ¢ |A),
where A = {xL1,...,XLn} is the set of sender sites and B is the set of receiver sites.

Proof. In the same way as [DDMT20, proof of theorem 1, page 9], we show e7HPro |4) —
' |B) € Ker(P). Using |A),|B) € L2,(G) we conclude with lemma 2.12, e/THPri|4) =
¢ |B). Let Proj- be the projection of L*(G) onto (L2,(G))*". The statement follows by
(HProj + HProj") |A) = HProj|A)

O

Remark 2.14. In a previous paper [DDMT20], we considered the PQST from an excited
state on a single vertex x, to another excited state on a single vertex xg. Theorem 2.13 covers
additional situations, in which a PQST is achieved between the transversal layers A C V(G)
and B C V(G), and each of those layers may contain more than a single vertex, see figure 1
(right). On the other hand, figure 1 (left) shows an example of a graph that doesn’t satisfy the
assumption 2.11 with respect to A = {x.}. However, it is possible to construct a Hamiltonian
that admits a PQST from A = {x.} to B = {xr }.

Let (H(x,y))xyev(c) be the matrix representation of H with respect to the canonical basis
{]x) }xev(c)- The following result relates the matrix elements of H to J and can be proved
similarly to [DDMT?20, proposition 1].

Proposition 2.15. Let x € V(G). Also, let y € V(G) be adjacent to x and TI,(y) =
II (x) £ 1. Then

(@) H(x,x) = gy (TLa(0)| J [T ().
(b) H(x,y) = g7 o (TLa(0)[ I [TLs (x) £ 1).

deg (x)
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3. Generic spectral properties of H

3.1. Radial eigenvectors of H

The goal of this section is to give a partial description of the spectrum of a Hamiltonian H satis-
fying the assumption 2.8. This part of the spectrum is related to the transversal decomposition
of G and consequently can be described for a generic G satisfying the assumption 2.11. The
following lemmas reveal some advantages for considering the induced 1D chain and the Jacobi
matrix J while investigating the Hamiltonian H. In section 4.1, we will see that this approach
is very fruitful. In fact, we will develop this approach further to give a complete description of
the spectrum o(H) on a broad class of graphs.

Lemma3.1. LetJ = PHP*. Then o(J) C o(H). Moreover, if A € o(J) is an eigenvalue with
the eigenvector vy then P*v) is a corresponding H-eigenvector.

Proof. Let \ € o(J) be an eigenvalue corresponding to the eigenvector vy € L*(Dy). Then
)\P*U)\ = P*JU)\ = P*PHP*U)\ = Proj HP*’U)\ = HP*U)\,

where the last equality holds as HP*vy, € L2 (G). ([

rad

Note that P*vy € L2 ,(G) and hence we denote it as a radial eigenvector.

Lemma 3.2. Letz ¢ o(H). Then the resolvent operators satisfy (J — z)~' = P(H — z)~'P*.

Proof. Note z ¢ o(H) implies z ¢ o(J) by lemma 3.1. We prove that P(H — 2)"'P* is the
inverse operator of J — z. We have

J—2PH—-2) 'P"=PH-2)P’PH—2) 'P*
= P(H — z)Proj(H — )" 'P*

=1dp,

where the equalities hold by lemmas 2.6 and 2.12. A similar argument shows that P(H — z) ' P*
is also a left inverse of J — z. U

Let Py, and Py, be the eigenprojections corresponding to A € o(J) and A € o(H),
respectively.

Theorem 3.3. Let A € o(J)). Then Py = P Py ,\P".

Proof. The spectral representation of the resolvent operators in lemma 3.2 gives
1 1 .
> b= > —5PPusf 3.1)
Xeo@” Aeo(H)

Multiplying both sides of equation (3.1) by z — X\ and subsequently taking the limit z — X
yields the result. (]
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For the rest of the paper, we assume that the auxiliary 1D chain is equipped with the
following Jacobi matrix

B Ji O
Ji B, J, O
J=10 J B, . s (3.2)
0 . In
I Bwnii

where Bi,...,By;1 € Rand J; > 0 for i € {1,...,N}. Let {py(z),...,py;,(z)} be monic
polynomials defined by the recurrence relations:

{PO(Z) —1, p) =z-B, a3

(@) = @—Bp1(@) — Jf 1 pea(@), k=2,3,...,N+1.
The following proposition summarizes some useful spectral properties of J (for more details,
see [HOO7, p 48]).
Proposition 3.4. Every zero of py,,(2) is real and simple. Moreover, o(J) = {\ € C:

pn+1(N) = 0}, For an eigenvalue \ € o(J), the corresponding eigenvectors is given by

PN v
LUy )

vy = (PO()\), (3.4)
Corollary 3.5. Let A\ € o(J). Then the corresponding H-eigenvector is given P vy, where
vy is defined in (3.4).

3.2. Lifting- & -gluing lemma

In this section we will prove a lemma that is essential for the reminder of the paper. We con-
sider a 1D chain Dy equipped with a Jacobi matrix J. When Dirichlet boundary conditions are
imposed, we write JP for the Jacobi matrix. For a given k € N, k > 2 we define Gp, to be the
graph that is constructed by taking k copies of Dy and gluing their boundary vertices together
as shown in figure 2. To distinguish between the copies, we use the following notation: given
a k-letter alphabet {wy, ..., w;}, we denote the ith copy of Dy by Dy x {w;} and refer to the
associated subgraph in Gp, as the w;-branch of Gp. The graph Gp, satisfies the assumption 2.11
with respect to A = {0} and Dy is the auxiliary 1D chain. The following result is one of the
key ingredients in our construction.

Lemma 3.6 (Lifting- & -gluing lemma). Ler \ € o(J°) and v be the corresponding JP-
eigenvector. We define v to be the vector on Gp that coincides with vf on a wi-branch and
coincides with —v¥ on another branch, say wj-branch, for some j # i, i.e.,

o on the w;-branch
vy = —vf onthe wj-branch 3.5)
0 elsewhere

Then \ € o(H) and vy, is an H-eigenvector corresponding to \. Moreover, vy € (Lfad(GD))l.

10
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Gp

Dy x{ws} g 193 4 1wy —2ws—3w;
Dyx{ws} 193 4 0— 1wy —2wy—3wy—4
Dy x {w;} 0—1—92—3—14 1wy —2w; —3w,

Figure 2. (Left) Three copies of the 1D chain D4 with V(D4) = {0, ..., 4}. The ith copy
is denoted by D4 x {w;}, where w; is a letter in the alphabet W = {w, w,, w3 }. (Right)
The graph Gp is constructed by gluing the three copies at the boundary points. Another
way of saying this is that the graph Gp is made up of three branches, the w;-branch,
w,-branch and wj3-branch.

In other words, if we lift a JP-eigenvector (Dirichlet eigenvector of J) to a branch and lift
the same vector with the opposite sign to another branch, and if after that we assign zero to
the remaining branches and glue them together, then this will result in an eigenvector of H on
Gp corresponding to the same eigenvalue. An immediate consequence of lemma 3.6 is that the
spectrum of H is determined by the spectra of J and J°.

Corollary 3.7. o(H) = o(J) Uc(J)

Proof. The radial eigenvectors are constructed according to lemma 3.1, which implies
o(J) C o(H). The remaining eigenvectors are elements of (erad(GD))l and constructed by the
lifting- & -gluing lemma 3.6. Note that for the 1D chain Dy the Jacobi matrices J and J°
have N 4+ 1 and N — 1 eigenvectors, respectively. Each J-eigenvector is lifted to a radial H-
eigenvector on Gp and each JP-eigenvector generates k — 1 different H-eigenvectors on Gp.
Note that the graph Gp has (N + 1) + (N — 1)(k — 1) vertices. O

The observation in corollary 3.7 is the first step in the approach that will be further developed
in the next section. Indeed, we are going to show that the H-spectra on a broad class of graphs
are determined by the spectra of a collection of Jacobi matrices.

4. Projective limit constructions

The following definitions are roughly speaking a discrete version of [ST20, definition 2.1,
page 3].

Definition 4.1. Let k > 2. We refer to a k-letter alphabet {w;, ..., wy} as a vertical multi-
plier space. A word of length m is an element of the m-fold product W" = W; x --- x W,
for some vertical multiplier spaces Wy,...,W,. For a word w € W™, we write shortly
w = wj ...w,instead of w = (w1, ..., wy).

Note that the vertical multiplier spaces Wy,..., W,, are not assumed to have the same
number of letters.

Definition 4.2. We initialize the graph Gy = (V(Gy), E(Gyp)) to be a 1D chain Dy for some
N > 1. We call Gy the horizontal base space.

Remark 4.3. The assumptions on the horizontal base space in [ST20] are very general
(local compact second countable Hausdorff space). In this sense, definition 4.2 represents a
discretization of a specific case.

Definition 4.4 (cf [KKMM16]). Given a sequence of vertical multiplier spaces {W;};>
and a horizontal base space Gy = Dy. We define a sequence of graphs {G;};>o inductively.

1
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aQ T T V(G1) x W =V (Gy)
1

0=—_ =4
1wl\2wl 3w \ ld)?

Go x {wy} 0—1——2—3—1 V(Go) x W 2= V(Gy)

\ Ld’l
Go x {w} 0—1—2—3——4

V(Go)

Figure 3. (Left) To construct the graph G, we initialize the horizontal base space Gy to
be the 1D chain D4 with the vertices {0, . ..,4}. We set W = {w;, w»} to be the vertical
multiplier space. Then G| is constructed as in definition 4.4, where we choose the sub-
graph By such that V(B;) = {0,4} and E(B;) = (). Note that the address assignments of
the vertices described in definition 4.4 are shown on the graph of G;. (Right) A diagram
shows how the different mappings from definition 4.5 are related to each other.

(a) Suppose G;—; = (V(G;—), E(G;_})) is given for some integer i > 1.

(b) Choose a subgraph B; = (V(B;), E(B;)) of G;_1, such that G;_;\B; is a collection of 1D
chains. Note B; may be an edgeless or a disconnected subgraph.

(c) For a 1D chain D in G;_;\B;, we set Gp to be the graph that is constructed by taking the
copies D x {wy} for wy € W; and gluing their boundary vertices together as shown in
figure 2.

(d) We construct G; by replacing each 1D chain D in G;_;\B; with the corresponding Gp.

For convenience, we set V(G;) = [(V(G,—1)\V(B))) x W;1J V(B;) for the set of vertices of
G; and E(G;) = [(E(G;-)\E(B))) x W;1|J E(B;) for the set of edges of G;, see figure 3 (left).

Definition 4.5. Let {G;};>0 be constructed as described in definition 4.4. We define 7, :
V(Gi—1) x W; = V(G)) by

{(x, w) if x € V(G;_y) \ V(B))
mi(x,w) =
X if x € V(B)),

and also define the mapping ¢; : V(G;) = V(G;_;) by

di(x,g) =x if x € V(Gi_)) \ V(B)
¢i(x) =x if x € V(B)).

The following proposition shows that each graph in {G;};>¢ admits a natural transversal
decomposition, where the horizontal base space Gy is used as the common auxiliary 1D chain
for the entire sequence {G;};>o.

Proposition 4.6. Let {G;}i>0 be constructed as described in definition 4.4. Then for
each i > 1, the graph G; can be transversally decomposed with respect to A; = (¢;)"' o
-0 (1) 1(0) C V(G)) so that assumption 2.11 holds. Moreover, for II4,(x) = d(x; A)), see
definition 2.1), we have H;l_l (x)=¢10---0 pi(x).

Proof. Note that a vertex in G; is denoted by nwjw; ... wy, where n € {0,...,N} and
wiw, . .. w € WX, The word w w, . .. wy can be considered as a vertical coordinate which
gives the address of the branch that contains this vertex. On the other hand, the integer n can be

12
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G 2 ___2wowy

lwowsy

G 2w
—_ 2 S —
3wy lwyws 3wywy
\4102 / \

041101102\ /3w1w2/ U/lwwl 3w2w1§
W1
ilwlwl/ \3w1w1\4 T 1lwws 3w1w27
wy
/
lwowy __3wawy 1w1w1§ 43101101
29wy 2wy

Figure 4. The graphs G, and G, are constructed as described in definition 4.4. While G,
satisfies the graph assumption 2.11, G, does not. For the construction of G, and G,, we
set Gy to be the graph shown in figure 3. (Left) G is constructed by taking the two copies
Gy x {w1}, G x {wz} and choosing the subgraph B, such that V(B,) = {0, 2w, } and
E(By) = (). (Right) G, is constructed by taking the two copies G; x {w;}, Gy x {wy}
and choosing the subgraph B; such that V(B,) = {0, 2w, 2w,,4} and E(B,) = 0. Note
that G, is the level-2 Hambly—Kumagai diamond graph and denoted by HKj,. For more
details see Remark 4.12 and section 5.1.

considered as a radial coordinate, which gives the distance to A; = (¢;) ' o - - - 0 (¢;)~'(0). By
definition 4.5 we have ¢ o ... 0 ¢;(nwiw; ... wy) = n and therefore, this implies II4,(x) =
¢10---0¢i(x). Now Gy as a 1D chain, it admits a trivial transversal decomposition with
respect to {0} ie., V(Go) =II,'(0)UTL,'(1)... UTI,'(N), I, (n) = {n}. Similarly, G;
admits a transversal decomposition with respect to A;,

V(G) =TI, (0) UL (1) ... UTL,'(N),

where for x € V(G;), we have x € H;il(n) > ¢ro---0¢ix) € Hal(n). O

Each graphin {G;};>0 admits a natural transversal decomposition. One may wonder if these
graphs also satisfy the graph assumption 2.11 with respect to this decomposition. The following
example shows that this is not true in general.

Example 4.7. Letthe graph G, be constructed as described in figure 4. G, does not satisfy the
graph assumption 2.11 as the mappings deg  and deg _ are NOT constant on the transversal
layer IT, ' (2) = {2wyws, 2wy, 2wyw, }:

2 = deg, (Qw) # deg, Qurw,) = deg, Qurw) = 1,

2 =deg (Qwy) # deg_(RQuwows) = deg Quwpw;) = 1.

4.1. Main inductive result

We present a discrete version of a general construction in [ST20].

(a) We begin with a sequence of vertical multiplier spaces {W;};> and a 1D chain G.

(b) We construct {G;};>0 and {B,};> as described in definition 4.4.

(c) We transversally decompose {G;} ;>0 as described in proposition 4.6 and require that each
G; satisfies the graph assumption 2.11 with respect to this decomposition.

Remark 4.8. Assumption2.11 are to ensure that our construction realizes PQST in relatively
simple practical situations. If one is interested in general Hamiltonians, the assumption 2.11 are
not needed in this section and the statements and proofs will remain the same, as was pointed
out by one of the referees.

The horizontal base space Gy plays the role of the auxiliary 1D chain and will be used to lift
a Hamiltonian to each G;, i > 1. To this end, we equip G with a Jacobi matrix J of the form

13
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(3.2). The Jacobi matrix acts on the Hilbert space L*(Gp) = {1 | 1 : V(Gp) — C}, (¢| p) =
Zf:’zo 1(n)(n). Recall that the transversal decomposition of G; is with respectto A; = (¢;) ' o
.-~ 0(¢)~1(0) C V(G;). Hence, we proceed as in section 2 and equip each G; with the Hilbert
space L*(G;) = {v | ¥ : V(G)) — C}, (¢ Oha; = Drevic) V() P(x)pa, (x), where the weights
are given by i, (x) = 1/ |1'I/§i1 (n)| for n = TI4,(x) and \H;il (n)| denotes the number of vertices
in the transversal layer H;l_l (n) that contains x. Another useful object is the pullback operator
induced by ¢, : V(G;) — V(G;_) and it is defined as follows

¢ 1 L*(Gim) — LA(Gy), ¢ — ¢Fp(x) = p($i(x)).

The averaging operator and its adjoint are given by

1
P;: LX(Gy) — LX(Go), 1) — Pap(n) = > Y.

H—l
‘ Ai (n)‘xel'lgl_l (n)

P L*(Go) = LG, ¢ = Pip(x) = ¢ ... ¢{p(x) = (1 0 -+~ 0 pi((x)).
We are now in a position to construct a Hamiltonian H; on G;, i > 1:

(a) Let H; be a Hamiltonian on G; that satisfies the assumption 2.8.
(b) Let H; be lifted from Gy to G; via J = P;H,P;}.
The following result is a straightforward generalization of lemma 3.1, see [ST20].

Lemma 4.9. We have that c(H;_|) C o(H;). Moreover, if A € o(H;_) is an eigenvalue
corresponding to the eigenvector v then ¢} v, is an H;-eigenvector with the same eigenvalue.

The following theorem characterizes the spectrum of the Hamiltonian H; on G;, i > 1.

Theorem 4.10. Let i be a nonnegative integer and let H; be the Hamiltonian lifted from G
to G, that is, there is a Jacobi matrix J such that J = P;H;P;. Then there exists a collection
J=Jo, Ji, ..., I of submatrices of J such that

oH) =oc@Uc(I)U---Ua(ln).

In particular, if the Jacobi matrix J corresponds to the case of POST in a 1D chain then H;
realizes POST on G;. Therefore, the above-given formula describes spectra of Hamiltonians
realizing PQOST on G;.

Proof. Assume that the statement is correct for o(H;_;). By definition G; is constructed
by replacing each 1D chain in G;_;\B; with multiple copies glued together at their boundary
vertices. Let Jo, . . ., Jx be the collection of the Jacobi matrices associated with the 1D chains
in G;_;\B;. Using lemma 4.9 combined with lemma 3.6 (lifting- & -gluing lemma), we obtain
oH;)) =cJo)UoJ)U---Uo(lx) Ua(H;i-y). U

Remark 4.11. A Jacobi matrix is one of the canonical forms of self-adjoint operators and
there is a wide class of self-adjoint operators which are unitarily equivalent to the direct sum
of Jacobi matrices. Therefore, such a spectral decomposition is valid for a more general class
of graphs and, in fact, various approaches have been applied to obtain similar representations
in different situations, see [BBJL17, BK13]. Our main assumptions on H; are to ensure that H;
realizes PQST in relatively simple practical situations. If one is interested in general Hamilto-
nians, the transversal decomposition of the graph and the assumption 2.11 can be relaxed for
this particular statement and the proof will remain the same, as was pointed out by one of the
referees.

14
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Remark 4.12. Note that graphs in figures 1, 4, 5, 10 and 11 can be constructed in two differ-
ent, but equivalent ways: either gluing copies of smaller graphs, or using inductive (projective)
procedures [MT95, MTO03, AR18, AR19, ST20].

Note also that, although G, does not satisfy assumption 2.11, a PQST Hamiltonian can be
found using the methods of [MDDT20, assumption 2.8 or 2.11] which is a discrete version of
[ST20].

5. Two examples

In this section, we give two particular examples of the proposed construction. Note that in both
cases the sender site is the leftmost point of the graphs and the receiver site is the rightmost
point of the graph. We also demonstrate the applicability of theorem 4.10 on these two models
of diamond-type graphs. A transversal decomposition of each of these models induces a 1D
chain Dy. We equip Dy with a Jacobi matrix J realizing one of the simplest cases of spin chains
with perfect state transfer discussed in [CDELO4]. To this end, we set

JANFI1=
J”:W’ B,=0, n=0,1,...N, By =0, (5.1)

for the entries in (3.2). The underlying Jacobi matrix is mirror symmetric and it corresponds
to the symmetric Krawtchouk polynomials [Sze75]. Following proposition 2.15, we lift this
Jacobi matrix to Hamiltonians on these models of diamond-type graphs. Note that the mag-
netic field on the 1D chain nodes is assumed to vanish By = ... = By4+; = 0, resulting in a
Hamiltonian whose diagonal elements are all equal to zero. Moreover, theorem 2.13 implies
that such Hamiltonians achieve a PQST. We investigate these Hamiltonians and give a complete
description of their spectra.

0 1 0 0 O
1 0 \/76 0 O
L=lo Yo o Yo . (5.2)
2 VG 2
0O 0 > 0 1
o o 0 1 o0

5.1 Hambly—Kumagai diamond graphs

The first model is an example of a two-point self-similar graph in the sense of [MT95]. It is
a particular sequence of diamond-type graphs, that was investigated in [HK10]. We will refer
to this model as Hambly—Kumagai diamond graphs. The following definition gives a formal
description of the Hambly—Kumagai diamond graphs.

Definition 5.1. We refer to a sequence of graphs {HK/} />0 as Hambly—Kumagai diamond
graphs, when it is constructed as follows.

e HKj is initialized as the one edge graph connecting a node x|, with another node xg.

e At level ¢ we construct HK; by replacing each edge from the previous level HK,_ ; by
two new branches, whereas each new branch is then segmented into two edges that are
arranged in series.

15
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Figure 5. Hambly—Kumagai diamond graphs level 2: (left) H,-eigenvector for the
eigenvalue /3. (Middle) H,-eigenvector for the eigenvalue 0. Both eigenvectors are
examples for the construction method described in step 2. (Right) H;-eigenvector for
the eigenvalue 0. This eigenvector is an example for the construction method described
in step 3. The number assigned to a vertex is the value of the eigenvector at this vertex.

The first three levels of the Hambly—Kumagai diamond graphs are displayed in [DDMT?20,
figure 2, page 5]. Let V(HK}) be the set of vertices of HK,. It is easily seen that the transversal
decomposition V(HK) = TT,'(0) UTI,'(1)... U I, '(N) with respect to A = {x; } induces
a 1D chain Dy such that N = 2¢. The Jacobi matrix associated with Dy, N = 2¢ is denoted by
Jy. For example J, is given in equation (5.2). We then lift J, to a Hamiltonian H, on HK,. The
Hamiltonian H, on the Hambly—Kumagai diamond graph of level 2 is given in equation (5.3).

H, =

K R I A
0000\(/)6\(/)600\%\%11
S A A S B
OOOOOOTTOOTT
10?000000000
10?\5)600000000 53)
100700000000
100?00000000
01?000000000
01?000000000
010?00000000
_010?00000000_

5.1.1. Spectrum of the Hamiltonian Ho. In this section we demonstrate how to apply theorem
4.10 and determine the spectrum of H,. To this end, we construct the level-2 Hambly—Kumagai
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AGRN
AN/

Figure 6. An example of a radial eigenvector of H,. It corresponds to the eigenvalue 1.
A number assigned to a vertex is the value of the eigenvector at this vertex.

,_
._\

diamond graph HK; using a sequence of discretized projective limit spaces {Gy, G1, G2} (see
definition 4.4) such that HK, = G,. We proceed in the following manner:

(Step 1)

(Step 2)

(Step 3)

Gy is initialized to be the induced auxiliary 1D chain D4 equipped with J, given
in (5.2). Let A € o(J,) with v, being the corresponding eigenvector. Then Pivy =
@] d3v) gives a corresponding radial Hp-eigenvector on HK; (by lemma 3.1 or 4.9).
Figure 6 displays a radial eigenvector of H, corresponding to the eigenvalue 1. It
describes the oscillations of the transversal layers. This step shows o(J,) C o(Hy)
and generates five radial eigenvectors. Note that o(J») = {—2,—1,0, 1,2}, see
table 1 (left).

To construct the graph G, we proceed as described in figure 3 (left). This is precisely
the situation described in lemma 3.6 (lifting & gluing lemma), where G| plays the
role of Gp with two branches. Hence, we can lift an eigenvector from Gy to G
as follows. Recall, when Dirichlet boundary conditions are imposed, we write J2D
for the Jacobi matrix. Let A € o(J5) with oY as the corresponding J>-eigenvector.
Then, the vector

—vP onthe w;,-branch

{U/\D on the w;-branch

Uy =

defines an eigenvector on Gj. Lifting v, to HK; via ¢5v, gives an eigenvector of Hj
(see lemma 4.9). Figure 5 (left) & (middle) display eigenvectors of H, constructed
as described in step 2. This step shows o(J ]2)) C o(H,) and generates three additional
eigenvectors. Note that o/(J5) = {—\/5, 0, \/5}, see table 1 (middle).

To construct the level-2 Hambly—Kumagai graph G, = HK,, we proceed as
described in definition 4.4 and figure 7. We set W = {w;,w,} to be the vertical
multiplier space. We choose the subgraph B, to be edgeless with the vertices set
V(B,) = {0, 2w, 2w,,4}. In this case, Gy \ B, is a collection of four 1D chains. The
two copies of each 1D chain in G;\B, are displayed in figure 7 (left). Gluing the
copies at the common boundary vertices gives G, = HKj, see figure 7 (right). Each
1D chain in G;\B; is associated with a Jacobi matrix. Due to the mirror symmetry
assumption, it is sufficient to consider one of the four Jacobi matrices. We denote
this Jacobi matrix by J, |, see figure 7 (left). It is easy to check that J, ; is given by

0 1 0
V6
o=V 0 &
V6
0 — 1
2
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Table 1. Hambly—Kumagai diamond graph of level 2: eigenvalues table
of J, (left), J¥ (middle) and of H; (right).

Eigenvalue Multiplicity
1 -2 1
2 —1 1
3 0 1
4 1 1
5 2 1
Eigenvalue Multiplicity
1 -3 2
2 0 6
3 V3 2
Eigenvalue Multiplicity
1 -2 1
2 -3 1
3 —1 1
4 0 6
5 1 1
6 V3 1
7 2 1
Jo Jao Gy = HK,
— lwowy,—2 2wy —3 —_— 2
0 WaWs Wy Wy WolWs 4 Ly 7 Wy ?3102102
00— lwow; —2ws 2wy —3wow, ——4 / \
0/1w2w1 3w2w1\4
S lww, 3w1w27
00— lwiwe— 2wy 2w — 3w wy——4 L w \ Sww
0— lwyw; — 2w, 2wy — 3w w——4 =gy, =11

Figure 7. (Right) We set G, to be the graph shown in figure 3. G, is constructed as
described in figure 4 (right), namely by taking the two copies G x {w;}, Gi x {w2}
and choosing the subgraph B, such that V(B,) = {0, 2w, 2w,,4} and E(B,) = (). Note
that G, is the level-2 Hambly—Kumagai diamond graph and denoted by HK,. (Left)
It is easy to see that G;\B; is a collection of four 1D chains. The two copies of each
1D chain in G;\B; are displayed in figure. Each 1D chain in G;\B; is associated with
a Jacobi matrix. Due to the mirror symmetry assumption, there are only two different
Jacobi matrices. We denote them by J,; and Js».

Gluing two copies of a 1D chain in G;\B, generates a situation similar to lemma 3.6
(lifting & gluing Lemma). Hence, we can lift an eigenvector to G, as follows. Let
Aeo(d 21) with v® being the corresponding JzD-eigenvector. We define

on the wy-branchof a 1D chainin G, \ B,
on the wy-branch of the same 1D chainin G, \ B,

elsewhere
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Figure 8. Eigenvalues of multiplicity five: (left) With an argument similar to lemma 3.6
(lifting- & -gluing), we can lift a Dirichlet eigenvector f of a particular Jacobi submatrix
to the subgraph colored blue. Moreover, we lift the same eigenvector but with the oppo-
site sign to the subgraph colored gray. The constructed vector is then an eigenvector of
H, with the same eigenvalue. In this way, we can construct a total of four eigenvectors to
the same eigenvalue. (Right) Lifting the same eigenvector as described in the right-hand
side figure will result in the fifth eigenvector of H, with the same eigenvalue.

It is easy to see that v, is an eigenvector on H,. This step shows the inclusion
U(JzD,1) C o(H,) and generates four additional eigenvectors, one eigenvector for
each 1D chain in G;\B,. Note that o(J},) = {0}.

The constructed twelve eigenvectors are orthogonal and therefore c(H,) = o(J,) U o(J 123 )u

a(J20).
Proposition 5.2. Let ¢ > 3. There exists \ € o(Hy), such that the multiplicity of X is 5.

Proof. It follows by using an argument similar to lemma 3.6 (lifting- & -gluing). See also
figure 8 and its caption. (]

We will refer to eigenvectors of H, that are supported on a proper subset of V(HK/) as
localized eigenvectors.

Proposition 5.3. The total number of localized eigenvectors of Hy is 2'4;—'*4 —2f 21
(>3

Proof. The number of vertices of HK; at level £ € N is |V(HK,)| = #. Next, the above-
described algorithm tells us how to construct the eigenvectors. In particular, it shows that
the only non-localized eigenvectors are the 2¢ + 1 radial eigenvectors and the 2/~! — 1 “fifth’
eigenvectors in figure 8 (right). (]

For higher levels we can proceed similarly and find the spectrum by considering a collection
of Jacobi matrices. A convenient representation of the higher levels spectrum is the integrated
density of states of Hy, that is defined as

#{\ < x | Misaneigenvalue of H,}
|V(HK)| ’

Ne(x) =

where # counts the number of eigenvalues of Hy less or equal than x. Figure 9 shows the
integrated density of states of H, for both level 6 (left) and level 7 (right).
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Figure 9. Integrated density of states of H,: Hambly—Kumagai diamond graph of level
6 (left) and level 7 (right).

5.2. Lang—Plaut diamond graphs

The second model is also an example of a two-point self-similar graph in the sense of [MT95].
It is another prominent example of diamond-type graphs, that was investigated in [LPO1]. We
will refer to this model as Lang—Plaut diamond graphs. The following definition gives a formal
description of the Lang—Plaut diamond graphs.

Definition 5.4. We refer to a sequence of graphs {LP; } /¢ as Lang—Plaut diamond graphs,
when it is constructed as follows.

e LPj is initialized as the one edge graph connecting a node x;, with another node xg.

e Atlevel ¢, we construct LP; by segmenting each edge from the previous level LP,_; into
three new edges. The inner edge of the three new edges is then replaced by two new
branches, whereas each new branch is then segmented into two edges.

The first four levels of the Lang—Plaut diamond graphs are displayed in [DDMT?20, figure 4,
page 10]. Let V(LP,) be the vertices set of LP,. In the same manner as the Hambly—Kumagai
diamond graphs, it is easily seen that the transversal decomposition V(LP;) = 1'[;1(0) U
IT,'(1)... UL, '(N) with respect to A = {x;} induces a 1D chain Dy such that N = 4¢. The
Jacobi matrix associated with Dy, N = 4' is denoted by J,. We lift J, to a Hamiltonian H,; on
LP,.

5.2.1. Spectrum of the Hamiltonian Ho. We are going to study this case as we did it in the
case of the first model. Namely, we demonstrate how to apply theorem 4.10 while determining
the spectrum of H,. Similarly, we construct the level-2 Lang—Plaut diamond graph LP; using
a sequence of discretized projective limit spaces {Gy, G1, G, } (see definition 4.4) such that
LP, = G,. We proceed as follows:

(Step 1) Gy is initialized to be the induced auxiliary 1D chain D¢ equipped with J,, whose
entries are given in (5.1). Similar to the first model we can show o(J,) C o(H,) and
generate 17 radial eigenvectors. Note that o(J,) = {—8,—7,...,7,8}, see table 2
(left).

(Step 2) To construct the graph G, we proceed as described in figure 10. Again, with a sim-
ilar argument to the lifting & gluing Lemma, we lift an eigenvector from the 1D
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Table 2. Lang—Plaut diamond graphs of level 2: eigenvalues table of J, (left), JE |
(middle) and of H, (right).

Eigenvalue Multiplicity
1 -8.0 1
2 -7.0 1
3 —6.0 1
4 -5.0 1
5 —4.0 1
6 -3.0 1
7 -2.0 1
8 -1.0 1
9 0.0 1
10 1.0 1
11 2.0 1
12 3.0 1
13 4.0 1
14 5.0 1
15 6.0 1
16 7.0 1
17 8.0 1

Eigenvalue Multiplicity
1 —7.753 6903 1
2 —5.8309519 1
3 —3.1432923 1
4 0.0 1
5 3.1432923 1
6 5.8309519 1
7 7.753 6903 1

Eigenvalue Multiplicity
1 -8.0 1
2 —7.753690 1
3 -7.0 1
4 —6.0 1
5 —5.830951 1
6 -5.0 1
7 —4.0 1
8 —3.143292 1
9 -3.0 1
10 -2.0 1
11 -1.0 1
12 0.0 8
13 1.0 1
14 2.0 1
15 3.0 1
16 3.143292 1
17 4.0 1
18 5.0 1
19 5.830951 1
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Table 2. continued.

20 6.0 1
21 7.0 1
22 7.753 690 1
23 8.0 1
Dy12 X wo Gl
By By
— —
—
D4,12 X wy

Figure 10. (Left) To construct G| we take two copies of the 1D chain Gy = D¢ (recall
that the vertices set is V(Dg) = {0,...,16}) and choose the subgraph B; such that
Go\B; contains only the 1D chain with the set of vertices V(D4 12) = {4,5,...,12}.
We will refer to this 1D chain as Dy ). For the vertical multiplier space we set
W = {wi, w2 }. (Right) G is given by gluing the two copies D4 1o X {w;} and Dy 15 X
{w,} together with B at their boundary points.

chain Dy 1> to G,. We denote the Jacobi matrix associated with Dy 15 by

0 V15 0 0 0 0 0 0 0
Vis 0 @ 0 0 0 0 0 0
0 @ 0 @ 0 0 0 0 0
0 0 @ 0 3vV2 0 0 0
bLi=1]0 0 0 3/2 0 3v2 0 0
0 0 0 0 32 0 @ 0 0
0 0 0 0 0 @ 0 @ 0
0 0 0 0 0 @ 0 V15
L0 0 0 0 0 0 V15 0 |

Similar to the first model we can show that 0(J2D,1) C o(H,) and generate 7
additional eigenvectors. The eigenvalues J? are listed in table 2 (Middle).

(Step 3) To construct finally the level-2 Lang-Plaut diamond graphs G, = HK,, we proceed
similarly to the first model. The relevant Jacobi matrices J,» and J, 3 are indicated
in figure 11 (left). Again, due to the mirror symmetry, it is sufficient to consider two
out of six matrices. We can show o(J,2), 0(J23) C o(H;) and generate 6 additional
eigenvectors. Note that 0(J5,) = o(J5;) = {0}.

The generated 30 eigenvectors are orthogonal. Hence o(H,) = o(J2) U o(J5) U o(J5,) U
U(Jg ;). Figure 12 shows the integrated density of states of H, for both level 4 (left) and level
5 (right).
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774 N
=

Figure 11. (Left) The Jacobi matrices J,3 and J,, are relevant for the computation of
o(Hy). (Right) Lang—Plaut diamond graphs of level-2, G, = HKs.

10 10
08 08
06 06
04 04
02 02
00 00
100 50 0 50 100 —400 200 0 200 00

Figure 12. Integrated density of states of H,: Lang-Plaut diamond graph of level 4 (left)
and level 5 (right).

6. Further general geometric constructions: two-point self similar graphs

In [MT95] a broad class of infinite self-similar graphs called two-point self-similar fractal
graphs was introduced and the spectra of the combinatorial- and probabilistic-Laplacians on
such graphs were described. The two-point self-similar fractal graphs are related to the nested
fractals with two essential fixed points [LL90]. A generalization to self-similar graphs based
on a finite symmetric M-point model (instead of two points) is constructed in [MTO03].

Following [MT95], we set M = (Vy, Ey) and Gy = (V, Ep) to be finite connected graphs,
where M is an ordered graph. We fix some ¢ € E);, which is not a loop, and vertices o, 5 € Vi
and «ayp, By € Vo, a # B, ag # Bo-

Definition 6.1 ([IMT95], page 393). A graph G is called two point self-similar graph with
model graph M and initial graph Gy if the following holds:

(a) There are finite subgraphs {G,},>0, G, = (Va, E;) such that G, C G,1, n > 0, and
G = Up>0G,.

(b) For any n > 0 and e € Ey there is a graph homomorphism V¢ : G, — G, such that
Gut1 = Ueer, V5 (G,) and W) is the inclusion of G, to Gy41.

(c) For all n > 0 there are two vertices o, 8, € V,, such that U¢ restricted to G,\{a, 8,}
is a one-to-one mapping for every e € Ey. Moreover U(V, \ {a, 5,}) N T2V, \
{an, Bu}) = Dif e; # en.

(d) Forn > 1, there is an injection x, : V)y — V,, such that a,, = k,(), 3, = k() and for
every edge e = (a,b) € Ey, Vi_ (1) = kn(a) and V¢ _(Bu—1) = Ka(D).

We say that the vertices «,, 3, are the boundary vertices of G, i.e. G, = {a,, 3,} and
int(G,) = V,\{a, 8,} are the interior vertices of G,,.
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Proposition 6.2. Suppose that the graphs M and G satisfy the assumption 2.11, where the
transversal decomposition of M and Gy are with respect o (or 5) and o (or By), respectively.
Moreover, we assume dego(x) = O for all x € Vy;. Then the assumption 2.11 hold for each G;,
i > 0. And the transversal decomposition of G; is with respect a; (or 3;).

Proof. G, is obtained by replacing every edge in M by a copy of G,. Under the assump-
tions, the transversal decomposition of M with respect « (or ) is modified by adding the
transversal layers of G, resulting in a transversal decomposition of G, with respect a4 (or
Bey1)- U

7. Conclusions

We study a scheme, proposed in [DDMT20], of lifting 1D Hamiltonians realizing a PQST from
site O to site N to Hamiltonians on diamond fractal graphs that realize a PQST from a set A of
sites to a set B of sites. Note here that under this lifting procedure the set A corresponds to site 0
and the set B is induced by site N. Our construction is a vast theoretical generalization of some
ideas discussed in [PRK11], see also [KLY 17a]. In addition, we give a constructive algorithm
on how to find spectra of such Hamiltonians. We describe the spectrum and eigenfunctions,
and give two examples of such Hamiltonians on specific graphs. In particular, we demonstrate
that their spectra contain multiple eigenvalues with localized eigenfunctions. In the future this
study will suggest what physical characteristics of the system remains unchanged under the
lifting procedure and if there is something that changes. It would also be interesting to know
if the lifting procedure can be applied to the case of state transfer for multi-qubits discussed in
[ALS™15, YB20, CSLA20].

Diamond graphs eigenvalue tables

Eigenvalues of H3 (Hambly—Kumagai diamond graph of level 3)

Eigenvalue A\; Multiplicity j Eigenvalue \; Multiplicity

—.

-1 1 9 1 1
2 —VWV4A6+9 1 10 9-V46 1
3 -3 1 1 2 1
4 22 5 12 22 5
5 -2 1 13 3 1
6 —V9—-+V46 1 14 VA6 +9 1
7 -1 1 15 4 1
8 0 22
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Eigenvalues of Hy (Hambly—Kumagai diamond graph of level 4)

j Aj Multipl. ] Aj Multipl. j \;  Multipl. j A;  Multipl.
1 —80 I 10 —4242640 8 19 1.0 1 28 5.0 I

2 —7.999773 1 11 —40 1 20 1321523 1 29 5.830951 8

3 -70 1 12 —3.806076 1 21 2.0 1 30 5.980884 1

4 6996920 5 13 =30 1 22 2600793 5 31 6.0 I

5 —60 1 14 —2.600793 5 23 3.0 1 32 6996920 5

6 —5.980884 1 15 —20 1 24 3806076 1 33 7.0 1

7 —5.830951 8 16 —1321523 1 25 4.0 1 34 7999773 1

8 —50 1 17 -1.0 1 26 4242640 8 35 8.0 1

9 —4927369 5 18 0.0 86 27 4927369 5
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Eigenvalues of H3 (Lang—Plaut diamond graph of level 3)

j Aj Multipl. ] Aj Multipl. j \;  Multipl. j A;  Multipl.
1 —320 I 28 —17.272791 1 5400 44 80 17272791 1
2 —31.999214 1 29 —17.0 I 55 1.0 I 81 180 1
4 30989328 1 30 —16.0 1 56 2.0 1 82  19.0 1
5 —300 I 31 —15.141636 2 57 3.0 I 83 19721929 1
6 —29.936434 1 32 —150 I 58 3.047899 1 84 200 1
7 —29.086539 4 33 —14.656694 1 59 4.0 1 85 2048943 2
8 290 I 34 140 I 60 5.0 I 8 210 1
9 2877233 1 35 —13.0 I 61 6.0 I 87  21.98050 1
10 —28.0 1 36 —12.020182 4 62 6066367 1 88 22,0 1
11 —27.422949 1 37 —12.0 I 63 7.0 I 89 22214599 4
12 —27.0 I 38 —11.89895 1 64 8.0 I 90  23.0 1
13 —260 1 39 —11.0 1 65 8.180098 2 91 240 1
14 —25.844467 1 40  —10.0 I 66 9.0 I 92 24.027192 1
15 —250 I 41 —9.026252 1 67 9.026252 1 93 250 1
16 —24.027192 1 42 -90 1 63 10.0 1 94 25.844467 1
17 —24.0 I 43 —8.180098 2 69 11.0 I 95 26,0 1
18 —23.0 1 44 —80 1 70 11.89895 1 96 27.0 1
19 —22214599 4 45 -70 1 71 12.0 1 97 27422949 1
20 —22.0 I 46 —6.066367 1 72 12020182 4 98 28.0 1
21 —21.98050 1 47 —6.0 1 73 13.0 1 99 2877233 1
2 -21.0 1 48 —5.0 1 74 14.0 1 100 29.0 1
23 —20.48943 2 49 —4.0 I 75 14.656694 1 101 29.086539 4
24 —20.0 1 50 —3.047899 1 76 15.0 1 102 29.936434 1
25 —19.721929 1 51 —3.0 1 77 15141636 2 103 30.0 1
26 —19.0 I 52 —20 I 78 16.0 I 104 30.989328 1
27 —18.0 1 53 —1.0 1 79 17.0 1 105 310 1
106 31.999214 1
107 32.0 1
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