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Leaf reflectance spectra capture the evolutionary history of seedplants
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José Eduardo Meireles1,2 , Jeannine Cavender-Bares2 , Philip A.

Townsend3 , Susan Ustin4 , John A. Gamon5,6 , Anna K. Schweiger2,7 ,

Michael E. Schaepman8 , Gregory P. Asner9 , Roberta E. Martin9,10 ,

Aditya Singh11 , Franziska Schrodt12 , Adam Chlus3 and

Brian C. O’Meara13

1School of Biology and Ecology, University of Maine, Orono, ME 04469, USA; 2Department of Ecology, Evolution and Behavior,

University of Minnesota, Saint Paul, MN 55108, USA; 3Department of Forest and Wildlife Ecology, University of

Wisconsin–Madison, Madison, WI 53706, USA; 4John Muir Institute of the Environment and Department of Land, Air, and Water

Resources, University of California, Davis, CA 95616, USA; 5Department of Earth and Atmospheric Sciences and Department of

Biological Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada; 6Center for Advanced Land Management Information

Technologies, School of Natural Resources, University of Nebraska–Lincoln, Lincoln, NE 68583, USA; 7Département de Sciences
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Summary

� Leaf reflectance spectra have been increasingly used to assess plant diversity. However,wedo

not yet understand how spectra vary across the tree of life or how the evolution of leaf traits

affects the differentiation of spectra among species and lineages.
� Herewedescribe a framework that integrates spectrawith phylogenies and apply it to a global

dataset of over 16 000 leaf-level spectra (400–2400 nm) for 544 seed plant species.We test for

phylogenetic signal in spectra, evaluate their ability to classify lineages, and characterize their

evolutionary dynamics.
� We show that phylogenetic signal is present in leaf spectra but that the spectral regions most

strongly associated with the phylogeny vary among lineages. Despite among-lineage hetero-

geneity, broad plant groups, orders, and families can be identified from reflectance spectra.

Evolutionarymodels also reveal that different spectral regions evolve at different rates andunder

different constraint levels, mirroring the evolution of their underlying traits.
� Leaf spectra capture the phylogenetic history of seed plants and the evolutionary dynamics of

leaf chemistry and structure. Consequently, spectra have the potential to provide breakthrough

assessments of leaf evolution and plant phylogenetic diversity at global scales.

Introduction

Efficient assessment of plant biodiversity at global scales (Turner,
2014; Jetz et al., 2016) is critical at a time when biodiversity loss is
accelerating at alarming rates (Pimm et al., 2014; Ceballos et al.,
2015). Plant diversity has profound impacts on the functioning of

ecosystems (Tilman et al., 2014; Isbell et al., 2015; Duffy et al.,
2017) and on the benefits that humans derive from them
(Cardinale et al., 2012; Isbell et al., 2017). These biodiversity
effects are due tomore than just the number of species; they depend
on the gamut of plant morphologies and physiological strategies,
and on the amount of genetic and phylogenetic diversity present in
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an assemblage (Maherali & Klironomos, 2007; Cardinale et al.,
2007; Cadotte et al., 2008, 2010; Crutsinger et al., 2009).

Plant reflectance spectra – the profile of light reflected by leaves
across different wavelengths – have emerged as an invaluable tool to
estimate plant functional (Kokaly et al., 2009; Féret&Asner, 2014;
Schneider et al., 2017) and taxonomic diversity (Clark et al., 2005;
Asner & Martin, 2011; Cavender-Bares et al., 2016), assess their
consequences for ecosystem processes (Schweiger et al., 2018), and
guide conservation (Asner et al., 2017b). Plant leaves synthesize a
range of structures and chemical compounds and many of these
traits can be detected using spectral reflectance (Kokaly et al., 2009;
Ustin et al., 2009; Serbin et al., 2014). For example, pigments such
as chlorophyll, carotenoids, and anthocyanins strongly absorb light
in the visible range of the spectrum (visible, 400–700 nm) while
water, lignin, cellulose, phenolics, and leaf structural features
interact with light in the near-infrared (NIR, 700–1100 nm) and
short-wave infrared (SWIR, 1100–2500 nm) ranges (Kokaly et al.,
2009; Ustin et al., 2009; Asner et al., 2014).

Spectra capture the diversity in leaf traits that have accumulated
over the course of seed plant evolution (Reich et al., 2003; Kattge
et al., 2011; Cornwell et al., 2014) but the relationship between the
spectral variation among species and lineages and the evolutionary
process that generates this variation remains unknown. Prior
evidence has revealed that leaf spectra contain information about
evolutionary relationships within (Madritch et al., 2014; Caven-
der-Bares et al., 2016) and among species (Asner &Martin, 2011;
Cavender-Bares et al., 2016;McManus et al., 2016), enabling us to
estimate taxonomic diversity from spectra. However, broad
coverage of spectral data across the plant tree of life has not been
previously available for a single analysis to determinewhich spectral
regions encode phylogenetic information or to assess the generality
of such relationships across taxa.

The potential for spectral data to revolutionize biodiversity
monitoring contrasts with our lack of mechanistic understanding
about how spectral diversity arises over evolutionary time. The
evolution of spectra likely depends on the dynamics of leaf trait
evolution but this dependency has yet to be demonstrated.
Moreover, spectra integrate leaf traits in complex ways (Jacque-
moud & Baret, 1990; Féret et al., 2017) and multiple traits can
affect the same spectral region (Curran, 1989). This complicates
identifying which trait underlies the evolutionary signatures found
at a given spectral band. A modeling framework that explicitly
integrates evolution, leaf traits, and the emerging spectra is required
to understand how the evolution of different leaf attributes
combine to affect the spectra.

Establishing how evolution affects spectra has important
implications not only for explaining how spectral variation arises
but also for biodiversity detection. Promising approaches for
assessing plant diversity rely on the idea that spectral variation is
positively associated with functional and taxonomic diversity
(Schweiger et al., 2018; Gholizadeh et al., 2019; Wang &Gamon,
2019; Laliberté et al., 2020). However, evolutionary processes such
as convergence, constraints, and differential rates of evolution may
complicate the relationship between spectral and taxonomic
diversity (Ollinger, 2011). For example, adaptations to arid
environments may result in distant relatives converging to have

similar leaf traits and reflectance spectra. Likewise, spectral regions
that are highly similar among lineages may result from slow rates of
evolution, from constrained evolution – when only certain traits
underlying spectral properties are evolutionarily viable – or a
combination of both. It is now clear that certain trait combinations
are favored over evolutionary time while others are not viable (Dı́az
et al., 2015) and that evolutionary convergence can affect the
spectra and the inferences we draw from them (Ollinger, 2011).
Despite the impact that different evolutionary processes may have
on spectral diversity, we donot yet know if different spectral regions
evolve at different rates or have been constrained to stay within a
limited range over the course of evolution.

In this article, we attempt to close the gap between evolutionary
and spectral biology. Our specific goals are to (1) establish which
regions of the leaf reflectance spectrum capture the signal of
phylogenetic history and how that varies across the tree of life, (2)
test whether the phylogenetic identity of lineages can be predicted
from spectral data, (3) describe a framework tomodel the evolution
of leaf spectra, and (4) estimate how different evolutionary
processes generate the diversity of leaf spectra we observe. To
achieve these goals, we compiled an unparalleled dataset of over
16 000 leaf-level reflectance spectra (400–2400 nm) for 544 seed
plant species spanning temperate and tropical latitudes in the
Americas and Europe (Fig. 1b–d). We used the PROSPECT5 leaf
radiative transfer model (Féret et al., 2008) to estimate five leaf
attributes, number of leaf layers, chlorophyll and carotenoid
content, equivalent water thickness, and leaf mass per area (LMA).
To explore the evolutionary patterns in leaf spectra, we generated a
time-calibrated molecular phylogeny for the species in our dataset
using five chloroplast markers.

Materials and Methods

Spectral data acquisition and processing

We compiled a dataset of over 16 000 leaf-level reflectance spectra
(400–2400 nm) for 544 seed plant species spanning temperate and
tropical latitudes in the Americas and Europe (Fig. 1d). The dataset
only includes spectra of mature, sun-exposed leaves measured in the
spring or summer seasons. Leaf spectra were measured with two full-
range field spectroradiometers – an ASD FieldSpec 3 (Analytical
Spectral Devices, Boulder, CO, USA) and an SVC HR-1024i
(Spectra Vista Corp., Poughkeepsie, NY, USA) – using leaf clips and
artificial light sources. We processed the reflectance spectra using the
R package SPECTROLAB (Meireles et al., 2017) by trimming
wavelengths shorter than 400 nm or longer than 2400 nm, splicing
the sensor overlap regions of each spectrum, and subsampling the
spectra to 10 nm resolution using spline interpolation. The spectral
data measured with different spectroradiometers were harmonized
using a partial least squares regression (PLSR) model (Supporting
Information Fig. S1; Methods S1).

Phylogenetic reconstruction

The taxonomic name of every taxon in the spectral dataset was
updated using a Taxonomic Name Resolution System (TNRS)

New Phytologist (2020) 228: 485–493 � 2020 The Authors

New Phytologist� 2020 New Phytologist Trustwww.newphytologist.com

Research Rapid report
New
Phytologist486



implemented in taxize (Chamberlain & Szöcs, 2013). We
obtained DNA sequences from GenBank (https://www.ncbi.
nlm.nih.gov/genbank/) for each species for at least one of five
chloroplast markers commonly used in plant phylogenetics
(rbcL, matK, ndhF, atpB, and trnL) using PHYLOGENERATOR2
(Pearse & Purvis, 2013). Sequences were aligned with MAFFT

(Katoh & Standley, 2013) using the FFT-NS-i iterative
refinement algorithm. We reconstructed a maximum likelihood
phylogeny with RAXML (Stamatakis, 2014) using a GTR + γ
model of evolution and a backbone family-level-tree taken from
the Open Tree of Life project (Hinchliff et al., 2015). We time-
calibrated the phylogeny with TREEPL (Smith & O’Meara,
2012) using 35 node age constraints derived from the TIMETREE

database (Hedges et al., 2015) (http://timetreebeta.igem.te
mple.edu). We assessed clade support and age estimates using
bootstrap replicates and by comparing our tree to a recent
comprehensive time-tree (Li et al., 2019) (Figs S2, S3; Methods
S2).

Testing for phylogenetic signal

Wemeasured the degree of phylogenetic signal across the spectrum
and among lineages using Blomberg’s K statistic (Blomberg et al.,
2003) implemented in Phytools (Revell, 2012) while accounting
for intraspecific variation that may be environmentally driven
(Felsenstein, 2008). Blomberg’s K measures the degree to which
trait variance lies within clades vs among clades as compared to a
Brownian expectation. Statistical significance was assessed using
999 tip-swap randomizations.

Classifying major seed plant lineages using spectra

We used a partial least squares discriminant analysis (PLS–DA)
model (Chevallier et al., 2006) implemented in CARET (Kuhn,
2008) to classify spectral samples at different phylogenetic levels,
including major seed plant groups (gymnosperms, Magnoliidae,
monocots, non-core eudicots, asterids, and rosids (Chase et al.,
2016)), orders, and families. For each level, we created 10 pseudo-
replicated datasets by randomly resampling spectra (with replace-
ment) to ensure that each category was represented by the same
number of samples. We selected the optimal number of PLS
components using a 10-fold cross-validation analysis using 80% of
the data to train the model and 20% to test its predictive
performance. We assessed classification accuracy by conducting
independent PLS-DAanalyses on10pseudo-replicateddatasets and
computing their classification matrices (or confusion matrices).

Framework for integrating phylogenies and spectra

Our framework for the evolutionof leaf spectra consists of twoparts: a
model of trait evolution and a radiative transfermodel. The evolution
of a quantitative trait along a phylogeny is oftenmodeled with Eqn 1
(Hansen, 1997; Butler & King, 2004; Cressler et al., 2015),

dX ðt Þ¼ αðθ�X ðt ÞÞdt þσ2dBðt Þ, Eqn 1

which describes the processes by which a trait X changes over time.
Theσ2 dB(t) termdescribes evolution as an unconstrained, random
drift processB(t), known asBrownianmotion, occurring at a rateσ2

(a)

(b)

(d)

(c)

Fig. 1 Phylogenetic signal detected in leaf spectra varies across wavelengths and across the major lineages of seed plants. (a) Phylogenetic signal calculated
using Blomberg’sK (K) estimated for eachmajor lineage of seedplants separately,where regionswith significant signal (P-value < 0.05) aremarkedby colored
circles with diameters proportional toK. (b)Mean spectra for each of the sixmajor groups: gymnosperms (brown),Magnoliidae (green),monocots (red), non-
core eudicots (purple), asterids (orange), and rosids (blue). (c) Time-calibrated maximum likelihood molecular phylogeny for 544 species of seed plants in the
dataset. Divergence times, in millions of years, are shown on the radius axis. (d) Geographic distribution of the species sampled in the compiled dataset.
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(Hansen &Martins, 1996). The first term describes the trait (X(t))
being pulled towards an optimum value θwith strength α (Hansen,
1997). The expected time for a trait to get halfway to an optimum –
the phylogenetic half-life – is defined as loge(2)/α. A regime where
evolution pulls trait values, that is, when α > 0, towards a single
optimum θ describes constrained evolution, whereas an evolution-
ary regime where α = 0 collapses into a simpler, unconstrained
Brownian motion model.

We used the PROSPECT5 (Féret et al., 2008) radiative transfer
model, as implemented inPEcAnRTM(Shiklomanov et al., 2019),
to link the evolved quantitative leaf traits to reflectance spectra.
PROSPECT5 represents leaves as light-absorbing and scattering plates
with rough surfaces and uses leaf biochemical content, including
chlorophyll a and b (Cab), carotenoid (Car), water (Cw) as well as
leaf morphology, including leaf mass per area (Cm) and a leaf
structure parameter N to predict the reflectance spectrum (400–-
2400 nm). The model can be run in both forward and reverse
directions, predicting spectra from traits or traits from spectra.

We validated ourmodel by testing if phylogenetic signal in traits
translates into detectable phylogenetic signal at the spectrum level.
To do so, we simulated spectra from traits that evolved under
Brownian motion and estimated Blomberg’s K on the spectra
(Fig. S4; Methods S3).

Estimating evolutionary rates on spectra

We fitted different models of evolution to each spectral wavelength
and leaf trait from PROSPECT5 (Féret et al., 2008) using GEIGER

(Harmon et al., 2008).We compared threemodels of evolution: (1)
white noise, where evolution is statistically independent of the
phylogeny, (2) Brownianmotion,where spectra and traits evolve by
random drift along the phylogeny at rate σ2bm, and (3) Ornstein–
Uhlenbeck, where reflectance and traits evolve by drift but are also
pulled towards an optimum θ with strength α, effectively
constraining the range of realized values. All models accounted
for within-species variability. For each spectral wavelength or trait,
we used the Akaike Information Criterion (AIC) values of each
model to compute their Akaike weights (Burnham & Anderson,
2002) and determine model-averaged estimates for the α and σ2

parameters.

Data availability

The spectral and phylogenetic data that support the findings of this
study are openly available in Figshare at https://doi.org/10.6084/
m9.figshare.12449153 and https://doi.org/10.6084/m9.figshare.
12449147.

(a) (b)

(c)

Fig. 2 Classification matrices from PLS-DA models for identifying (a) broad seed plant lineages, (b) orders, and (c) families using leaf spectra. Correctly
identified lineagesare shownon thediagonalwhile falsepositivesand falsenegativesare shownon theoff-diagonals. Thecolor and sizeof the square ineachcell
indicate the proportion of samples in the cell. Detailed classification matrices for orders and families are shown in Supporting Information Fig. S6.
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Results

Phylogenetic signal and lineage identification

We found significant levels of phylogenetic signal in the spectra of
all major clades (Fig. 1a) and most orders of seed plants, with the
exception of Myrtales, Dipsacales, and Cornales (Fig. S5). How-
ever, the location of the phylogenetic signal within the spectrum
varies among lineages (Fig. 1a). For example, phylogenetic history
is mostly associated with the visible and NIR regions within the
monocots whereas, in gymnosperms, it is strongly associated with
SWIR region – which captures leaf structure and water content
(Curran, 1989).

Major lineages across the seed plant tree of life can be identified
from leaf spectra using a PLS-DA classification model. The mean
and standard deviation (SD) classification accuracy was 81.4% (SD
1.0%) for major clades, 66.4% (SD 1.4%) for orders, and 67.6%
(SD 1.2%) for families (Fig. 2). There is considerable variation in

classification performance for different lineages within a phyloge-
netic level. For example, Pinales are correctly identified 95.4% (SD
2.2%) of the time whereas the classification accuracy for Fabales is
9.2% (SD 6%) (Fig. S6).

Framework for modeling the evolution of spectra

We posit that leaf chemical and structural traits evolve and that the
spectra emerging from the interaction of those traits with light carry
the signature of evolution. Our framework (Fig. 3) couples models
of trait evolution (Butler &King, 2004;O’Meara et al., 2006) with
leaf radiative transfermodels (RTMs; (Jacquemoud&Baret, 1990;
Féret et al., 2008, 2017), which predict spectral profiles from leaf
chemical and structural parameters. Traits are allowed to evolve
along a phylogeny at varying rates and under different dynamics –
for example random drift or directional evolution – and RTMs use
these evolved leaf traits to predict spectra. Our simulations show
that phylogenetic signal in a trait translates into detectable

(a)

(b)

(c)

Fig. 3 Framework integrating trait evolutionand leaf spectralmodels that enables theestimationof evolutionaryparameters fromspectraandsimulationof leaf
spectra along a phylogeny. (a) Ancestral leaf attributes evolve along a phylogenetic tree under a given evolutionary regime, generating the current leaf
attributes that underlie spectra. From the evolved leaf attributes, radiative transfermodels (RTMs) – such as PROSPECT – estimate spectra that carry the signature
of the phylogeny. (b) Evolutionof leaf structure according to the unconstrainedBrownianmotionmodel, showing that fast rates of evolution result inmore trait
variation than slow rates. An Ornstein–Uhlenbeck (OU) process models an evolutionary constraint around an optimum trait value and results in less trait
variation than an unconstrained Brownianmotionmodel despite having the same rate of evolution. (c) Spectra estimated with the PROSPECT5 model, where all
leaf attributes evolved under the same model except for leaf structure, which evolved under the three scenarios outlined earlier.
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phylogenetic signal in the spectral regions most influenced by the
trait (Fig. S4).

Understanding the evolution of spectra

For most spectral regions, evolutionary models that account for
constraints or directional evolution (Ornstein–Uhlenbeck) are
preferred (Akaike weight > 0.5; Fig. 4a) over models that assume
unconstrained evolution along a phylogeny (Brownian motion) or
where spectra are statistically independent of evolutionary history
(white noise). In regions of the spectrum associated with photo-
synthetic pigments (visible; 400–700 nm) and leaf water content
(1450 and 1950 nm), evidence for evolutionary constraints was
especially strong (Akaike weight > 0.9). Additionally, the strength
of the evolutionary pull – or the shift in spectral reflectance due to
directional evolutionary forces– estimated for the visible regionwas
considerably higher than the pull estimated for the NIR and SWIR
regions (mean αvis = 0.024, mean αinfrared = 0.0056, z-score >
1.96, P-value < 0.05, two-tailed; Fig. 4b). As a result, species take
on average 31 million years (Myr) to evolve halfway towards their
optimum reflectance in the visible spectrum but 190 Myr to do so
in the infrared (Fig. 4b).

Discussion

This large-scale analysis reveals that leaf spectra capture the
phylogenetic history of seed plants. However, phylogenetic signal
varies substantially across the spectrum and among lineages,
suggesting that the leaf traits that underlie spectra are differentially
conserved or labile across the tree of life. These results corroborate
previous findings that phylogenetic signal varies across the spectra
(McManus et al., 2016) and are congruent with evidence that trait
distinctiveness varies greatly across traits and across lineages
(Cornwell et al., 2014; Flores et al., 2014). The ongoing
accumulation of spectral datasets and expansion of taxonomic
sampling will enable us to better interpret why specific lineages
display contrasting patterns of phylogenetic signal in spectra.

We suggest that the association between spectra and phylogeny
provides an explanation for why populations, species, and lineages
can be identified based on how leaves interact with and reflect light.
Our ability to identify plant lineages from spectra is compatible
with results from other studies (Clark et al., 2005; Asner&Martin,
2011; Asner et al., 2014; Cavender-Bares et al., 2016), although
they have typically focused on classifying groups below the family
level and at a restricted geographic region. For example, the c. 60%

(a)

(b)

(c)

Fig. 4 Evolution of leaf spectra and their underlying leaf attributes. (a) Akaike weights for the Ornstein–Uhlenbeck (OU) model of evolution – which
incorporates evolutionary constraints – when compared to models that assume either unconstrained evolution along the phylogeny (Brownian motion) or
statistical independencebetween traits andphylogenetic history (white noise; not shown since itsAkaikeweightswere ≈ 0). (b, c)Model-averaged strengthof
evolutionary constraints and rates of evolution across the spectrum and leaf traits. Red points denote values significantly different (z-score > 1.96; P-
value < 0.05; two-tailed) from the mean, shown as a dashed line. (b) Degree of evolutionary constraint α across the spectrum and for each leaf attribute. (c)
Rates of evolutionacross spectral regions and leaf traits. Rates are square-root transformed to be in reflectanceunits and scaled by themean reflectanceof each
band. VIS, visible range of the spectrum; NIR, near-infrared; SWIR, short-wave infrared; LMA, leaf mass per area; MY, million years.
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classification accuracy for families of Amazonian trees (Asner &
Martin, 2011) closely matches our results. We did not explicitly
explore why the classification accuracy for certain lineages was
considerably lower than the average accuracy across lineages.
However, the fact that our models underperformed when classi-
fying hyperdiverse lineages – such as the orders Asterales and
Fabales in which diversification has likely led to a wide range of leaf
traits – suggests that groups with high levels of functional diversity
will be more challenging to identify spectrally using machine
learning approaches. Overall, it is encouraging that we can identify
broad phylogenetic groups using a global spectral dataset, especially
given the impact that factors such as leaf age, soil type, and elevation
can have on leaf chemistry and the resulting spectra (Asner &
Martin, 2016; Wu et al., 2017).

No single spectral region concentrates most of the information
about evolutionary history across all seed plants and yet, phylo-
genetic groups can be identified based on their spectral profiles.
These findings have two important consequences for planning
biodiversity assessments based on remotely sensed spectral data
(Jetz et al., 2016) and for using plant spectra directly in studies of
biodiversity (Cavender-Bares et al., 2017). First, efforts to assess
and monitor plant diversity will require the acquisition of spectra
across the entire solar reflected spectrum (400–2400 nm) instead
of focusing on a few predefined spectral bands or on limited
spectral regions. Second, spectra can potentially be used to identify
phylogenetic lineages when species-level detection is impractical,
for example, in high diversity systems where a large proportion of
species are understudied or unknown to science. Critically, the
phylogenetic resolution at which diversity is detected can be
decided based on the accuracy of the classification models rather
than defined a priori.

Our spectral evolution model can be fitted to data or be used in
simulations to understand how different evolutionary processes
affect the spectra. By applying this framework to our dataset, we
found that spectral variation in seed plants has been constrained by
evolution to varying degrees, especially in the visible region, which
is associated with pigment content. This result indicates that only a
narrow range of photosynthetic pigment content is evolutionarily
viable, possibly reflecting functional constraints in the photosyn-
thetic machinery (Ollinger, 2011). Finally, our modeling frame-
work can be used to simulate the spectra of plants under different
evolutionary dynamics. As a hypothetical example, it could
generate predictions about how convergent adaptation to shade
would affect spectra and about its effects on our ability to detect
understory diversity.

The increasing availability of high-dimensional spectral data at
the leaf, canopy, and landscape-level holds the promise of
effectively detecting and monitoring plant biodiversity on Earth.
Moving beyond the level of a leaf will require investigating how
canopy structure and the effects of spatial scaling (Asner et al.,
2017a; Wang et al., 2018) affect our capacity to recover
evolutionary information from imaging spectroscopy. Neverthe-
less, our ability to describe how evolution shapes leaf spectra and to
recover phylogenetic information from spectral profiles raises the
enticing possibility of assessing global biodiversity remotely by
directly identifying branches of the tree of life.
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Féret JB, Gitelson AA, Noble SD, Jacquemoud S. 2017. PROSPECT-D: towards

modeling leaf optical properties through a complete lifecycle. Remote Sensing of
Environment 193: 204–215.

Flores O, Garnier E, Wright IJ, Reich PB, Pierce S, Dı̀az S, Pakeman RJ, Rusch

GM,Bernard-VerdierM,Testi B et al. 2014.An evolutionary perspective on leaf
economics: phylogenetics of leaf mass per area in vascular plants. Ecology and
Evolution 4: 2799–2811.

Gholizadeh H, Gamon JA, Townsend PA, Zygielbaum AI, Helzer CJ, Hmimina

GY,YuR,MooreRM,SchweigerAK,Cavender-Bares J. 2019.Detecting prairie

biodiversity with airborne remote sensing. Remote Sensing of Environment 221:
38–49.

Hansen TF. 1997. Stabilizing selection and the comparative analysis of adaptation.

Evolution 51: 1341.
HansenTF,Martins EP. 1996.Translating betweenmicroevolutionary process and

macroevolutionary patterns: the correlation structure of interspecific data.

Evolution 50: 1404.
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. 2008. GEIGER:

investigating evolutionary radiations. Bioinformatics 24: 129–131.
Hedges SB, Marin J, Suleski M, Paymer M, Kumar S. 2015. Tree of life reveals

clock-like speciation and diversification.Molecular Biology and Evolution 32:
835–845.

Hinchliff CE, Smith SA, Allman JF, Burleigh JG, Chaudhary R, Coghill LM,

Crandall KA, Deng J, Drew BT,Gazis R et al. 2015. Synthesis of phylogeny and
taxonomy into a comprehensive tree of life. Proceedings of the National Academy of
Sciences, USA 112: 12764–12769.

Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer

TM, Bonin C, Bruelheide H, de Luca E et al. 2015. Biodiversity increases the
resistance of ecosystem productivity to climate extremes. Nature 526: 574–577.

Isbell F, Gonzalez A, Loreau M, Cowles J, Dı́az S, Hector A, Mace GM, Wardle

DA, O’ConnorMI, Duffy JE et al. 2017. Linking the influence and dependence
of people on biodiversity across scales. Nature 546: 65–72.

Jacquemoud S, Baret F. 1990. PROSPECT: a model of leaf optical properties

spectra. Remote Sensing of Environment 34: 75–91.
JetzW, Cavender-Bares J, Pavlick R, Schimel D, Davis FW, Asner GP, Guralnick

R, Kattge J, Latimer AM,Moorcroft P et al. 2016.Monitoring plant functional

diversity from space. Nature Plants 2: 16024.
Katoh K, Standley DM. 2013.MAFFT multiple sequence alignment software

version 7: improvements in performance and usability.Molecular Biology and
Evolution 30: 772–780.

Kattge J,Dı́az S, Lavorel S, Prentice IC, Leadley P,BönischG,Garnier E,Westoby

M,ReichPB,Wright IJ et al. 2011.TRY– a global database of plant traits.Global
Change Biology 17: 2905–2935.

Kokaly RF, Asner GP, Ollinger SV, Martin ME, Wessman CA. 2009.

Characterizing canopy biochemistry from imaging spectroscopy and its

application to ecosystem studies. Remote Sensing of Environment 113: S78–S91.
KuhnM. 2008. Building predictive models in R using the caret package. Journal of
Statistical Software 28: 1–26.
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