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Leaf reflectance spectra capture the evolutionary history of seed plants
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o Leafreflectance spectra have been increasingly used to assess plant diversity. However, we do
not yet understand how spectra vary across the tree of life or how the evolution of leaf traits
affects the differentiation of spectra among species and lineages.

o Here we describe a framework thatintegrates spectra with phylogenies and apply it to a global
dataset of over 16 000 leaf-level spectra (400-2400 nm) for 544 seed plant species. We test for
phylogenetic signal in spectra, evaluate their ability to classify lineages, and characterize their
evolutionary dynamics.

¢ We show that phylogenetic signal is present in leaf spectra but that the spectral regions most
strongly associated with the phylogeny vary among lineages. Despite among-lineage hetero-
geneity, broad plant groups, orders, and families can be identified from reflectance spectra.
Evolutionary models also reveal that different spectral regions evolve at different rates and under
different constraint levels, mirroring the evolution of their underlying traits.

o Leaf spectra capture the phylogenetic history of seed plants and the evolutionary dynamics of
leaf chemistry and structure. Consequently, spectra have the potential to provide breakthrough
assessments of leaf evolution and plant phylogenetic diversity at global scales.

Key words: evolution, leaf spectra,
phylogenetic signal, remote sensing, seed
plants.

ecosystems (Tilman ez al., 2014; Isbell ez al., 2015; Duffy et al.,

Introduction 2017) and on the benefits that humans derive from them

Efficient assessment of plant biodiversity at global scales (Turner,
2014; Jetz et al., 2016) is critical at a time when biodiversity loss is
accelerating at alarming rates (Pimm ez al., 2014; Ceballos ez al.,
2015). Plant diversity has profound impacts on the functioning of
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(Cardinale er al., 2012; Isbell ez al, 2017). These biodiversity
effects are due to more than just the number of species; they depend
on the gamut of plant morphologies and physiological strategies,
and on the amount of genetic and phylogenetic diversity present in
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an assemblage (Maherali & Klironomos, 2007; Cardinale ez 4/,
2007; Cadotte et al., 2008, 2010; Crutsinger et al., 2009).

Plant reflectance spectra — the profile of light reflected by leaves
across different wavelengths — have emerged as an invaluable tool to
estimate plant functional (Kokaly ez /., 2009; Féret & Asner, 2014;
Schneider ez al., 2017) and taxonomic diversity (Clark ez al., 2005;
Asner & Martin, 2011; Cavender-Bares et al., 2016), assess their
consequences for ecosystem processes (Schweiger ez al., 2018), and
guide conservation (Asner ez al., 2017b). Plant leaves synthesize a
range of structures and chemical compounds and many of these
traits can be detected using spectral reflectance (Kokaly ez a/., 2009
Ustin ez al., 2009; Serbin et al., 2014). For example, pigments such
as chlorophyll, carotenoids, and anthocyanins strongly absorb light
in the visible range of the spectrum (visible, 400-700 nm) while
water, lignin, cellulose, phenolics, and leaf structural features
interact with light in the near-infrared (NIR, 700-1100 nm) and
short-wave infrared (SWIR, 1100-2500 nm) ranges (Kokaly ez al.,
2009; Ustin et al., 2009; Asner et al., 2014).

Spectra capture the diversity in leaf traits that have accumulated
over the course of seed plant evolution (Reich ez al, 2003; Kattge
etal.,2011; Cornwell ez al., 2014) but the relationship between the
spectral variation among species and lineages and the evolutionary
process that generates this variation remains unknown. Prior
evidence has revealed that leaf spectra contain information about
evolutionary relationships within (Madritch ez al, 2014; Caven-
der-Bares ¢r al., 2016) and among species (Asner & Martin, 2011;
Cavender-Bares ez al., 2016; McManus ez al., 2016), enabling us to
estimate taxonomic diversity from spectra. However, broad
coverage of spectral data across the plant tree of life has not been
previously available for a single analysis to determine which spectral
regions encode phylogenetic information or to assess the generality
of such relationships across taxa.

The potential for spectral data to revolutionize biodiversity
monitoring contrasts with our lack of mechanistic understanding
about how spectral diversity arises over evolutionary time. The
evolution of spectra likely depends on the dynamics of leaf trait
evolution but this dependency has yet to be demonstrated.
Moreover, spectra integrate leaf traits in complex ways (Jacque-
moud & Baret, 1990; Féret ¢t al., 2017) and multiple traits can
affect the same spectral region (Curran, 1989). This complicates
identifying which trait underlies the evolutionary signatures found
at a given spectral band. A modeling framework that explicitly
integrates evolution, leaf traits, and the emerging spectra is required
to understand how the evolution of different leaf attributes
combine to affect the spectra.

Establishing how evolution affects spectra has important
implications not only for explaining how spectral variation arises
but also for biodiversity detection. Promising approaches for
assessing plant diversity rely on the idea that spectral variation is
positively associated with functional and taxonomic diversity
(Schweiger ez al., 2018; Gholizadeh ez al., 2019; Wang & Gamon,
2019; Laliberté ez al., 2020). However, evolutionary processes such
as convergence, constraints, and differential rates of evolution may
complicate the relationship between spectral and taxonomic
diversity (Ollinger, 2011). For example, adaptations to arid
environments may result in distant relatives converging to have
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similar leaf traits and reflectance spectra. Likewise, spectral regions
that are highly similar among lineages may result from slow rates of
evolution, from constrained evolution — when only certain traits
underlying spectral properties are evolutionarily viable — or a
combination of both. Itis now clear that certain trait combinations
are favored over evolutionary time while others are not viable (Diaz
et al., 2015) and that evolutionary convergence can affect the
spectra and the inferences we draw from them (Ollinger, 2011).
Despite the impact that different evolutionary processes may have
on spectral diversity, we do not yet know if different spectral regions
evolve at different rates or have been constrained to stay within a
limited range over the course of evolution.

In this article, we attempt to close the gap between evolutionary
and spectral biology. Our specific goals are to (1) establish which
regions of the leaf reflectance spectrum capture the signal of
phylogenetic history and how that varies across the tree of life, (2)
test whether the phylogenetic identity of lineages can be predicted
from spectral data, (3) describe a framework to model the evolution
of leaf spectra, and (4) estimate how different evolutionary
processes generate the diversity of leaf spectra we observe. To
achieve these goals, we compiled an unparalleled dataset of over
16 000 leaf-level reflectance spectra (400—2400 nm) for 544 seed
plant species spanning temperate and tropical latitudes in the
Americas and Europe (Fig. 1b—d). We used the PROSPECTS leaf
radiative transfer model (Féret et al., 2008) to estimate five leaf
attributes, number of leaf layers, chlorophyll and carotenoid
content, equivalent water thickness, and leaf mass per area (LMA).
To explore the evolutionary patterns in leaf spectra, we generated a
time-calibrated molecular phylogeny for the species in our dataset
using five chloroplast markers.

Materials and Methods

Spectral data acquisition and processing

We compiled a dataset of over 16 000 leaf-level reflectance spectra
(400-2400 nm) for 544 seed plant species spanning temperate and
tropical latitudes in the Americas and Europe (Fig. 1d). The dataset
only includes spectra of mature, sun-exposed leaves measured in the
spring or summer seasons. Leaf spectra were measured with two full-
range fleld spectroradiometers — an ASD FieldSpec 3 (Analytical
Spectral Devices, Boulder, CO, USA) and an SVC HR-1024i
(Spectra Vista Corp., Poughkeepsie, NY, USA) — using leaf clips and
artificial light sources. We processed the reflectance spectra using the
R package SpectrOLAB (Meireles er «l, 2017) by trimming
wavelengths shorter than 400 nm or longer than 2400 nm, splicing
the sensor overlap regions of each spectrum, and subsampling the
spectra to 10 nm resolution using spline interpolation. The spectral
data measured with different spectroradiometers were harmonized
using a partial least squares regression (PLSR) model (Supporting
Information Fig. S1; Methods S1).

Phylogenetic reconstruction

The taxonomic name of every taxon in the spectral dataset was
updated using a Taxonomic Name Resolution System (TNRS)
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Fig. 1 Phylogenetic signal detected in leaf spectra varies across wavelengths and across the major lineages of seed plants. (a) Phylogenetic signal calculated
using Blomberg's K (K) estimated for each major lineage of seed plants separately, where regions with significant signal (P-value < 0.05) are marked by colored
circles with diameters proportional to K. (b) Mean spectra for each of the six major groups: gymnosperms (brown), Magnoliidae (green), monocots (red), non-
core eudicots (purple), asterids (orange), and rosids (blue). (c) Time-calibrated maximum likelihood molecular phylogeny for 544 species of seed plants in the
dataset. Divergence times, in millions of years, are shown on the radius axis. (d) Geographic distribution of the species sampled in the compiled dataset.

implemented in taxize (Chamberlain & Szdcs, 2013). We
obtained DNA sequences from GenBank (https://www.ncbi.
nlm.nih.gov/genbank/) for each species for at least one of five
chloroplast markers commonly used in plant phylogenetics
(rbcl, matK, ndhF, atpB, and trnL) using PHYLOGENERATOR2
(Pearse & Purvis, 2013). Sequences were aligned with MaFrT
(Katoh & Standley, 2013) using the FFT-NS-i iterative
refinement algorithm. We reconstructed a maximum likelihood
phylogeny with RAXML (Stamatakis, 2014) using a GTR + y
model of evolution and a backbone family-level-tree taken from
the Open Tree of Life project (Hinchliff e al., 2015). We time-
calibrated the phylogeny with TREePL (Smith & O’Meara,
2012) using 35 node age constraints derived from the TIMETREE
database (Hedges er al, 2015) (http://timetreebeta.igem.te
mple.edu). We assessed clade support and age estimates using
bootstrap replicates and by comparing our tree to a recent
comprehensive time-tree (Li ez al, 2019) (Figs S2, S3; Methods
S2).

Testing for phylogenetic signal

We measured the degree of phylogenetic signal across the spectrum
and among lineages using Blomberg’s Kstatistic (Blomberg ez 4/,
2003) implemented in Phytools (Revell, 2012) while accounting
for intraspecific variation that may be environmentally driven
(Felsenstein, 2008). Blomberg’s K measures the degree to which
trait variance lies within clades vs among clades as compared to a
Brownian expectation. Statistical significance was assessed using
999 tip-swap randomizations.

© 2020 The Authors
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Classifying major seed plant lineages using spectra

We used a partial least squares discriminant analysis (PLS-DA)
model (Chevallier ez 4/, 2006) implemented in CAReT (Kuhn,
2008) to classify spectral samples at different phylogenetic levels,
including major seed plant groups (gymnosperms, Magnoliidae,
monocots, non-core eudicots, asterids, and rosids (Chase ez 4/,
2016)), orders, and families. For each level, we created 10 pseudo-
replicated datasets by randomly resampling spectra (with replace-
ment) to ensure that each category was represented by the same
number of samples. We selected the optimal number of PLS
components using a 10-fold cross-validation analysis using 80% of
the data to train the model and 20% to test its predictive
performance. We assessed classification accuracy by conducting
independent PLS-DA analyses on 10 pseudo-replicated datasets and

computing their classification matrices (or confusion matrices).

Framework for integrating phylogenies and spectra

Our framework for the evolution of leaf spectra consists of two parts: a
model of trait evolution and a radiative transfer model. The evolution
of a quantitative trait along a phylogeny is often modeled with Eqn 1
(Hansen, 1997; Buder & King, 2004; Cressler ez al., 2015),
dX(#) =a(0—X(z))dr+c*dB(z), Eqn 1
which describes the processes by which a trait X' changes over time.

2 . . .

The 6° d B(?) term describes evolution as an unconstrained, random

. . . . 2
drift process B(#), known as Brownian motion, occurringatarate
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(Hansen & Martins, 1996). The first term describes the trait (X(2))
being pulled towards an optimum value 0 with strength o (Hansen,
1997). The expected time for a trait to get halfway to an optimum —
the phylogenetic half-life — is defined as log.(2)/a. A regime where
evolution pulls trait values, that is, when o > 0, towards a single
optimum 6 describes constrained evolution, whereas an evolution-
ary regime where o = 0 collapses into a simpler, unconstrained
Brownian motion model.

We used the ProspecTS (Féret et al., 2008) radiative transfer
model, asimplemented in PECAnRTM (Shiklomanov ezal., 2019),
to link the evolved quantitative leaf traits to reflectance spectra.
PROSPECTS5 represents leaves as light-absorbing and scattering plates
with rough surfaces and uses leaf biochemical content, including
chlorophyll zand & (Cab), carotenoid (Car), water (Cw) as well as
leaf morphology, including leaf mass per area (Cm) and a leaf
structure parameter NV to predict the reflectance spectrum (400—-
2400 nm). The model can be run in both forward and reverse
directions, predicting spectra from traits or traits from spectra.

We validated our model by testing if phylogenetic signal in traits
translates into detectable phylogenetic signal at the spectrum level.
To do so, we simulated spectra from traits that evolved under
Brownian motion and estimated Blomberg’s K on the spectra

(Fig. S4; Methods S3).
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Estimating evolutionary rates on spectra

We fitted different models of evolution to each spectral wavelength
and leaf trait from ProspecTS (Féret ef al.,, 2008) using GEIGER
(Harmon ezal., 2008). We compared three models of evolution: (1)
white noise, where evolution is statistically independent of the
phylogeny, (2) Brownian motion, where spectra and traits evolve by
random drift along the phylogeny at rate 7, and (3) Ornstein—
Uhlenbeck, where reflectance and traits evolve by drift but are also
pulled towards an optimum O with strength a, effectively
constraining the range of realized values. All models accounted
for within-species variability. For each spectral wavelength or trait,
we used the Akaike Information Criterion (AIC) values of each
model to compute their Akaike weights (Burnham & Anderson,
2002) and determine model-averaged estimates for the a0 and o’
parameters.

Data availability

The spectral and phylogenetic data that support the findings of this
study are openly available in Figshare at https://doi.org/10.6084/
m9.figshare. 12449153 and https://doi.org/10.6084/m9.figshare.
12449147.
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Fig. 2 Classification matrices from PLS-DA models for identifying (a) broad seed plant lineages, (b) orders, and (c) families using leaf spectra. Correctly
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indicate the proportion of samples in the cell. Detailed classification matrices for orders and families are shown in Supporting Information Fig. S6.
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Results

Phylogenetic signal and lineage identification

We found significant levels of phylogenetic signal in the spectra of
all major clades (Fig. 1a) and most orders of seed plants, with the
exception of Myrtales, Dipsacales, and Cornales (Fig. S5). How-
ever, the location of the phylogenetic signal within the spectrum
varies among lineages (Fig. 1a). For example, phylogenetic history
is mostly associated with the visible and NIR regions within the
monocots whereas, in gymnosperms, it is strongly associated with
SWIR region — which captures leaf structure and water content
(Curran, 1989).

Major lineages across the seed plant tree of life can be identified
from leaf spectra using a PLS-DA classification model. The mean
and standard deviation (SD) classification accuracy was 81.4% (SD
1.0%) for major clades, 66.4% (SD 1.4%) for orders, and 67.6%
(SD 1.2%) for families (Fig. 2). There is considerable variation in
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classification performance for different lineages within a phyloge-
netic level. For example, Pinales are correctly identified 95.4% (SD
2.2%) of the time whereas the classification accuracy for Fabales is

9.2% (SD 6%) (Fig. S0).

Framework for modeling the evolution of spectra

We posit that leaf chemical and structural traits evolve and that the
spectra emerging from the interaction of those traits with light carry
the signature of evolution. Our framework (Fig. 3) couples models
of trait evolution (Butler & King, 2004; O’Meara ez a/., 2006) with
leaf radiative transfer models (RTMs; (Jacquemoud & Baret, 1990;
Féret et al., 2008, 2017), which predict spectral profiles from leaf
chemical and structural parameters. Traits are allowed to evolve
along a phylogeny at varying rates and under different dynamics —
for example random drift or directional evolution —and RTMs use
these evolved leaf traits to predict spectra. Our simulations show
that phylogenetic signal in a trait translates into detectable

1.
777

Variation in evolved
leaf traits

Spectra evolved along a
tree and under an
evolutionary model

Ornstein-Uhlenbeck
single optimum

N

0.00

Leaf structure (N)
1.6 2.0

1.2

1.00 0.50

Time

1.00

0.4
|
0.4

0.2
1

Reflectance
0.2

Reflectance

0.0

0.0

Reflectance
0.2 0.4
I I |

0.0

T T T T T T
500 1500 2500 500

Wavelength (nm)

Wavelength (nm)

T T T
1500

T T T T T
2500 500 1500 2500

Wavelength (nm)

Fig. 3 Frameworkintegratingtraitevolution and leaf spectral models that enables the estimation of evolutionary parameters from spectra and simulation of leaf
spectra along a phylogeny. (a) Ancestral leaf attributes evolve along a phylogenetic tree under a given evolutionary regime, generating the current leaf
attributes that underlie spectra. From the evolved leaf attributes, radiative transfer models (RTMs) — such as ProspecT — estimate spectra that carry the signature
of the phylogeny. (b) Evolution of leaf structure according to the unconstrained Brownian motion model, showing that fast rates of evolution resultin more trait
variation than slow rates. An Ornstein—Uhlenbeck (OU) process models an evolutionary constraint around an optimum trait value and results in less trait
variation than an unconstrained Brownian motion model despite having the same rate of evolution. (c) Spectra estimated with the Prospect5 model, where all
leaf attributes evolved under the same model except for leaf structure, which evolved under the three scenarios outlined earlier.
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phylogenetic signal in the spectral regions most influenced by the
trait (Fig. S4).

Understanding the evolution of spectra

For most spectral regions, evolutionary models that account for
constraints or directional evolution (Ornstein—Uhlenbeck) are
preferred (Akaike weight > 0.5; Fig. 4a) over models that assume
unconstrained evolution along a phylogeny (Brownian motion) or
where spectra are statistically independent of evolutionary history
(white noise). In regions of the spectrum associated with photo-
synthetic pigments (visible; 400-700 nm) and leaf water content
(1450 and 1950 nm), evidence for evolutionary constraints was
especially strong (Akaike weight > 0.9). Additionally, the strength
of the evolutionary pull — or the shift in spectral reflectance due to
directional evolutionary forces — estimated for the visible region was
considerably higher than the pull estimated for the NIR and SWIR
regions (mean 0, = 0.024, mean Qi,faed = 0.0056, zscore >
1.96, P-value < 0.05, two-tailed; Fig. 4b). As a result, species take
on average 31 million years (Myr) to evolve halfway towards their
optimum reflectance in the visible spectrum but 190 Myr to do so

in the infrared (Fig. 4b).
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Discussion

This large-scale analysis reveals that leaf spectra capture the
phylogenetic history of seed plants. However, phylogenetic signal
varies substantially across the spectrum and among lineages,
suggesting that the leaf traits that underlie spectra are differentially
conserved or labile across the tree of life. These results corroborate
previous findings that phylogenetic signal varies across the spectra
(McManus ez al., 2016) and are congruent with evidence that trait
distinctiveness varies greatly across traits and across lineages
(Cornwell ez al, 2014; Flores et al, 2014). The ongoing
accumulation of spectral datasets and expansion of taxonomic
sampling will enable us to better interpret why specific lineages
display contrasting patterns of phylogenetic signal in spectra.

We suggest that the association between spectra and phylogeny
provides an explanation for why populations, species, and lineages
can be identified based on how leaves interact with and reflect light.
Our ability to identify plant lineages from spectra is compatible
with results from other studies (Clark ez 2/, 2005; Asner & Martin,
2011; Asner ez al., 2014; Cavender-Bares ez al., 2016), although
they have typically focused on classifying groups below the family
level and at a restricted geographic region. For example, the ¢. 60%
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incorporates evolutionary constraints — when compared to models that assume either unconstrained evolution along the phylogeny (Brownian motion) or
statisticalindependence between traits and phylogenetic history (white noise; not shown since its Akaike weights were ~ 0). (b, c) Model-averaged strength of
evolutionary constraints and rates of evolution across the spectrum and leaf traits. Red points denote values significantly different (z-score > 1.96; P-

value < 0.05; two-tailed) from the mean, shown as a dashed line. (b) Degree of evolutionary constraint « across the spectrum and for each leaf attribute. (c)
Rates of evolution across spectral regions and leaf traits. Rates are square-root transformed to be in reflectance units and scaled by the mean reflectance of each
band. VIS, visible range of the spectrum; NIR, near-infrared; SWIR, short-wave infrared; LMA, leaf mass per area; MY, million years.
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classification accuracy for families of Amazonian trees (Asner &
Martin, 2011) closely matches our results. We did not explicitly
explore why the classification accuracy for certain lineages was
considerably lower than the average accuracy across lineages.
However, the fact that our models underperformed when classi-
fying hyperdiverse lineages — such as the orders Asterales and
Fabales in which diversification has likely led to a wide range of leaf
traits — suggests that groups with high levels of functional diversity
will be more challenging to identify spectrally using machine
learning approaches. Overall, it is encouraging that we can identify
broad phylogenetic groups using a global spectral dataset, especially
given the impact that factors such as leaf age, soil type, and elevation
can have on leaf chemistry and the resulting spectra (Asner &
Martin, 2016; Wu et al., 2017).

No single spectral region concentrates most of the information
about evolutionary history across all seed plants and yet, phylo-
genetic groups can be identified based on their spectral profiles.
These findings have two important consequences for planning
biodiversity assessments based on remotely sensed spectral data
(Jetz et al., 2016) and for using plant spectra directly in studies of
biodiversity (Cavender-Bares et al., 2017). First, efforts to assess
and monitor plant diversity will require the acquisition of spectra
across the entire solar reflected spectrum (400-2400 nm) instead
of focusing on a few predefined spectral bands or on limited
spectral regions. Second, spectra can potentially be used to identify
phylogenetic lineages when species-level detection is impractical,
for example, in high diversity systems where a large proportion of
species are understudied or unknown to science. Critically, the
phylogenetic resolution at which diversity is detected can be
decided based on the accuracy of the classification models rather
than defined a priori.

Our spectral evolution model can be fitted to data or be used in
simulations to understand how different evolutionary processes
affect the spectra. By applying this framework to our dataset, we
found that spectral variation in seed plants has been constrained by
evolution to varying degrees, especially in the visible region, which
is associated with pigment content. This result indicates that only a
narrow range of photosynthetic pigment content is evolutionarily
viable, possibly reflecting functional constraints in the photosyn-
thetic machinery (Ollinger, 2011). Finally, our modeling frame-
work can be used to simulate the spectra of plants under different
evolutionary dynamics. As a hypothetical example, it could
generate predictions about how convergent adaptation to shade
would affect spectra and about its effects on our ability to detect
understory diversity.

The increasing availability of high-dimensional spectral data at
the leaf, canopy, and landscape-level holds the promise of
effectively detecting and monitoring plant biodiversity on Earth.
Moving beyond the level of a leaf will require investigating how
canopy structure and the effects of spatial scaling (Asner ez al.,
2017a; Wang et al, 2018) affect our capacity to recover
evolutionary information from imaging spectroscopy. Neverthe-
less, our ability to describe how evolution shapes leaf spectra and to
recover phylogenetic information from spectral profiles raises the
enticing possibility of assessing global biodiversity remotely by
directly identifying branches of the tree of life.

© 2020 The Authors
New Phytologist © 2020 New Phytologist Trust

Rapid report Research 491

Acknowledgements

The authors thank Angela Moles and two anonymous
reviewers for their helpful comments on the manuscript. This
study was funded by the National Science Foundation and
National Aeronautics and Space Administration through the
Dimensions of Biodiversity program (DEB-1342872 grant to
JC-B, DEB-1342778 grant to PAT, and DEB-1342823 grant
to JAG) and by the National Institute for Mathematical
Biology and Synthesis (‘Remote Sensing of Biodiversity’
working group led by JC-B, JEM, BCO and PAT). The
contribution of MES is supported by the University of Zurich
Research Priority Program on ‘Global Change and Biodiver-
sity’. This publication was supported by the USDA National
Institute of Food and Agriculture, Hatch project ME0-22022
through the Maine Agricultural & Forest Experiment Station.
Maine Agricultural and Forest Experiment Publication Num-

ber 3760.

Author contributions

JEM, JC-B and BCO conceived the initial concept. JEM, JC-B,
BCO, JAG, PAT, MES, SU, AS, AKS and FS participated in
discussions and contributed ideas during NIMBioS meetings.
PAT, SU, GPA, REM, MES, JC-B, AS, AKS and AC contributed
spectral data sets. JEM constructed the time tree, developed the
spectral evolution model, and analyzed the data. JEM, JC-B and
BCO wrote the initial draft of the article. All authors participated in
editing the final manuscript.

ORCID

heeps://orcid.org/0000-0001-7893-6421
hteps://orcid.org/0000-0003-3375-

Gregory P. Asner
Jeannine Cavender-Bares

9630

Adam Chlus (2 hteps://orcid.org/0000-0001-6719-9956
José Eduardo Meireles (2 https://orcid.org/0000-0002-2267-
6074

John A. Gamon (%) https://orcid.org/0000-0002-8269-7723
Roberta E. Martin (2} https://orcid.org/0000-0003-3509-8530
Brian C. O’Meara (2} https://orcid.org/0000-0002-0337-5997

Michael E. Schaepman (2} https://orcid.org/0000-0002-9627-

9565

Franziska Schrodt (2" hteps://orcid.org/0000-0001-9053-8872
Anna K. Schweiger (2) https://orcid.org/0000-0002-5567-4200
Aditya Singh (2 https://orcid.org/0000-0001-5559-9151

Philip A. Townsend (2 https://orcid.org/0000-0001-7003-8774
Susan Ustin () https://orcid.org/0000-0001-8551-0461

References

Asner GP, Martin RE. 2011. Canopy phylogenetic, chemical and spectral assembly
in a lowland Amazonian forest. New Phytologist 189: 999-1012.

Asner GP, Martin RE. 2016. Convergent elevation trends in canopy chemical traits
of tropical forests. Global Change Biology 22: 2216-2227.

Asner GP, Martin RE, Anderson CB, Kryston K, Vaughn N, Knapp DE, Bentley
LP, Shenkin A, Salinas N, Sinca F ez al. 2017a. Scale dependence of canopy trait

New Phytologist (2020) 228: 485-493
www.newphytologist.com


https://orcid.org/0000-0001-7893-6421
https://orcid.org/0000-0001-7893-6421
https://orcid.org/0000-0001-7893-6421
https://orcid.org/0000-0003-3375-9630
https://orcid.org/0000-0003-3375-9630
https://orcid.org/0000-0003-3375-9630
https://orcid.org/0000-0001-6719-9956
https://orcid.org/0000-0001-6719-9956
https://orcid.org/0000-0001-6719-9956
https://orcid.org/0000-0002-2267-6074
https://orcid.org/0000-0002-2267-6074
https://orcid.org/0000-0002-2267-6074
https://orcid.org/0000-0002-8269-7723
https://orcid.org/0000-0002-8269-7723
https://orcid.org/0000-0002-8269-7723
https://orcid.org/0000-0003-3509-8530
https://orcid.org/0000-0003-3509-8530
https://orcid.org/0000-0003-3509-8530
https://orcid.org/0000-0002-0337-5997
https://orcid.org/0000-0002-0337-5997
https://orcid.org/0000-0002-0337-5997
https://orcid.org/0000-0002-9627-9565
https://orcid.org/0000-0002-9627-9565
https://orcid.org/0000-0002-9627-9565
https://orcid.org/0000-0001-9053-8872
https://orcid.org/0000-0001-9053-8872
https://orcid.org/0000-0001-9053-8872
https://orcid.org/0000-0002-5567-4200
https://orcid.org/0000-0002-5567-4200
https://orcid.org/0000-0002-5567-4200
https://orcid.org/0000-0001-5559-9151
https://orcid.org/0000-0001-5559-9151
https://orcid.org/0000-0001-5559-9151
https://orcid.org/0000-0001-7003-8774
https://orcid.org/0000-0001-7003-8774
https://orcid.org/0000-0001-7003-8774
https://orcid.org/0000-0001-8551-0461
https://orcid.org/0000-0001-8551-0461
https://orcid.org/0000-0001-8551-0461

492 Research Rapid report

distributions along a tropical forest elevation gradient. New Phytologist 214:
973-988.

Asner GP, Martin RE, Carranza-Jiménez L, Sinca F, Tupayachi R, Anderson CB,
Martinez P. 2014. Functional and biological diversity of foliar spectra in tree
canopies throughout the Andes to Amazon region. New Phytologist204: 127-139.

Asner GP, Martin RE, Knapp DE, Tupayachi R, Anderson CB, Sinca F, Vaughn
NR, Llactayo W. 2017b. Airborne laser-guided imaging spectroscopy to map
forest trait diversity and guide conservation. Science 355: 385-389.

Blomberg SP, Garland T Jr, Ives AR. 2003. Testing for phylogenetic signal in
comparative data: behavioral traits are more labile. Evolution 57: 717-745.

Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a
practical information-theoretic approach, 2 edn. New York, NY, USA: Springer.

Butler MA, King AA. 2004. Phylogenetic comparative analysis: a modeling
approach for adaptive evolution. American Naturalist 164: 683—-695.

Cadotte MW, Cardinale BJ, Oakley TH. 2008. Evolutionary history and the effect
of biodiversity on plant productivity. Proceedings of the National Academy of
Sciences, USA105: 17012-17017.

Cadotte MW, Jonathan Davies T, Regetz J, Kembel SW, Cleland E, Oakley TH.
2010. Phylogenetic diversity metrics for ecological communities: integrating
species richness, abundance and evolutionary history. Ecology Letters 13: 96-105.

Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani
A, Mace GM, Tilman D, Wardle DA ez al. 2012. Biodiversity loss and its impact
on humanity. Nature 486: 59—67.

Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS,
Loreau M, Weis JJ. 2007. Impacts of plant diversity on biomass production
increase through time because of species complementarity. Proceedings of the
National Academy of Sciences, USA 104: 18123-18128.

Cavender-Bares ], Gamon JA, Hobbie SE, Madritch MD, Meireles JE, Schweiger
AK, Townsend PA. 2017. Harnessing plant spectra to integrate the biodiversity
sciences across biological and spatial scales. American Journal of Botany 104:
966-969.

Cavender-Bares J, Meireles JE, Couture JJ, Kaproth MA, Kingdon CC, Singh A,
Serbin SP, Center A, Zuniga E, Pilz G ez al. 2016. Associations of leaf spectra
with genetic and phylogenetic variation in oaks: prospects for remote detection of
biodiversity. Remote Sensing 8: 221.

Ceballos G, Ehrlich PR, Barnosky AD, Garcia A, Pringle RM, Palmer TM. 2015.
Accelerated modern human—induced species losses: entering the sixth mass
extinction. Science Advances 1: €1400253.

Chamberlain SA, Szics E. 2013. taxize: taxonomic search and retrieval in R.
F1000Research2: 191.

Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE,
Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF. 2016. An update of the
Angiosperm Phylogeny Group classification for the orders and families of
flowering plants: APG 1V. Botanical Journal of the Linnean Society 181: 1-20.

Chevallier S, Bertrand D, Kohler A, Courcoux P. 2006. Application of PLS-DA in
multivariate image analysis. Journal of Chemometrics 20: 221-229.

Clark ML, Roberts DA, Clark DB. 2005. Hyperspectral discrimination of tropical
rain forest tree species at leaf to crown scales. Remote Sensing of Environment 96:
375-398.

Cornwell WK, Westoby M, Falster DS, FitzJohn RG, O’Meara BC, Pennell MW/,
McGlinn DJ, Eastman JM, Moles AT, Reich PB ez 4/ 2014. Functional
distinctiveness of major plant lineages. Journal of Ecology 102: 345-356.

Cressler CE, Butler MA, King AA. 2015. Detecting adaptive evolution in
phylogenetic comparative analysis using the Ornstein—Uhlenbeck model.
Systematic Biology 64: 953-968.

Crutsinger GM, Cadotte MW, Sanders NJ. 2009. Plant genetics shapes inquiline
community structure across spatial scales. Ecology Letters 12: 285-292.

Curran PJ. 1989. Remote sensing of foliar chemistry. Remote Sensing of Environment
30: 271-278.

Diaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M,
Wirth C, Colin Prentice I ez al. 2015. The global spectrum of plant form and
function. Nature529: 167-171.

Duffy JE, Godwin CM, Cardinale BJ. 2017. Biodiversity effects in the wild are
common and as strong as key drivers of productivity. Nature 549: 261-264.

Felsenstein J. 2008. Comparative methods with sampling error and within-
species variation: contrasts revisited and revised. American Naturalist 171:

713-725.

New Phytologist (2020) 228: 485-493
www.newphytologist.com

New
Phytologist

Féret J-B, Asner GP. 2014. Mapping tropical forest canopy diversity using high-
fidelity imaging spectroscopy. Ecological Applications 24: 1289-1296.

Féret ]-B, Francois C, Asner GP, Gitelson AA, Martin RE, Bidel LPR, Ustin SL, le
Maire G, Jacquemoud S. 2008. PROSPECT-4 and 5: advances in the leaf optical
properties model separating photosynthetic pigments. Remote Sensing of
Environment 112: 3030-3043.

Féret JB, Gitelson AA, Noble SD, Jacquemoud S. 2017. PROSPECT-D: towards
modeling leaf optical properties through a complete lifecycle. Remote Sensing of
Environment 193: 204-215.

Flores O, Garnier E, Wright IJ, Reich PB, Pierce S, Diaz S, Pakeman R], Rusch
GM, Bernard-Verdier M, Testi B ez al 2014. An evolutionary perspective on leaf
economics: phylogenetics of leaf mass per area in vascular plants. Ecology and
Evolution 4: 2799-2811.

Gholizadeh H, Gamon JA, Townsend PA, Zygielbaum Al, Helzer CJ, Hmimina
GY, YuR, Moore RM, Schweiger AK, Cavender-Bares J. 2019. Detecting prairie
biodiversity with airborne remote sensing. Remote Sensing of Environment 221:
38-49.

Hansen TF. 1997. Stabilizing selection and the comparative analysis of adaptation.
Evolution 51: 1341.

Hansen TF, Martins EP. 1996. Translating between microevolutionary process and
macroevolutionary patterns: the correlation structure of interspecific data.
Evolution 50: 1404.

Harmon L], Weir JT, Brock CD, Glor RE, Challenger W. 2008. GEIGER:
investigating evolutionary radiations. Bioinformatics 24: 129-131.

Hedges SB, Marin ], Suleski M, Paymer M, Kumar S. 2015. Tree of life reveals
clock-like speciation and diversification. Molecular Biology and Evolution 32:
835-845.

Hinchliff CE, Smith SA, Allman JF, Burleigh JG, Chaudhary R, Coghill LM,
Crandall KA, DengJ, Drew BT, Gazis R ez al. 2015. Synthesis of phylogeny and
taxonomy into a comprehensive tree of life. Proceedings of the National Academy of
Sciences, USA112: 12764-12769.

Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer
TM, Bonin C, Bruelheide H, de Luca E ez a/. 2015. Biodiversity increases the
resistance of ecosystem productivity to climate extremes. Nature 526: 574-577.

Isbell F, Gonzalez A, Loreau M, Cowles ], Diaz S, Hector A, Mace GM, Wardle
DA, O’Connor ML, Duffy JE ez al. 2017. Linking the influence and dependence
of people on biodiversity across scales. Nature 546: 65-72.

Jacquemoud S, Baret F. 1990. PROSPECT: a model of leaf optical properties
spectra. Remote Sensing of Environment 34: 75-91.

Jetz W, Cavender-Bares J, Pavlick R, Schimel D, Davis FW, Asner GP, Guralnick
R, Kattge J, Latimer AM, Moorcroft P ez al. 2016. Monitoring plant functional
diversity from space. Nature Plants 2: 16024.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software
version 7: improvements in performance and usability. Molecular Biology and
Evolution 30: 772-780.

Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bonisch G, Garnier E, Westoby
M, Reich PB, WrightIJ ez /. 2011. TRY —a global database of plant traits. Global
Change Biology 17: 2905-2935.

Kokaly RF, Asner GP, Ollinger SV, Martin ME, Wessman CA. 2009.
Characterizing canopy biochemistry from imaging spectroscopy and its
application to ecosystem studies. Remote Sensing of Environment 113: S78-S91.

Kuhn M. 2008. Building predictive models in R using the caret package. Journal of
Statistical Software 28: 1-26.

Laliberté E, Schweiger AK, Legendre P. 2020. Partitioning plant spectral diversity
into alpha and beta components. Ecology Letters 23: 370-380.

LiH-T, Yi T-S, Gao L-M, Ma P-F, Zhang T, Yang J-B, Gitzendanner MA, Fritsch
PW, CaiJ, Luo Y ezl 2019. Origin of angiosperms and the puzzle of the Jurassic
gap. Nature Plants 5: 461-470.

Madritch MD, Kingdon CC, Singh A, Mock KE, Lindroth RL, Townsend PA.
2014. Imaging spectroscopy links aspen genotype with below-ground processes at
landscape scales. Philosophical Transactions of the Royal Society of London. Series B:
Biological Sciences 369: 20130194.

Maherali H, Klironomos JN. 2007. Influence of phylogeny on fungal community
assembly and ecosystem functioning. Science 316: 1746-1748.

McManus K, Asner GP, Martin RE, Dexter KG, Kress WJ, Field C. 2016.
Phylogenetic structure of foliar spectral traits in tropical forest canopies. Remote

Sensing 8: 196.

© 2020 The Authors
New Phytologist © 2020 New Phytologist Trust



New
Phytologist

Meireles JE, Schweiger AK, Cavender-Bares J. 2017. Spectrolab: class and methods
Jor hyperspectral data. R Package. [WWW document] URL https://cran.r-project.
org/web/packages/spectrolab [accessed 20 July 2018].

O’Meara BC, Ané C, Sanderson MJ, Wainwright PC. 2006. Testing for different
rates of continuous trait evolution using likelihood. Evolution 60: 922-933.

Ollinger SV. 2011. Sources of variability in canopy reflectance and the convergent
properties of plants. New Phytologist 189: 375-394.

Pearse WD, Purvis A. 2013. phyloGenerator: an automated phylogeny generation
tool for ecologists. Methods in Ecology and Evolution 4: 692—698.

Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH,
Roberts CM, Sexton JO. 2014. The biodiversity of species and their rates of
extinction, distribution, and protection. Science 344: 1246752.

Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M,
Walters MB. 2003. The evolution of plant functional variation: traits, spectra,
and strategies. /nternational Journal of Plant Sciences 164: 143—164.

Revell L]. 2012. phytools: an R package for phylogenetic comparative biology (and
other things). Methods in Ecology and Evolution 3: 217-223.

Schneider FD, Morsdorf F, Schmid B, Petchey OL, Hueni A, Schimel DS,
Schaepman ME. 2017. Mapping functional diversity from remotely sensed
morphological and physiological forest traits. Nature Communications 8: 1441.

Schweiger AK, Cavender-Bares J, Townsend PA, Hobbie SE, Madritch MD,
Wang R, Tilman D, Gamon JA. 2018. Plant spectral diversity integrates
functional and phylogenetic components of biodiversity and predicts ecosystem
function. Nature Ecology & Evolution 2: 976-982.

Serbin SP, Singh A, McNeil BE, Kingdon CC, Townsend PA. 2014. Spectroscopic
determination of leaf morphological and biochemical traits for northern
temperate and boreal tree species. Ecological Applications 24: 1651-1669.

Shiklomanov A, Serbin S, Dietze M. 2019. PEcAnRTM: PEcAn functions used for
radiative transfer modeling. R package. [WWW document] URL hteps://github.c
om/ashiklom/PEcAnRTM [accessed 27 October 2018].

Smith SA, O’Meara BC. 2012. treePL: divergence time estimation using penalized
likelihood for large phylogenies. Bioinformatics 28: 2689-2690.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics 30: 1312—1313.

Tilman D, Isbell F, Cowles JM. 2014. Biodiversity and ecosystem functioning.
Annual Review of Ecology, Fvolution, and Systematics 45: 471-493.

Turner W. 2014. Conservation. Sensing biodiversity. Science 346: 301-302.

Ustin SL, Gitelson AA, Jacquemoud S, Schaepman M, Asner GP, Gamon JA,
Zarco-Tejada P. 2009. Retrieval of foliar information about plant pigment
systems from high resolution spectroscopy. Remote Sensing of Environment 113:
S67-S77.

Wang R, Gamon JA. 2019. Remote sensing of terrestrial plant biodiversity. Remote
Sensing of Environment231: 111218.

Wang R, Gamon JA, Cavender-Bares ], Townsend PA, Zygielbaum Al 2018. The
spatial sensitivity of the spectral diversity-biodiversity relationship: an
experimental test in a prairie grassland. Ecological Applications 28: 541-556.

© 2020 The Authors
New Phytologist © 2020 New Phytologist Trust

Rapid report Research 493

Wu]J, Chavana-Bryant C, Prohaska N, Serbin SP, Guan K, Albert LP, Yang X, van
Leeuwen WJD, Garnello AJ, Martins G ezal. 2017. Convergence in relationships
between leaf traits, spectra and age across diverse canopy environments and two
contrasting tropical forests. New Phytologist 214: 1033-1048.

Supporting Information
Additional Supporting Information may be found online in the

Supporting Information section at the end of the article.

Fig. S1 Reconciliation of spectral data acquired using different
instruments.

Fig. 82 Majority rule consensus tree of the 544 seed plant species
used in this study.

Fig. 83 Relationship between genus ages estimated by Li er al.
(2019) and by our analysis.

Fig. S4 Phylogenetic signal of leaf spectra emerging from the
evolution of RTM parameters.

Fig. S5 Phylogenetic signal detected in leaf spectra at the order
level.

Fig. S6 PLS-DA classification of orders and families of seed plants.

Methods S1 Harmonization of spectral data measured with
different instruments.

Methods S2 Assessment of clade support and divergence times.

Methods S3 Validation of the framework for modeling the

evolution of leaf spectra.

Please note: Wiley Blackwell are not responsible for the content or
functionality of any Supporting Information supplied by the
authors. Any queries (other than missing material) should be

directed to the New Phytologist Central Office.

New Phytologist (2020) 228: 485-493
www.newphytologist.com


https://cran.r-project.org/web/packages/spectrolab
https://cran.r-project.org/web/packages/spectrolab
https://github.com/ashiklom/PEcAnRTM
https://github.com/ashiklom/PEcAnRTM

