WEAK SOLUTIONS OF NON-ISOTHERMAL NEMATIC LIQUID
CRYSTAL FLOW IN DIMENSION THREE

HENGRONG DU, YIMEI LI, CHANGYOU WANG

ABSTRACT. For any smooth domain 2 C R*, we establish the existence of a global weak
solution (u,d,#) to the simplified, non-isothermal Ericksen-Leslie system modeling the
hydrodynamic motion of nematic liquid crystals with variable temperature for any initial
and boundary data (uo,do, ) € H x H'(Q,S%) x L'(R2), with do(2) C ST (the upper
half sphere) and essinfofy > 0.

Dedicated to Professor M. Chipot on the occasion of his 70th birthday

1. INTRODUCTION

The liquid crystal constitutes a state of matter which is intermediate between the solid
and the liquid. In the nematic phase, molecules move like those in fluid, while they tend to
reveal preferable orientations. A non-isothermal liquid crystal flow in the nematic phase
can be described in terms of three physical variables: the velocity field u of the underlying
fluid, the director field d representing the averaged orientation of liquid crystal molecules,
and the background temperature 8. The evolution of the velocity field is governed by the
incompressible Navier-Stokes system with stress tensors representing viscous and elastic
effects. In the nematic case, the director field is driven by transported negative gradi-
ent flow of the Oseen-Frank energy functional which represents the internal microscopic
damping [3, 8]. We consider the non-isothermal setting in which the temperature is neither
spatial nor temporal homogeneous and thus contributes to total dissipation of the whole
system.

A great deal of mathematical theories has been devoted to the study of nematic liquid
crystals in the continuum formulation. In pioneering papers [4, 5, 13] Ericksen and Leslie
have put forward a PDE model based on the principle of conservation laws and momentum
balance. There has been extensive mathematical study of analytic issues of the simplified
Ericksen-Leslie system. In 1989 Lin [15] first proposed a simplified Ericksen-Leslie model
with one constant approximation for the Oseen-Frank energy: (u,d): Q x Ry — R" x §?
solves

du+u-Vu+ VP =pAu—-V-(Vd e Vd),
V-u=0, (1.1)
od +u-Vd = Ad + |Vd|?d,
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2 HENGRONG DU, YIMEI LI, CHANGYOU WANG

where Q C R" (n =2 or 3), P: Q x Ri — R denotes the pressure, u > 0 represents
3

the viscosity constant of the fluid, and (Vd ©® Vd);; = Z Gmidk Oz; d* denotes the Erick-

k=1
sen stress tensor. It is a system of the forced Navier-Stokes equation coupled with the

transported harmonic map heat flow to S%.. The readers can consult [25] on the study
of the Navier-Stokes equations and [22] for some recent developments on harmonic map
heat flow. The rigorous mathematical analysis was initiated by Lin-Liu [17, 18] in which
they established the well-posedness of so-called Ginzburg-Landau approximation of (1.1):
(u,d) : Q@ x Ry — R" x R? satisfies

du+u-Vu+ VP =pAu—-V-(Vd o Vd),
V-u=0, (1.2)

1
8td+u-Vd:Ad+€—2(1—|d\2)d,

where ¢ > 0 is the parameter of approximation. They have obtained the existence of a
unique, global strong solution in dimension 2 and in dimension 3 under large viscosity
. They have also studied the existence of suitable weak solutions and their partial
regularity in dimension 3, which is analogous to the celebrated regularity theorem by
Caffarelli-Kohn-Nirenberg [1] (see also [16]) for the dimension 3 incompressible Navier-
Stokes equation. Later on Lin-Lin-Wang [19] adopted a different approach to construct
global Leray-Hopf type weak solutions (see [12]) for dimension 2 to (1.1) via the method
of small energy regularity estimate. Huang-Lin-Wang [10] extended the works of [19] to
the general Ericksen-Leslie system by a blow up argument.

The existence of global weak solution to (1.1) in dimension three is highly non-trivial
due to the appearance of the super-critical nonlinear elastic stress term V - (Vd ® Vd).
Some preliminary progress was made by Lin-Wang [21], where under the assumption that
an initial configuration dg lies in the upper half sphere, i.e.,

do(Q) 8% :={y=(y",y",y") eR’: [y| =1, y° > 0}. (1.3)

the existence of global weak solution was constructed by the Ginzburg-Laudau approxi-
mation method and a delicate blow-up analysis. See [20] for a review of recent progresses
on the mathematical analysis of Ericksen-Leslie system.

Recently there has been considerable interest in the mathematical study for the hy-
drodynamics of non-isothermal nematic liquid crystals. Recall that a simplified, non-
isothermal version of (1.2) can be described as follows. Let (u,d,f) : @ x Ry — R" x
R? x R, solve

u+u-Vu+VP =V (u(0)Vu) —V-(Vd © Vd),
V-u=0,

atd+u-Vd:Ad+€i2(1— d?) d, (1.4)

a pdfelement

The Trial Version

1
80 +u-V0=—V-q+pu@)Vu®+|Ad + (- RS




NON-ISOTHERMAL LCF 3

where q : Q x Ry — R" is the heat flux. Feireisl- Frémond-Rocca-Schimperna [7] proved
the existence of a global weak solution to (1.4) in dimension 3. Correspondingly, non-
isothermal version of (1.1) reads (u,d,f) : Q x Ry — R™ x S? x R solves

du+u-Vu+ VP =V-(4(0)Vu) - V- (Vd e Vd),

V.-u=0,

8d +u-vd = Ad + |Vd|d, (1.5)
B0 +u-V0=—V-q+ ) Vu?+|Ad +|vd>d|>.

Hieber-Priiss [9] have established the existence of a unique local L — L? strong solution
to (1.5), which can be extended to a global strong solution provided the initial data is
close to an equilibrium state. For the general non-isothermal Ericksen-Leslie system, De
Anna-Liu [2] have obtained the existence of global strong solution in Besov spaces provided
the Besov norm of the initial data is sufficiently small. On T?, Li-Xin [14] have showed
that there exists a global weak solution to (1.5). A natural question is that in dimension
3 whether (1.5) admits a global weak solution. The main goal of this paper is to give a
positive answer under the additional assumption (1.3).

This paper is organized as follows. We devote Section 2 to the derivation of thermody-
namic consistency of a simplified, non-isothermal Ericksen-Leslie system for nematic liquid
crystals. The weak formulation for (1.5) model is demonstrated in Section 3. In Section 4
we will establish the weak maximum principle for the free drifted Ginzburg-Landau heat
flow with homogeneous Neumann boundary condition. In Section 5, we will apply the
Faedo-Galerkin scheme to establish the existence of weak solutions to the approximated
version of non-isothermal Ericksen-Leslie system. In Section 6, we will show the existence
of weak solutions to the non-isothermal Ericksen-Leslie system through detailed analysis
of convergence procedure.

2. THERMAL CONSISTENCY OF THE NON-ISOTHERMAL NEMATIC MODELS

2.1. Non-isothermal Ginzburg-Landau approximation. First we recall the equa-
tions of u and d in the non-isothermal Ginzburg-Laudau approximation (1.4):

du+u-Vu+ VP =div (u(f)Vu - Vd & Vd),

V-u=0, (2.1)

od+u-Vd = Ad - £.(d),

2 2
where £.(d) = daF.(d), F.(d) = ("”621).
The difference between (2.1) and the isothermal case (1.2) is that the viscosity coefficient

1 is a function of temperature . Here the temperature plays a role as parameters both
in the material coefficients and the heat conductivity coefficients, which is to be discussed
later. To make the system (2.1) a close system, we need the evolution equation for 6.
The equation of thermal dissipation is derived according to First and Second laws of
thermodynamics [24].
e introduce some basic concepts in thermodynamics. The internal energy density
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4 HENGRONG DU, YIMEI LI, CHANGYOU WANG

and the Helmholtz free energy is given by
1
Ve = 5|Vd[* + Fi(d) = 0In0.

Denote the entropy by 7 in the Second law of thermodynamics, which is determined by
temperature through the Maxwell relation

o
= "0

=1+1Iné6. (2.2)
The internal energy can be obtained by (negative) Legendre transformation of free energy
with respect to 7, i.e.,
et = ah. + 1.
The heat flux q in the equations of both 6 of (1.4) and (1.5) satisfies the generalized
Fourier law:
q(f) = —k(0)VO — h(0)(VE -d)d (2.3)

where k(0) and h(f) represent thermal conductivities. The evolution of entropy can be
written as follows.

mtu-Vnp=-V-g+A,, (2.4)

where g is the entropy flux which is determined by the heat flux through the Clausius-
Duhem relation

q =0g, (2.5)

and the entropy production A, > 0 is given by (2.8) below.

The thermal consistency of (1.4) is given by the following proposition.

Proposition 2.1. Suppose (u,d, ) is a strong solution to (1.4). Then

1 .
(1) (First law of thermodynamics). The total energy e’ = §\u\2 + €™ s conservative.

More precisely, we have

D%egoml +V-(2+q) =0, (2.6)
where
+Dd
Y=Pu—pl)u-Vu+VdoVd- -u—(Vd) i’ (2.7)
and — = g +u -V denotes the material derivative.
Dt ot

ccond law of thermodynamics). The entropy cannot decrease during any irreversible
which means the entropy production A, is alway non-negative, i.e.,

a pdfelement ) 1
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Proof. We first prove (2.6). By direct calculations, we have
D otal Du D Dd D6
— =u- — d: —Vd d) — +—
pi% TW pp TV VAE L) T

:u-div(—PI+,u(0)Vu—Vd®Vd)—i—Vd:Vﬁ—VdQVd:Vu

Dd 1
+H:(d) - T~V at+ p(0)[Vul + [Ad + (1~ |dP)d[*
=div (—Pu+ p(@)u-Vu—Vd © Vd -u) — u(0)|Vul> + Vvd © Vd : Vu

2.9)
Dd Dd (
+div((Va)" 5) ~ (Ad ~£(d))- 5 ~VdOVd: Vu-V q
1
+u(6)|Vul* +[Ad + (1 - d[*)d]’
Dd
:div(—Pu+u(9)u-Vu—Vd®Vd-u+(Vd)Tﬁ> -V-q
= —div(X + q).
Note that (2.8) follows directly from (2.2), (2.4), (1.4)4, and (2.3), i.e.
1
A = 5 (nOIVuP +[ad = L@ —q- V)
1
= = (4O)IVu +]Ad = £(Q) + k()| VO + h(6)V6 - df?) > 0.
This completes the proof. O

2.2. Non-isothermal simplified Ericksen-Leslie system. As ¢ tends to 0, due to the
penalization effect of F.(d), formally the equation of d in (2.1) converges to

od +u-Vd = Ad + |Vd|*d,

1
where |d| = 1. This is a “transported gradient flow” of the Dirichlet energy 5 / \Vd|? dx
Q

for maps d : Q — S2.
As in the previous section, we introduce the total energy for (1.5):

1
etotal — 72(\u|2 +|Vd|?) + 6,
and the entropy evolution equation:

m+u-Vn=-V-g+ Ao, (2.10)

where Ay is the entropy production given by (2.12) below.
The thermal consistency of (1.5) is described by the following proposition.

Proposition 2.2. Suppose (u,d, ) is a strong solution to (1.5). Then
(1) (First law of thermodynamics). The total energy is conservative, i.e.,

L total
+V-(¥4+q)=0 2.11
Dte ( q) 9 ( )

Dd
= Pu—p@)u-Vu+Vdovd-u— (Vd)! —.

Dt
ond law of thermodynamics). The entropy production Ag is non-negative, i.e.,
a pdfelement . )
Ao = 7 (u(0)[Vul* +]Ad + [Vd[*d]* — q- V) > 0. (2.12)

0
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Proof. From (1.5), we can compute

total
gy BT
:u-E—FVd:EVd%-E
=u-div(—=PI + p(#)Vu—-Vd o Vd)
+Vd: v%‘; ~VdOVd: Vu-V-q+u(6)|Vu]® + |Ad + [Vd|*d|’
= div(—Pu+ p(@)u-Vu—- Vo Vd - u) — u(0)|Vul> + Vd ©® Vd : Vu
+div((Vd)T%(:) —(Ad +|Vd*d) - Ad - Vd © Vd : Vu
—divg + p(0)|Vul? + |Ad + |Vd|*d|?
= —div(¥ + q),
where we have used the fact |d| = 1 so that
(Ad + |Vd[’d) - Ad = |Ad + |Vd|?d|%.

This implies (2.11). From the entropy equation (2.10), Clausius-Duhem’s relation (2.5),
the temperature equation in (1.5), and (2.3), we can show

1
Ao = o (u(6)[Vu* +]Aad + Ivd|*d|* — q - V6)
1
= SOVl +[Ad + IVd[?d|? + k(0)|VO]? + h(6)|VO - dJ?) > 0.
This yields (2.12). O

3. WEAK FORMULATION FOR ERICKSEN-LESLIE SYSTEM (1.5)

Throughout this paper, we will assume that p is a continuous function, and h, k are
Lipschitz continuous functions, and

0<p<u®) <m 0<k<k(®),h®) <k forald>o0, (3.1)

where p, fi, k, and k are positive constants. We will impose the homogeneous boundary
condition for u: od
ulpn =0, 5\89 =0, (3.2)

where v is the outward unit normal vector field of 0. It is readily seen that (3.2) implies
that for ¥ given by (2.7), it holds

Y- v]|gp = 0. (3.3)
We will also impose the non-flux boundary condition for the temperature function so that
the heat flux q satisfies

q-vlgo =0. (3.4)
Set

H = Closure of C°(Q;R*) N {v: V-v =0} in L*(Q;R?),

J = Closure of C°(Q;R3) N {v:V -v=0}in H'(Q;R?),

a pdfelement
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NON-ISOTHERMAL LCF 7

There is some difference between the weak formulation of non-isothermal systems (1.4) or
(1.5) and that of the isothermal system (1.2) or (1.1). For example, an important feature
of a weak solution to (1.2) is the law of energy dissipation

% (juf? + |Vd?) de = _2/ (4 Vul? + |Ad — £.(d)[?) dz <0, (3.5)
Q Q
or d
dt/ (Juf* + |Vd|*) dz = —2/ (1|Vual® + |Ad + |Vd|*d|*) dz < 0 (3.6)
Q) Q
for (1.1).

In contrast with (3.5) and (3.6), we need to include a weak formulation both the first
law of thermodynamics (2.11) and the second law of thermodynamics (2.12) into (1.4)
or(1.5). Namely, the entropy inequality for the temperature equation in (1.4):

OHB) +u-VH(9)

> —div(H'(6)q) + H'(0) ((0)|Vul* + |Ad — f.(d)|*) + H"()a- V0,  (3.7)
or in (1.5):

OHO) +u-VH(9)

> —div(H'(0)q) + H'(0) (1(0)|Vu* + |Ad + |Vd[*d|?) + H"(0)q - V0, (3.8)

where H is any smooth, non-decreasing and concave function. More precisely, we have
the following weak formulation to the non-isothermal system (1.5).

Definition 3.1. For 0 < T' < oo, a triple (u,d,#) is a weak solution to (1.5), (3.8) if the
following properties hold:
i) u e L*>([0,T],H) N L*([0,T],), d € L*([0, T], H(Q,S?)), 6 € L>=([0,T], L'(2)).
ii) For any ¢ € C5°(Q x [0,T),R?), with V- = 0 and ¢ - v|sq = 0, ¢ € C(Q x
0,7),R3), and 1, € C®(Q x [0,T)) with ¢ > 0, it holds

/OT/Q(u-ﬁtgoJru@qu(P)
:/OT/Q(M(e)vu—VdQVd):w—/ﬂuo-w(-,O), (3.9)
/OT/Q(d-atw1+u®d:wl>

T
— [ [(va: Vo~ vaPd v - [ do- i), (3.10)
0 Q Q

T
/0 /Q H(0)0pps + (H(O)u— H'(0)q) - Vo

T
< —/ / [H'(0) (1(6)|Vul* + |Ad + |VdA[*d|*) — H"(6)q - V] 12
0 Q

.- pdfe|ement _/QH(‘90)¢2('70)7 (3.11)
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iii) The following the energy inequality (2.11)

/(;(|u|2+|Vd|2)+9)(~,t)§/ (%(|u0!+|Vd0|2)+00) (3.12)
Q Q

holds for a.e. t € [0,T).
iv) The initial condition u(-,0) = ug, d(-,0) = do, 0(-,0) = 6y holds in the weak sense.

Now we state our main result of this paper, which is the following existence theorem of
global weak solutions to (1.5).

Theorem 3.1. For any T > 0,up € H, dy € H'(Q,S?) and 0y € L*(Q), if do(Q) C S
and essinfofy > 0, then there exists a global weak solution (u,d, @) to (1.5), (3.8), subject
to the initial condition (u,d, ) = (ug,do, ) and the boundary condition (3.2) and (3.4)
such that

(1) ue LPL2NLIH],

(2) d € LPHL(2,S?), and d(z,t) €S2 a.e. in Q x (0,T),

(3) 0 € LYPLL N LYWEP for 1 < p < 5/4, 0> essinfqfy a.e. in Q x (0,T).

The proof of Theorem 3.1 is given in the sections below.

4. MAXIMUM PRINCIPLE WITH HOMOGENEOUS NEUMANN BOUNDARY CONDITIONS

In this section, we will sketch two a priori estimates for a drifted Ginzburg-Landau heat
flow under the homogeneous Neumann boundary condition, which is similar to [21] where
the Dirichlet boundary condition is considered. More precisely, for £ > 0, we consider

1
Ode +w-Vde = Ad + (1-]d:*)d. inQx(0,7),

V-w=0 in Q% (0,7), i1

d.(z,0) = dy(x) on . (4.1)
od.

W= =0 on 90 x (0,T).

Then we have

Lemma 4.1. For 0 < T < oo, assume w € L*([0,T],J) and dy € H'(,S?). Suppose
d. € L*([0,T]; H'(Q,R?)) solves (4.1). Then

|de(z,t)| <1 ae. (z,t) € Qx[0,T). (4.2)

Proof. Set
U8:(|d |2_1) — ’d€’2_1 Zf |d€|217
c 7o if |d.| < 1.
Then v° is a weak solution to
1
00" +w - V& = Av® — 2(|Vd5|2 + —QUE\dEIQ) < AV in Q x (0,7),
€
V.-w = in Q x (0,7),
“(z,0) = on €2,

= =0 on 092 x (0,7).
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Multiplying (4.3); by v® and integrating it over Q x [0, 7] for any 0 < 7 < T, we get

/]v ]2—1—2/ /|V1ﬂ2 / /W V(( =0.
Thus v =0 a.e. in Q x [0, 7] and (4.2) holds. O

Lemma 4.2. For 0 < T < oo, assume w € L*([0,T);J) and do € H'(Q;S?), with
do(z) € ST a.ex € Q. Ifd. € L*([0,T); H' (% R?)) solves (4.1), then

d2(x,t) >0 a.e. (x,t) € Qx[0,T]. (4.4)

Proof. Set p.(x,t) = max{—e_a%dgg(x,t),O}. Then

Orpe + W -V — Ape = acp., inQx (0,7),

V-w=0, in Q% (0,7),

we(z,0) =0, on £, (4.5)
w = 850; =0, on 09 x (0,T),

where ) )
ag(z,t) = = (1 — |de(x, ) — = 5 <0 ae. in Q x[0,T].
g2
Multiplying (4.5); by ¢. and integrating over Q x [0,7] for 0 < 7 < T, we obtain

/|905 +2/ /|V‘P€’2 / /W VSDE +2/ /0‘€|806
:2/ /oz5|g05| <0.
0 Q

Thus ¢ = 0 a.e. in  x [0,7] and (4.4) holds. O

Finally we need the following minimum principle for the temperature which guarantees
the positive lower bound of 6.

Lemma 4.3. For 0 < T < oo, assume w € L*(0,T;J), 6y € L*(Q) with essinfqfy > 0,
and d. € L*([0,T]; H'(Q,R?)). If 6. € L°(0,T; L*(Q)) N L0, T; WH2(Q)) solves

00 +w-V0. = -V -q. + M(HE)IVWP +]Ad: — fa(ds)|2a in Qx(0,7),

V-w =0, in Qx(0,7), (4.6)
95($, 0) = 00($)7 on £, ’
w=gq. v=0, on 00 x (0,7),
where qe = —k(0:)VO. — h(0:)(VO. - dec)dc, then
Oc(x,t) > essinfoby a.e. in Q x [0,T]. (4.7)

Proof. Let 67 = max{essinfofy — 6.,0}. Then by direct computation, (4.6) implies that
00 +w-Vo, <-V-.-q., inQx(0,7),
V-w=0, in Q% (0,7),
0. (x,0) =0, on 2,

The Trial Version W = qa_ V= O, on 0f) X (O,T),
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where q_ = —k(0:)VO_ — h(6:)(VE; - d.)d..
Multiplying (4.8); by 6_ and integrating over Q x [0, 7] for 0 < 7 < T, we obtain

/I9§|2(7)+2/ /k(|V9;\2+|V9g -d.?) <o.
Q 0 Jo
Therefore 7 = 0 a.e. in Q x [0, 7], which yields (4.7). 0

5. EXISTENCE OF WEAK SOLUTIONS TO (5.1)

In this section we will sketch the construction of weak solutions to (5.1) by the Faedo-
Galerkin method, which is similar to that by [7] and [17]. To simplify the presentation,
we only consider the case ¢ = 1 and construct a weak solution of the following system:

du+u-Vu+ VP =div (u(f)Vu—-—Vd © Vd),
V-u=0,
od+u-Vd = Ad - f(d),
90 +u - VO = —divg + p(0)|Vul* + |Ad — £(d)|?,
where f(d) = 9gF(d) = (|d|* — 1)d.
Let {¢;};2; be an orthonormal basis of H formed by eigenfunctions of the Stokes oper-
ator on Q with zero Dirichlet boundary condition, i.e.,

—Ap; + VP = N in €,

(5.1)

V- Qi = in Q,
;=0 on 0f),
fori=1,2,---,and 0 < A\ < A <--- < A\, < -+, with A, — 00.
Let P, : H — H,, = span {1, 2, - ,om} be the orthogonal projection operator.

Consider
Oay, = Pm[ —uy, - Vu, + div (p(0,,)Vu,, — Vd,, © Vd,y,) ],
Wn(-t) € Hy, Vte[0,7), (5.2)
U, (z,0) = Py (ug)(z), VaeQ,

ody, + uy, - Vd,,, = Adyy, — f(dm)a

dp,(z,0) =do(z) Vo e,
i (5.3)
=0 on 019,
ov

i + Wy - VO, = div(k(01,) VO, + h(01) (Vi - di)di)
+11(0:) |V |? + |Ad,, — £(d)|?,

O (,0) = Op(x) Yz € Q, (5.4)
b
W =0 on aQ

Since uy,(+,t) € Hyy,, we can write

W (2, 1) = Y g0 (t)ei(x),
=1

5.2) becomes the following system of ODEs:

d i) (G i ; i
IR0 = AGlgD (09 (1) + B (095 (1) + CR (o), (5.5)

a pdfelement
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subject to the initial condition

49(0) = /Q (w0, 1), (5.6)

for 1 <i < m, where
Aglk) - —/Q<<pj - Vor, gi),
BY(t) = _/Qw(um)ij,Vw),

CW(t) = / (Vd,, ® Vd,,) : Vi,
Q

for 1 < j,k <m.
For Ty > 0 and M > 0 to be chosen later, suppose (g(l), ,gﬁnm)) e C*([0,Tp]) and

m

O @)1? < M2 5.7
sup [N .
0<t<Tp § Z| ) 5-1)
Since dyu,, Viu,, € C°(Q x [0,Ty)), the standard theory of parabolic equations implies
that there exists a strong solution d,, to (5.3) such that for any 6 > 0, Oedym, V3d,, €
LP(Q2 x [0,Tp]) for any 1 < p < oo (see [11]). Next we can solve (5.4) to obtain a
nonnegative, strong solution 6,,. In fact, observe that

k(0) VO + B(01) (V0rn - dpp )i = D (0) Vi,

where (D;j(0m)) = (k(0n)di; + h(0,)d%,d2) is uniformly elliptic, and p(0)|Vu,|* +
|Ad,, — f(d,,)|? € LP(Q x [8,Tp]) holds for any 1 < p < oo and § > 0. Thus by the
standard theory of parabolic equations, we can first obtain a unique weak solution 6,, to
(5.3) such that 6,, € C%(Q x [§,Tp]) for some « € (0,1). This yields that the coefficient
matrix D(0,,) € C(Q x [6,Tp]) and hence by the regularity theory of parabolic equations
we conclude that Vé,, € LP(Q x [§,Ty]) for any 1 < p < co and § > 0. Now we see that
0,,, satisfies

020 06,, 00
Im_ 1y (g, 20m %m
8$ial‘j Zj( ) 8%,‘ 8:Ej + M(
where | Dj;(0m)| < |B/(6m)] 4 |K'(6m)] is bounded, since h and k are Lipschitz continuous.
Hence by the Wg’l—theory of parabolic equations, 9;0,,, V26,, € LP(Q x [5,Ty]) for any
l<p<ooandd>D0.

To solve (5.5) and (5.6), we need some apriori estimates. Taking the L? inner product

of (5.3) with —Ad,, + f(d,,) yields
/ \Vd,,|*> +2F(d,,) = —2/ |Ad,, — £(d,) > + 2/(um -Vd,,) - (Ady, — f(d,n))
Q

—/\Adm—f(dm)\z—i—/ Wy, - Vd,,|?,  t€[0,To).
Q Q

00 — Dij(gm) 9m)|vum’2 + [Ady, — f(dm)Pa

s from (5.7) that

B pdfelement
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Therefore we get

d

pr (demy2+2F(d ))+/Q|Adm—f(dm)|2 SC;MQ/QdemP.

This, combined with Gronwall’s inequality and F(dg) = 0, implies

To
sup /(|Vdm|2+F / /|Ad )|2§60%M2T0/ Vo2,
0<t<To JQ 0

so that

(4) (i)
su ma B ()] +|CW (@#)]) < Co(m, M).
0<t<pT 1255 %m (I mj ()] + 1G5 ( ) o )

Thus we can solve (5.5) and (5.6) to obtain a unique solution (3 (¢),---, g™ (1)) €
C1([0,Tp)]) such that for all t € [0, Tp]

> I |2<Z\g (0)* + C(m, M, p, i, ke, k). (5.8)
i=1

Choose M = 2+ ZZ 199(0)|? and Ty > 0 so small that the right-hand side of (5.8) is
i=1
less than M? for all ¢ € [0,Tp]. Set @, : Q x [0, Ty] — R3 by

=> g0t iz
i=1
Then L(u,,) = @, defines a map from U(Ty) to U(Tp), where
U(Ty) = {um x,t) Zg : térba%( Z 199 ()2 < M2, u,(0) = Pmuo}.

Since U(Tp) is a closed, convex subset of Hj(£2) and £ is a compact operator, it follows from
the Leray-Schauder theorem that £ has a fixed point u,, € U(Tp) for the approximation
system (5.2), and a classical solution d,, to (5.3) and 6, to (5.4) on 2 x [0, Tp], see [6].
Next, we will establish a priori estimates and show that the solution can be extended to
[0,T]. To do it, taking the L? inner product of (5.2) and (5.3) by u,, and —Ad,, + f(d,,)
respectively, and adding together these two equations, we get that for ¢ € [0, Tp],

pn (|um|2+!Vdm]2+2F(d ))+2/u(em)]Vumler\Adm—f(dm)\Q =0, (5.9)
Q

where we use the identities

/ u,, - div(Vd,, © Vd,,) = /(um -Vd,) - Adp,
Q Q

B pdfelement
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We can derive from (5.9) that

To
sup /(\um\z [ Vdn? + 2F(dn)) + 2/ / ) [Vt + [Ady, — £(dy)?
0<t<Tp JQ
< [ (ol +vaoP) (5.10)
Lemma 4.1 implies that |d,,| < 1 and |f(d,,)| < 1in © x [0, Tp], so that

/TO/|Adm|2<2/ /1—|—|Ad £(dm)]?).

Hence (5.10) yields thqat

To
sup /(|um|2 + [Vd,|*) +/ /(,u|Vum|2 + |Ad,|?)
0<t<Tp JQ 0 Q
g/(yuo|2+|vc10|2)+CTO|Q|. (5.11)

While the integration of (5.4) over € yields

/ = / )Vt 2+ [ Ady, — () ). (5.12)
Adding (5.9) together with (5.12) and integrating over [0, Tp], we obtain

sup /(\um|2+|v(1m|2+9m) </(|uOyQ+WdOy2+eo). (5.13)
0<t<Tp JQ (9]

Next by choosing H(Q) = (14+60)% a € (0,1), and multiplying the equation (5.4) by
H' (01) = a(1 4 0,,)* 1, we get

(140 +up, - V(1 4+ 6,,)°
= —div (a(1 + 0,)* " am) + a1 + 0,)* " (1(00) [V |* + [Ady, — £(dn)[?)
Fafa — 1)1+ 0)* 2 - VO, (5.14)

where q,, = —h(0,) V0 — k(0:,)(VOy, - dp)d -
Integrating (5.14) over Q x [0, Tp| yields

To
— a—2 . [ o
/0 /Qa(a D1+ 0,)° g Vemg/QX{TO}(lJer) /Q(Heo) . (5.15)

Notice that

To
[ [ata =00+ 0. 2a - V0,
0 Q

To
—all—a a—2 2 ) 2
=a(l )/0 /Q(l—i—Gm) (k(0m) VO |* + h(0:) (VO - din)?)

To
a1 —a)k/ /(1+9m)a—2\vem\2
0 Q

- T .
pdfelement _ da(l -k / / voip.
0 Q

o?
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Thus we obtain that

TO «
| [Iveir <ctam [ o
o Ja Qx{To}

cconn([ ooy

< C’(a,k,Q)(l+/9(|u0|2+ |Vd0\2+90)>a. (5.16)

With (5.13) and (5.16), we can apply an interpolation argument, similar to (4.13) in [7],
to conclude that 6, € LY(Q x [0,Tp]) for any 1 < g < g, and

10l Lax o)y < Ca: ks 0ol 220y, [V doll L2 (@) 160l L1 () - (5.17)
This, together with (5.16) and Hoélder’s inequality:

—a)=P_ 2-p
/ |v9m|p§ (/ |v‘9m|2‘9%—2)’2’(/ 9£r2z )27;))221)’
QX[O,T()] QX[O,T()] QX[O,T()]

for @ € (0,1) and 1 < p < 2, implies that
190 ooy < Ok Il I Vdoll o ol i) (5.18)

holds for all p € [1,5/4).
Plugging the estimates (5.11), (5.13), (5.17), and (5.18) into the system (5.2), (5.3),
and (5.4), we conclude that

(Q)) + ”atdm” ) + Hatem”LQ(O,To;W_lA(Q) } S C (519)

L3 (0,T0;:L2(Q)

S0P {10l g 2

Therefore, by setting (um(-, 7o), A (-, T0), O (-, TO)) as then initial data and repeating the
same argument, we can extend the solution to the interval [0,27p] and eventually obtain
a solution (U, ds,, 0y) to the system (5.2), (5.3), (5.4) in [0, 7] such that the estimates
(5.11), (5.13), (5.17), (5.18), and (5.19) hold with T} replaced by T.

The existence of a weak solution to the original system (5.1) will be obtained by passing
to the limit of (w,, dm, ) as m — oo. In fact, by Aubin-Lions’ compactness lemma [23],
we know that there exists u € L{°L2 N LIHL(Q x [0,T]), d € L°H! N LZHZ(Q x [0,T)),

5
and a nonnegative § € L{°LL N LYW IP(Q x [0,T)), for 1 < p < 7 such that, after passing

to a subsequence,

u, —u in L2(Q x [0,T7),
(dm, Vd,,) — (d,Vd) in L*(Q x [0,TY)),
5
O — 0 a.e. and in LP* (2 x [0,T]), V1 <p; < 3
Vu,, — Vu in L2(Q x [0,T7),
vid,, — Vid in L2(Q x [0,7T7),
5
Vb, — Vo in LP?2(Q2 x [0,T]), V1 < py < T
\

.- pdfe|emen‘t € C([0,00)) is bounded, we have that
The Trial Version M(em) - M(G) in Lp(Q X [OvT])v vl < p < o0,
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and
(0 Vi, — p(0)Vu in L2(Q x [0,T)).
After passing m — oo in the the equations (5.2) and (5.3), we see that (u,d, ) satisfies
the equations (5.1);, (5.1),, and (5.1) in the weak sense.
Next we want to verify that 6 satisfies

/ / 0)0 + (H(0)u — H'(6)q) - V1))

/ / [H'(0)(1(0)|Vu]* + |Ad — £(d)|*) — H"(0)q - VO]
- [ H@ouc-0 (520)
holds for any smooth, non-decreasing and concave function H, and ¢ € C3°(Q2 x [0,T))

with ¢ > 0. Here q = —k(6)VO — h(0)(VE - d)d. Observe that by choosing H(t) = t,
(5.20) yields that 6 solves (5.1), in the weak sense, namely,

//96@4— (fu—q)- Vo)

/ / (0)|Vul* + |Ad — f( )]2)w—/990¢(-,0). (5.21)

In order to show (5.20), first observe that multiplying the equation (5.4) by H'(6,,)%,
integrating over Q x [0, T], and employing the regularity of 6,,, w,,, d,, implies

[ (00 + (10~ B ) -0
/ / H, )|vum|2 + ’Ad f(dm)’2) - H”(em)qm : vem}d}

/ H (60 (5.22)

where qpm, = —k(0m) VO — h(0m)(VOp, - dp)di,.

It follows from Lemma 4.3 that 6, > essinfgfy a.e.. Without loss of generality, we
assume H(0) = 0 so that H(f,,) > H(essinfafy) > 0 since H is nondecreasing. From
H" < 0, we conclude that 0 < H'(0,,) < H'(essinfnfy). From the concavity of H, we

have
1 1

5
{H(0,,)} is bounded in L°LL N LPWIP(Q x [0,7]), V1 < p < T
This, combined with the bounds on 6,,, u,,,d,, and (5.22), implies that

/T/ H" (0)Qm - VOt

pdfelement
//‘\/ H" (0)k(0) ¥V 0| + |/ = H" (00) h(0 ) (Vi - di)[?)
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is uniformly bounded. For any fixed | € NT, since

Vmin{—H" (0, 1}k (0,,)0 V0, — /min{—H"(0), 1 }k(0)y V6,

and

Vi —H" (O, L (O ) (Vs - dy) — /min{—H"(8), [} 1(0) (V6 - d)

5
in LP(Q x [0,T] for 1 <p < 7 e have by the lower semicontinuity that

/ / min{~H"(6). l}q - V0 < lim n / ! /Q min{—H" (62), [} - V)

T
< lim inf/ / —H"(0n)Am - VOn1).
0 Q

m—r0o0

This, after sending | — oo, yields

T T
/ / —H"(0)q -V < lim inf/ / —H"(0n)Am - VO1h.
0 JO m=oo Jo Jo

It follows from the lower semicontinuity again that

//H (0)[Vul? + |Ad — £(d)|)v

gnmmf/ / [ (0) (1000 [Vt + [ Ay — £(de) %))

m—o0
On the other hand, since
H(0,) — H(H), HO,)u, — H@)u in LY(Qx [0,T)),

and
H'(0rn)am — H'(0)q in L'(Q x [0, 7)),

we have

T
/0 / (H(0)0) + (H(0)u — H'(6)q) - V)

T
= hm/o /(H(Gm)@qp—{—(H(Qm)um—H(Gm)qm)-Vib).

Q

(5.23)

(5.24)

(5.25)

(5.26)

Therefore (5.20) follows by passing m — oo in (5.22) and applying (5.24), (5.25), and

(5.26). This completes the construction of a global weak solution to (5.1).

6. CONVERGENCE AND EXISTENCE OF GLOBAL WEAK SOLUTIONS OF (1.5)

O

In this section, we will apply Lemma 4.1, Lemma 4.2, and Lemma 4.3 to analyze the
convergence of a sequence of weak solutions (ue,de, ;) to the Ginzburg-Landau approxi-

(u,d, ) to (1.5).

stem (1.4) constructed in the previous section, as e — 0, and obtain a global weak

we will employ the pre-compactness theorem by Lin-Wang [21] on approximated
The Trial Version ¢ maps to show that d. — d in L([0,7], H(Q)) as € — 0.
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Proof of Theorem 3.1. Let (uc,d., 6.) be the weak solutions to the Ginzburg-Landau ap-
proximate system (1.4), under the boundary condition (3.2), (3.4), obtained from Section
5. Then there exist C1, Cs > 0 depending only on ug, dg, and 6y such that

sup {HuaHLgOLgngH;(m[o,T}) + ”dsHL?Hé(W[O:TD} = G

5
Slip ng”LgOL}DmLfWg}”’(Qx[O,T]) < Ca(p), Vpe (L, Z)a
1
[ upswars Sran+e [ [ o)mur+1ad. - @)
Qx{t} g2
< [ (ol +19oP), ¥t € 0,7), (6.1)
Q

2
[ P+ 9 + 5P 60 < [ (ol + Vol + 60), Ve € 0.7), (62
Qx{t} € Q

and
|d.| <1, d2 >0, 6. > essinfqfy, in Q x[0,7T]. (6.3)
Applying the equation (1.4), we can further deduce that

sup { 9ruc | 4 + [19rdcl] 4 + 1908l omw-rsq) | < Cs. (64)
3

L3(0,T),H-1() L3(0,7),L2()

Therefore, after passing to a subsequence, there exist u € L{°L2 N LZHL(Q x [0,7)),d €
5
LEHN(Q % [0,T]),0 € LPLL N IPWEP(Q % [0,T)) for 1 < p < 7 Such that

(e de) > (u,d) in L2(2 x (0.7)). 65)
(Vue,Vd.) — (Vu,Vd) in L*(Q x (0,7T)) ‘
as € — 0. Since
/ F(d) < lim Fd.) =0,
Qx[0,T] € Jax[o,1]
we conclude that |d| =1 a.e. in Q x [0,7]. Sending ¢ — 0 in the equations (1.4)3 3, we
obtain that
V-u=0ae. in Qx[0,7T],
and
(O d+u-Vd) xd=V-(Vd xd) weakly in Q x [0,7],

which, combined with the fact that d is SZ—valued, implies that

od +u-Vd = Ad + |Vd|’d weakly in Q x [0, 7). (6.6)

Hence (3.10) holds.

To verify that u satisfies the equation (1.5);, we need to show that Vd. converges to
Vd in L (Q x (0,T)). which makes sense of V - (Vd ® Vd). We also need to justify
the convergence of temperature equation (1.5)4. For this purpose, we recall some basic
s and theorems in [21] that are needed in the proof.

ny 0 < a < 2, L1 and Ly > 0, denote by X (L1, Lo, a) the space that consists of
m pdfelement lutions d. of ( )

The Trial Version Adg - fg(dg) = T¢ n
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such that
(1) |d:] €1 and d? > —1 4 a for x a.e. in Q,

1
(2) E.(d.) :/ SV + 3. (d)dr < L,

(3) HTEHL2(Q) < L.

The following Theorem concerning the H' pre-compactness of X (L1, Lo, a) was shown by
[21].
Theorem 6.1. For any a € (0,2], L1 > 0 and Ly > 0, the set X(L1, Lo, a) is precompact
in HL.(Q;R3). Namely, if {d.} is a sequence of maps in X(Ly, Lo, a), then there exists
a map d € HI(Q;SQ) such that, after passing to a possible subsequence, d. — d in
Hlloc(Q; Rg)

We also denote by Y(Li, Ly, a) the space that consists of d € H*(Q,S?) that are so-
called stationary approximated harmonic maps, more precisely,

Ad + |Vd[*d = 7 in Q,

1 6.7
/(Vd@Vd):Vgo—2|Vd]2V-<p+(T,go-Vd>:0, (67)
Q

for any ¢ € Cg°(€%;R?), and
(1) d®(z) > -1+ a for z ae. in Q,
1
(2) E(d) = 2/ |Vd|%dz < Ly,
Q

(3) 7l 2y < Lo
The following H' pre-compactness of stationary approximated harmonic maps was also
shown by [21].

Theorem 6.2. For any a € (0,2], L1 > 0 and Ly > 0, the set Y (L1, Lo, a) is pre-compact
in HL.(Q;S?). Namely, if {d;} C Y(L1, Lo, a) is a sequence of stationary approzimated
harmonic maps, with tensor fields {r;}, then there exist T € L*(Q,R3) and a stationary
approximated harmonic map d € Y (L1, Lo, a), with tensor field T, namely,

Ad + |Vd]*d =7 in Q,

such that after passing to a possible subsequence, d; — d in HIEC(Q,SQ) and 7; — T in
L?(Q:;R3). Moreover, d € W22(Q,S?).

loc

Now we sketch the proof the compactness of Vd. in L}, .(Q x [0,T]). Tt follows from
Fatou’s lemma and (6.1) that

/ hm1nf/|Ad —f.(d.)|* < Co.

We decompose [0, 7] into the sets of “good time slices” and “bad time slices”. For A > 1,
set

g{::{te (0,77 : 11m1nf/|Ad fo(do)|?(t) < }

B pdfelement
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From Chebyshev’s inequality, we have
Co
A
For any t € Gi, set 7.(t) = (Ad. — f.(d.)) (t). Then Lemma 4.1 and 4.2 imply that
{d:(t)} € X(Cp, A, 1). Theorem 6.1 then implies that

de(t) = d(t) in Hy, (),

F(de) =0 in L (),

7(t) = 7(t) in L*(Q).

BRI < == (6.8)

For any ¢ € C§°(Q;R?), multiplying 7.(t) by ¢ - Vd. and integrating over Q yields
(400 9a0) Vo GV + FA(0)) T+ (n(0) - T(e) 0. (69)
Passing limit ¢ — 0 in (6.9), we get
[ (7400 Vd() : Vo = SVAOEY - + (r(t). - VAD) = 0.

Hence d(t) € Y(Co, A, 1) is a stationary approximated harmonic map. Next we want to
show that d. — d strongly in LfH; To see this, we claim that for any compact K CC €2,

lim V(d. —d)|* = 0. (6.10)
e—0 KXg};

For, otherwise, there exist dg > 0, K CC  and ¢; — 0 such that

/ V(de, — d)]* > do. (6.11)
Kxgt
From (6.5), we have
lim |d., —d|* =0. (6.12)
g;—0 KXQT
By Fubini’s theorem, (6.11) and (6.12), there would exist t; € G4 such that
—_ 2 —
Egglo / e, () — (1) = 0,
250
d.,(1) - d(tmr? > 20
K

Thus {d, (t;)} € X(Cp,A,1) and {d(t;)} C (C’O,A, 1). It follows from Theorem 6.1 and
Theorem 6.2 that there exist dj,ds € Y(Cp, A, 1) such that
d..(t;) — d; and d(t;) — da strongly in H(€).

Therefore we would have
209

J 1@ =) = im [ 19 (@ett) = ) = 32,

B pdfelement /K|d1 da|* = lim !d (i) —d(t;)]> = 0.

i—00
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We can also follow the proof of Theorem 6.1 in [21] to conclude that the small energy
regularity criteria holds for every (z,t) € K X gf so that a finite covering argument,
together with estimates for Claim 4.5 in [21], yields

lim F.(d.) = 0. (6.13)

e—0 KXg};

Hence we have that

. 2
lim [||d5 = dllZz g1 (ke xgr) +/

Fs(ds)} = 0.
KxgT

On the other hand, it follows from (6.1) and (6.8) that

2
||da - dHL%H;(QXBf) + /QXBK Fg(da)

< C’(sup/ﬂ(!ugl2 + |Vd.|? + Fs(ds))) ’Bﬂ <

¢
>0 A

Therefore, we would arrive at

: C
limy Hda = dllZ2 113 (s x o, +/ Fs(de)] <5

Kx[0,T]

Sending A — oo yields that

m [Hds — Al 724 (s x (0.1 +/ FE(dE)} =0

li
e=0 K x[0,T]

Therefore we can conclude that u solves the equation (3.9), provided we can verify that
w(0-)Vu, — p(0)Vu weakly in L*( x [0, T]), which will be verified below.

Next we turn to the convergence of .. For o € (0,1), set H(0:) = (1+6.)®. Then from
(5.14) we have

Oh(14+6-.)+u.-V(1+06.)*
> —div (a(1+6.)* 'q.) + (1 +6:)7 (u(0e)|Vue | + |Ad. — £.(d.)[?)
+a(a—1)(1+6.)*2q. - V6.. (6.14)

Integrating (6.14) over Q x [0,T7], by the assumption (3.1) on u, and the bound (6.1) on
u.,d. and 6., we can derive that

sup sup /(1 +0:)“2|Vo.|* < cc.
£>0 0<t<T JQ

haratare we conclude that 62 € L?H! and 6. € L°L! are uniformly bounded. By
ation, we would have that for 1 < p < 5/4,

d | su 0 Py l,p QOx[0.T
E>p1 ” ||LtWI’ ( X[ ’ ]) < )

The Trial Version
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30
From the equation (5.1)4, we have that for 1 < ¢ < %3’

sup 902 |13y, 1.0 < sup (Cllucbellprs + ClIVO] o
e>0 L e>0

+C H|Vu5|2 + |Ad5 - fs(ds)|2HL1L:}: )

< Csup (el g, 10 10:0 g, oy, + 190Ny ) +C

< 00.

Hence, by Aubin-Lions’ compactness Lemma [23] again, up to a subsequence, there exists

)
0 c LELLNIEWP for 1 <p< 1 such that

0. — 0 in LP(Q x (0,7)),
V6. —~ V6 in LP(Q % (0,T)),

as € — 0.

After taking another subsequence, we may assume that (u,de, 6.) converge to (u,d, )
a.e. in Q x [0, 7.

Since {p(6;)} is uniformly bounded in L*(Q x [0,T]), u(0:) — p(0) a.e. in Q x [0,7]
and Vu, — Vu in L?(Q x [0,T7]), it follows that

1(0:)Vue — p(0)Vu in L*(Q x [0,T)).

Thus we verify that (3.9) holds.
Taking the L? inner product of u., d., 6, in (5.1) with respect to u., —Ad. + f-(d;), 1,
and adding the resulting equations together, we have the following energy law:

d

1 1
ol (Shuel + 51V + Fo(de) +6.) = 0. (6.15)

Taking € — 0, this implies that |[d| = 1 and
L, oo 1 1, o, 1
(zlul®+ <[VA]F +0)(®) < [ (5|uol® + £|Vdo| +6p), YO <t <T.
o \2 2 0 '\2 2

Hence the global energy inequality (3.12) holds.

It remains to show that (3.8) follows by passing limit ¢ — 0 in (3.7). This can be done
exactly as in the last part of the previous section. For any smooth, nondecreasing, concave
function H, and v € C§°(Q x [0,T)), recall from (5.20) that

/ / 0c) 0 + (H (6)u: — H'(0:)q:) - Vi)

0:)|Vue|* + |Ad: — £.(d.)|?) — H"(0:)q: - VO (6.16)

B pdfelement
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Assume H(0) = 0. Then the concavity of H, 0 < H'(6.) < H'(essinfgfy), and the uniform
bound on 6. imply that

{H(#.)} is bounded in L{°LL N LEWLP(Q x [0,T)), V1 < p < %

Together with the bounds on u.,d., and (6.16), we have that

/T/ H"(0:)qe - VO

/ / (/=T RB) G0 + |/~ (B h () (V6 - ) 2)

is uniformly bounded. By an argument similar to (5.24), we can show that

//—H”( V0w<hm1nf// —H"(0:)q: - V0. (6.17)
0 0 e—0

Observe that
Ad. —f.(d.) = 8d. +u. - Vd. — 9y d +u-Vd = Ad + |Ad|’d in L*Q x[0,T)),

and {H'(6:)} is uniformly bounded in L>(Q x [0, 7). It follows from the lower semicon-
tinuity that

//H (O)[Vul? + |Ad + [VdPd )
glimi(l]af/ / [ (0.)(u(62) [ Vue ? + |Ad. — £.(d2)2)b. (6.18)
e—

On the other hand, since
H(0.) — H(9), HO:)u. — H®)u in LY(Q x [0,T]),
and
H'(0.)a. — H'(0)q in L}(Q x [0,T)),

we have

/ [ (1000 + (O~ 1 0)0)- 70)
_— / | (@100 + (60~ H'0)a.) - V). (6.19)

e—0

Therefore (3.11) follows by passing € — 0 in (6.16) and applying (6.17), (6.18), and (6.19).
This completes the construction of a global weak solution to (1.5). O
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