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A B S T R A C T

Imaging spectroscopy is a valuable tool for mapping canopy foliar traits in forested ecosystems at landscape and
larger scales. Most efforts to date have involved two-dimensional mapping of traits, typically representing top-of-
canopy conditions. However, traits and their associated biological functions vary through the canopy vertical
profile, such that incorporating information about vertical patterns may improve modeling of ecosystem pro-
cesses like primary productivity. In 2016 and 2017, we collected extensive field data in forests in Domain 5
(Great Lakes) of the National Ecological Observatory Network (NEON) to characterize the vertical variation in
leaf mass per area (LMA), an important foliar trait related to plant growth and defense. Fieldwork was coincident
with NEON Airborne Observation Platform (AOP) overflights which collected imaging spectroscopy and lidar
data. Using imaging spectroscopy to map top-of-canopy LMA and lidar to model vertical gradients of trans-
mittance, we developed a method to map three-dimensional patterns in LMA in temperate broadleaf forests.
Partial least squares regression (PLSR) was used to estimate top-of-canopy LMA (R2: 0.57, RMSE 10.8 g m−2),
which, along with lidar-derived metrics of light transmittance and height, was used in a multilevel regression to
model within-canopy LMA (R2: 0.78, RMSE 8.3 g m−2). The coupled models accurately estimated LMA
throughout the canopy without taking into account species composition (R2 = 0.82, RMSE: 8.5 g m−2).

1. Introduction

The world's forest ecosystems are changing rapidly, and extensive
data is necessary to better understand corresponding implications for
ecosystem function and to accurately model future scenarios. However,
traditional field-scale sampling techniques may not provide information
at scales sufficient for characterizing landscape and broader-scale var-
iation needed for accurate modeling. Remote sensing has long offered
the potential to extrapolate sparse field measurements to generate in-
puts needed to drive models, especially of two-dimensional patterns
across the land surface (Roughgarden et al., 1991; Cohen and Goward,
2004). However, forest ecosystems are inherently three-dimensional
(3D) and multiple studies have highlighted the need to accurately
characterize vertical patterns in structural and biophysical properties
for parametrizing ecosystem process and forecasting models (Cavaleri
et al., 2010; Coble et al., 2016; Rogers et al., 2017). For the most part,
remote sensing products and ecosystem models ignore vertical varia-
bility in traits important to understanding forest processes.

A number of ecologically important structural, morphological and
chemical properties vary throughout the vertical extent of forest ca-
nopies, including leaf area density (LAD), leaf angle distribution (LAD)

and foliar chemical composition (e.g., concentrations of lignin and
phosphorus, and δ13C) (Vose et al., 1995; Niinemets et al., 2015;
Leuning et al., 1991). Among the most widely studied and characterized
biophysical properties in the context of within-canopy patterns is leaf
mass per area (LMA), the ratio between the projected leaf area and dry
mass, which is largely comprised of structural and nonstructural car-
bohydrates, proteins, lignin and minerals (Poorter et al., 2009).
LMA—or its inverse, specific leaf area (SLA)—is a central component of
the leaf economic spectrum (LES) representing the tradeoff between
growth and defense (Wright et al., 2004; Poorter et al., 2009). For ex-
ample, relatively thin leaves with low LMA tend to have high rates of
photosynthesis per unit mass compared to denser, thicker and more
durable leaves with high LMA (Niinemets, 1999; Wright et al., 2004).
The drivers of LMA variation differ across scales. Broadly, LMA varia-
tion is largely driven by taxonomy, while local environment and site
conditions can explain a large proportion of LMA variation at finer
scales (Messier et al., 2010; Messier et al., 2017).

LMA decreases with depth into the canopy, owing primarily to the
attenuation of light and a decrease in height-mediated hydraulic con-
straints (Cavaleri et al., 2010; Niinemets et al., 2015). Microclimatic
variables including temperature, wind exposure and humidity, which
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co-vary with incident radiation and height, also influence within-ca-
nopy LMA (Niinemets, 2001; Poorter et al., 2009; Petter et al., 2016;
Wu et al., 2016). The degree to which within-canopy gradients in LMA
are driven by irradiance or height is not universal and can vary as a
function of species, local environmental conditions and seasonality
(Koch et al., 2004; Coble and Cavaleri, 2014; Coble et al., 2016). While
numerous studies have explored within-canopy patterns in LMA
through individual tree canopies (Ellsworth and Reich, 1993; Aranda
et al., 2004), few studies have explored patterns of LMA in vertically
heterogenous canopies where both species composition and archi-
tecture vary within the vertical profile. The ability to understand these
patterns in three dimensions may provide insights into spatial patterns
of forest responses to change, ranging from successional responses to
disturbances at local scales to landscape-level responses to broad-scale
stresses such as drought or the cumulative impacts of climate change.
As well, 3D profiles of canopy traits may also enable more accurate
parameterization of landscape- and larger-scale process models that do
not typically represent spatial variation of the vertical distribution of
canopy traits.

Here we present a remote sensing approach that utilizes imaging
spectroscopy and lidar to characterize the 3D variation in LMA in
broadleaf canopies (Fig. 1). Our approach is based on the large body of
research that has demonstrated that LMA decreases through the canopy
from top to bottom and that decrease is largely driven by incident ir-
radiance and/or height mediated hydraulics constraints (Ellsworth and
Reich, 1993; Koch et al., 2004; Poorter et al., 2009). We posit that if we
are able to estimate LMA at the top of the canopy and model the within-
canopy environmental gradients that are known to drive top-down
decreases in LMA, we should be able estimate within-canopy (top-
down) patterns in LMA. Our method uses airborne imaging spectro-
scopy to estimate LMA at the top of the canopy and lidar to model
within-canopy environmental gradients driving top down patterns in
LMA. Imaging spectroscopy provides the most direct approach to foliar
trait estimation at large scales, including LMA (Asner et al., 2015; Singh
et al., 2015; Chadwick and Asner, 2016; Wang et al., 2019, 2020).
While lidar provides the ability to penetrate the canopy and enables
characterization of the 3D light environment (Lefsky et al., 2002; Todd
et al., 2003; Olpenda et al., 2018). Our method builds on the work of
Parker et al. (2001) who demonstrated that estimates of vertical light
transmittance derived from lidar follow vertical patterns in photo-
synthetically active radiation (PAR) and Fleck et al. (2004) who found
with-canopy LMA tracked with-canopy irradiance estimated using ter-
restrial lidar. We demonstrate this approach with airborne imaging
spectroscopy and lidar data from the U.S. National Ecological Ob-
servatory Network (NEON) coupled with coincidence field

measurements that we use to parameterize our model.

2. Methods

2.1. Study Area

Our study area consisted of hardwood-dominated forests in
northern Wisconsin and Michigan's Upper Peninsula (89.5 W, 46.0 N).
The area is characterized by a mix of managed and unmanaged stands
of various age classes, species composition and structure. Common
broadleaf deciduous species include trembling and bigtooth aspen
(Populus tremuloides and P. grandidentata), sugar and red maple (Acer
saccharum and A. rubrum), red oak (Quercus rubra), black and white ash
(Fraxinus nigra and F. americana), basswood (Tilia americana) and paper
and yellow birch (Betula papyrifera and B. alleghaniensis). Fieldwork was
conducted in sites within the Great Lakes ecoregion of the National
Ecological Observatory Network. NEON is a continental scale network
of long-term monitoring sites distributed across ecoregions within the
United States. Each ecoregion contains multiple sites that are the focus
of environmental monitoring activities including plant and animal
surveys, soil characterization and airborne remote sensing data col-
lection. Sampling took place within three NEON sites in the ecoregion:
UNDE, CHEQ, and STEI (Fig. 2). Sites range in size from 40–200 km2

and comprise a mix of private, municipal, state and federally-owned
land.

2.2. Remote sensing data

Remote sensing data were collected between September 2–12, 2016
and September 1–12, 2017 by NEON's Airborne Observatory Platform
(AOP). AOP is a multi-sensor system which includes an imaging spec-
trometer, lidar sensor and a high resolution RGB camera. The imaging
spectrometer is an AVIRIS-NG-like sensor built by NASA's Jet
Propulsion Laboratory that measures radiation from 380–2510 nm in
420 bands, with a spectral sampling width of approximately 6 nm
(Kampe et al., 2010; Kampe et al., 2011). Lidar data were collected
using an Optech ALTM 3500 Gemini, which is a dual sensor instrument
consisting of a full waveform digitizer and discrete return sensor
transmitting at 1064 nm. The instrument was operated at a pulse fre-
quency of 100 Hz and recorded up to four returns. The AOP system was
flown on a DeHavilland DHC-6 Twin Otter at 1000 m above ground
level (a.g.l.), resulting in 1 m resolution imaging spectroscopy data and
a discrete return density of ~4 pts. m−2. The full waveform lidar and
RGB camera data were not used in this study.

Orthorectification of the imaging spectroscopy data and co-location
with the lidar data was performed by NEON using a ray tracing algo-
rithm coupled with measurements from an onboard inertial measure-
ment unit (IMU) and GPS (Kampe et al., 2016). Surface reflectance was
generated using ATCOR 4 (ReSe, Wil, Switzerland), which approx-
imates atmospheric conditions including water vapor and aerosol con-
tent using the MODTRAN radiative transfer code (Richter and
Schläpfer, 2015). The surface reflectance imagery exhibited strong
cross-track gradients in brightness due to varying viewing and solar
geometry. To remove the brightness gradients, we applied a semi-em-
pirical bidirectional reflectance distribution function (BRDF) correction
employing the widely used Ross-Li kernel combination to model the
volumetric, geometric and isometric scattering components (Colgan
et al., 2012; Schläpfer et al., 2014). A single set of BRDF correction
coefficients was generated for each site and date by randomly sampling
10% of the pixels from each flightline and pooling the sampled data
before fitting the BRDF correction model. Because scattering properties
are dependent on surface type, we limited the BRDF correction model to
vegetated pixels using an NDVI threshold of 0.6. Following the BRDF
correction, all images were resampled to an interval of 5 nm (ex.
400 nm, 405 nm, …) using a Gaussian approximation of the spectral
response function. Resampling was performed to harmonizeFig. 1. Three-dimensional LMA modeling workflow.

A. Chlus, et al. Remote Sensing of Environment 250 (2020) 112043

2



interannual images which had different wavelength centers due to an-
nual radiometric calibrations. Before analyses, water absorption fea-
tures (1330–1430 nm and 1800–1960 nm) and spectrum tails
(< 400 nm and>2450 nm) were removed from the imagery due to
low signal to noise.

Discrete lidar data were normalized against a 1 m digital elevation
model (DEM) to derive height above ground for each return. The DEM
was created by NEON from the discrete return lidar data using a tri-
angulated irregular network of ground returns interpolated to a surface
(Goulden, 2019).

2.3. Field sampling

Field sampling occurred within 10 days of AOP overflights in 2016
and 2017 and involved plot-level collection of leaves throughout the
vertical profile of the canopy. Plot locations were manually chosen to
capture the range of forest types within the ecoregion and were dis-
tributed throughout the study area. Prior to sampling, a comprehensive
survey of each plot was conducted. Species, diameter at breast height
(DBH), crown class (dominant, codominant or suppressed) and location
within the plot were recorded for all trees with DBH greater than 5 cm
that had foliage within the plot. Trees were labeled dominant or co-
dominant if their crowns were in the exposed upper canopy, that is they
were visible from above, had sunlit foliage and were not completely
obstructed by other trees, while all other trees were designated sup-
pressed. Because GPS positions are known to have large errors under
closed canopy conditions, all plots were revisited to survey the plot
center coordinates during the fall of the sampling year once the trees
had dropped their leaves (Sigrist et al., 1999). GPS measurements were
made using a Geo7x with an external Zephyr 2 antenna (Trimble Inc.,
Sunnyvale, CA, USA) mounted on a 2 m range pole and were differ-
entially corrected after collection to an accuracy of< 2 m.

Following the plot survey, branches were sampled throughout the
vertical profile of the canopy, independent of species or individual tree.
The number of branches within the canopy that were sampled de-
pended on the number of species present in the plot and structural
complexity of the canopy. Branches were sampled using a variety of
tools depending their location in the canopy. Branches less than 15 m
a.g.l. were collected using extendable pole pruners. Between 15 m and
the top of the canopy, a Big Shot throw weight launcher (Sherrill Tree,
Greensboro, NC, USA) was used to launch a line into the canopy, from

which a custom-built cutting device (à la Poulter et al., 1991) was
raised to retrieve branches. For sun exposed branches (i.e., top-of-ca-
nopy) greater than 15 m, either a shotgun or a second custom cutter
(Supplemental Fig. S1) was used to retrieve the top-of-canopy branch.
Whenever possible, we attempted to sample every tree with foliage in
the plot at multiple heights. In some plots, whether due to the number
of trees within the plot or inaccessibility, not every tree was sampled.

The height (a.g.l.) of all branches, except those collected using a
shotgun, were measured directly using a measuring tape that was at-
tached to the cutting device. For branches sampled with a shotgun, the
branch height was either measured using a laser hypsometer (Haglöf,
Sweden), measuring tape, or, in a select few cases, was estimated from
the lidar data. For each sampled branch, we calculated its relative
height in the canopy, which was defined as the ratio between the field-
measured branch height and maximum lidar return height within the
plot.

The only differences in sampling between years were: 1) in 2016, 5-
m diameter circular plots were used versus 5 × 5 m square plots in
2017, and 2) 3 and 10 leaves per height were sampled in 2016 and
2017, respectively. Plot shape was changed between years to increase
plot size and to simplify sampling. The number of leaves collected per
height was increased to better capture within branch variability in
LMA.

After leaves were collected, reflectance measurements were made
using a full-range (350–2500 nm) field spectrometer equipped with a
leaf clip to estimate LMA using spectroscopic models. Leaf measure-
ments were referenced against a measurement on a 99% white
Spectralon panel (Labsphere, North Sutton, NH, USA) to derive relative
reflectance. Measurements were typically taken immediately after col-
lection; when that was not possible, leaves were placed in a plastic bag
with a damp paper towel and stored in a cooler on ice until measure-
ments could be made, within 2 h. Reflectance spectra were measured in
2016 with a Fieldspec 3 spectrometer (Analytical Spectral Devices,
Boulder, CO, USA) and in 2017 with a PSR 3500+ spectrometer
(Spectral Evolution, Boston, MA, USA). After reflectance measurements
were complete, leaf samples were stored in a cooler until leaf area
measurements were made later the same day. Leaf area was measured
on three leaves per branch using a LI-3100 leaf area meter (LI-COR
Biosciences, Lincoln, NE, USA), after which samples were frozen and
stored for further analysis. Once the samples were returned to the lab,
they were dried to constant mass in a freeze dryer (> 120 h) and

Fig. 2. Flight boxes and sampling boundaries for the three sites within the NEON Great Lakes ecoregion.
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weighed. Dry weights were divided by the projected fresh leaf area to
calculate LMA.

LMA has shown to be robustly measurable from fresh leaf spectro-
scopy across a wide range of leaf types using spectrometers from mul-
tiple manufacturers (Serbin et al., 2019). As such, LMA was estimated
for leaves that were not directly measured using spectroscopic models.
Models were developed using partial least squares regression (PLSR), a
common chemometric technique (Wold et al., 2001), in Python using
the package ‘scikit-learn’ (Pedregosa et al., 2011). Spectroscopic models
were built using linked reflectance and LMA measurements made
during this study, and separate models were generated for each year to
account for spectrometer-specific differences in reflectance measure-
ments. Prior to model development, we removed spurious data points
using a Bonferroni-corrected outlier detection test (Dupuis and
Hamilton, 2000), less than 1% of data points were identified as outliers.
Following outlier removal, the dataset was split randomly 50:50 into
calibration and validation datasets. Using the calibration data, we then
computed the optimal number of model components using the cross-
validated predicted residual sum of squares (PRESS) statistic using the
adjusted Wold's R as a selection criterion (p = 0.05) (Li et al., 2002).
The calibration dataset was used to build a series of 500 models, each
model was built using a random 70% split of the calibration dataset.
The 500 models were applied to the validation dataset and the mean
predictions were compared to observed LMA values and model per-
formance was assessed using the root mean squared error (RMSE),
coefficient of determination (R2) and bias. Following the accuracy as-
sessment, 500 new permuted models were built using the entire dataset
and were applied to the spectra of unmeasured leaves to estimate leaf-
level LMA. Branch-level LMA was calculated as the average leaf-level
LMA of the 3 or 10 leaves from each branch.

2.4. Top-of-canopy LMA

Branch-level LMA was scaled to the canopy level by averaging LMA
from all sunlit branches from each plot. Predictive models linking field-
measured canopy-level LMA and imaging spectroscopy data were de-
veloped using the same modeling approach, PLSR, that was used for
developing leaf-level spectroscopic models. Plot spectra were extracted
from a 7 × 7 pixel window around each plot center, which was a
slightly larger window than the field plot area, to account for GPS and
image registration error. All pixels within the 7 × 7 window were
averaged, not discriminating between sunlit and shaded pixels, re-
sulting in a single spectrum per plot. This approach makes our method
more transferable to spaceborne imagers with larger pixel sizes in
which shaded and sunlit portions of tree crowns will be mixed in pixels.
When a plot was covered by multiples lines owing to flightline overlap,
we averaged pixels from all flightlines to produce a single reflectance
spectrum.

A range of regions of the reflectance spectrum have been used to
develop predictive models for LMA from spectroscopy data in the lit-
erature. At the leaf level, the full spectrum (Yang et al., 2016), spectral
region subsets (Ourcival et al., 1999; Serbin et al., 2014) and variable
selection techniques (Le Maire et al., 2008; Zhao et al., 2013) have been
employed. At the canopy level, the full spectrum (400–2500 nm) is
generally used (Singh et al., 2015; Chadwick and Asner, 2016; Wang
et al., 2019). However Ali et al. (2016) found that the SWIR region from
1500–2500 nm exhibited the strongest correlation with canopy-level
LMA, which is consistent with research showing that the shortwave
infrared (SWIR) contains a number of absorption features related to dry
matter content (Peterson et al., 1988; Curran, 1989; Jacquemoud et al.,
1996). To assess the impact of spectral region selection on estimating
top-of-canopy LMA, we compared the results of models built using four
spectral regions moving to progressively longer wavelengths: 1) full
spectrum (400–2450 nm), 2) NIR and SWIR (800–2450 nm), 3) the full
SWIR (1600–2450 nm), and 4) far SWIR (2000–2450 nm).

Prior to model development, we performed a Bonferroni-corrected

outlier test and identified a single plot as a significant outlier, which
was removed from further analysis. The optimal number of PLSR model
components was selected by minimizing the cross-validated PRESS
statistic using the adjusted Wold's R as a selection criterion (p = 0.05).

2.5. Transmittance

Lidar transmittance was calculated following the same form used by
Parker et al. (2001) to model photosynthetically active radiation (PAR)
transmittance from full-waveform lidar:

= −
≥τ h

N
N

( ) 1 h

total (1)

where τ is the lidar transmittance metric at height h above ground, N≥h

is the number of returns at or above height h and Ntotal is the total
number of returns within the plot window. The fraction in Eq. (1) is
equivalent to the interception/reflection rate of pulses above a given
height. All returns were used when calculating transmittance metrics.
Transmittance metrics were calculated at 1 m intervals throughout the
canopy and were interpolated using a linear function to estimate
transmittance at sampled branch heights in each plot.

Shallow lidar pulse penetration is a common issue in dense canopies
where pulse energy may not reach the lower canopy, understory and
ground (Fig. 3). A lack of returns from within the canopy can result in
an underestimation of transmittance. We compared a range of window
sizes from 5–100 m and found that, with increasing window size, model
performance rapidly increased up until 20 m, after which the model
performance stabilized, followed by a rapid decline with window sizes
greater than 50 m (Supplemental Fig. S2). Based on these results we
used a 20 m wide window around each plot to extract lidar returns for
calculating transmittance.

2.6. Within-canopy LMA

Vertical gradients in LMA were modeled using multilevel linear
regression (MLR). MLR was used to account for the hierarchical struc-
ture of the dataset in which variables could be divided into two levels:
group (top-of-canopy LMA) and individual (transmittance and absolute
and relative heights), where individual-level variables are nested within
groups. MLR models present a compromise between complete and no-
pooling of data within groups and result in lower standard errors
compared to traditional linear regression modeling (Gelman and Hill,
2007). In addition, MLR models can be formulated such that coeffi-
cients, intercepts and slopes are modeled as a function of group-level
predictors. Models were fit in R using the package ‘lmer’ (Bates et al.,
2015), group- and individual-level predictors were fit as fixed effects,
and plot ID was treated as a random effect. We compared a range of
models, beginning with univariate models and sequentially increasing
model complexity by including additional individual-level predictors
and a group-level predictor along with interaction terms. Note that we
reverse the values of relative height and transmittance such that values
range from 0 at the top of the canopy to 1 at ground level, this has
benefits for fitting no-intercept regression models based on top-of-ca-
nopy LMA; that is, LMA predicted at a the top of the canopy where both
relative height and transmittance are equal to zero will be simply the
prediction of top-of-canopy LMA derived from imaging spectroscopy
because any modifiers in our model based on these two metrics will be
multiplied by zero.

2.7. Model evaluation

The performance of both top-of-canopy LMA and within-canopy
LMA models were assessed using a 5 by 5-fold repeated cross-valida-
tion. Data splits were performed at the plot level to ensure that test and
training datasets were independent. For each training-test split, the
training data were first used to develop a PLSR model to predict top-of-
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canopy LMA on the training dataset. These top-of-canopy LMA esti-
mates were then used as inputs to the within-canopy MLR model along
with the within-canopy training data. The derived top-of-canopy and
within-canopy models were then applied to the test dataset in the same
fashion, keeping the same test and training sets separate for each
iteration. We report R2, RMSE and %RMSE for both the training and
test datasets.

2.8. Full-canopy LMA mapping

Following top-of-canopy and within-canopy model evaluation, we
developed 3D maps of LMA across the entire study area using the best
performing combination of models as determined by the out-of-sample
performance metrics. The final model for implementation was gener-
ated using a permutation based approach whereby we generated 500
models each built using a random 70% of the data, we recorded the
mean estimate predicted from the 500 models. Models were applied on
5 × 5 m horizontal pixel scale corresponding to the scale of field
sampling and at 1 m intervals vertically. Downscaling of the imaging
spectroscopy data utilized 5 × 5 pixel aggregation and averaging.
Transmittance metrics were calculated at 1 m intervals using the 5 m
pixel center for determining the neighborhood window center.

3. Results

Our dataset consisted of 59 plots, 18 sampled in 2016 and 41 in
2017. Fewer branches were sampled on average per plot in 2017 vs
2016 (12 vs 18 branches) to increase the number of plots sampled. A
total of 14 broadleaf species were sampled during the study, 12 of
which were present in the top of the canopy in at least one plot. Sugar
maple (A. saccharum) was the most commonly sampled species ac-
counting for 37% of the branches. Sugar maple is shade tolerant and is a
ubiquitous understory species in the study area (Table 1). On average,
5.9 trees were sampled per plot and 84% of those had branches sampled

at multiple heights with the canopy.
Independent validation of leaf-level spectroscopic models exhibited

high accuracies for estimating LMA from fresh spectra for both years of
measurements (ASD 2016: R2: 0.98, RMSE: 2.9 g m−2; PSR 2017: R2:
0.96, RMSE 4.5 g m−2, Supplemental Figs. S3, S4). Branch-level LMA
ranged from 20.2–120.7 g m−2, while sampled branch heights ranged
from 0.25–27.7 m a.g.l. (Fig. 4). The number of species in each plot
varied from 1–7, with a mean of 2.5; multiple species were sampled in
44 of 59 plots.

3.1. Top-of-canopy LMA

Cross-validated results of PLSR models for top-of-canopy LMA from
imaging spectroscopy data varied in performance depending on spectral

Fig. 3. Example of varying lidar penetration depth
from two plots: a trembling aspen stand (a,c) and
sugar maple stand (b,d); a–b) profile view of all re-
turns; c–d) upward looking field photos from each
plot. Both plots have a large number of returns from
the upper canopy and few to no returns from the
middle of the canopy. In the aspen stand the lack of
returns from the middle canopy is consistent with
branching structure seen in the field photos, while
the lack of returns in the maple stand is the result of
near complete beam attenuation in the upper ca-
nopy.

Table 1
Field sampling summary.

Species Plots Branches Top-of-
canopy
branches

Mean
branch
LMA
(g m−2)

Range
branch LMA
(g m−2)

Acer rubrum 10 33 2 52.6 33.0–86.1
Acer saccharum 39 301 22 40.5 23.2–94.9
Betula alleghaniensis 4 24 1 41.5 25.0–90.1
Betula papyrifera 7 30 4 51.5 29.7–102.6
Corylus cornuta 9 12 0 35.9 26.1–49.8
Fraxinus americana 8 24 7 61.2 20.2–102.8
Fraxinus nigra 7 51 7 51.8 26.2–100.4
Ostrya virginiana 8 17 0 28.5 23.5–36.3
Populus grandidentata 7 44 8 72 49.4–102.0
Populus tremuloides 13 64 21 74.1 52.9–102.1
Prunus spp. 6 13 2 56.4 36.6–88.6
Quercus rubra 18 144 21 71.7 32.2–120.7
Tilia americana 9 43 6 49.1 20.2–87.4
Ulmus americana 1 11 1 43.5 25.3–68.9
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interval (Table 2). Model performance increased with narrower spectral
ranges from full spectrum (400–2450 nm: R2: 0.39, RMSE 12.7 g m−2)
to the far SWIR (2000–2450 nm: R2: 0.57, RMSE 10.7 g m−2) (Fig. 5).
We used the top performing model, far SWIR, for the remainder of the
analysis.

3.2. Within-canopy LMA

Within-canopy variables—height, relative height and lidar trans-
mittance—all correlated positively with LMA (Fig. 6). Univariate
models which considered only within-canopy variables ranged widely
in predictive performances: transmittance (R2: 0.61, RMSE:
10.9 g m−2) was the best performing, followed by relative height (R2:
0.43, RMSE 13.2 g m−2) and height (R2: 0.14, RMSE 16.3 g m−2).

Among the model forms tested, we found Eq. (2) exhibited the best
results based on metrics of model performance, parsimony and inter-
pretability (R2: 0.78, RMSE 8.3 g m−2, Fig. 7), using a no-intercept
model as described in 2.7 above. (See supplemental Table S1. for results
of all tested models).

= + ∙ + ∙ + ∙LMA h LMA τ h β LMA β rh h β( ) ( ) ( ( ) )toc inv toc inv0 1 2m20 (2)

where

=h height above ground m( )

=LMA Top of canopy LMAtoc

=τ Inverted transmittance of window width m at height h20inv m20

=rh Inverted relative height at height hinv

Functionally, this model estimates LMA within a canopy as a func-
tion of top-of-canopy LMA, relative position in the canopy and trans-
mittance. Regression coefficients modify the slope of transmittance as a
function of relative height and top-of-canopy LMA.

Cross validation metrics varied across species (R2: 0.35–0.9; RMSE:
5.6–11.1 g m−2; Table 4). With the exception of Ostrya virginiana,
which displayed little variation in LMA (23.5–36.3 g m−2), the within-
canopy model was able to explain at least 50% of the variation in
within-canopy LMA and at least 70% for 8 of the 14 species sampled.
Normalized RMSE was less than or equal to 15% for all but 4 species (O.
virginiana, C. cornuta, P. tremuloides, Prunus spp.). In an analysis of re-
siduals, means for sugar maple, river birch, ironwood, red oak and
bigtooth and trembling aspen showed small but significant differences
from 0 (p < .01, Fig. 8a). The mean and median residuals for all
species were within +/−7 g m−2, which is lower than the RMSE of the
top-of-canopy LMA model. Likewise, the residuals for canopy dominant
trees differed from 0 (p < .01), but by less than 4 g m−2 on average
(Fig. 8b).

3.3. Three-dimensional LMA mapping

Three-dimensional maps of LMA were generated using the combi-
nation of the far SWIR PLSR model to estimate top-of-canopy LMA and
Eq. (2). to estimate within-canopy LMA. Overall accuracy of the cou-
pled model considering both top-of-canopy LMA and within-canopy
LMA estimates was high (R2 = 0.82; RMSE: 8.5 g m−2).

We applied the model to entire study area and highlight a subset of
the CHEQ site in three different visualizations of the 3D patterns in
LMA: a horizontal map (Fig. 9a), a profile view across a transect
(Fig. 9b) and vertical profiles for several forest types along the transect
(Fig. 9d).

The horizontal map displays LMA at three heights: top-of-canopy,
5 m into the canopy and 10 m into the canopy, in the red, blue and
green channels, respectively. Areas with relatively high LMA
throughout the canopy are colored white, and include an open-grown

Fig. 4. Distribution of sampled branches as a function of height and relative height. Note: some branches have relative heights slightly greater than 1 as a result of an
underestimation of maximum canopy height by the lidar sensor.

Table 2
Cross-validated PLSR top-of-canopy LMA results.

Training Test

Wavelengths
(nm)

Components R2 RMSE %RMSE R2 RMSE %RMSE

400–2450 7 0.71 8.75 12.6 0.39 12.68 18.27
800–2450 6 0.7 8.84 12.74 0.46 11.91 17.15
1600–2450 6 0.73 8.49 12.24 0.54 10.99 15.83
2000–2450 6 0.73 8.39 12.08 0.57 10.67 15.37
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oak stand (Oo) and aspen stand (Ta) annotated on the map. Purple
regions, like the thinned oak stand (To), indicate relatively high LMA in
the lower canopy, while the darkly colored maroon regions indicate
relatively low LMA throughout the canopy and are generally re-
presentative of sugar maple stands (Sm).

4. Discussion

Here we demonstrate a novel method using imaging spectroscopy to
estimate top-of-canopy LMA and lidar-derived metrics of within-canopy
environmental gradients to map 3D profiles of within-canopy LMA. Our
model works within northern temperate broadleaf forests and is in-
dependent of information on horizontal or vertical species composition.
Prior studies have used imaging spectroscopy to map top-of-canopy
LMA or scaled whole-canopy LMA, but this study is the first of its kind
to map LMA at discrete intervals throughout the canopy.

The straightforward and computationally efficient lidar transmit-
tance metric we used captured a large portion of the variation in within-
canopy LMA. From a technical perspective, our comparison of trans-
mittance window sizes highlights the importance of sufficient lidar
beam penetration to accurately characterize understory conditions
through the depth of the canopy. In addition to increasing the number
of lower canopy returns increasing the window size also accounts for
the neighboring canopy structure which impacts the local light en-
vironment. For our dataset a window size of 20 m enabled measure-
ment of enough discrete lidar returns to accurately represent 3D var-
iation in canopy structure as it controls vertical distribution in LMA. We
found increasing window beyond 20 m provided no benefit to modeling
within-canopy LMA because of decreasing spatial autocorrelation in

canopy structure, thus providing less horizontal detail in the vertical
structure of canopies. For data collected under different sensor con-
figurations this may differ as the ability of a lidar sensor adequately
characterize canopy structure is not only a function of characteristics of
the canopy itself, but also the lidar sensor properties, including beam
power, wavelength, divergence and return density (Lim et al., 2003;
Morsdorf et al., 2009; Jakubowski et al., 2013).

Other methods exist for estimating transmittance from discrete re-
turn lidar, but usually require a priori knowledge of species composi-
tion and age classes to define light extinction coefficients (Parker et al.,
2002). We developed our method explicitly to operate independent of
species composition information, which potentially makes it more
flexible for application in new study areas lacking such information.
Full waveform lidar offers the potential to provide greater detail on
structural characteristics of forest canopies driving within-canopy ra-
diation regimes compared to discrete return lidar, but was not used in
this study due to a sensor malfunction. Waveform processing methods
such as deconvolution and decomposition offer the ability to extract a
greater number of returns (Zhou et al., 2017) or estimate backscattering
cross sections (Wagner et al., 2006), that may relate more specifically to
leaf/plant area.

Our modeling results highlight the importance of an accurate esti-
mate of top-of-canopy LMA to characterize within-canopy vertical
variation in LMA. We found that restricting the wavelength region to
the far SWIR (2000–2450 nm) resulted in the best performing model,
this region of the spectrum is known to contain absorption features
related to dry matter content including proteins, starch, sugars and
cellulose (Curran, 1989; Jacquemoud et al., 1996). Conversely models
built using the full VNIR-SWIR range performed poorly, possibly a

Fig. 5. Out-of-sample validation results for the top preforming top-of-canopy PLSR model using wavelengths 2000–2450 nm. a) Mean predicted versus observed; b)
residuals; c) PLSR model coefficients; X-axis error bars on a and b indicate +/−1 standard deviation of out-sample LMA estimates across five cross-validation
iterations; Y-axis error bars indicate +/−1 standard deviation of within-branch field measured LMA. Dot colors indicate top-of-canopy species composition.
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result of overfitting to pigment absorption features or canopy structure
induced effects that are not generalizable across the entire dataset.
Inclusion of top-of-canopy LMA as a predictor improved within-canopy
model performance compared to models using only height and trans-
mittance metrics as predictors (R2: 0.69 vs. 0.78; Supplemental Table
S1). The top-of-canopy LMA serves two roles in the 3D model: first, it
acts as a starting point for the within-canopy gradient of decreasing
LMA and, second, it defines the slope of the relationship between LMA
and transmittance, as plots with higher top-of-canopy LMA show
steeper LMA declines within the canopy—i.e., larger values for the
τinv20m(h) ∙ (β0 + LMAtoc ∙ β1 + rhinv(h) ∙ β2) term in Eq. (1) (see β
coefficients in Table 3). The interaction terms in Eq. (2) modify the
transmittance slope to account for the fact that LMA largely converges
to a small range of values at the bottom of the canopy (~20–40 g m−2)
irrespective of the value at the top of the canopy, where the range of
LMA is large (~50–120 g m−2). Interestingly, our results suggest a
generalized relationship describing within-canopy decreases in LMA in
these temperate broadleaf deciduous forests, independent of either ca-
nopy species or subcanopy species identity (Fig. 6b and c). Our field
data demonstrate that in multi-species plots, where species vary
through the vertical profile, trends in LMA generally follow a con-
tinuous pattern regardless of species turnover (illustrated for individual
plots in Fig. S6). Moreover not only do we see LMA decline within a
given tree of a species, there is also vertical species-turnover that cor-
responds to shade tolerance, and these shade tolerant species also have

lower LMA as well. The fact that these patterns can be modeled using
remote sensing may enable testing the generality of the relationship
across a range of broadleaf forest types.

Our model used relative rather than absolute height above ground
as an independent variable, and moreover we show that absolute height
had a weaker explanatory power than relative height (Supplemental
Table S1). While others have shown a strong relationship between LMA
and absolute height (Koch et al., 2004; Cavaleri et al., 2010), these
studies have focused on much taller trees than in our study area. We
expect that hydraulic constraints may play a weaker role in regulating
LMA through the canopy in these northern temperate forests, and ex-
pect that a similar model may need to leverage absolute height for taller
forests in which absolute height plays a more significant hydraulic role
on leaf development. It is not clear what physiological process relative
height captures in our model, although it may simply be compensating
for limitations in characterizing lower canopy vertical structure due to
lidar beam attenuation or covarying with other environmental condi-
tions driving LMA variation like temperature, humidity or windspeed.

Ultimately, the utility in our new approach will be the generation of
voxels to represent 3D trait variation, potentially applicable for mod-
eling canopy processes. However, our 2-dimensional maps of 3D pat-
terns in LMA reveal unique patterns not visible from the visible imagery
(Fig. 9a,c). In particular, the maps highlight the legacies of logging,
selective logging and other disturbances. This results in highly variable,
but spatially coherent patterns in within-canopy LMA that is otherwise

Fig. 6. Comparison of field-measured within-canopy LMA against the three within-canopy covariates: a) height, b) transmittance and c) relative height.
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obscured by relatively dense stands. Of note are the variable patterns
seen in the three oak stands highlighted in Fig. 9, a thinned oak stand
(To), a closed canopy oak stand (Co) and an open-grown oak stand
(Oo). At the top of the canopy the thinned and closed stands show si-
milar values in LMA, 104 and 105 g m−2, respectively, while the open-
grown stand is much higher at 119 g m−2. This difference may be a
result of site-specific differences in local microclimate and/or soil
moisture in the open-grown site relative to the closed and thinned sites,
resulting in higher LMA (Potter et al., 2001; Abrams et al., 1994).
However, when comparing within-canopy gradients in LMA the closed
and thinned sites quickly diverge. The closed stand shows a sharp de-
cline in LMA through the canopy while the within-canopy gradient of
LMA in the thinned stand is shallower owing to increased light pene-
tration, a pattern that is consistent with experimental treatments
(Chiang and Brown, 2010). A key insight from this effort is not only that
canopy structure is spatially heterogeneous and hence so is full-canopy
LMA, but that this variation may be significant to our understanding of
within-canopy processes. This also important for understanding pat-
terns of forest function, as the majority of temperate forests in this re-
gion have undergone some level of stand management or disturbance
that is not apparent in passive imaging.

While this study focused on within-canopy patterns of LMA, other
physiologically and ecologically relevant foliar traits also vary along
canopy environmental gradients, including concentrations of total non-
structural carbohydrates (Niinemets, 1997) and phosphorus (Leuning
et al., 1991), and chlorophyll to nitrogen ratios (Koike et al., 2001).
Although not included in this study due to a lack of validation data, we
also estimated a suite of traits using fresh-leaf and dry-ground spec-
troscopic models and found significant within-canopy patterns in sev-
eral traits correlated with lidar transmittance including sugar con-
centration, chlorophyll A content and xanthophyll cycle pigment
content (violaxanthin, antheraxanthin and zeaxanthin (VAZ)) (Supple-
mental Fig. S5). VAZ, which play a photoprotective role in leaves and
are known to correlate positively with light levels/transmittance,
showed the strongest relationship with transmittance among the traits
estimated (R2 = 0.49) (Niyogi et al., 1997; Hansen et al., 2002).

Here we focused on a single period of the growing season, but LMA
is known to vary through the course of the growing season (Reich et al.,
1991; Yang et al., 2016). In addition to seasonal variation in absolute
values of LMA, there may also be phenological variations in the re-
lationship between top-of-canopy LMA and within-canopy LMA as it
relates to forest vertical structure. For example, Coble et al. (2016)

Fig. 7. Out-of-sample results for best-performing within-canopy LMA model. a) Predicted versus observed scatter plot; b) Residual plot; X-axis error bars indicate
+/−1 standard deviation of out-of-sample LMA estimates across 5 cross-validation iterations; Y-axis error bars indicate +/−1 standard deviation of within-sample
field measured LMA.

Fig. 8. Distribution of within-canopy residuals grouped by a) species and b) crown class.
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found that drivers of within-canopy variability in LMA in sugar maples
varied during the growing season, driven by height early in the growing
season and light environment later in the growing season. This suggests
future directions of research in both ecological and remote sensing re-
search testing the extent to which the relationships we describe are
generalizable throughout the course of the growing season. This may
also necessitate further testing the extent to which species identity

conditions temporal patterns in 3D LMA.
As well, this study is specific to northern temperate broadleaf for-

ests, and was not tested on similar species in other biomes, nor on
physiognomically or physiologically different tree types such as conifers
and evergreen broadleaves. We expect that different forest types will
exhibit a generalizable pattern, a decrease in LMA with depth into the
canopy, but due to differences in resource allocation strategies and

Fig. 9. Results of three-dimensional LMA model applied to CHEQ (90.069°W, 45.795° N). a) Two-dimensional RGB representation of three-dimensional patterns in
LMA, R: Top-of-canopy LMA, G: LMA 5 m into canopy, B: LMA 10 m into canopy. b) Profile view of LMA transect; c) True color RGB image d) Height versus LMA for a
set of individual 5 m pixels from forest types located on transect. Forest types: Thinned oak (To), Sugar maple (Sa), Trembling aspen (Ta), Young mixed deciduous
(Yd), Closed canopy oak (Co), Open-grown oak (Oo).
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canopy structure, the shapes of the relationships will differ. Future
testing of the generality of our model could apply the model to different
forest types to identify how model coefficients change by taxa.

Our mapping of 3D patterns in LMA has the potential to be coupled
with recent efforts to model vertical LAI profiles and leaf area density
using lidar (Tang et al., 2012; Kamoske et al., 2019) as a basis to esti-
mate full canopy foliar biomass and nutrient content for use as inputs
into fire (Perry et al., 2004), nutrient cycling (Grimm et al., 2003) and
carbon accounting models (Hudiburg et al., 2009). Extensive airborne
and spaceborne lidar (e.g., GEDI) combined with imaging spectroscopy
may enable better characterization of the distribution of within-canopy
processes, even if wall-to-wall mapping is not yet possible. Multi-layer
canopy photosynthesis models that incorporate expected variation in
physiologically important traits throughout the canopy can provide
more accurate estimates of assimilation rates than more generalized
methods like big-leaf models (Raulier et al., 1999). However, at present,
most models do not explicitly include 3D variation in foliar traits.

5. Conclusion

This study is the first to employ imaging spectroscopy and lidar
together to map 3D patterns in LMA, an important canopy functional
trait that is widely used to characterize photosynthetic capacity of
forests. Our method accurately estimated horizontal and vertical var-
iation in LMA in broadleaf forests without taking into account species
composition (R2 = 0.82; RMSE: 8.5 g m−2). Our work is an initial step,
with further research into the generality of the relationships needed
across different sensors, ecosystems and through time. As well, the in-
tegration of these data products into ecosystem process models requires
testing. Critical to this research was the availability of coincident free
and open high-resolution leaf-on lidar and imaging spectroscopy data,
which until the NEON AOP was deployed was rare. Separately, each
technology addresses different needs, but the true value of imaging
spectroscopy and lidar may be in their combined, complementary use.
Finally, new or planned spaceborne hyperspectral (ie. PRISMA, HISUI,
CHIME and SBG) and lidar systems (GEDI) will provide opportunities to
build on our work and quantify full-canopy physiological variation on a
global scale.

Data availability

Field data, leaf-level spectra, and extracted remote sensing data can
be found on the EcoSIS spectral repository (https://ecosis.org/). Leaf
and canopy-level spectral models can be found on the Ecological
Spectral Model Library site (https://ecosml.org/). AOP imaging spec-
troscopy and lidar data are available for download from NEON (https://
data.neonscience.org/).
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