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We demonstrate that chiral hinge modes naturally emerge in insulating crystals undergoing a slow cyclic

evolution that changes the Chern-Simons axion angle θ by 2π . This happens when the surface (not just the

bulk) returns to its initial state at the end of the cycle, in which case it must pass through a metallic state to

dispose of the excess quantum of surface anomalous Hall conductivity pumped from the bulk. If two adjacent

surfaces become metallic at different points along the cycle, there is an interval in which they are in topologically

distinct insulating states, with chiral modes propagating along the connecting hinge. We illustrate these ideas for

a tight-binding model consisting of coupled layers of the Haldane model with alternating parameters. The surface

topology is determined in a slab geometry using two different markers, surface anomalous Hall conductivity and

surface-localized charge pumping (flow of surface-localized Wannier bands), and we find that both correctly

predict the appearance of gapless hinge modes in a rod geometry. When viewing the axion pump as a four-

dimensional crystal with one synthetic dimension, the hinge modes trace Fermi arcs in the Brillouin zone of the

two-dimensional hinge connecting a pair of three-dimensional surfaces of the four-dimensional crystal.

DOI: 10.1103/PhysRevB.102.035166

I. INTRODUCTION

The electronic states of crystalline insulators can be char-

acterized by certain geometric properties of the wave func-

tions that have measurable consequences [1]. For example,

in one-dimensional (1D) insulators the manifold of valence

states carries a Berry phase [2]:

γ =
∫ 2π

0

Tr [Ak] dk, (1)

where k between zero and 2π is the reduced wave vector in the

Brillouin zone (BZ), and the integrand is the trace of the Berry

connection matrix Ak
mn = i〈ukm|∂kukn〉 over the valence bands.

Although Tr [Ak] is not invariant under gauge transformations

among the valence states, its integral γ is invariant modulo

2π . Physically, γ describes the electronic contribution to the

electric polarization as

P = −e
γ

2π
, (2)

where e > 0. Accordingly, the bulk polarization is itself only

defined modulo e in one dimension [3,4].

The quantum of indeterminacy present in Eq. (1) allows

for the possibility of changing γ gradually by a multiple of

2π during a slow cyclic evolution, resulting in the transport

of an integer number C1 of electrons over one lattice constant

[5]. If the Hamiltonian is parametrized by an angle φ, the total
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change in γ over one cycle from φ = 0 to 2π is given by

�γ =
∫ 2π

0

dφ

∫ 2π

0

dk Tr [�φk] = 2πC1. (3)

C1 is known as the first Chern number, and when it is

nonzero the cycle is called a Thouless pump. In Eq. (3),

�φk
mn = ∂φAk

mn − ∂kAφ
mn − i[Aφ, Ak]mn is the covariant Berry

curvature matrix of the valence bands in (φ, k) space. When

this (φ, k) space is viewed as an effective two-dimensional

(2D) momentum space, 2πC1 becomes a quantized Berry flux

through the corresponding 2D BZ.

The Chern number C1 can be defined in exactly the same

way for real 2D insulators, and those for which it is nonzero

are known as (first) Chern insulators, or quantum anomalous

Hall insulators. Chern insulators were introduced by Haldane

using a tight-binding model [6], and have been realized ex-

perimentally in magnetically doped thin films [7,8]. They

are characterized by a quantized anomalous Hall conductivity

(AHC) of (e2/h)C1, and by the presence of |C1| chiral edge

modes crossing the bulk gap.

In three dimensions, the valence bands of insulating crys-

tals carry another global geometric property. It is known as the

Chern-Simons axion angle θ , and can be expressed as [9,10]

θ = −
1

4π

∫

BZ

εabcTr

[

Aa∂bAc − i
2

3
AaAbAc

]

d3k, (4)

where each ka runs between zero and 2π , ∂a = ∂/∂ka,

and Aa
mn is the corresponding Berry connection along

lattice direction a. The axion angle describes an

isotropic contribution αiso
αβ = (e2/h)(θ/2π )δαβ to the linear
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FIG. 1. (a) Real-space view of a sample of an insulating material undergoing an axion pumping cycle parametrized by φ. The sample

is obtained by terminating a bulk crystal at two semi-infinite surfaces oriented normal to +ẑ and −ŷ (blue and red shadings, respectively),

meeting at an x-directed hinge that may harbor chiral modes (arrows). (b)–(d) Hinge-projected band structure focusing on surface states on the

+ẑ-oriented surface (blue shading), for three increasing values of φ. Gray shading represents projected bulk states. (e)–(g) View in (kx, ky, φ)

space, for the choice of Fermi level indicated in (b)–(d); blue indicates the “Fermi surface” in (kx, ky, φ) space enclosing the electron pocket;

the solid dot is the Weyl point, corresponding to the nodal touching of surface valence and conduction bands at the critical parameter value φ2.

The dashed lines in (e)–(g) indicate the φ values used in (b)–(d), respectively. (h, i) Same as (d) and (g), but focusing on states localized on the

surface normal to −ŷ.

magnetoelectric coupling ααβ = ∂Pα/∂Bβ = ∂Mβ/∂Eα . Like

the Berry phase, the axion angle is gauge invariant only

modulo 2π and can change gradually by multiples of 2π

during slow cyclic evolutions. The net change in θ over one

cycle parametrized by φ ∈ [0, 2π ] is given by

�θ =
1

16π

∫

BZ

d3k

∫ 2π

0

dφ εabcd Tr [�ab�cd ] = 2πC2, (5)

where the indices run over kx, ky, kz, φ. The integer C2 is

called the second Chern number, and when it is nonzero

the cycle is referred to as an axion pump [11]. Like 2πC1

given by Eq. (3), 2πC2 can be viewed as a quantized Berry

flux through an effective BZ, which is now that of a parent

four-dimensional (4D) insulator.

In this paper, we ask what general features one can expect

to see in the boundary spectrum during an axion pumping

cycle when both the bulk and the surface return to their initial

states at the end of the cycle. The evolution of the surface

spectrum under these circumstances was studied previously

[12]. In the present paper we turn our attention to the hinge

band structure, that is, the spectrum of 1D modes localized at

the boundaries between contiguous surface facets.

We find that chiral hinge states appear generically in the

course of cyclic evolutions characterized by a nonzero C2 in-

variant. In contrast to the hinge states in intrinsic higher-order

topological insulators [13,14], their occurrence does not rely

on the presence of certain bulk crystallographic symmetries,

but only on the global Chern topology of the pumping cycle.

The paper is organized as follows. In Sec. II we pro-

vide a qualitative discussion of the main ideas. We then

illustrate them for a concrete tight-binding model in Sec. III,

where we use various tools to predict from slab calculations

the occurrence of gapless hinge modes, and to illuminate the

concept of surface topology. We conclude in Sec. IV with a

summary and outlook.

II. QUALITATIVE DISCUSSION

In this section we examine the generic behavior of bound-

ary states during an axion pumping cycle, making no special

assumptions about the presence of symmetries or the position

of the Fermi level EF in the gap, and ask what general features

one can expect to see in the surface and hinge band structures

during an axion pump evolution cycle.

We consider for simplicity an orthorhombic structure with

primitive lattice vectors along the Cartesian axes, and work

with reduced wave vectors (kx, ky, kz ) with each k j between

zero and 2π . To these we can add the adiabatic Hamiltonian

parameter φ whose evolution from zero to 2π controls the

axion pump, so that we can also think in terms of a 4D

insulator with a second Chern number C2 in (kx, ky, kz, φ)

momentum space. In the present discussion we shall assume

C2 = 1, so that one quantum of axion coupling is pumped

during the adiabatic cycle.

A. Surface states

Consider the system shown in Fig. 1(a)—a crystal termi-

nated at two semi-infinite surfaces normal to +ẑ and −ŷ,

meeting at an x-directed hinge. In preparation for the discus-

sion of hinge-localized states in the next subsection, here we

consider the band structures of the two surfaces, but projected

as though seen from the hinge.

We focus first on the top surface (unit normal +ẑ). The

evolution of its hinge-projected band structure is sketched in

panels (b)–(d) for three increasing values of φ in the region

where the metallization occurs. These are labeled as φ1, φ2,

and φ3, corresponding to panels (e)–(g), respectively, where

the locus of electron-occupied surface states is indicated in the

three-dimensional (3D) (kx, ky, φ) space. As a reminder, the

surface is required to become metallic over some range of φ.
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This follows because we assume that the surface Hamiltonian

(as well as the bulk one) returns to itself at the end of the

φ loop, so that the quantum of AHC that is pumped to

this surface has to be removed by a metallic interval [12].

Typically this happens as shown in panels (b)–(d). That is,

surface states penetrate into the gap with increasing φ, leading

to the formation of a nodal touching in (kx, ky) space at

the critical parameter value φ2, after which the gap reopens

to restore an insulating surface. When viewed in (kx, ky, φ)

space, that nodal touching becomes a Weyl point, indicated

by the solid dot in panels (e)–(g).

If one would follow the evolution of the surface AHC

by computing the contributions only up to the nodal point,

one would observe a sudden jump by e2/h when pass-

ing through φ2. This jump is precisely by the amount

needed to return the surface AHC to its initial value at the

end of the cycle. With the indicated Fermi-level position, how-

ever, the change occurs continuously. An electron pocket first

appears when the conduction band minimum drops below EF,

somewhere between panels (b) and (c); it grows, then shrinks

and disappears somewhere between (c) and (d). This behavior

is visualized in 3D (kx, ky, φ) space in panels (e)–(g), with

the dashed rectangles showing the φ values corresponding to

panels (b)–(d), respectively.

At any value of φ for which the surface electron pocket

exists, such as that shown by the horizontal cut in Fig. 1(f), the

contribution of that pocket to the surface AHC is proportional

to the Berry phase computed around its boundary. This phase

evolves by 2πCFS
1 from the creation to the destruction of the

pocket, where CFS
1 is the first Chern number (1, in our case) on

the spheroidal Fermi surface shown in panels (e)–(g) of Fig. 1.

We can regard any one of those three panels as showing

the Fermi-surface structure of the 3D (kx, ky, φ) system corre-

sponding to the z-terminated 3D surface of a 4D (kx, ky, kz, φ)

second-Chern insulator. We see a Fermi pocket with nonzero

first Chern index surrounding a Weyl node, shown as a dark

central point in each panel. This looks very much like a picture

of a Weyl semimetal [15], but with one crucial difference.

In a true 3D system, the Nielsen-Ninomiya theorem [16]

requires that the chiralities of the Weyl nodes must sum

to zero over the 3D BZ. The violation we see here is an

example of an anomaly; since we are at the surface of a

topological 4D insulator, the reasoning used to prove the

Nielsen-Ninomiya theorem no longer applies. In fact, the sum

of chiralities is necessarily equal to the 4D bulk second Chern

number, that is, CFS
1 = C2. Hence, every 3D surface facet

of a 4D second-Chern insulator must show the same excess

of chirality [9,12]. In particular, every 3D surface must be

metallic, in analogy to the 1D surfaces of a 2D first-Chern

insulator.

Panels (h) and (i) of Fig. 1 show similar plots at the

same φ = φ3 value as in panels (d) and (g), but now for

the surface with unit normal −ŷ. Here we assume that the

metallic interval has not yet begun, so the electron pocket

corresponding to this surface lies above the φ = φ3 plane.

Incidentally, if the Fermi-level position had been chosen lower

in the gap, the metallic interval of φ could correspond to the

temporary creation of a hole pocket instead, on either or both

of the surface facets; entirely parallel arguments apply in these

cases.

FIG. 2. (a) Hinge-projected Fermi surface of the system depicted

in Fig. 1(a), plotted in (kx, φ) space. Blue and red electron pockets

correspond to surface states on the +ẑ- and −ŷ-oriented surfaces,

as shown in Figs. 1(g) and 1(i), respectively. The Fermi-arc state

is shown in green. (b) Hinge-projected band-structure plot vs kx [at

φ = φ3, indicated by the dashed line in (a)]. The gray, blue, and red

regions are the projected bulk, +ẑ-surface, and −ŷ-surface states

shown in Figs. 1(d) and 1(f), and the green line is the chiral hinge

state.

B. Hinge states

Now consider the x-directed hinge adjoining the y- and z-

oriented surface facets discussed above (we refer to it as a “y|z
hinge”). Figure 2(a) shows the locus of points on the (kx, φ)

plane where there are states at EF, that is, the hinge-projected

Fermi surface plotted as a function of φ. The blue region is

the projection onto the (kx, φ) plane of the Fermi surface in

(kx, ky, φ) space of the +ẑ-oriented surface [Fig. 1(g)]. Like-

wise, the red region is the projection of the (kx, kz, φ) Fermi

surface of the −ŷ-oriented surface [Fig. 1(i)] adjoining the

+ẑ surface at the hinge. Each electron pocket encloses a Weyl

point, and these bring opposite chiral charges due to the fact

that positive circulations on the +ẑ- and −ŷ-oriented surfaces

correspond to positive and negative transport, respectively, at

the hinge.

The Nielsen-Ninomiya theorem is now satisfied, since the

total chirality of all Weyl points projecting onto the (kx, φ)

plane necessarily vanishes. However, the separation of chi-

ral charges between the two pockets requires the presence

of a Fermi arc connecting them, as shown by the green

line in Fig. 2(a), just as for the case of a Fermi arc at

the surface of a Weyl semimetal [15]. Indeed, the count

of Fermi arcs and geometry of attachment must follow the

same rules outlined by Haldane [17]. The full hinge-projected

band structure at φ = φ3 is illustrated in Fig. 2(b), show-

ing the hinge-localized state that crosses from the valence

to the conduction manifold and gives rise to the Fermi

arc.

Of course, at other points along the adiabatic pumping

cycle, corresponding to different values of φ, the chiral

hinge mode may be absent, as above the red region or

below the blue region in Fig. 2(a). At some other φ values, the

presence of hinge states will be obscured by degeneracy with

the continuum of surface states. In some cases these regions

of metallic surface behavior could be much more extensive

than as sketched above, hiding the hinge electronic structure

almost completely. However, we can be sure of the existence

of at least one Weyl-node-surrounding hole or electron pocket

arising from each adjoined surface, and a required Fermi arc

state connecting them somewhere in the (kx, φ) space (unless
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the two pockets overlap when projected into this space).

In this sense, the presence of Fermi arcs and chiral hinge

channels at some stage of a second-Chern pumping cycle

is generic. Nevertheless, in some model systems the surface

nodal touchings may occur at the same φ on different surfaces,

especially if the critical φ is pinned to a specific value at which

the system has some higher symmetry, such as time reversal

or mirror symmetry. However, in the context of the dramatic

surface-facet variations in structural and chemical properties

that are typical of real materials, such commonality of the

critical φ values appears unlikely.

The observations presented above serve to illustrate the

very close analogy between the physics on the 2D “hinge” of a

4D second-Chern topological insulator, and at the 2D surface

of a 3D Weyl semimetal.

III. NUMERICAL STUDY OF A TOY MODEL

A. The alternating Haldane model

To illustrate the physics described above, we study

the tight-binding model for an axion pump introduced in

Ref. [12], consisting of alternating layers of the Haldane

model [6]. The on-site energies are modulated by an angle φ in

such a way that for −π/2 < φ < π/2 the first Chern numbers

vanish on all layers, while for π/2 < φ < 3π/2 they alternate

between +1 and −1, for isolated layers. To prevent the layers

from becoming metallic at φ = π/2 and 3π/2, φ-dependent

interlayer couplings are introduced. As φ goes from zero to

2π , the system is carried along a gapped circuit that encloses

a gapless point in parameter space, and the axion angle θ

increases gradually from zero to 2π [12].

When viewed along the stacking direction z, the model

consists of coupled chains that project onto the honeycomb

sites on each layer, with alternating on-site energies and hop-

pings along z. In the limit of vanishing interchain coupling,

the chain Hamiltonian is identical to the Rice-Mele model of

alternating site energies and hopping strengths [18], which

realizes a Thouless pump [4]. Chains passing through the A

and B sites have equal and opposite first Chern numbers in

(φ, kz ) space, so that no net charge is transported along z

over one cycle. Depending on the choice of parameters, the

magnitude of those Chern numbers is either zero or one.

The 2D unit cell of each layer is spanned by the lattice vec-

tors a1 = ax̂ and a2 = ax̂/2 +
√

3aŷ/2, with orbitals sitting

on the honeycomb sites tA = a1/3 + a2/3 and tB = 2a1/3 +
2a2/3. The Hamiltonian for an isolated layer indexed by p is

Hp = (−1)p�
∑

i

γic
†
picpi + t

∑

〈i j〉

c
†
picp j

+ (−1)p
∑

〈〈i j〉〉

iνi jc
†
picp j, (6)

where i and j label the sites, with γi = ±1 if site i belongs

to the A or B sublattice. 〈i j〉 and 〈〈i j〉〉 denote pairs of first

and second nearest-neighbor sites, with each pair appearing

twice. The first and second terms contain the on-site energies

and nearest-neighbor hoppings, respectively, and the third

describes a pattern of staggered magnetic fluxes generated

by complex second-neighbor hoppings of unit magnitude.

Therein, νi j = +1 (−1) if the hopping direction from j to i

is right handed (left handed) around the center of a plaquette.

The (−1)p factor in the first term reverses the energies of sites

on the same sublattice in adjacent layers, while the same factor

in the third term reverses the pattern of magnetic fluxes, and

with it the first Chern numbers on consecutive layers. The

hopping magnitude in the third term has been set to unity as

a reference, and each 2D layer undergoes a Chern transition

between topological and trivial phases at � = ±3
√

3. At � =
3
√

3 the gap-closing transition occurs at the high-symmetry

point K = (4π/3a)x̂ in the 2D BZ, and at � = −3
√

3 it

occurs at K ′ = −(4π/3a)x̂.

The full 3D model has a3 = cẑ as the third lattice vector,

and two layers per unit cell. The layers p = 0, 1 are located at

z = −c/4, c/4, and the Hamiltonian reads

Hbulk =
∑

p

{

Hp + [1 + (−)p t ′]
∑

i

γi(c
†
picp+1,i + H.c.)

}

,

(7)

where the second term describes the interlayer (intrachain)

coupling and “H.c.” stands for “Hermitian conjugate.” We

choose t = −4.0, and parametrize � and t ′ according to

� = 3
√

3 + 2 cos φ, (8a)

t ′ = 0.4 sin φ. (8b)

The presence of a nonzero t ′ introduces an alternation of

interlayer hopping strengths that keeps the system gapped

as φ passes through π/2 and 3π/2 where the topological

transitions occur in the isolated layers. The bulk spectrum

is therefore gapped everywhere along the adiabatic cycle

parametrized by φ, encircling a gapless point at (�, t ′) =
(3

√
3, 0).

The model has neither time reversal (TR) nor inversion

symmetry at generic φ. However, the Hamiltonian is invariant

under an antiunitary operator

� = Kiτyσx = KτzI (9)

where K is complex conjugation and τ j and σ j are the

jth Pauli matrices acting in the layer and sublattice spaces,

respectively.1 Inversion about a hexagonally centered point

midway between the layers is represented by I = τxσx, so

the second equality expresses � as I followed first by a sign

reversal of all amplitudes on odd layers, then by scalar TR.

Because � is antiunitary and squares to −1, it acts the way

inversion times TR does in a spinor system, forcing the four

energy bands to come in two Kramers-degenerate pairs. At the

points φ = 0 and π where the alternation t ′ of the interlayer

hoppings vanishes, the model acquires two additional sym-

metries: mirror symmetry Mz (z → −z) about the layers, and

time-reversal K combined with a twofold rotation C
y

2 about

an axis lying on the atomic layers and pointing along the

armchair edges.

The evolution with φ of the axion angle is shown in

Fig. 3. θ increases gradually from zero to 2π over one cycle,

corresponding to C2 = 1 in Eq. (5). Both Mz and KC
y

2 take

θ into −θ , constraining θ to be zero mod π at φ = 0 and

1We thank N. Varnava for pointing out this symmetry of the model.
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FIG. 3. Pumping of the axion angle θ by 2π in the alternating

Haldane model.

π , consistent with the figure. At φ = 0 the system is a topo-

logically trivial insulator with θ = 0. Instead, at φ = π it is

a topological crystalline insulator with θ = π (a “generalized

axion insulator” in the sense of Ref. [19]), harboring metallic

states on surfaces that preserve either Mz or KC
y

2 symmetry,

or both [12,19].

B. Surface topological transitions and surface

anomalous Hall conductivity

We study three types of slabs, shown schematically in

Fig. 4. The ones in the left and middle panels are terminated

along z, and the one on the right is terminated along y. In the

left panel the stacking unit is a cell with boundaries at z =
±1/2 (in units of c), enclosing layers located at z = ±1/4.

With this “z1/2 termination,” the Chern numbers of the top and

bottom layers (when isolated) are C1 = ±1, respectively, in

the interval π/2 < φ < 3π/2. In the middle panel the stack-

ing unit is a cell with boundaries at z = 0 and 1 and enclosing

layers at z = 1/4 and 3/4. With this “z0 termination,” the top

and bottom layers have Chern numbers C1 = ∓1, respectively,

in the same interval. Finally, in the right panel we have a slab

with a “y0 termination” consisting of zigzag edges on every

layer.

For each type of slab we perform the cyclic evolution

described by Eq. (8), with the surfaces returning to their

initial states along with the bulk. The surfaces must then pass

through metallic states to dispose of the quantum of surface

FIG. 4. Left and middle: Inequivalent z-terminated slabs of the

alternating Haldane model. Arrows indicate edge-mode chiralities on

the uncoupled layers for π/2 < φ < 3π/2. Right: One layer of a

y0-terminated slab, with zigzag edges (top view).

FIG. 5. (a) Evolution of the minimum energy gap vs φ in slabs of

the alternating Haldane model, for the three types of surface termi-

nations pictured in Fig. 4. The gap closures occur at the surfaces.

(b) Evolution of the surface AHC of each slab. Dotted lines are

different branches of the bulk axion coupling, plotted as −θ/2π

according to Eq. (10). The finite slopes of the discrete jumps at

φ = π/2, π , and 3π/2 are artifacts of the finite step size used for

φ in the calculation.

AHC pumped from the bulk. To visualize the gap closure, we

plot in Fig. 5(a) the minimum energy gap as a function of φ.

There is one gap closure per cycle, as in Fig. 1(c), taking place

at isolated critical values φc that are different for the three

slabs. An examination of the slab band structures [12] reveals

that at φc the valence and conduction surface bands touch at a

nodal point, which occurs at precisely EF because we consider

the slabs at half filling. If we were to shift EF away from

the nodal point as in Fig. 1(c), each surface would remain

metallic over a finite φ interval containing φc, as illustrated

in Figs. 1(e)–1(g).

The gap closure is pinned to φc = π on y0 surfaces,

because at φ = π the system becomes a generalized axion

insulator protected by Mz and KC
y

2 symmetries, both of which

are preserved at those surfaces.2 The gap closing occurs

exactly at E = 0 as an artifact of a particle-hole symmetry in

the model. As for the z-oriented surfaces, neither Mz nor KC
y

2

symmetry is preserved there, so these surfaces are not required

to be metallic at φ = π . Nevertheless they must still become

metallic somewhere along the cycle, and the closing of the gap

occurs at φc = π/2 on the z0 surface and at φc = 3π/2 on the

z1/2 surface, again exactly at E = 0. (The closing occurs at

point K in the 2D BZ [12], where A and B chains become

2The symmetry Mz (but not KC
y

2 ) is also preserved at x-oriented

surfaces terminated at armchair edges, and this suffices to pin the gap

closure to φc = π on those surfaces as well. Hence, gapless modes

will not appear anywhere along the cycle at hinges adjoining x- and

y-oriented surfaces.
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decoupled, with HA = −HB. At generic φ each takes the

form of a Rice-Mele chain [18], and the surface gap closure

occurs when the surface-state energies of the two chains cross

through each other and through zero, which occurs at cos φ =
0 where the effective site energy alternation vanishes.)

These gap-closing events at the surfaces are topological

phase transitions, and to elucidate the notion of surface topol-

ogy we now examine the AHC carried by the surfaces along

the pumping cycle. For EF = 0 and in the limit of a thick slab,

we expect the surface AHC to jump by e2/h at φc, as described

by the relation

σ surf
AHC = (n − θ/2π )

e2

h
(10)

between the AHC of a gapped surface and the bulk axion cou-

pling [10,20]. Once a specific branch has been chosen for θ , a

unique integer n can be assigned to each surface, and for n to

change the surface gap must close and reopen. The difference

in AHC between two insulating surface terminations of the

same bulk is (e2/h)�n, where �n is the difference between

the n values on the two surfaces. In the φ intervals where �n

is nonzero the two surfaces are in topologically distinct states,

and if they meet there will be |�n| chiral modes propagating

along the adjoining hinge [21].

We have calculated the surface AHC according to

Refs. [20,22] for slabs of different thicknesses (7, 13, and 19

cells across y, and 7, 9, and 11 cells across z). The extrapolated

results are plotted in Fig. 5(b), confirming that Eq. (10) is

satisfied throughout the cycle. The AHC of each surface tracks

one branch of −θ/2π for 0 � φ < φc, switches to another

branch at φc, and returns to its initial value at the end of the

cycle. We see that the y0 surface is topologically distinct from

the z0 surface for φ ∈ (π/2, π ) and from the z1/2 surface for

φ ∈ (π, 3π/2), with �n = −1 and +1, respectively. Gapless

modes are therefore expected to appear on the y0|z0 hinges in

the former interval and on the y0|z1/2 hinges in the latter, with

opposite chiralities in the two cases. This is illustrated by the

outer and middle racetracks in the phase diagram of Fig. 6.

Finally, the topological difference �n = +1 between z0

and z1/2 surfaces for φ ∈ (π/2, 3π/2) can be understood

as follows. To switch from one termination to the other

one either removes the outer surface layer or adds an extra

layer. Doing so changes the surface AHC by ±e2/h in the

range (π/2, 3π/2) where the individual layers have Chern

numbers ±1, and leaves the surface AHC unchanged in the

range (−π/2, π/2) where the layer Chern numbers vanish.

A similar behavior was observed in Ref. [22] for a model

of an axion insulator, where the half-quantized surface AHC

changed sign when a surface layer was added or removed. As

a consequence, every single-layer-high surface step carries a

chiral edge channel in such cases [23], as shown for our model

by the inner racetrack in Fig. 6.

C. Gapless hinge modes and hinge Fermi arcs

To verify the presence of protected hinge modes in the

predicted φ intervals, we have studied rod-shaped samples

extended along x, and 15 cells thick along both y and z.

Figure 7(a) shows the energy bands of a y0- and z1/2-

terminated rod at φ = 5π/4 (the middle of the φ interval

FIG. 6. Topological phase diagram for 1D channels in the alter-

nating Haldane model at half filling. The outer and middle racetracks

are for the two types of y|z hinges, and the inner one is for single-

layer-high steps on z-oriented surfaces. In the yellow regions there

are no protected 1D modes because the surface-AHC difference in

Fig. 5 is �n = 0, while in the blue (�n = +1) and red (�n = −1)

regions there is one protected mode per hinge or step. Red, blue, and

green lines mark the gap-closing points φc on the y0, z0, and z1/2

surfaces, respectively, that separate the different phases.

where gapless hinge modes are expected to occur). All bands

are doubly degenerate, since the Kramers-enforcing operator

� of Eq. (9) remains a symmetry of the rod as a whole, and the

bands drawn in red and in blue are the predicted hinge modes

crossing the bulk gap. The weights of their wave functions on

each site are displayed in Fig. 7(b) at an energy near E = 0

(the middle of the gap); modes localized on adjacent hinges

disperse in opposite directions, forming the pattern shown in

the inset of panel (a).

The spectrum looks qualitatively the same for any value of

φ between π and 3π/2; when passing through π or 3π/2,

the surface gap closes and reopens on one of the surfaces,

allowing a change of surface topology such that chiral modes

are no longer present at the hinges. Outside that interval,

the highest-occupied and lowest-unoccupied states become

delocalized over the entire rod. When the surface termination

is changed from z1/2 to z0 the interval hosting gapless modes

changes from (π, 3π/2) to (π/2, π ) and the chiralities get

reversed, as predicted.

Figure 8 shows, for a y0- and z1/2-terminated rod, the

locus of points on the (kx, φ) plane where the energy bands

cross the Fermi level. In panel (a), the Fermi level is at the

charge-neutrality point EF = 0. In that case the locus of points

at EF reduces to a fourfold degenerate Fermi arc in (kx, φ)

space (the same on all hinges). In panel (b) the Fermi level has

been shifted to EF = 0.2, and as a result the Fermi arc has split

into a pair of twofold degenerate arcs, where the Kramers de-

generacy again results from the fact that � of Eq. (9), defined

with respect to an inversion center in the middle of the rod,

commutes with the rod Hamiltonian. The two Fermi arcs at-

tach tangentially to opposite sides of the two projected surface

Fermi surfaces, which have expanded from isolated points in

panel (a) to finite disks [compare with Fig. 2(a)]. The way the

Fermi arcs close on adjacent hinges is analogous to the way

they close on opposite surfaces of a Weyl semimetal slab [15].
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FIG. 7. (a) Energy bands of the alternating Haldane model, cal-

culated at φ = 5π/4 for a rod extended along x and with y0 and z1/2

terminations along y and z. All bands are doubly degenerate, and

those in red and in blue are hinge-localized chiral modes crossing the

bulk and surface gaps, depicted schematically in the inset. (b) Site-

resolved weights of the four hinge-localized states at an energy

slightly above the crossing point in the middle of the gap, as indicated

by the blue and red dots in (a).

D. Surface-hinge correspondence from slab Wannier bands

We have seen how the quantized difference in AHC be-

tween two surfaces dictates the occurrence of chiral modes on

the connecting hinge. In this section we revisit this “surface-

hinge correspondence” from the viewpoint of the Wannier

band structure of a slab.

1. Hybrid Wannier representation

Let us begin by reviewing the hybrid Wannier (HW)

representation for a d-dimensional insulating crystal [24].

The idea is to describe the valence states using functions

that are maximally localized (Wannier-like) along one cho-

sen crystallographic direction z, and extended (Bloch-like)

along the remaining d−1 directions. These HW functions

w
k
ln(r) are labeled by a wave vector k in the projected

(d−1)-dimensional BZ, and by two discrete indices l and

n; l labels cells along z, and n = 1, . . . , J is an intra-

cell index with J being the number of valence bands. The

HW centers zln(k) = 〈wk
ln|z|wk

ln〉 are organized into “Wan-

nier bands” that are periodic in z, with J bands per lattice

FIG. 8. (a) Fermi arcs traced on the (kx, φ) plane by the gapless

hinge modes of a rod extended along x and with a z1/2 vertical ter-

mination, for the Fermi level at EF = 0. (b) Same, but for EF = 0.2.

The two elliptical discs indicate approximately the regions where the

surface conduction bands move below E = 0.2.

constant c:

zln(k) = z0n(k) + lc. (11)

From now on, the HW centers will be written in units of the

lattice constant along the Wannierization direction. Accord-

ingly, we set c = 1 in Eq. (11).

The Wannier band structure provides a very general means

of implementing the bulk-boundary correspondence [25,26].

Consider, for example, a crystal in d =3 dimensions. When

the boundary of interest is a z-terminated surface, one in-

spects the bulk Wannier bands zln(kx, ky). Under appropriate

conditions to be specified shortly, these can be smoothly

deformed onto the surface energy bands En(kx, ky), so that the

topological features of the two spectra are in correspondence:

any protected gapless modes in the surface bands are reflected

in the connectedness (or “flow”) of the Wannier bands [25,26].

For insulators with multiple occupied bands, the ability to

make such a smooth deformation depends on the choice of

Wannier bands making up a “Wannier unit cell” [12]. This

is equivalent to the choice of a Wannier gap separating one

Wannier cell from the next along z, or, in the language of

Ref. [27], “fixing the Wannier chemical potential.” Specif-

ically, if the Wannier unit cell is repeated a large integer

number of times along z, the surface AHC at the top surface

of the slab constructed in this way must match that of the

insulating surface in question, since if it differs by an integer

multiple of the quantum a topological obstruction prevents

the smooth deformation. In our case, the correspondence is

obvious: setting the Wannier gap at z = 0 or 1/2 is appropriate

for the z0- or z1/2-terminated surface, respectively. In general,

however, a separate calculation may be required to determine

the correct choice of Wannier gap for a generic insulating

surface.

2. Flow of surface-localized Wannier bands

The surface-hinge correspondence can now be developed

using closely related methods. To look for protected gapless

modes on hinges connecting y- and z-oriented surfaces, we

examine the Wannier bands zln(kx ) of a y-terminated slab.

The interesting bands are those whose HW functions reside

near the surfaces. If the flow of these Wannier bands is such
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FIG. 9. Wannier bands zln(kx ) of y-terminated slabs of the alter-

nating Haldane model, at different φ values. The bands are color

coded according to the degree of localization on the +ŷ surface

[Eq. (12)]: gray dots are modes extending along y across the entire

slab, and blue (red) dots are modes localized on the +ŷ (−ŷ) surface;

the degree of surface localization is also indicated by the size of the

dots. Two types of cells are displayed in each panel: the “z0 cell”

with boundaries at z = 0 mod 1 (in black), and the “z1/2 cell” with

boundaries at z = 1/2 mod 1 (in gray).

as to cross the Wannier gap appropriate to the z-terminated

surface of interest, then the x-directed y|z hinges will host

topologically protected gapless modes. Identical conclusions

are reached by examining the bands yln(kx ) of z-terminated

slabs.

Figure 9 shows the bands zln(kx ) of y0-terminated slabs

with a thickness of 20 unit cells, calculated at φ = 5π/4,

3π/4, and zero. They are color coded by the weight

ρ+y
n (kx ) =

∫

+y

∣

∣

w
kx

ln
(r)

∣

∣

2
d3r (12)

of the HW functions in the half of the slab containing the +ŷ

surface, and for added clarity the degree of localization at the

surfaces is also indicated by the size of the dots.

Let us first examine the bands at φ = 5π/4 in panel (a).

At kx = −π they are evenly split into two narrow bulklike

groups, one centered at z = 1/4 mod 1 and another at z =
3/4 mod 1. Between them there is a “z0 gap” centered at

z = 0 mod 1, and a “z1/2 gap” centered at z = 1/2 mod 1. As

kx increases the two groups broaden slightly, and one band

detaches from each. The two detached bands cross the z1/2 gap

in opposite directions, and as kx approaches π each merges

with the bulklike group from which the other came. While

FIG. 10. Same as Fig. 9, but for the Wannier bands yln(kx ) of

z1/2-terminated slabs.

crossing the gap, these two chiral bands become strongly

localized on opposite surfaces; this surface-localized flow

across the z1/2 gap is maintained over the interval π < φ <

3π/2, signaling the presence of protected gapless modes on

y0|z1/2 hinges.3 Conversely, the lack of flow on the z0 gap

indicates the absence of such modes on y0|z0 hinges over that

interval.

The same logic applies to the other panels of Fig. 9. In

panel (b) the Wannier flow at φ = 3π/4 shifts to the z0 gap

(and switches chirality), consistent with the fact that the z0

termination is the one producing hinge modes (of the opposite

chirality), for π/2 < φ < π . In panel (c) both types of gaps

are devoid of chiral surface modes at φ = 0, reflecting the

absence of chiral hinge modes for −π/2 < φ < π/2 with

either type of z termination.

With the above procedure, we have been able to predict

the existence of gapless modes on both y0|z0 and y0|z1/2

hinges from a single slab calculation (at each φ). This is

somewhat unexpected, given that the surface-AHC approach

of Sec. III B required three separate slab calculations to gather

the same information. It should be noted, however, that the

HW-based procedure only works when the choice of Wannier

gap corresponding to the z-terminated surface of interest is

known, whereas the surface-AHC approach can be applied

directly to arbitrary insulating surfaces.

3In Fig. 9(a), the Wannier band localized on the +ŷ surface flows

downward, in agreement with the negative chirality of the mode

localized at the hinge between the +ŷ and +ẑ surfaces in Fig. 7.
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FIG. 11. Pumped charge Pz(kx ) of Eq. (13), in units of e, for a

y-terminated slab at φ = 5π/4. Blue (red) curves denote results for

the +ŷ (−ŷ) surface. In (a) and (b), Eq. (13) is evaluated using the

z0 and z1/2 cells shown in Fig. 9, respectively. Filled dots correspond

to the home cell [[0,1] in (a) and [−1/2, 1/2] in (b)], and open dots

correspond to the cells immediately above and below.

The protected modes on y|z hinges can also be deduced

from the Wannier spectrum yn(kx ) of z-terminated slabs, but

this requires two slab calculations instead of one (one for each

type of z termination). This is illustrated in Fig. 10 for the case

of y0|z1/2 hinges, using z1/2-terminated slabs. As expected,

Wannier flow is present on the y0 gap at φ = 5π/4 but not

at φ = 3π/4 or 0.

3. Interpretation in terms of charge pumping at the surface

The information in Figs. 9 and 10 about the topology of y|z
hinges can be presented concisely in the language of charge

pumping. Let us describe the procedure for the case of Fig. 9,

where the slab is terminated along y. Following Ref. [28],

we assign to the +ŷ surface a quantity with units of charge

defined as

P
+y
z (kx ) = −

e

c

∑

n

z0n(kx )ρ+y
n (kx ), (13)

where ρ
+y
n is given by Eq. (12). For a given value of kx, this

quantity is a measure of the charge pumped along z on the

+ŷ edge of the ribbon (finite in y, infinite in z) described by

Hslab(kx ). However, its physical interpretation is rather subtle.

For example, consider a weak electric field along x that acts

for one Bloch period. In this case, the continuous change in

P
+y
z as kx increases by 2π is quantized in units of e, and it

describes the +ẑ-directed flow of current on the +ŷ surface

relative to the −ŷ-directed current on the +ẑ surface (that

is, the quantized difference �n in surface AHC). Note that

Eq. (13) depends on the choice of Wannier unit cell, and again

the answer will only be correct if that cell is chosen correctly

for the +ẑ-terminated surface of interest.

In Fig. 11, P
+y
z is plotted at φ = 5π/4 for two different

cell choices. In panel (a), the black z0 cell in Fig. 9 was used.

Since in Fig. 9(a) the chiral Wannier band localized on the

+ŷ surface does not cross the boundaries of that cell, P
+y
z

does not exhibit flow as a function of kx, indicating that no

protected gapless modes are present on the y0|z0 hinges. In

Fig. 11(b) the calculation was repeated using the gray z1/2 cell

in Fig. 9. Now the surface-localized band does cross the cell

boundaries, and as a result P
+y
z exhibits flow as a function

of kx (when viewed as a continuous but multivalued function),

indicating the presence of gapless modes on the y0|z1/2 hinges.

Also shown in Fig. 11 is P
−y
z , obtained by replacing ρ

+y
n with

ρ
−y
n = 1 − ρ

+y
n in Eq. (13).

IV. SUMMARY AND OUTLOOK

We have shown that gapless modes appear naturally on the

hinges of 3D insulators undergoing an axion pumping cycle.

The basic idea is illustrated in Figs. 1 and 2. When a surface is

introduced in the system, the valence and conduction surface

bands must exhibit at least one nodal touching along the

cycle. If, as is generically the case, those band touchings

occur on adjacent surfaces at different values of the pumping

parameter φ, then the connecting hinge will host chiral modes

over the intervening φ range. Those modes are boundary

manifestations of the second-Chern number characterizing the

axion pump, and they can be viewed as Fermi arcs in the BZ

of the 2D hinge connecting the 3D surfaces of a 4D sample

with (kx, ky, kz, φ) reciprocal space.

Note that at any given value of φ the appearance of

1D modes on the hinges of the 3D crystal represents an

“extrinsic” higher-order topological phase in the language of

Refs. [14,29], since the bulk is topologically trivial and hinge

modes are not required. Instead, the presence of Fermi arc

states is generically required on the 2D surfaces of the 4D

second-Chern insulator, thus representing “intrinsic” topology

when the system is viewed from the standpoint of the global

(kx, ky, kz, φ) parameter space.

We have exemplified these behaviors by means of a tight-

binding model, but the same methodology could easily be

applied in the framework of ab initio calculations. However,

it remains a major challenge to devise a physical mechanism

leading to the adiabatic pumping of axion coupling in a real

material.

Alternatively, it may be possible to demonstrate axion

pumping behavior in other settings such as photonic crystals,

ultracold atoms, or electrical circuits. The physics of second-

Chern insulators is already being explored in such systems

[30–37], and we hope that the present paper may inspire future

efforts towards the observation of the associated topological

hinge states.
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