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Abstract
In this paper we study the spectral features, on fractal-like graphs, of Hamil-
tonians which exhibit the special property of perfect quantum state transfer
(PQST): the transmission of quantum states without dissipation. The essential
goal is to develop the theoretical framework for understanding the interplay
between PQST, spectral properties, and the geometry of the underlying graph,
in order to design novel protocols for applications in quantum information sci-
ence. We present a new lifting and gluing construction, and use this to prove
results concerning an inductive spectral structure, applicable to a wide variety
of fractal-like graphs. We illustrate this construction with explicit examples for
several classes of diamond graphs.
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(Some !gures may appear in colour only in the online journal)

1. Introduction

The transfer of a quantum state from one location in a quantum network to another is a fun-
damental task in quantum information technologies, and such a transfer is called perfect if
it is realized with probability one, that is, without dissipation. Perfect quantum state transfer
(we write shortly PQST) has potential applications to the design of sub-protocols for quantum
information and quantum computation [Kay10, CVZ17, KLY17a]. Depending on the applica-
tion, various quantum systems are employed. Typical designs involve information carriers like
photons in optical systems [GKH+01], or phonons in ion traps [LDM+03, SKHR+03]. Other
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promising devices are spin chains. The study of PQST on spin chains was pioneered by Bose
[Bos03, Bos07], who considered a 1D chain of N qubits coupled by a time-independent Hamil-
tonian. His work generated intense theoretical interest, in particular in questions concerning
how to manipulate and engineer Hamiltonians such that a PQST is achieved. Manufactur-
ing such manipulated Hamiltonians will provide pre-fabricated devices for quantum computer
architectures, which takes input in one location and outputs it at another without needing to
interact with the device. This approach is robust to noise and hence much less prone to errors. A
number of one-dimensional cases, where PQST can be achieved, have been found in some XX
chains with inhomogeneous couplings, see [Kay10, Bos07, CDEL04, BB05a, BB05b, KS05,
ACNO+10, BFF+12, God12b, BGS08, God12a, VZ12c, QWL13], and references therein.
Also, it was shown that in some cases it was possible to achieve almost PQST, which happens
under much less restrictive conditions than a PQST [BAC+10, BBVB11, VZ12a]. Recently
there has been active interest to generalize these results to graphs with potentials and to graphs
that are not one-dimensional [PRK11, KLY17a, KLY17b, KMP+19, KRA12, VZ12b]. These
works illustrate the fact that PQST is a rare phenomenon, for which the construction of explicit
examples remains rather non-trivial. Intending to investigate the rich interplay between quan-
tum state transfer and geometries beyond one-dimensional graphs, we showed in a previous
paper [DDMT20] that PQST is possible on the large and diverse class of fractal-type diamond
graphs. A signi!cant interest in these graphs lies in the fact that their limit spaces constitute
a family of fractals, which present different geometrical properties, including a wide range
of Hausdorff and spectral dimensions. These graphs have provided an important collection of
structures with interesting physical and mathematical properties and a broad variety of geome-
tries, see [MT95, ADT09, HK10, NT08, AR18, AR19, Tep08, MT03, BCH+17]. The structure
of these graphs is such that they combine spectral properties of Dyson hierarchical models and
transport properties of one-dimensional chains. The methods that we use are discretized ver-
sions of the methods recently developed in [AR18, AR19] (see also [ARHTT18, ST20]), which
provides a construction of Green’s functions for diamond fractals.

In this paper we generalize the construction in [DDMT20] and show that it works for any
graph possessing a transversal decomposition (see assumption 2.11). More precisely, on such
a graph, a Hamiltonian based on nearest-neighbor coupling and with a certain transversal pro-
jective structure (see assumption 2.8) can be engineered to admit a PQST. One of the new
features we present in this paper is that we can transport quantum state from multiple sites on
such graphs to another set of such sites. For more details, see theorem 2.13. The primary goal
of this paper is to demonstrate new spectral properties of the graphs on which a PQST can
be achieved. To this end we !rstly need to understand the spectrum of the Hamiltonians we
construct. Advantageous settings to accomplish this task are projective limit-type spaces. Anal-
ysis on projective limit spaces is an active area of current research [CK13b, CK13a]. Barlow
and Evans used projective limits to produce a new class of state spaces for Markov processes
[BE04]. The spectra of Laplacians on Barlow–Evans type projective limit spaces were studied
in [ST20], see also [KS13, KKP+12]. We proceed in this paper in the same spirit but dealing
with Hamiltonians instead of Laplacians. To this end, we provide a discretized version of a
sequence of projective limit spaces [ST20, de!nition 2.1, page 3]. By doing so, we are able
to construct a sequence of graphs {Gi}i!0 and equip each Gi with a Hamiltonian Hi such that
PQST can be achieved (under some additional assumptions). Next, we provide a complete
description of the spectrum of Hi and for the convenience of the reader, we state the result in
the following theorem, see the proof of theorem 4.10 for further details.

Theorem 1.1. Let i be a nonnegative integer and let Hi be the Hamiltonian lifted from a
Jacobi matrix J on G0 to Gi. Then there exists a collection J = J0, J1, . . . , Jm of submatrices
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of J such that

σ(Hi) = σ(J) ∪ σ(J1) ∪ · · · ∪ σ(Jm).

In particular, if the Jacobi matrix J corresponds to the case of PQST in the 1D chain G0 then
Hi realizes PQST on Gi. Therefore, the above-given formula describes spectra of Hamiltonians
realizing PQST on Gi.

The Jacobi matrices J0, . . . , Jm are easily determined by the construction scheme that gener-
ates Gi from G0. As we will see, the Jacobi matrices J0, . . . , Jm re"ect geometrical information
of the graph Gi. Moreover, this result provides a straightforward algorithm to determine the
spectrum σ(Hi). In section 5, we demonstrate how to apply this result on two models of
diamond-type graphs and show that in this case the corresponding PSQT Hamiltonians have
multiple eigenvalues, which to the best of our knowledge seems to be unnoticed until now.
These models are a particular case of the Berker lattice construction [BO79] and have been ini-
tially the focus of considerable work in statistical mechanics (see, for example [DdI83, LTS83,
Col85]).

Our work is part of a long term study of mathematical physics on fractals and self-similar
graphs [Bel92a, Bel92b, BCD+08a, BCD+08b, ADT09, ADT10, ABD+12, Dun12, Akk13,
ADL13, ARKT16, ACD+20, HM20, MDDT20], in which novel features of quantum processes
on fractals can be associated with the unusual spectral and geometric properties of fractals
compared to regular graphs and smooth manifolds.

Our results and constructions are mathematically rigorous, and correspond to physical
implementations which are common to using graph models in physics. We do not present
a complete literature list, but note that original motivation of Bose et al [BB05a, BB05b,
BBVB11, Bos03] uses quantum chains, commonly modeling arrangements of cold atoms.
Our construction allows the same physical implementation as in [BB05a, BB05b, BBVB11,
Bos03]. There is substantial recent interest in the analysis of spin chains of more compli-
cated arrangements than one-dimensional, see [KLY17a, KLY17b] and references therein, and
this is the subject of our work. In comparison to [DDMT20], we extended a collection of
graphs, and obtained more information about eigenvalues and eigenfunctions. Although it is
not our objective to investigate other implementations, we note that possible connections may
exist to work of Rammal, Bellissard et al, see [Bel92a, Ram84, GWR+87] and references
therein.

The paper is organized as follows. section 2 starts with the de!nition of a transversal layer,
which is one of the fundamental concepts for our construction (see remark 2.2 for some intu-
ition). Then, we build up the technique of constructing Hamiltonians H that realize PQST
and as a matter of fact enlarge the class of such Hamiltonians. Next, section 3 gives a partial
description of spectra of the Hamiltonians H by providing some generic spectral statements.
After that, section 4 de!nes a discrete version of a projective limit space, on which a more
precise spectral description is given in theorem 4.10. Section 5 demonstrates how to apply
theorem 4.10 to two models of diamond-type graphs. Section 6 discusses the results in further
geometrical structures.

2. PQST on graphs

In this section, we extend the study of PQST on diamond fractal graphs [DDMT20] to a more
general class of graphs. Let G = (V(G), E(G)) be a !nite connected graph with a vertex set
V(G) and an edge set E(G). We equip G with the geodesic metric d : V(G) × V(G) → R, i.e.
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for x, y ∈ V(G), d(x, y) gives the number of edges in a shortest path connecting x and y. Suppose
A ⊂ V(G) is a non-empty set of vertices. The distance of A to a vertex x ∈ V(G) is de!ned as

d(x; A) = min{d(x, y) : y ∈ A}.

The following de!nition generalizes the concept of the intrinsically transversal layers intro-
duced in [DDMT20]. This concept can be found in [HO07, page 76] under the name
strati!cation and plays a crucial role in the quantum decomposition of a graph adjacency
matrix.

Definition 2.1. Let A ⊂ V(G), A '= Ø and n ∈ N. An nth transversal layer with respect to A
is de!ned as

Π−1
A (n) = {x ∈ V(G) : d(x; A) = n},

where ΠA : V(G) → N, ΠA(x) = d(x; A). A transversal decomposition of G with respect to A
is de!ned as V(G) =

⋃
nΠ

−1
A (n). Note that Π−1

A (0) = A.

Remark 2.2. The concept of transversal layer is crucial for our construction since the ref-
erence set A plays the role of sender sites and the last nonempty transversal layer is the set of
receiver sites. In other words, we perfectly transfer data from A to the farthest layer. Moreover,
in a sense each layer acts as a site in the 1D case modulo the lifting procedure described in this
section.

A quantum state on G is represented by a complex-valued function on the vertices V(G) and
such a function is also referred to as a wave function. The following Hilbert space will be used
as a domain of the constructed Hamiltonian, which realizes PQST on G.

Definition 2.3. Let A ⊂ V(G), A '= Ø. For two wave functions ψ and ϕ de!ne the inner
product

〈ψ| |ϕ〉A =
∑

x∈V

ψ(x)ϕ(x)µA(x), (2.1)

where the weights are given by µA(x) = 1
|Π−1

A (n)|
with n = ΠA(x) and |Π−1

A (n)| denotes the

number of vertices in the transversal layer Π−1
A (n) that contains x. Clearly, the space L2(G) =

{ψ | ψ : V(G) → C} of quantum states on G equipped with this inner product is a Hilbert
space.

Another concept that our construction relies on is a radial function. Within the above-given
settings, a wave function is said to be radial with respect to A if its values depend only on the
distance from A.

Definition 2.4. Let V(G) =
⋃N

n=0 Π
−1
A (n) be a transversal decomposition of G with respect

to A, for some A ⊂ V(G), A '= Ø. The subspace of radial functions with respect to A is
de!ned by

L2
rad(G) = {ψ ∈ L2(G) | ψ(x) = ψ(y) if ΠA(x) = ΠA(y)}.

The projection of L2(G) onto L2
rad(G) is denoted by Proj : L2(G) → L2

rad(G).

The advantage of the transversal decomposition V(G) =
⋃N

n=0 Π
−1
A (n) is that it induces

an auxiliary 1D chain (path graph) DN = (V(DN), E(DN)) with a set of vertices V(DN) =
{0, . . . , N} and a set of edges E(DN) = {(n − 1, n) : 1 ! n ! N}. A transversal layer Π−1

A (n) is
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identi!ed with the vertex n in the sense that the vertices n − 1 and n are de!ned to be adjacent
in the 1D chain if and only if their corresponding transversal layers are adjacent. To reduce
the PQST problem from the graph G to the auxiliary 1D chain DN , we introduce the following
Hilbert space L2(DN) = {ψ | ψ : V(DN) → C} equipped with the standard inner product

〈ψ|ϕ〉 =
N∑

n=0

ψ(n)ϕ(n). (2.2)

Moreover we project a wave function in L2(G) to a wave function in L2(DN) through averaging
its values on the transversal layers:

P : L2(G) → L2(DN), ψ +→ Pψ(n) =
1

|Π−1
A (n)|

∑

x∈Π−1
A (n)

ψ(x).

Lemma 2.5. Let P∗ be the adjoint operator of P, i.e. 〈Pψ|ϕ〉 = 〈ψ|P∗ϕ〉A for ψ ∈ L2(G)
and ϕ ∈ L2(DN). Then P∗ is given by

P∗ : L2(DN) → L2(G), ϕ +→ P∗ϕ(x) = ϕ(ΠA(x)).

Proof. A simple calculation shows that

〈Pψ|ϕ〉 =
N∑

n=0

Pψ(n)ϕ(n) =
∑

x∈V

ψ(x)ϕ(ΠA(x))µA(x) = 〈ψ|P∗ϕ〉A.

"

We will use the following lemma later.

Lemma 2.6. Let IdDN : L2(DN) → L2(DN) be the identity operator on L2(DN). Then

(a) The range of P∗ is L2
rad(G).

(b) Ker P = (L2
rad(G))⊥.

(c) PP∗ = IdDN .
(d) P∗P = Proj.

Proof. (a) and (c) follow by de!nition. (b) Use Ker P = (Range P∗)⊥. (d) Decompose
ψ = Proj ψ + ψ⊥

rad, i.e. Proj ψ ∈ L2
rad(G) and ψ⊥

rad ∈ (L2
rad(G))⊥. By (b) it follows P∗Pψ =

P∗P Projψ = Projψ, where the last equality holds by the de!nitions of P and P∗. "

In what follows, we will need the following mappings.

Definition 2.7. Let V(G) = Π−1
A (0) ∪Π−1

A (1) . . . ∪Π−1
A (N) be a transversal decomposi-

tion of G with respect to A for some A ⊂ V(G), A '= Ø and N ∈ N. We de!ne the following
mappings:

(a) The left-hand side degree of a vertex deg −:

deg− : Π−1
A (1) . . . ∪Π−1

A (N) → N.

Let x ∈ Π−1
A (n) for some n ∈ {1, . . . , N}. The mapping deg −(x) assigns the vertex x the

number of edges that connect x to vertices in Π−1
A (n − 1).
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(b) The right-hand side degree of a vertex deg +:

deg+ : Π−1
A (0) . . . ∪Π−1

A (N − 1) → N.

Let x ∈ Π−1
A (n) for some n ∈ {0, . . . , N − 1}. The mapping deg +(x) assigns the vertex

x the number of edges that connect x to vertices in Π−1
A (n + 1).

(c) The same transversal layer degree of a vertex deg0:

deg0 : Π−1
A (0) . . . ∪Π−1

A (N) → N.

Let x ∈ Π−1
A (n) for some n ∈ {0, . . . , N}. The mapping deg0(x) assigns the vertex x the

number of edges that connect x to vertices in the same transversal layer Π−1
A (n).

A Hamiltonian on G is a self-adjoint operator H acting on L2(G). It was observed in
[DDMT20] that constructing a Hamiltonian, which is not only adapted to the graph structure
but also to the given transversal decomposition of the diamond-type graphs, leads indeed to a
Hamiltonian that realizes a PQST. Motivated by these observations, we impose the following
assumptions on H:

Assumption 2.8 (Assumptions on the Hamiltonian). The self-adjoint operator H
acting on L2(G) is assumed to satisfy the following properties:

(a) Nearest-neighbor coupling: for x, y ∈ V(G), let 〈x| H|y〉A = 0 if x and y are not connected
by an edge, i.e., the transition matrix element from the quantum state |y〉 to |x〉 is zero if
the vertices y and x are not adjacent in G.

(b) Radial coupling: for x1, y1, x2, y2 ∈ V(G) such that both x1, y1 and x2, y2 are adjacent, we
set

〈x1| H|y1〉A = 〈x2| H|y2〉A

if ΠA(x1) = ΠA(x2) and ΠA(y1) = ΠA(y2),

i.e., the transition matrix elements are compatible with the transversal decomposition
of F.

(c) For x, y ∈ Π−1
A (n), n ∈ {0, . . . , N} we assume 〈x| H|x〉A = 〈y| H|y〉A. Moreover, if x, y ∈

Π−1
A (n) are adjacent, then we assume 〈x| H|y〉A = 〈x| H|x〉A.

Remark 2.9. For a vertex x ∈ V(G), the quantum state |x〉 corresponds to the one-excitation
state at the vertex x, i.e.

|x〉 =

{
1 on vertex x

0 on V(G) \ {x}.

A Hamiltonian H on G is related to an operator on the 1D chain DN by

J = PHP∗, (2.3)

which acts on L2(DN). Similarly, we denote the one-excitation states in L2(DN) by
|n〉 = (0, . . . , 1, . . . , 0) where the 1 occupies the nth position. The following proposition gives
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a simple criterion for determining whether the constructed Hamiltonian H is self-adjoint or
not.

Proposition 2.10. Let V(G) =
⋃N

n=0 Π
−1
A (n) be a transversal decomposition of G with

respect to A, for some A ⊂ V(G), A '= Ø and let assumption 2.8 hold. Then, the Hamilto-
nian H is self-adjoint with respect to the inner product (2.1) if and only if J is self-adjoint with
respect to the inner product (2.2).

Proof. Note that equation (2.3) implies that J satis!es the nearest-neighbor coupling con-
dition. Hence it is suf!cient to consider adjacent vertices, x ∈ Π−1

A (n) = {x1, . . . , xk} and
y ∈ Π−1

A (n + 1) = {y1, . . . , ym} for some n ∈ {0, . . . , N − 1}. We observe

〈n|J(n + 1)〉 = (〈x1| + · · · + 〈xk|)(|Hy1〉 + · · · + |Hym〉)

=
∑

xi∈Π−1
A (n)

deg+(xi) 〈x|Hy〉A,

where the second equality holds by the radial coupling assumption. Similarly,

〈Jn|n + 1〉 =
∑

yi∈Π−1
A (n+1)

deg−(yi) 〈Hx|y〉A.

The statement follows as the matching identity
∑

xi∈Π−1
A (n)

deg+(xi) =
∑

yi∈Π−1
A (n+1)

deg−(yi)

holds. It gives, in fact, the number of edges between the transversal layers Π−1
A (n) and

Π−1
A (n + 1). We consider now the diagonal elements

〈n|Jn〉 = (〈x1| + · · · + 〈xk|)(|Hx1〉 + · · · + |Hxm〉)

=
∑

xi∈Π−1
A (n)

(deg0(xi) + 1) 〈x|Hx〉A.

Similarly, we have 〈Jn|n〉 =
∑

xi∈Π−1
A (n)(deg0(xi) + 1) 〈Hx| x〉A. "

From now on, we require that the graph G satis!es the following assumption.

Assumption 2.11 (Assumptions on the graph G). Let G be a !nite connected graph.
We assume there exists A ⊂ V(G), A '= Ø that transversally decomposes V(G) =

⋃N
n=0 Π

−1
A (n)

in such a way that the following holds:

(a) The mappings deg +, deg − and deg0 are constant on a transversal layer, i.e., for x, y ∈
Π−1

A (n) we have

deg+(x) = deg+(y), deg−(x) = deg−(y), deg0(x) = deg0(y).

The following lemma follows in exactly the same way as [DDMT20, lemma 2].

Lemma 2.12. Under the assumptions 2.8 and 2.11, we can prove that the subspace L2
rad(G)

is invariant under H.

Recall that our primary motivation is to understand how quantum systems beyond a 1D
chain can be engineered to produce sub-protocols of PQST. Let G be a graph transversally
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Figure 1. (Left) This graph does not satisfy the graph assumption 2.11 with respect to
A = {xL}. However, it is possible to construct a Hamiltonian that admits PQST from
A = {xL} to B = {xR}. (Right) The same graph satis!es the graph assumption 2.11
with respect to A = {xL,1, xL,2}. Theorem 2.13 implies the possibility of constructing a
Hamiltonian that admits PQST from A = {xL,1, xL,2} to B = {xR}.

decomposed with respect to A, satisfying the assumption 2.11 and associated with the 1D chain
DN. We set A = {xL,1, . . . , xL,m} and de!ne the quantum state |A〉 = |xL,1〉 + . . . |xL,m〉. Note
that |A〉 = P∗ |0〉 ∈ L2

rad(G). Similarly, we de!ne the quantum state |B〉 = P∗ |N〉 ∈ L2
rad(G).

The following theorem provides a suf!cient condition of how to design a Hamiltonian on G
that achieves a perfect transfer of the quantum state |A〉 into |B〉.

Theorem 2.13. Under the assumptions 2.8 and 2.11, if a PQST on the 1D chain DN is
achieved, i.e., there exists T > 0 such that eiTJ |0〉 = eiφ |N〉 for some phase φ, then a PQST
on G is also achieved with the same time T and phase φ, i.e.,

eiTH |A〉 = eiφ |B〉 and eiTH |B〉 = eiφ |A〉 ,

where A = {xL,1, . . . , xL,m} is the set of sender sites and B is the set of receiver sites.

Proof. In the same way as [DDMT20, proof of theorem 1, page 9], we show eiTHProj |A〉 −
eiφ |B〉 ∈ Ker(P). Using |A〉 , |B〉 ∈ L2

rad(G) we conclude with lemma 2.12, eiTHProj |A〉 =
eiφ |B〉. Let Proj⊥ be the projection of L2(G) onto (L2

rad(G))⊥. The statement follows by
(H Proj + H Proj⊥) |A〉 = H Proj |A〉

"

Remark 2.14. In a previous paper [DDMT20], we considered the PQST from an excited
state on a single vertex xL to another excited state on a single vertex xR. Theorem 2.13 covers
additional situations, in which a PQST is achieved between the transversal layers A ⊂ V(G)
and B ⊂ V(G), and each of those layers may contain more than a single vertex, see !gure 1
(right). On the other hand, !gure 1 (left) shows an example of a graph that doesn’t satisfy the
assumption 2.11 with respect to A = {xL}. However, it is possible to construct a Hamiltonian
that admits a PQST from A = {xL} to B = {xR}.

Let (H(x, y))x,y∈V(G) be the matrix representation of H with respect to the canonical basis
{|x〉}x∈V(G). The following result relates the matrix elements of H to J and can be proved
similarly to [DDMT20, proposition 1].

Proposition 2.15. Let x ∈ V(G). Also, let y ∈ V(G) be adjacent to x and ΠA(y) =
ΠA(x) ± 1. Then

(a) H(x, x) = 1
deg0(x)+1 〈ΠA(x)| J |ΠA(x)〉.

(b) H(x, y) = 1
deg±(x) 〈ΠA(x)| J |ΠA(x) ± 1〉.

8



J. Phys. A: Math. Theor. 54 (2021) 125301 G Mograby et al

3. Generic spectral properties of H

3.1. Radial eigenvectors of H

The goal of this section is to give a partial description of the spectrum of a Hamiltonian H satis-
fying the assumption 2.8. This part of the spectrum is related to the transversal decomposition
of G and consequently can be described for a generic G satisfying the assumption 2.11. The
following lemmas reveal some advantages for considering the induced 1D chain and the Jacobi
matrix J while investigating the Hamiltonian H. In section 4.1, we will see that this approach
is very fruitful. In fact, we will develop this approach further to give a complete description of
the spectrum σ(H) on a broad class of graphs.

Lemma 3.1. Let J = PHP∗. Then σ(J) ⊂ σ(H). Moreover, if λ ∈ σ(J) is an eigenvalue with
the eigenvector vλ then P∗vλ is a corresponding H-eigenvector.

Proof. Let λ ∈ σ(J) be an eigenvalue corresponding to the eigenvector vλ ∈ L2(DN). Then

λP∗vλ = P∗Jvλ = P∗PHP∗vλ = Proj HP∗vλ = HP∗vλ,

where the last equality holds as HP∗vλ ∈ L2
rad(G). "

Note that P∗vλ ∈ L2
rad(G) and hence we denote it as a radial eigenvector.

Lemma 3.2. Let z /∈ σ(H). Then the resolvent operators satisfy (J − z)−1 = P(H − z)−1P∗.

Proof. Note z /∈ σ(H) implies z /∈ σ(J) by lemma 3.1. We prove that P(H − z)−1P∗ is the
inverse operator of J − z. We have

(J − z)P(H − z)−1P∗ = P(H − z)P∗P(H − z)−1P∗

= P(H − z)Proj(H − z)−1P∗

= IdDN

where the equalities hold by lemmas 2.6 and 2.12. A similar argument shows that P(H − z)−1P∗

is also a left inverse of J − z. "

Let PJ,λ and PH,λ be the eigenprojections corresponding to λ ∈ σ(J) and λ ∈ σ(H),
respectively.

Theorem 3.3. Let λ ∈ σ(J). Then PJ,λ = P PH,λP∗.

Proof. The spectral representation of the resolvent operators in lemma 3.2 gives

∑

λ̃∈σ(J)

1
z − λ̃

PJ,λ̃ =
∑

λ̃∈σ(H)

1
z − λ̃

PPH,λ̃P∗ (3.1)

Multiplying both sides of equation (3.1) by z − λ and subsequently taking the limit z → λ
yields the result. "

9
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For the rest of the paper, we assume that the auxiliary 1D chain is equipped with the
following Jacobi matrix

J =





B1 J1 0
J1 B2 J2 0

0 J2 B2
. . .

0
. . .

. . . JN

JN BN+1




, (3.2)

where B1, . . . , BN+1 ∈ R and Ji > 0 for i ∈ {1, . . . , N}. Let {p0(z), . . . , pN+1(z)} be monic
polynomials de!ned by the recurrence relations:

{
p0(z) = 1, p1(z) = z − B1,

pk(z) = (z − Bk)pk−1(z) − J2
k−1 pk−2(z), k = 2, 3, . . . , N + 1.

(3.3)

The following proposition summarizes some useful spectral properties of J (for more details,
see [HO07, p 48]).

Proposition 3.4. Every zero of pN+1(z) is real and simple. Moreover, σ(J) = {λ ∈ C :
pN+1(λ) = 0}. For an eigenvalue λ ∈ σ(J), the corresponding eigenvectors is given by

vλ =

(
p0(λ),

p1(λ)
J1

, . . . ,
pN(λ)

J1 . . . JN

)t

. (3.4)

Corollary 3.5. Let λ ∈ σ(J). Then the corresponding H-eigenvector is given P∗vλ, where
vλ is de!ned in (3.4).

3.2. Lifting-& -gluing lemma

In this section we will prove a lemma that is essential for the reminder of the paper. We con-
sider a 1D chain DN equipped with a Jacobi matrix J. When Dirichlet boundary conditions are
imposed, we write JD for the Jacobi matrix. For a given k ∈ N, k # 2 we de!ne GD to be the
graph that is constructed by taking k copies of DN and gluing their boundary vertices together
as shown in !gure 2. To distinguish between the copies, we use the following notation: given
a k-letter alphabet {w1, . . . , wk}, we denote the ith copy of DN by DN × {wi} and refer to the
associated subgraph in GD as the wi-branch of GD. The graph GD satis!es the assumption 2.11
with respect to A = {0} and DN is the auxiliary 1D chain. The following result is one of the
key ingredients in our construction.

Lemma 3.6 (Lifting- & -gluing lemma). Let λ ∈ σ(JD) and vD
λ be the corresponding JD-

eigenvector. We de!ne vλ to be the vector on GD that coincides with vD
λ on a wi-branch and

coincides with −vD
λ on another branch, say wj-branch, for some j '= i, i.e.,

vλ =






vD
λ on the wi-branch

−vD
λ on the w j-branch

0 elsewhere

(3.5)

Then λ ∈ σ(H) and vλ is an H-eigenvector corresponding to λ. Moreover, vλ ∈ (L2
rad(GD))⊥.

10
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Figure 2. (Left) Three copies of the 1D chain D4 with V(D4) = {0, . . . , 4}. The ith copy
is denoted by D4 × {wi}, where wi is a letter in the alphabet W = {w1, w2, w3}. (Right)
The graph GD is constructed by gluing the three copies at the boundary points. Another
way of saying this is that the graph GD is made up of three branches, the w1-branch,
w2-branch and w3-branch.

In other words, if we lift a JD-eigenvector (Dirichlet eigenvector of J) to a branch and lift
the same vector with the opposite sign to another branch, and if after that we assign zero to
the remaining branches and glue them together, then this will result in an eigenvector of H on
GD corresponding to the same eigenvalue. An immediate consequence of lemma 3.6 is that the
spectrum of H is determined by the spectra of J and JD.

Corollary 3.7. σ(H) = σ(J) ∪ σ(JD)

Proof. The radial eigenvectors are constructed according to lemma 3.1, which implies
σ(J) ⊂ σ(H). The remaining eigenvectors are elements of (L2

rad(GD))⊥ and constructed by the
lifting- & -gluing lemma 3.6. Note that for the 1D chain DN the Jacobi matrices J and JD

have N + 1 and N − 1 eigenvectors, respectively. Each J-eigenvector is lifted to a radial H-
eigenvector on GD and each JD-eigenvector generates k − 1 different H-eigenvectors on GD.
Note that the graph GD has (N + 1) + (N − 1)(k − 1) vertices. "

The observation in corollary 3.7 is the !rst step in the approach that will be further developed
in the next section. Indeed, we are going to show that the H-spectra on a broad class of graphs
are determined by the spectra of a collection of Jacobi matrices.

4. Projective limit constructions

The following de!nitions are roughly speaking a discrete version of [ST20, de!nition 2.1,
page 3].

Definition 4.1. Let k # 2. We refer to a k-letter alphabet {w1, . . . , wk} as a vertical multi-
plier space. A word of length m is an element of the m-fold product Wm = W1 × · · · × Wm

for some vertical multiplier spaces W1, . . . , Wm. For a word w ∈ Wm, we write shortly
w = w1 . . . wm instead of w = (w1, . . . , wm).

Note that the vertical multiplier spaces W1, . . . , Wm are not assumed to have the same
number of letters.

Definition 4.2. We initialize the graph G0 = (V(G0), E(G0)) to be a 1D chain DN for some
N # 1. We call G0 the horizontal base space.

Remark 4.3. The assumptions on the horizontal base space in [ST20] are very general
(local compact second countable Hausdorff space). In this sense, de!nition 4.2 represents a
discretization of a speci!c case.

Definition 4.4 (cf [KKMM16]). Given a sequence of vertical multiplier spaces {Wi}i!1

and a horizontal base space G0 = DN . We de!ne a sequence of graphs {Gi}i!0 inductively.

11
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Figure 3. (Left) To construct the graph G1, we initialize the horizontal base space G0 to
be the 1D chain D4 with the vertices {0, . . . , 4}. We set W = {w1, w2} to be the vertical
multiplier space. Then G1 is constructed as in de!nition 4.4, where we choose the sub-
graph B1 such that V(B1) = {0, 4} and E(B1) = ∅. Note that the address assignments of
the vertices described in de!nition 4.4 are shown on the graph of G1. (Right) A diagram
shows how the different mappings from de!nition 4.5 are related to each other.

(a) Suppose Gi−1 = (V(Gi−1), E(Gi−1)) is given for some integer i # 1.
(b) Choose a subgraph Bi = (V(Bi), E(Bi)) of Gi−1, such that Gi−1\Bi is a collection of 1D

chains. Note Bi may be an edgeless or a disconnected subgraph.
(c) For a 1D chain D in Gi−1\Bi, we set GD to be the graph that is constructed by taking the

copies D × {wk} for wk ∈ Wi and gluing their boundary vertices together as shown in
!gure 2.

(d) We construct Gi by replacing each 1D chain D in Gi−1\Bi with the corresponding GD.

For convenience, we set V(Gi) = [(V(Gi−1)\V(Bi)) × Wi]
⋃

V(Bi) for the set of vertices of
Gi and E(Gi) = [(E(Gi−1)\E(Bi)) × Wi]

⋃
E(Bi) for the set of edges of Gi, see !gure 3 (left).

Definition 4.5. Let {Gi}i!0 be constructed as described in de!nition 4.4. We de!ne πi :
V(Gi−1) × Wi → V(Gi) by

πi(x, w) =

{
(x, w) if x ∈ V(Gi−1) \ V(Bi)

x if x ∈ V(Bi),

and also de!ne the mapping φi : V(Gi) → V(Gi−1) by

φi(x, g) = x if x ∈ V(Gi−1) \ V(Bi)

φi(x) = x if x ∈ V(Bi).

The following proposition shows that each graph in {Gi}i!0 admits a natural transversal
decomposition, where the horizontal base space G0 is used as the common auxiliary 1D chain
for the entire sequence {Gi}i!0.

Proposition 4.6. Let {Gi}i!0 be constructed as described in de!nition 4.4. Then for
each i # 1, the graph Gi can be transversally decomposed with respect to Ai = (φi)−1 ◦
· · · ◦ (φ1)−1(0) ⊂ V(Gi) so that assumption 2.11 holds. Moreover, for ΠAi (x) = d(x; Ai), see
de!nition 2.1), we have Π−1

Ai
(x) = φ1 ◦ · · · ◦ φi(x).

Proof. Note that a vertex in Gi is denoted by nw1w2 . . . wk, where n ∈ {0, . . . , N} and
w1w2 . . . wk ∈ Wk. The word w1w2 . . . wk can be considered as a vertical coordinate which
gives the address of the branch that contains this vertex. On the other hand, the integer n can be

12
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Figure 4. The graphs G̃2 and G2 are constructed as described in de!nition 4.4. While G2
satis!es the graph assumption 2.11, G̃2 does not. For the construction of G̃2 and G2, we
set G1 to be the graph shown in !gure 3. (Left) G̃2 is constructed by taking the two copies
G1 × {w1}, G1 × {w2} and choosing the subgraph B̃2 such that V(B̃2) = {0, 2w1} and
E(B2) = ∅. (Right) G2 is constructed by taking the two copies G1 × {w1}, G1 × {w2}
and choosing the subgraph B2 such that V(B2) = {0, 2w1, 2w2, 4} and E(B2) = ∅. Note
that G2 is the level-2 Hambly–Kumagai diamond graph and denoted by HK2. For more
details see Remark 4.12 and section 5.1.

considered as a radial coordinate, which gives the distance to Ai = (φi)−1 ◦ · · · ◦ (φ1)−1(0). By
de!nition 4.5 we have φ1 ◦ . . . ◦ φi(nw1w2 . . . wk) = n and therefore, this implies ΠAi (x) =
φ1 ◦ · · · ◦ φi(x). Now G0 as a 1D chain, it admits a trivial transversal decomposition with
respect to {0} i.e., V(G0) = Π−1

0 (0) ∪Π−1
0 (1) . . . ∪Π−1

0 (N),Π−1
0 (n) = {n}. Similarly, Gi

admits a transversal decomposition with respect to Ai,

V(Gi) = Π−1
Ai

(0) ∪Π−1
Ai

(1) . . . ∪Π−1
Ai

(N),

where for x ∈ V(Gi), we have x ∈ Π−1
Ai

(n) ⇐⇒ φ1 ◦ · · · ◦ φi(x) ∈ Π−1
0 (n). "

Each graph in {Gi}i!0 admits a natural transversal decomposition. One may wonder if these
graphs also satisfy the graph assumption 2.11 with respect to this decomposition. The following
example shows that this is not true in general.

Example 4.7. Let the graph G̃2 be constructed as described in !gure 4. G̃2 does not satisfy the
graph assumption 2.11 as the mappings deg + and deg − are NOT constant on the transversal
layer Π−1

0 (2) = {2w2w2, 2w1, 2w2w1}:

2 = deg+(2w1) '= deg+(2w2w2) = deg+(2w2w1) = 1,

2 = deg−(2w1) '= deg−(2w2w2) = deg−(2w2w1) = 1.

4.1. Main inductive result

We present a discrete version of a general construction in [ST20].

(a) We begin with a sequence of vertical multiplier spaces {Wi}i!1 and a 1D chain G0.
(b) We construct {Gi}i!0 and {Bi}i!1 as described in de!nition 4.4.
(c) We transversally decompose {Gi}i!0 as described in proposition 4.6 and require that each

Gi satis!es the graph assumption 2.11 with respect to this decomposition.

Remark 4.8. Assumption 2.11 are to ensure that our construction realizes PQST in relatively
simple practical situations. If one is interested in general Hamiltonians, the assumption 2.11 are
not needed in this section and the statements and proofs will remain the same, as was pointed
out by one of the referees.

The horizontal base space G0 plays the role of the auxiliary 1D chain and will be used to lift
a Hamiltonian to each Gi, i # 1. To this end, we equip G0 with a Jacobi matrix J of the form

13
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(3.2). The Jacobi matrix acts on the Hilbert space L2(G0) = {ψ | ψ : V(G0) → C}, 〈ψ|ϕ〉 =∑N
n=0 ψ(n)ϕ(n). Recall that the transversal decomposition of Gi is with respect to Ai = (φi)−1 ◦

· · · ◦ (φ1)−1(0) ⊂ V(Gi). Hence, we proceed as in section 2 and equip each Gi with the Hilbert
space L2(Gi) = {ψ | ψ : V(Gi) → C}, 〈ψ|ϕ〉Ai

=
∑

x∈V(Gi )
ψ(x)ϕ(x)µAi (x), where the weights

are given by µAi(x) = 1/|Π−1
Ai

(n)| for n = ΠAi (x) and |Π−1
Ai

(n)| denotes the number of vertices
in the transversal layer Π−1

Ai
(n) that contains x. Another useful object is the pullback operator

induced by φi : V(Gi) −→ V(Gi−1) and it is de!ned as follows

φ∗
i : L2(Gi−1) −→ L2(Gi), ϕ −→ φ∗

i ϕ(x) = ϕ(φi(x)).

The averaging operator and its adjoint are given by

Pi : L2(Gi) → L2(G0), ψ +→ Piψ(n) =
1

|Π−1
Ai

(n)|
∑

x∈Π−1
Ai

(n)

ψ(x).

P∗
i : L2(G0) → L2(Gi), ϕ +→ P∗

i ϕ(x) = φ∗
1 . . .φ∗

i ϕ(x) = ϕ(φ1 ◦ · · · ◦ φi(x)).

We are now in a position to construct a Hamiltonian Hi on Gi, i # 1:

(a) Let Hi be a Hamiltonian on Gi that satis!es the assumption 2.8.
(b) Let Hi be lifted from G0 to Gi via J = PiHiP∗

i .

The following result is a straightforward generalization of lemma 3.1, see [ST20].

Lemma 4.9. We have that σ(Hi−1) ⊂ σ(Hi). Moreover, if λ ∈ σ(Hi−1) is an eigenvalue
corresponding to the eigenvector vλ then φ∗

i vλ is an Hi-eigenvector with the same eigenvalue.

The following theorem characterizes the spectrum of the Hamiltonian Hi on Gi, i # 1.

Theorem 4.10. Let i be a nonnegative integer and let Hi be the Hamiltonian lifted from G0

to Gi, that is, there is a Jacobi matrix J such that J = PiHiP∗
i . Then there exists a collection

J = J0, J1, . . . , Jm of submatrices of J such that

σ(Hi) = σ(J) ∪ σ(J1) ∪ · · · ∪ σ(Jm).

In particular, if the Jacobi matrix J corresponds to the case of PQST in a 1D chain then Hi

realizes PQST on Gi. Therefore, the above-given formula describes spectra of Hamiltonians
realizing PQST on Gi.

Proof. Assume that the statement is correct for σ(Hi−1). By de!nition Gi is constructed
by replacing each 1D chain in Gi−1\Bi with multiple copies glued together at their boundary
vertices. Let J0, . . . , Jk be the collection of the Jacobi matrices associated with the 1D chains
in Gi−1\Bi. Using lemma 4.9 combined with lemma 3.6 (lifting- & -gluing lemma), we obtain
σ(Hi) = σ(J0) ∪ σ(J1) ∪ · · · ∪ σ(Jk) ∪ σ(Hi−1). "
Remark 4.11. A Jacobi matrix is one of the canonical forms of self-adjoint operators and
there is a wide class of self-adjoint operators which are unitarily equivalent to the direct sum
of Jacobi matrices. Therefore, such a spectral decomposition is valid for a more general class
of graphs and, in fact, various approaches have been applied to obtain similar representations
in different situations, see [BBJL17, BK13]. Our main assumptions on Hi are to ensure that Hi

realizes PQST in relatively simple practical situations. If one is interested in general Hamilto-
nians, the transversal decomposition of the graph and the assumption 2.11 can be relaxed for
this particular statement and the proof will remain the same, as was pointed out by one of the
referees.

14



J. Phys. A: Math. Theor. 54 (2021) 125301 G Mograby et al

Remark 4.12. Note that graphs in !gures 1, 4, 5, 10 and 11 can be constructed in two differ-
ent, but equivalent ways: either gluing copies of smaller graphs, or using inductive (projective)
procedures [MT95, MT03, AR18, AR19, ST20].

Note also that, although G̃2 does not satisfy assumption 2.11, a PQST Hamiltonian can be
found using the methods of [MDDT20, assumption 2.8 or 2.11] which is a discrete version of
[ST20].

5. Two examples

In this section, we give two particular examples of the proposed construction. Note that in both
cases the sender site is the leftmost point of the graphs and the receiver site is the rightmost
point of the graph. We also demonstrate the applicability of theorem 4.10 on these two models
of diamond-type graphs. A transversal decomposition of each of these models induces a 1D
chain DN . We equip DN with a Jacobi matrix J realizing one of the simplest cases of spin chains
with perfect state transfer discussed in [CDEL04]. To this end, we set

Jn =

√
n(N + 1 − n)

2
, Bn = 0, n = 0, 1, . . .N, BN+1 = 0, (5.1)

for the entries in (3.2). The underlying Jacobi matrix is mirror symmetric and it corresponds
to the symmetric Krawtchouk polynomials [Sze75]. Following proposition 2.15, we lift this
Jacobi matrix to Hamiltonians on these models of diamond-type graphs. Note that the mag-
netic !eld on the 1D chain nodes is assumed to vanish B0 = . . . = BN+1 = 0, resulting in a
Hamiltonian whose diagonal elements are all equal to zero. Moreover, theorem 2.13 implies
that such Hamiltonians achieve a PQST. We investigate these Hamiltonians and give a complete
description of their spectra.

J2 =





0 1 0 0 0

1 0

√
6

2
0 0

0

√
6

2
0

√
6

2
0

0 0

√
6

2
0 1

0 0 0 1 0





. (5.2)

5.1. Hambly–Kumagai diamond graphs

The !rst model is an example of a two-point self-similar graph in the sense of [MT95]. It is
a particular sequence of diamond-type graphs, that was investigated in [HK10]. We will refer
to this model as Hambly–Kumagai diamond graphs. The following de!nition gives a formal
description of the Hambly–Kumagai diamond graphs.

Definition 5.1. We refer to a sequence of graphs {HK'}'!0 as Hambly–Kumagai diamond
graphs, when it is constructed as follows.

• HK0 is initialized as the one edge graph connecting a node xL with another node xR.
• At level ' we construct HK' by replacing each edge from the previous level HK'−1 by

two new branches, whereas each new branch is then segmented into two edges that are
arranged in series.
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Figure 5. Hambly–Kumagai diamond graphs level 2: (left) H2-eigenvector for the
eigenvalue

√
3. (Middle) H2-eigenvector for the eigenvalue 0. Both eigenvectors are

examples for the construction method described in step 2. (Right) H2-eigenvector for
the eigenvalue 0. This eigenvector is an example for the construction method described
in step 3. The number assigned to a vertex is the value of the eigenvector at this vertex.

The !rst three levels of the Hambly–Kumagai diamond graphs are displayed in [DDMT20,
!gure 2, page 5]. Let V(HK') be the set of vertices of HK'. It is easily seen that the transversal
decomposition V(HK') = Π−1

A (0) ∪Π−1
A (1) . . . ∪Π−1

A (N) with respect to A = {xL} induces
a 1D chain DN such that N = 2'. The Jacobi matrix associated with DN , N = 2' is denoted by
J'. For example J2 is given in equation (5.2). We then lift J' to a Hamiltonian H' on HK'. The
Hamiltonian H2 on the Hambly–Kumagai diamond graph of level 2 is given in equation (5.3).

H2 =





0 0 0 0
1
4

1
4

1
4

1
4

0 0 0 0

0 0 0 0 0 0 0 0
1
4

1
4

1
4

1
4

0 0 0 0

√
6

4

√
6

4
0 0

√
6

4

√
6

4
0 0

0 0 0 0 0 0

√
6

4

√
6

4
0 0

√
6

4

√
6

4

1 0

√
6

2
0 0 0 0 0 0 0 0 0

1 0

√
6

2
0 0 0 0 0 0 0 0 0

1 0 0

√
6

2
0 0 0 0 0 0 0 0

1 0 0

√
6

2
0 0 0 0 0 0 0 0

0 1

√
6

2
0 0 0 0 0 0 0 0 0

0 1

√
6

2
0 0 0 0 0 0 0 0 0

0 1 0

√
6

2
0 0 0 0 0 0 0 0

0 1 0

√
6

2
0 0 0 0 0 0 0 0





. (5.3)

5.1.1. Spectrum of the Hamiltonian H2. In this section we demonstrate how to apply theorem
4.10 and determine the spectrum of H2. To this end, we construct the level-2 Hambly–Kumagai
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Figure 6. An example of a radial eigenvector of H2. It corresponds to the eigenvalue 1.
A number assigned to a vertex is the value of the eigenvector at this vertex.

diamond graph HK2 using a sequence of discretized projective limit spaces {G0, G1, G2} (see
de!nition 4.4) such that HK2 = G2. We proceed in the following manner:

(Step 1) G0 is initialized to be the induced auxiliary 1D chain D4 equipped with J2 given
in (5.2). Let λ ∈ σ(J2) with vλ being the corresponding eigenvector. Then P∗

2vλ =
φ∗

1φ
∗
2vλ gives a corresponding radial H2-eigenvector on HK2 (by lemma 3.1 or 4.9).

Figure 6 displays a radial eigenvector of H2 corresponding to the eigenvalue 1. It
describes the oscillations of the transversal layers. This step shows σ(J2) ⊂ σ(H2)
and generates !ve radial eigenvectors. Note that σ(J2) = {−2,−1, 0, 1, 2}, see
table 1 (left).

(Step 2) To construct the graph G1, we proceed as described in !gure 3 (left). This is precisely
the situation described in lemma 3.6 (lifting & gluing lemma), where G1 plays the
role of GD with two branches. Hence, we can lift an eigenvector from G0 to G1

as follows. Recall, when Dirichlet boundary conditions are imposed, we write JD
2

for the Jacobi matrix. Let λ ∈ σ(JD
2 ) with vD

λ as the corresponding JD
2 -eigenvector.

Then, the vector

vλ =

{
vD
λ on the w1-branch

−vD
λ on the w2-branch

de!nes an eigenvector on G1. Lifting vλ to HK2 via φ∗
2vλ gives an eigenvector of H2

(see lemma 4.9). Figure 5 (left) & (middle) display eigenvectors of H2 constructed
as described in step 2. This step showsσ(JD

2 ) ⊂ σ(H2) and generates three additional
eigenvectors. Note that σ(JD

2 ) = {−
√

3, 0,
√

3}, see table 1 (middle).
(Step 3) To construct the level-2 Hambly–Kumagai graph G2 = HK2, we proceed as

described in de!nition 4.4 and !gure 7. We set W = {w1, w2} to be the vertical
multiplier space. We choose the subgraph B2 to be edgeless with the vertices set
V(B2) = {0, 2w1, 2w2, 4}. In this case, G1\B2 is a collection of four 1D chains. The
two copies of each 1D chain in G1\B2 are displayed in !gure 7 (left). Gluing the
copies at the common boundary vertices gives G2 = HK2, see !gure 7 (right). Each
1D chain in G1\B2 is associated with a Jacobi matrix. Due to the mirror symmetry
assumption, it is suf!cient to consider one of the four Jacobi matrices. We denote
this Jacobi matrix by J2,1, see !gure 7 (left). It is easy to check that J2,1 is given by

J2,1 =





0 1 0

1 0

√
6

2

0

√
6

2
1




.
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Table 1. Hambly–Kumagai diamond graph of level 2: eigenvalues table
of J2 (left), JD

2 (middle) and of H2 (right).

Eigenvalue Multiplicity

1 −2 1
2 −1 1
3 0 1
4 1 1
5 2 1

Eigenvalue Multiplicity

1 −
√

3 2
2 0 6
3

√
3 2

Eigenvalue Multiplicity

1 −2 1
2 −

√
3 1

3 −1 1
4 0 6
5 1 1
6

√
3 1

7 2 1

Figure 7. (Right) We set G1 to be the graph shown in !gure 3. G2 is constructed as
described in !gure 4 (right), namely by taking the two copies G1 × {w1}, G1 × {w2}
and choosing the subgraph B2 such that V(B2) = {0, 2w1, 2w2, 4} and E(B2) = ∅. Note
that G2 is the level-2 Hambly–Kumagai diamond graph and denoted by HK2. (Left)
It is easy to see that G1\B2 is a collection of four 1D chains. The two copies of each
1D chain in G1\B2 are displayed in !gure. Each 1D chain in G1\B2 is associated with
a Jacobi matrix. Due to the mirror symmetry assumption, there are only two different
Jacobi matrices. We denote them by J2,1 and J2,2.

Gluing two copies of a 1D chain in G1\B2 generates a situation similar to lemma 3.6
(lifting & gluing Lemma). Hence, we can lift an eigenvector to G2 as follows. Let
λ ∈ σ(JD

2,1) with vD
λ being the corresponding JD

2 -eigenvector. We de!ne

vλ =






vD
λ on the w1-branch of a 1D chain in G1 \ B2

−vD
λ on the w2-branch of the same 1D chain in G1 \ B2

0 elsewhere
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Figure 8. Eigenvalues of multiplicity !ve: (left) With an argument similar to lemma 3.6
(lifting- & -gluing), we can lift a Dirichlet eigenvector f of a particular Jacobi submatrix
to the subgraph colored blue. Moreover, we lift the same eigenvector but with the oppo-
site sign to the subgraph colored gray. The constructed vector is then an eigenvector of
H' with the same eigenvalue. In this way, we can construct a total of four eigenvectors to
the same eigenvalue. (Right) Lifting the same eigenvector as described in the right-hand
side !gure will result in the !fth eigenvector of H' with the same eigenvalue.

It is easy to see that vλ is an eigenvector on H2. This step shows the inclusion
σ(JD

2,1) ⊂ σ(H2) and generates four additional eigenvectors, one eigenvector for
each 1D chain in G1\B2. Note that σ(JD

2,1) = {0}.

The constructed twelve eigenvectors are orthogonal and thereforeσ(H2) = σ(J2) ∪ σ(JD
2 ) ∪

σ(JD
2,1).

Proposition 5.2. Let ' # 3. There exists λ ∈ σ(H'), such that the multiplicity of λ is 5.

Proof. It follows by using an argument similar to lemma 3.6 (lifting- & -gluing). See also
!gure 8 and its caption. "

We will refer to eigenvectors of H' that are supported on a proper subset of V(HK') as
localized eigenvectors.

Proposition 5.3. The total number of localized eigenvectors of H' is 2·4'+4
3 − 2' − 2'−1,

' # 3.

Proof. The number of vertices of HK' at level ' ∈ N is |V(HK')| = 2·4'+4
3 . Next, the above-

described algorithm tells us how to construct the eigenvectors. In particular, it shows that
the only non-localized eigenvectors are the 2' + 1 radial eigenvectors and the 2'−1 − 1 ‘!fth’
eigenvectors in !gure 8 (right). "

For higher levels we can proceed similarly and !nd the spectrum by considering a collection
of Jacobi matrices. A convenient representation of the higher levels spectrum is the integrated
density of states of H', that is de!ned as

N'(x) :=
#{λ ! x | λ is an eigenvalue of H'}

|V(HK')|
,

where # counts the number of eigenvalues of H' less or equal than x. Figure 9 shows the
integrated density of states of H' for both level 6 (left) and level 7 (right).
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Figure 9. Integrated density of states of H': Hambly–Kumagai diamond graph of level
6 (left) and level 7 (right).

5.2. Lang–Plaut diamond graphs

The second model is also an example of a two-point self-similar graph in the sense of [MT95].
It is another prominent example of diamond-type graphs, that was investigated in [LP01]. We
will refer to this model as Lang–Plaut diamond graphs. The following de!nition gives a formal
description of the Lang–Plaut diamond graphs.

Definition 5.4. We refer to a sequence of graphs {LP'}'!0 as Lang–Plaut diamond graphs,
when it is constructed as follows.

• LP0 is initialized as the one edge graph connecting a node xL with another node xR.
• At level ', we construct LP' by segmenting each edge from the previous level LP'−1 into

three new edges. The inner edge of the three new edges is then replaced by two new
branches, whereas each new branch is then segmented into two edges.

The !rst four levels of the Lang–Plaut diamond graphs are displayed in [DDMT20, !gure 4,
page 10]. Let V(LP') be the vertices set of LP'. In the same manner as the Hambly–Kumagai
diamond graphs, it is easily seen that the transversal decomposition V(LP') = Π−1

A (0) ∪
Π−1

A (1) . . . ∪Π−1
A (N) with respect to A = {xL} induces a 1D chain DN such that N = 4'. The

Jacobi matrix associated with DN , N = 4' is denoted by J'. We lift J' to a Hamiltonian H' on
LP'.

5.2.1. Spectrum of the Hamiltonian H2. We are going to study this case as we did it in the
case of the !rst model. Namely, we demonstrate how to apply theorem 4.10 while determining
the spectrum of H2. Similarly, we construct the level-2 Lang–Plaut diamond graph LP2 using
a sequence of discretized projective limit spaces {G0, G1, G2} (see de!nition 4.4) such that
LP2 = G2. We proceed as follows:

(Step 1) G0 is initialized to be the induced auxiliary 1D chain D16 equipped with J2, whose
entries are given in (5.1). Similar to the !rst model we can show σ(J2) ⊂ σ(H2) and
generate 17 radial eigenvectors. Note that σ(J2) = {−8,−7, . . . , 7, 8}, see table 2
(left).

(Step 2) To construct the graph G1, we proceed as described in !gure 10. Again, with a sim-
ilar argument to the lifting & gluing Lemma, we lift an eigenvector from the 1D
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Table 2. Lang–Plaut diamond graphs of level 2: eigenvalues table of J2 (left), JD
2,1

(middle) and of H2 (right).

Eigenvalue Multiplicity

1 −8.0 1
2 −7.0 1
3 −6.0 1
4 −5.0 1
5 −4.0 1
6 −3.0 1
7 −2.0 1
8 −1.0 1
9 0.0 1
10 1.0 1
11 2.0 1
12 3.0 1
13 4.0 1
14 5.0 1
15 6.0 1
16 7.0 1
17 8.0 1

Eigenvalue Multiplicity

1 −7.753 6903 1
2 −5.830 9519 1
3 −3.143 2923 1
4 0.0 1
5 3.143 2923 1
6 5.830 9519 1
7 7.753 6903 1

Eigenvalue Multiplicity

1 −8.0 1
2 −7.753690 1
3 −7.0 1
4 −6.0 1
5 −5.830 951 1
6 −5.0 1
7 −4.0 1
8 −3.143 292 1
9 −3.0 1
10 −2.0 1
11 −1.0 1
12 0.0 8
13 1.0 1
14 2.0 1
15 3.0 1
16 3.143 292 1
17 4.0 1
18 5.0 1
19 5.830 951 1
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Table 2. continued.

20 6.0 1
21 7.0 1
22 7.753 690 1
23 8.0 1

Figure 10. (Left) To construct G1 we take two copies of the 1D chain G0 = D16 (recall
that the vertices set is V(D16) = {0, . . . , 16}) and choose the subgraph B1 such that
G0\B1 contains only the 1D chain with the set of vertices V(D4,12) = {4, 5, . . . , 12}.
We will refer to this 1D chain as D4,12. For the vertical multiplier space we set
W = {w1, w2}. (Right) G1 is given by gluing the two copies D4,12 × {w1} and D4,12 ×
{w2} together with B1 at their boundary points.

chain D4,12 to G2. We denote the Jacobi matrix associated with D4,12 by

J2,1 =





0
√

15 0 0 0 0 0 0 0
√

15 0

√
66
2

0 0 0 0 0 0

0

√
66
2

0

√
70
2

0 0 0 0 0

0 0

√
70
2

0 3
√

2 0 0 0 0

0 0 0 3
√

2 0 3
√

2 0 0 0

0 0 0 0 3
√

2 0

√
70
2

0 0

0 0 0 0 0

√
70
2

0

√
66
2

0

0 0 0 0 0 0

√
66
2

0
√

15

0 0 0 0 0 0 0
√

15 0





.

Similar to the !rst model we can show that σ(JD
2,1) ⊂ σ(H2) and generate 7

additional eigenvectors. The eigenvalues JD
2 are listed in table 2 (Middle).

(Step 3) To construct !nally the level-2 Lang-Plaut diamond graphs G2 = HK2, we proceed
similarly to the !rst model. The relevant Jacobi matrices J2,2 and J2,3 are indicated
in !gure 11 (left). Again, due to the mirror symmetry, it is suf!cient to consider two
out of six matrices. We can show σ(J2,2), σ(J2,3) ⊂ σ(H2) and generate 6 additional
eigenvectors. Note that σ(JD

2,2) = σ(JD
2,3) = {0}.

The generated 30 eigenvectors are orthogonal. Hence σ(H2) = σ(J2) ∪ σ(JD
2,1) ∪ σ(JD

2,2) ∪
σ(JD

2,3). Figure 12 shows the integrated density of states of H' for both level 4 (left) and level
5 (right).
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Figure 11. (Left) The Jacobi matrices J2,3 and J2,2 are relevant for the computation of
σ(H2). (Right) Lang–Plaut diamond graphs of level-2, G2 = HK2.

Figure 12. Integrated density of states of H': Lang-Plaut diamond graph of level 4 (left)
and level 5 (right).

6. Further general geometric constructions: two-point self similar graphs

In [MT95] a broad class of in!nite self-similar graphs called two-point self-similar fractal
graphs was introduced and the spectra of the combinatorial- and probabilistic-Laplacians on
such graphs were described. The two-point self-similar fractal graphs are related to the nested
fractals with two essential !xed points [LL90]. A generalization to self-similar graphs based
on a !nite symmetric M-point model (instead of two points) is constructed in [MT03].

Following [MT95], we set M = (VM , EM) and G0 = (V0, E0) to be !nite connected graphs,
where M is an ordered graph. We !x some e0 ∈ EM , which is not a loop, and verticesα, β ∈ VM

and α0, β0 ∈ V0, α '= β, α0 '= β0.

Definition 6.1 ([MT95], page 393). A graph G is called two point self-similar graph with
model graph M and initial graph G0 if the following holds:

(a) There are !nite subgraphs {Gn}n!0, Gn = (Vn, En) such that Gn ⊂ Gn+1, n # 0, and
G = ∪n!0Gn.

(b) For any n # 0 and e ∈ EM there is a graph homomorphism Ψe
n : Gn → Gn+1 such that

Gn+1 = ∪e∈EMΨ
e
n(Gn) and Ψe0

n is the inclusion of Gn to Gn+1.
(c) For all n # 0 there are two vertices αn, βn ∈ Vn such that Ψe

n restricted to Gn\{αn, βn}
is a one-to-one mapping for every e ∈ EM . Moreover Ψe1

n (Vn \ {αn, βn}) ∩Ψe2
n (Vn \

{αn, βn}) = ∅ if e1 '= e2.
(d) For n # 1, there is an injection κn : VM → Vn such that αn = κn(α), βn = κn(β) and for

every edge e = (a, b) ∈ EM , Ψe
n−1(αn−1) = κn(a) and Ψe

n−1(βn−1) = κn(b).

We say that the vertices αn, βn are the boundary vertices of Gn, i.e. ∂Gn = {αn, βn} and
int(Gn) = Vn\{αn, βn} are the interior vertices of Gn.
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Proposition 6.2. Suppose that the graphs M and G0 satisfy the assumption 2.11, where the
transversal decomposition of M and G0 are with respect α (or β) and α0 (or β0), respectively.
Moreover, we assume deg0(x) = 0 for all x ∈ VM. Then the assumption 2.11 hold for each Gi,
i # 0. And the transversal decomposition of Gi is with respect αi (or β i).

Proof. G'+1 is obtained by replacing every edge in M by a copy of G'. Under the assump-
tions, the transversal decomposition of M with respect α (or β) is modi!ed by adding the
transversal layers of G' resulting in a transversal decomposition of G'+1 with respect α'+1 (or
β'+1). "

7. Conclusions

We study a scheme, proposed in [DDMT20], of lifting 1D Hamiltonians realizing a PQST from
site 0 to site N to Hamiltonians on diamond fractal graphs that realize a PQST from a set A of
sites to a set B of sites. Note here that under this lifting procedure the set A corresponds to site 0
and the set B is induced by site N. Our construction is a vast theoretical generalization of some
ideas discussed in [PRK11], see also [KLY17a]. In addition, we give a constructive algorithm
on how to !nd spectra of such Hamiltonians. We describe the spectrum and eigenfunctions,
and give two examples of such Hamiltonians on speci!c graphs. In particular, we demonstrate
that their spectra contain multiple eigenvalues with localized eigenfunctions. In the future this
study will suggest what physical characteristics of the system remains unchanged under the
lifting procedure and if there is something that changes. It would also be interesting to know
if the lifting procedure can be applied to the case of state transfer for multi-qubits discussed in
[ALS+15, YB20, CSLA20].

Diamond graphs eigenvalue tables

Eigenvalues of H3 (Hambly–Kumagai diamond graph of level 3)

j Eigenvalue λ j Multiplicity j Eigenvalue λ j Multiplicity

1 −4 1 9 1 1
2 −

√√
46 + 9 1 10

√
9 −

√
46 1

3 −3 1 11 2 1
4 −2

√
2 5 12 2

√
2 5

5 −2 1 13 3 1
6 −

√
9 −

√
46 1 14

√√
46 + 9 1

7 −1 1 15 4 1
8 0 22
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Eigenvalues of H4 (Hambly–Kumagai diamond graph of level 4)

j λ j Multipl. j λ j Multipl. j λ j Multipl. j λ j Multipl.

1 −8.0 1 10 −4.242 640 8 19 1.0 1 28 5.0 1
2 −7.999 773 1 11 −4.0 1 20 1.321 523 1 29 5.830 951 8
3 −7.0 1 12 −3.806 076 1 21 2.0 1 30 5.980 884 1
4 −6.996 920 5 13 −3.0 1 22 2.600 793 5 31 6.0 1
5 −6.0 1 14 −2.600 793 5 23 3.0 1 32 6.996 920 5
6 −5.980 884 1 15 −2.0 1 24 3.806 076 1 33 7.0 1
7 −5.830 951 8 16 −1.321 523 1 25 4.0 1 34 7.999 773 1
8 −5.0 1 17 −1.0 1 26 4.242 640 8 35 8.0 1
9 −4.927 369 5 18 0.0 86 27 4.927 369 5
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Eigenvalues of H3 (Lang–Plaut diamond graph of level 3)

j λ j Multipl. j λ j Multipl. j λ j Multipl. j λ j Multipl.

1 −32.0 1 28 −17.272 791 1 54 0.0 44 80 17.272 791 1
2 −31.999 214 1 29 −17.0 1 55 1.0 1 81 18.0 1
4 −30.989 328 1 30 −16.0 1 56 2.0 1 82 19.0 1
5 −30.0 1 31 −15.141 636 2 57 3.0 1 83 19.721 929 1
6 −29.936 434 1 32 −15.0 1 58 3.047 899 1 84 20.0 1
7 −29.086 539 4 33 −14.656 694 1 59 4.0 1 85 20.489 43 2
8 −29.0 1 34 −14.0 1 60 5.0 1 86 21.0 1
9 −28.772 33 1 35 −13.0 1 61 6.0 1 87 21.980 50 1
10 −28.0 1 36 −12.020 182 4 62 6.066 367 1 88 22.0 1
11 −27.422 949 1 37 −12.0 1 63 7.0 1 89 22.214 599 4
12 −27.0 1 38 −11.898 95 1 64 8.0 1 90 23.0 1
13 −26.0 1 39 −11.0 1 65 8.180 098 2 91 24.0 1
14 −25.844 467 1 40 −10.0 1 66 9.0 1 92 24.027 192 1
15 −25.0 1 41 −9.026 252 1 67 9.026 252 1 93 25.0 1
16 −24.027 192 1 42 −9.0 1 68 10.0 1 94 25.844 467 1
17 −24.0 1 43 −8.180 098 2 69 11.0 1 95 26.0 1
18 −23.0 1 44 −8.0 1 70 11.898 95 1 96 27.0 1
19 −22.214 599 4 45 −7.0 1 71 12.0 1 97 27.422 949 1
20 −22.0 1 46 −6.066 367 1 72 12.020 182 4 98 28.0 1
21 −21.980 50 1 47 −6.0 1 73 13.0 1 99 28.772 33 1
22 −21.0 1 48 −5.0 1 74 14.0 1 100 29.0 1
23 −20.489 43 2 49 −4.0 1 75 14.656 694 1 101 29.086 539 4
24 −20.0 1 50 −3.047 899 1 76 15.0 1 102 29.936 434 1
25 −19.721 929 1 51 −3.0 1 77 15.141 636 2 103 30.0 1
26 −19.0 1 52 −2.0 1 78 16.0 1 104 30.989 328 1
27 −18.0 1 53 −1.0 1 79 17.0 1 105 31.0 1

106 31.999 214 1
107 32.0 1
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