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We demonstrate that chiral hinge modes naturally emerge in insulating crystals undergoing a slow cyclic
evolution that changes the Chern-Simons axion angle 6 by 2z. This happens when the surface (not just the
bulk) returns to its initial state at the end of the cycle, in which case it must pass through a metallic state to
dispose of the excess quantum of surface anomalous Hall conductivity pumped from the bulk. If two adjacent
surfaces become metallic at different points along the cycle, there is an interval in which they are in topologically
distinct insulating states, with chiral modes propagating along the connecting hinge. We illustrate these ideas for
a tight-binding model consisting of coupled layers of the Haldane model with alternating parameters. The surface
topology is determined in a slab geometry using two different markers, surface anomalous Hall conductivity and
surface-localized charge pumping (flow of surface-localized Wannier bands), and we find that both correctly
predict the appearance of gapless hinge modes in a rod geometry. When viewing the axion pump as a four-
dimensional crystal with one synthetic dimension, the hinge modes trace Fermi arcs in the Brillouin zone of the
two-dimensional hinge connecting a pair of three-dimensional surfaces of the four-dimensional crystal.
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I. INTRODUCTION

The electronic states of crystalline insulators can be char-
acterized by certain geometric properties of the wave func-
tions that have measurable consequences [1]. For example,
in one-dimensional (1D) insulators the manifold of valence
states carries a Berry phase [2]:

2
y:/ Tr [A¥] dk, (D
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where k between zero and 27 is the reduced wave vector in the
Brillouin zone (BZ), and the integrand is the trace of the Berry
connection matrix Aﬁm = (U | Oruy,) over the valence bands.
Although Tr [A¥] is not invariant under gauge transformations
among the valence states, its integral y is invariant modulo
2m. Physically, y describes the electronic contribution to the
electric polarization as
14

P = e 2)
where e > 0. Accordingly, the bulk polarization is itself only
defined modulo e in one dimension [3,4].

The quantum of indeterminacy present in Eq. (1) allows
for the possibility of changing y gradually by a multiple of
2 during a slow cyclic evolution, resulting in the transport
of an integer number C; of electrons over one lattice constant
[5]. If the Hamiltonian is parametrized by an angle ¢, the total
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change in y over one cycle from ¢ = 0 to 27 is given by

2 2
Ay = / d¢ / dk Tr [Q%¥] = 2nC;. (3)
0 0

C, is known as the first Chern number, and when it is
nonzero the cycle is called a Thouless pump. In Eq. (3),
QO = gyAk — R A? —i[A?, A¥],, is the covariant Berry
curvature matrix of the valence bands in (¢, k) space. When
this (¢, k) space is viewed as an effective two-dimensional
(2D) momentum space, 2 C; becomes a quantized Berry flux
through the corresponding 2D BZ.

The Chern number C; can be defined in exactly the same
way for real 2D insulators, and those for which it is nonzero
are known as (first) Chern insulators, or quantum anomalous
Hall insulators. Chern insulators were introduced by Haldane
using a tight-binding model [6], and have been realized ex-
perimentally in magnetically doped thin films [7,8]. They
are characterized by a quantized anomalous Hall conductivity
(AHC) of (¢*/h)C), and by the presence of |C| chiral edge
modes crossing the bulk gap.

In three dimensions, the valence bands of insulating crys-
tals carry another global geometric property. It is known as the
Chern-Simons axion angle 6, and can be expressed as [9,10]

1
f=——

2 ,
Eape It [A“a,,AC — i—A“AbA‘} &k, (4)
47T BZ 3

where each k, runs between zero and 2w, 9, = 9/dk,,
and A# is the corresponding Berry connection along
lattice direction a. The axion angle describes an

isotropic contribution oe:fg = (€*/h)(0/27)8up to the linear
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FIG. 1. (a) Real-space view of a sample of an insulating material undergoing an axion pumping cycle parametrized by ¢. The sample
is obtained by terminating a bulk crystal at two semi-infinite surfaces oriented normal to +Z and —y (blue and red shadings, respectively),
meeting at an x-directed hinge that may harbor chiral modes (arrows). (b)—(d) Hinge-projected band structure focusing on surface states on the
+2-oriented surface (blue shading), for three increasing values of ¢. Gray shading represents projected bulk states. (e)—(g) View in (k, ky, ¢)
space, for the choice of Fermi level indicated in (b)—(d); blue indicates the “Fermi surface” in (k,, k,, ¢) space enclosing the electron pocket;
the solid dot is the Weyl point, corresponding to the nodal touching of surface valence and conduction bands at the critical parameter value ¢,.
The dashed lines in (e)—(g) indicate the ¢ values used in (b)—(d), respectively. (h, i) Same as (d) and (g), but focusing on states localized on the

surface normal to —§.

magnetoelectric coupling oyp = 0P, /0Bg = 0Mpg/dE,. Like
the Berry phase, the axion angle is gauge invariant only
modulo 27 and can change gradually by multiples of 27
during slow cyclic evolutions. The net change in 6 over one
cycle parametrized by ¢ € [0, 2] is given by

_ 1
T 16w

where the indices run over k., ky, k;, ¢. The integer C; is
called the second Chern number, and when it is nonzero
the cycle is referred to as an axion pump [11]. Like 27 C)
given by Eq. (3), 27 C, can be viewed as a quantized Berry
flux through an effective BZ, which is now that of a parent
four-dimensional (4D) insulator.

In this paper, we ask what general features one can expect
to see in the boundary spectrum during an axion pumping
cycle when both the bulk and the surface return to their initial
states at the end of the cycle. The evolution of the surface
spectrum under these circumstances was studied previously
[12]. In the present paper we turn our attention to the hinge
band structure, that is, the spectrum of 1D modes localized at
the boundaries between contiguous surface facets.

We find that chiral hinge states appear generically in the
course of cyclic evolutions characterized by a nonzero C; in-
variant. In contrast to the hinge states in intrinsic higher-order
topological insulators [13,14], their occurrence does not rely
on the presence of certain bulk crystallographic symmetries,
but only on the global Chern topology of the pumping cycle.

The paper is organized as follows. In Sec. II we pro-
vide a qualitative discussion of the main ideas. We then
illustrate them for a concrete tight-binding model in Sec. III,
where we use various tools to predict from slab calculations
the occurrence of gapless hinge modes, and to illuminate the
concept of surface topology. We conclude in Sec. IV with a
summary and outlook.

2w
A6 / d’k / de eapea Tr [QPQ] = 27Cy,  (5)
BZ 0

II. QUALITATIVE DISCUSSION

In this section we examine the generic behavior of bound-
ary states during an axion pumping cycle, making no special
assumptions about the presence of symmetries or the position
of the Fermi level Er in the gap, and ask what general features
one can expect to see in the surface and hinge band structures
during an axion pump evolution cycle.

We consider for simplicity an orthorhombic structure with
primitive lattice vectors along the Cartesian axes, and work
with reduced wave vectors (k,, k, k;) with each k; between
zero and 2m. To these we can add the adiabatic Hamiltonian
parameter ¢ whose evolution from zero to 2w controls the
axion pump, so that we can also think in terms of a 4D
insulator with a second Chern number G, in (ky, ky, k., ¢)
momentum space. In the present discussion we shall assume
C, =1, so that one quantum of axion coupling is pumped
during the adiabatic cycle.

A. Surface states

Consider the system shown in Fig. 1(a)—a crystal termi-
nated at two semi-infinite surfaces normal to +Z and —¥,
meeting at an x-directed hinge. In preparation for the discus-
sion of hinge-localized states in the next subsection, here we
consider the band structures of the two surfaces, but projected
as though seen from the hinge.

We focus first on the top surface (unit normal +Z). The
evolution of its hinge-projected band structure is sketched in
panels (b)—(d) for three increasing values of ¢ in the region
where the metallization occurs. These are labeled as ¢, ¢»,
and ¢3, corresponding to panels (e)—(g), respectively, where
the locus of electron-occupied surface states is indicated in the
three-dimensional (3D) (k,, ky, ¢) space. As a reminder, the
surface is required to become metallic over some range of ¢.
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This follows because we assume that the surface Hamiltonian
(as well as the bulk one) returns to itself at the end of the
¢ loop, so that the quantum of AHC that is pumped to
this surface has to be removed by a metallic interval [12].
Typically this happens as shown in panels (b)—(d). That is,
surface states penetrate into the gap with increasing ¢, leading
to the formation of a nodal touching in (k,, k,) space at
the critical parameter value ¢,, after which the gap reopens
to restore an insulating surface. When viewed in (k,, k,, ¢)
space, that nodal touching becomes a Weyl point, indicated
by the solid dot in panels (e)—(g).

If one would follow the evolution of the surface AHC
by computing the contributions only up to the nodal point,
one would observe a sudden jump by e?>/h when pass-
ing through ¢,. This jump is precisely by the amount
needed to return the surface AHC to its initial value at the
end of the cycle. With the indicated Fermi-level position, how-
ever, the change occurs continuously. An electron pocket first
appears when the conduction band minimum drops below Ef,
somewhere between panels (b) and (c); it grows, then shrinks
and disappears somewhere between (c) and (d). This behavior
is visualized in 3D (ky, k,, ¢) space in panels (e)—(g), with
the dashed rectangles showing the ¢ values corresponding to
panels (b)—(d), respectively.

At any value of ¢ for which the surface electron pocket
exists, such as that shown by the horizontal cut in Fig. 1(f), the
contribution of that pocket to the surface AHC is proportional
to the Berry phase computed around its boundary. This phase
evolves by 2 C! from the creation to the destruction of the
pocket, where C,FS is the first Chern number (1, in our case) on
the spheroidal Fermi surface shown in panels (e)—(g) of Fig. 1.

We can regard any one of those three panels as showing
the Fermi-surface structure of the 3D (k,, ky, ¢) system corre-
sponding to the z-terminated 3D surface of a 4D (ky, ky, k., ¢)
second-Chern insulator. We see a Fermi pocket with nonzero
first Chern index surrounding a Weyl node, shown as a dark
central point in each panel. This looks very much like a picture
of a Weyl semimetal [15], but with one crucial difference.
In a true 3D system, the Nielsen-Ninomiya theorem [16]
requires that the chiralities of the Weyl nodes must sum
to zero over the 3D BZ. The violation we see here is an
example of an anomaly; since we are at the surface of a
topological 4D insulator, the reasoning used to prove the
Nielsen-Ninomiya theorem no longer applies. In fact, the sum
of chiralities is necessarily equal to the 4D bulk second Chern
number, that is, CI> = C,. Hence, every 3D surface facet
of a 4D second-Chern insulator must show the same excess
of chirality [9,12]. In particular, every 3D surface must be
metallic, in analogy to the 1D surfaces of a 2D first-Chern
insulator.

Panels (h) and (i) of Fig. 1 show similar plots at the
same ¢ = ¢3 value as in panels (d) and (g), but now for
the surface with unit normal —§. Here we assume that the
metallic interval has not yet begun, so the electron pocket
corresponding to this surface lies above the ¢ = ¢3 plane.
Incidentally, if the Fermi-level position had been chosen lower
in the gap, the metallic interval of ¢ could correspond to the
temporary creation of a hole pocket instead, on either or both
of the surface facets; entirely parallel arguments apply in these
cases.
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FIG. 2. (a) Hinge-projected Fermi surface of the system depicted
in Fig. 1(a), plotted in (k,, ¢) space. Blue and red electron pockets
correspond to surface states on the +2- and —§-oriented surfaces,
as shown in Figs. 1(g) and 1(i), respectively. The Fermi-arc state
is shown in green. (b) Hinge-projected band-structure plot vs k, [at
¢ = ¢3, indicated by the dashed line in (a)]. The gray, blue, and red
regions are the projected bulk, +2Z-surface, and —y-surface states
shown in Figs. 1(d) and 1(f), and the green line is the chiral hinge
state.

B. Hinge states

Now consider the x-directed hinge adjoining the y- and z-
oriented surface facets discussed above (we refer to it as a “y|z
hinge”). Figure 2(a) shows the locus of points on the (k,, ¢)
plane where there are states at E, that is, the hinge-projected
Fermi surface plotted as a function of ¢. The blue region is
the projection onto the (k,, ¢) plane of the Fermi surface in
(ky, ky, ¢) space of the +2Z-oriented surface [Fig. 1(g)]. Like-
wise, the red region is the projection of the (k,, k,, ¢) Fermi
surface of the —§-oriented surface [Fig. 1(i)] adjoining the
+2z surface at the hinge. Each electron pocket encloses a Weyl
point, and these bring opposite chiral charges due to the fact
that positive circulations on the +2- and —¥-oriented surfaces
correspond to positive and negative transport, respectively, at
the hinge.

The Nielsen-Ninomiya theorem is now satisfied, since the
total chirality of all Weyl points projecting onto the (k, ¢)
plane necessarily vanishes. However, the separation of chi-
ral charges between the two pockets requires the presence
of a Fermi arc connecting them, as shown by the green
line in Fig. 2(a), just as for the case of a Fermi arc at
the surface of a Weyl semimetal [15]. Indeed, the count
of Fermi arcs and geometry of attachment must follow the
same rules outlined by Haldane [17]. The full hinge-projected
band structure at ¢ = ¢3 is illustrated in Fig. 2(b), show-
ing the hinge-localized state that crosses from the valence
to the conduction manifold and gives rise to the Fermi
arc.

Of course, at other points along the adiabatic pumping
cycle, corresponding to different values of ¢, the chiral
hinge mode may be absent, as above the red region or
below the blue region in Fig. 2(a). At some other ¢ values, the
presence of hinge states will be obscured by degeneracy with
the continuum of surface states. In some cases these regions
of metallic surface behavior could be much more extensive
than as sketched above, hiding the hinge electronic structure
almost completely. However, we can be sure of the existence
of at least one Weyl-node-surrounding hole or electron pocket
arising from each adjoined surface, and a required Fermi arc
state connecting them somewhere in the (k,, ¢) space (unless
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the two pockets overlap when projected into this space).
In this sense, the presence of Fermi arcs and chiral hinge
channels at some stage of a second-Chern pumping cycle
is generic. Nevertheless, in some model systems the surface
nodal touchings may occur at the same ¢ on different surfaces,
especially if the critical ¢ is pinned to a specific value at which
the system has some higher symmetry, such as time reversal
or mirror symmetry. However, in the context of the dramatic
surface-facet variations in structural and chemical properties
that are typical of real materials, such commonality of the
critical ¢ values appears unlikely.

The observations presented above serve to illustrate the
very close analogy between the physics on the 2D “hinge” of a
4D second-Chern topological insulator, and at the 2D surface
of a 3D Weyl semimetal.

III. NUMERICAL STUDY OF A TOY MODEL
A. The alternating Haldane model

To illustrate the physics described above, we study
the tight-binding model for an axion pump introduced in
Ref. [12], consisting of alternating layers of the Haldane
model [6]. The on-site energies are modulated by an angle ¢ in
such a way that for —7 /2 < ¢ < 7 /2 the first Chern numbers
vanish on all layers, while for 7 /2 < ¢ < 37 /2 they alternate
between +1 and —1, for isolated layers. To prevent the layers
from becoming metallic at ¢ = 7 /2 and 37 /2, ¢-dependent
interlayer couplings are introduced. As ¢ goes from zero to
27, the system is carried along a gapped circuit that encloses
a gapless point in parameter space, and the axion angle 6
increases gradually from zero to 2 [12].

When viewed along the stacking direction z, the model
consists of coupled chains that project onto the honeycomb
sites on each layer, with alternating on-site energies and hop-
pings along z. In the limit of vanishing interchain coupling,
the chain Hamiltonian is identical to the Rice-Mele model of
alternating site energies and hopping strengths [18], which
realizes a Thouless pump [4]. Chains passing through the A
and B sites have equal and opposite first Chern numbers in
(¢, k;) space, so that no net charge is transported along z
over one cycle. Depending on the choice of parameters, the
magnitude of those Chern numbers is either zero or one.

The 2D unit cell of each layer is spanned by the lattice vec-
tors a; = ak and a, = a&/2 + +/3a§/2, with orbitals sitting
on the honeycomb sites tx = a;/3 + a,/3 and tg = 2a,/3 +
2a;/3. The Hamiltonian for an isolated layer indexed by p is

H, = (—1)’A Z y,-c;ic,,,- +1 Z c;ic,,j
i (i)

+ (=1 ivichiey), (6)
(ij)

where i and j label the sites, with y; = %1 if site i belongs
to the A or B sublattice. (ij) and {ij)) denote pairs of first
and second nearest-neighbor sites, with each pair appearing
twice. The first and second terms contain the on-site energies
and nearest-neighbor hoppings, respectively, and the third
describes a pattern of staggered magnetic fluxes generated
by complex second-neighbor hoppings of unit magnitude.
Therein, v;; = +1 (—1) if the hopping direction from j to i

is right handed (left handed) around the center of a plaquette.
The (—1)? factor in the first term reverses the energies of sites
on the same sublattice in adjacent layers, while the same factor
in the third term reverses the pattern of magnetic fluxes, and
with it the first Chern numbers on consecutive layers. The
hopping magnitude in the third term has been set to unity as
a reference, and each 2D layer undergoes a Chern transition
between topological and trivial phases at A = £3+/3. At A =
34/3 the gap-closing transition occurs at the high-symmetry
point K = (47 /3a)X in the 2D BZ, and at A = —3/3 it
occurs at K’ = — (41 /3a)X.

The full 3D model has a3 = ¢z as the third lattice vector,
and two layers per unit cell. The layers p = 0, 1 are located at
z = —c/4, c/4, and the Hamiltonian reads

Hyuix = Z

p

Hy+ 14 (=11 vi(chcpri+He b,

N

where the second term describes the interlayer (intrachain)
coupling and “H.c.” stands for “Hermitian conjugate.” We

choose t = —4.0, and parametrize A and #’ according to
A = 3v/3 +2cos ¢, (8a)
t' = 0.4sin¢. (8b)

The presence of a nonzero t' introduces an alternation of
interlayer hopping strengths that keeps the system gapped
as ¢ passes through 7 /2 and 37 /2 where the topological
transitions occur in the isolated layers. The bulk spectrum
is therefore gapped everywhere along the adiabatic cycle
parametrized by ¢, encircling a gapless point at (A,t") =
(3v/3,0).

The model has neither time reversal (TR) nor inversion
symmetry at generic ¢. However, the Hamiltonian is invariant
under an antiunitary operator

A =Kityo, =Kt/ )

where K is complex conjugation and 7; and o; are the
Jjth Pauli matrices acting in the layer and sublattice spaces,
respectively.! Inversion about a hexagonally centered point
midway between the layers is represented by I = t,0,, so
the second equality expresses A as I followed first by a sign
reversal of all amplitudes on odd layers, then by scalar TR.
Because A is antiunitary and squares to —1, it acts the way
inversion times TR does in a spinor system, forcing the four
energy bands to come in two Kramers-degenerate pairs. At the
points ¢ = 0 and 7 where the alternation ¢’ of the interlayer
hoppings vanishes, the model acquires two additional sym-
metries: mirror symmetry M, (z — —z) about the layers, and
time-reversal K combined with a twofold rotation C; about
an axis lying on the atomic layers and pointing along the
armchair edges.

The evolution with ¢ of the axion angle is shown in
Fig. 3. 6 increases gradually from zero to 27 over one cycle,
corresponding to C, = 1 in Eq. (5). Both M. and KC, take
6 into —6, constraining 6 to be zero mod 7 at ¢ = 0 and

'"We thank N. Varnava for pointing out this symmetry of the model.
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FIG. 3. Pumping of the axion angle 6 by 27 in the alternating
Haldane model.

7, consistent with the figure. At ¢ = 0 the system is a topo-
logically trivial insulator with 8 = 0. Instead, at ¢ = m it is
a topological crystalline insulator with 8 = 7 (a “generalized
axion insulator” in the sense of Ref. [19]), harboring metallic
states on surfaces that preserve either M. or KC; symmetry,
or both [12,19].

B. Surface topological transitions and surface
anomalous Hall conductivity

We study three types of slabs, shown schematically in
Fig. 4. The ones in the left and middle panels are terminated
along z, and the one on the right is terminated along y. In the
left panel the stacking unit is a cell with boundaries at z =
41/2 (in units of ¢), enclosing layers located at z = £1/4.
With this “z; /, termination,” the Chern numbers of the top and
bottom layers (when isolated) are C; = %1, respectively, in
the interval 7 /2 < ¢ < 37 /2. In the middle panel the stack-
ing unit is a cell with boundaries at z = 0 and 1 and enclosing
layers at z = 1/4 and 3/4. With this “zy termination,” the top
and bottom layers have Chern numbers C; = F1, respectively,
in the same interval. Finally, in the right panel we have a slab
with a “yy termination” consisting of zigzag edges on every
layer.

For each type of slab we perform the cyclic evolution
described by Eq. (8), with the surfaces returning to their
initial states along with the bulk. The surfaces must then pass
through metallic states to dispose of the quantum of surface

21/, termination

:‘TDTGTCTO
YYY Y Y
/ YT YT
/
/
/
/

‘zo termination‘ ‘yg termination‘

YYYY
YYYYY
“*r“*r"*r\jr”

o __O0 __0O_ o
A 2 A A 4

YAYAYA

O
AYAYAY

FIG. 4. Left and middle: Inequivalent z-terminated slabs of the
alternating Haldane model. Arrows indicate edge-mode chiralities on
the uncoupled layers for 7 /2 < ¢ < 37 /2. Right: One layer of a
Yo-terminated slab, with zigzag edges (top view).

Energy gap

Surface AHC (e%/h)

FIG. 5. (a) Evolution of the minimum energy gap vs ¢ in slabs of
the alternating Haldane model, for the three types of surface termi-
nations pictured in Fig. 4. The gap closures occur at the surfaces.
(b) Evolution of the surface AHC of each slab. Dotted lines are
different branches of the bulk axion coupling, plotted as —6 /2w
according to Eq. (10). The finite slopes of the discrete jumps at
¢ =m/2, m, and 37 /2 are artifacts of the finite step size used for
¢ in the calculation.

AHC pumped from the bulk. To visualize the gap closure, we
plot in Fig. 5(a) the minimum energy gap as a function of ¢.
There is one gap closure per cycle, as in Fig. 1(c), taking place
at isolated critical values ¢, that are different for the three
slabs. An examination of the slab band structures [12] reveals
that at ¢, the valence and conduction surface bands touch at a
nodal point, which occurs at precisely Er because we consider
the slabs at half filling. If we were to shift Er away from
the nodal point as in Fig. 1(c), each surface would remain
metallic over a finite ¢ interval containing ¢, as illustrated
in Figs. 1(e)-1(g).

The gap closure is pinned to ¢. =m on y, surfaces,
because at ¢ = m the system becomes a generalized axion
insulator protected by M, and KC symmetries, both of which
are preserved at those surfaces.” The gap closing occurs
exactly at E = 0 as an artifact of a particle-hole symmetry in
the model. As for the z-oriented surfaces, neither M, nor K Cév
symmetry is preserved there, so these surfaces are not required
to be metallic at ¢ = m. Nevertheless they must still become
metallic somewhere along the cycle, and the closing of the gap
occurs at ¢. = 7 /2 on the z surface and at ¢. = 377 /2 on the
71,2 surface, again exactly at E = 0. (The closing occurs at
point K in the 2D BZ [12], where A and B chains become

>The symmetry M, (but not KC3) is also preserved at x-oriented
surfaces terminated at armchair edges, and this suffices to pin the gap
closure to ¢, = 7 on those surfaces as well. Hence, gapless modes
will not appear anywhere along the cycle at hinges adjoining x- and
y-oriented surfaces.
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decoupled, with Hy = —Hp. At generic ¢ each takes the
form of a Rice-Mele chain [18], and the surface gap closure
occurs when the surface-state energies of the two chains cross
through each other and through zero, which occurs at cos ¢ =
0 where the effective site energy alternation vanishes.)

These gap-closing events at the surfaces are topological
phase transitions, and to elucidate the notion of surface topol-
ogy we now examine the AHC carried by the surfaces along
the pumping cycle. For Er = 0 and in the limit of a thick slab,
we expect the surface AHC to jump by e?/h at ¢, as described
by the relation

2
oM = (n—0/2m)~ (10)

between the AHC of a gapped surface and the bulk axion cou-
pling [10,20]. Once a specific branch has been chosen for 6, a
unique integer n can be assigned to each surface, and for # to
change the surface gap must close and reopen. The difference
in AHC between two insulating surface terminations of the
same bulk is (&2 /h)An, where An is the difference between
the n values on the two surfaces. In the ¢ intervals where An
is nonzero the two surfaces are in topologically distinct states,
and if they meet there will be | An| chiral modes propagating
along the adjoining hinge [21].

We have calculated the surface AHC according to
Refs. [20,22] for slabs of different thicknesses (7, 13, and 19
cells across y, and 7,9, and 11 cells across z). The extrapolated
results are plotted in Fig. 5(b), confirming that Eq. (10) is
satisfied throughout the cycle. The AHC of each surface tracks
one branch of —6/2m for 0 < ¢ < ¢, switches to another
branch at ¢., and returns to its initial value at the end of the
cycle. We see that the y, surface is topologically distinct from
the zo surface for ¢ € (7/2, ) and from the z;,, surface for
¢ € (w,3m/2), with An = —1 and +1, respectively. Gapless
modes are therefore expected to appear on the yy|zp hinges in
the former interval and on the yy|z; /2 hinges in the latter, with
opposite chiralities in the two cases. This is illustrated by the
outer and middle racetracks in the phase diagram of Fig. 6.

Finally, the topological difference An = 41 between zg
and z;,, surfaces for ¢ € (w /2,37 /2) can be understood
as follows. To switch from one termination to the other
one either removes the outer surface layer or adds an extra
layer. Doing so changes the surface AHC by 4e?/h in the
range (7 /2,3m/2) where the individual layers have Chern
numbers £1, and leaves the surface AHC unchanged in the
range (—m /2, w/2) where the layer Chern numbers vanish.
A similar behavior was observed in Ref. [22] for a model
of an axion insulator, where the half-quantized surface AHC
changed sign when a surface layer was added or removed. As
a consequence, every single-layer-high surface step carries a
chiral edge channel in such cases [23], as shown for our model
by the inner racetrack in Fig. 6.

C. Gapless hinge modes and hinge Fermi arcs

To verify the presence of protected hinge modes in the
predicted ¢ intervals, we have studied rod-shaped samples
extended along x, and 15 cells thick along both y and z.
Figure 7(a) shows the energy bands of a yp- and zi-
terminated rod at ¢ = 57 /4 (the middle of the ¢ interval

FIG. 6. Topological phase diagram for 1D channels in the alter-
nating Haldane model at half filling. The outer and middle racetracks
are for the two types of y|z hinges, and the inner one is for single-
layer-high steps on z-oriented surfaces. In the yellow regions there
are no protected 1D modes because the surface-AHC difference in
Fig. 5 is An = 0, while in the blue (An = +1) and red (An = —1)
regions there is one protected mode per hinge or step. Red, blue, and
green lines mark the gap-closing points ¢, on the yy, zo, and z;,,
surfaces, respectively, that separate the different phases.

where gapless hinge modes are expected to occur). All bands
are doubly degenerate, since the Kramers-enforcing operator
A of Eq. (9) remains a symmetry of the rod as a whole, and the
bands drawn in red and in blue are the predicted hinge modes
crossing the bulk gap. The weights of their wave functions on
each site are displayed in Fig. 7(b) at an energy near E = 0
(the middle of the gap); modes localized on adjacent hinges
disperse in opposite directions, forming the pattern shown in
the inset of panel (a).

The spectrum looks qualitatively the same for any value of
¢ between 7 and 37 /2; when passing through n or 37 /2,
the surface gap closes and reopens on one of the surfaces,
allowing a change of surface topology such that chiral modes
are no longer present at the hinges. Outside that interval,
the highest-occupied and lowest-unoccupied states become
delocalized over the entire rod. When the surface termination
is changed from z;,, to zo the interval hosting gapless modes
changes from (m, 37 /2) to (7w /2, w) and the chiralities get
reversed, as predicted.

Figure 8 shows, for a yo- and zj,;-terminated rod, the
locus of points on the (k,, ¢) plane where the energy bands
cross the Fermi level. In panel (a), the Fermi level is at the
charge-neutrality point Er = 0. In that case the locus of points
at Ep reduces to a fourfold degenerate Fermi arc in (k,, ¢)
space (the same on all hinges). In panel (b) the Fermi level has
been shifted to Er = 0.2, and as a result the Fermi arc has split
into a pair of twofold degenerate arcs, where the Kramers de-
generacy again results from the fact that A of Eq. (9), defined
with respect to an inversion center in the middle of the rod,
commutes with the rod Hamiltonian. The two Fermi arcs at-
tach tangentially to opposite sides of the two projected surface
Fermi surfaces, which have expanded from isolated points in
panel (a) to finite disks [compare with Fig. 2(a)]. The way the
Fermi arcs close on adjacent hinges is analogous to the way
they close on opposite surfaces of a Weyl semimetal slab [15].
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Y

FIG. 7. (a) Energy bands of the alternating Haldane model, cal-
culated at ¢ = 57 /4 for a rod extended along x and with y, and z;
terminations along y and z. All bands are doubly degenerate, and
those in red and in blue are hinge-localized chiral modes crossing the
bulk and surface gaps, depicted schematically in the inset. (b) Site-
resolved weights of the four hinge-localized states at an energy
slightly above the crossing point in the middle of the gap, as indicated
by the blue and red dots in (a).

D. Surface-hinge correspondence from slab Wannier bands

We have seen how the quantized difference in AHC be-
tween two surfaces dictates the occurrence of chiral modes on
the connecting hinge. In this section we revisit this “surface-
hinge correspondence” from the viewpoint of the Wannier
band structure of a slab.

1. Hybrid Wannier representation

Let us begin by reviewing the hybrid Wannier (HW)
representation for a d-dimensional insulating crystal [24].
The idea is to describe the valence states using functions
that are maximally localized (Wannier-like) along one cho-
sen crystallographic direction z, and extended (Bloch-like)
along the remaining d —1 directions. These HW functions
w}‘n(r) are labeled by a wave vector k in the projected
(d —1)-dimensional BZ, and by two discrete indices / and
n; [ labels cells along z, and n=1,...,J is an intra-
cell index with J being the number of valence bands. The
HW centers z;,(k) = (w}‘n|z|w;‘n) are organized into “Wan-
nier bands” that are periodic in z, with J bands per lattice

3m/2 1 (a) ¢} (b)
©
T @]
—57/12 —1/3 —5m/12 —/3
k. k.

FIG. 8. (a) Fermi arcs traced on the (k,, ¢) plane by the gapless
hinge modes of a rod extended along x and with a z,,, vertical ter-
mination, for the Fermi level at Ex = 0. (b) Same, but for Ex = 0.2.
The two elliptical discs indicate approximately the regions where the
surface conduction bands move below £ = 0.2.

constant c:
Zln(k) =Z0n(k)+lc. (11)

From now on, the HW centers will be written in units of the
lattice constant along the Wannierization direction. Accord-
ingly, we set c = 1 in Eq. (11).

The Wannier band structure provides a very general means
of implementing the bulk-boundary correspondence [25,26].
Consider, for example, a crystal in d =3 dimensions. When
the boundary of interest is a z-terminated surface, one in-
spects the bulk Wannier bands z;,(k,, k,). Under appropriate
conditions to be specified shortly, these can be smoothly
deformed onto the surface energy bands E, (k,, k), so that the
topological features of the two spectra are in correspondence:
any protected gapless modes in the surface bands are reflected
in the connectedness (or “flow”) of the Wannier bands [25,26].

For insulators with multiple occupied bands, the ability to
make such a smooth deformation depends on the choice of
Wannier bands making up a “Wannier unit cell” [12]. This
is equivalent to the choice of a Wannier gap separating one
Wannier cell from the next along z, or, in the language of
Ref. [27], “fixing the Wannier chemical potential.” Specif-
ically, if the Wannier unit cell is repeated a large integer
number of times along z, the surface AHC at the top surface
of the slab constructed in this way must match that of the
insulating surface in question, since if it differs by an integer
multiple of the quantum a topological obstruction prevents
the smooth deformation. In our case, the correspondence is
obvious: setting the Wannier gap atz = 0 or 1/2 is appropriate
for the zo- or z;»-terminated surface, respectively. In general,
however, a separate calculation may be required to determine
the correct choice of Wannier gap for a generic insulating
surface.

2. Flow of surface-localized Wannier bands

The surface-hinge correspondence can now be developed
using closely related methods. To look for protected gapless
modes on hinges connecting y- and z-oriented surfaces, we
examine the Wannier bands z;,(k.) of a y-terminated slab.
The interesting bands are those whose HW functions reside
near the surfaces. If the flow of these Wannier bands is such
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FIG. 9. Wannier bands z;,(k,) of y-terminated slabs of the alter-
nating Haldane model, at different ¢ values. The bands are color
coded according to the degree of localization on the +§ surface
[Eq. (12)]: gray dots are modes extending along y across the entire
slab, and blue (red) dots are modes localized on the +¥ (—§) surface;
the degree of surface localization is also indicated by the size of the
dots. Two types of cells are displayed in each panel: the “zy cell”
with boundaries at z =0 mod 1 (in black), and the “z;/, cell” with
boundaries at z = 1/2 mod 1 (in gray).

as to cross the Wannier gap appropriate to the z-terminated
surface of interest, then the x-directed y|z hinges will host
topologically protected gapless modes. Identical conclusions
are reached by examining the bands y;,(k,) of z-terminated
slabs.

Figure 9 shows the bands z;,(k;) of yo-terminated slabs
with a thickness of 20 unit cells, calculated at ¢ = 57 /4,
31 /4, and zero. They are color coded by the weight

(k) = / b (0)2 dr (12)
+y

of the HW functions in the half of the slab containing the +§
surface, and for added clarity the degree of localization at the
surfaces is also indicated by the size of the dots.

Let us first examine the bands at ¢ = 57 /4 in panel (a).
At k, = —m they are evenly split into two narrow bulklike
groups, one centered at z = 1/4 mod 1 and another at z =
3/4mod 1. Between them there is a “zp gap” centered at
z=0mod 1, and a “z;/, gap” centered at z = 1/2 mod 1. As
k. increases the two groups broaden slightly, and one band
detaches from each. The two detached bands cross the z;» gap
in opposite directions, and as k, approaches 7 each merges
with the bulklike group from which the other came. While

=
1.0
..mllll"“lllh'_
R —
L LI
S b) ¢ = 3 /4 s ¥
= 0.0 ( ) ¢ a 7T/ ...unllll]l“ll[hI QU
1.0
R 0.0
ouoseenseesessesessssssssssoccsscscesel
£ 00{ ()o=0
T R0ess00000sesesscsosasesasssssnsssnt
acossessesnesnsseststisstssassessaseest
~1.0 |
—T 0 s

ke

FIG. 10. Same as Fig. 9, but for the Wannier bands y;,(k,) of
212-terminated slabs.

crossing the gap, these two chiral bands become strongly
localized on opposite surfaces; this surface-localized flow
across the z;/, gap is maintained over the interval 7 < ¢ <
37 /2, signaling the presence of protected gapless modes on
yolzi2 hinges.® Conversely, the lack of flow on the zy gap
indicates the absence of such modes on yg|zy hinges over that
interval.

The same logic applies to the other panels of Fig. 9. In
panel (b) the Wannier flow at ¢ = 37 /4 shifts to the zo gap
(and switches chirality), consistent with the fact that the zg
termination is the one producing hinge modes (of the opposite
chirality), for 7 /2 < ¢ < m. In panel (c) both types of gaps
are devoid of chiral surface modes at ¢ = 0, reflecting the
absence of chiral hinge modes for —m/2 < ¢ < 7 /2 with
either type of z termination.

With the above procedure, we have been able to predict
the existence of gapless modes on both yp|zo and yolzi/2
hinges from a single slab calculation (at each ¢). This is
somewhat unexpected, given that the surface-AHC approach
of Sec. III B required three separate slab calculations to gather
the same information. It should be noted, however, that the
HW-based procedure only works when the choice of Wannier
gap corresponding to the z-terminated surface of interest is
known, whereas the surface-AHC approach can be applied
directly to arbitrary insulating surfaces.

3In Fig. 9(a), the Wannier band localized on the +§ surface flows
downward, in agreement with the negative chirality of the mode
localized at the hinge between the +¥ and +2Z surfaces in Fig. 7.
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FIG. 11. Pumped charge P,(k,) of Eq. (13), in units of e, for a
y-terminated slab at ¢ = S /4. Blue (red) curves denote results for
the +¥ (—§) surface. In (a) and (b), Eq. (13) is evaluated using the
2o and z;» cells shown in Fig. 9, respectively. Filled dots correspond
to the home cell [[0,1] in (a) and [—1/2, 1/2] in (b)], and open dots
correspond to the cells immediately above and below.

The protected modes on y|z hinges can also be deduced
from the Wannier spectrum y,(k,) of z-terminated slabs, but
this requires two slab calculations instead of one (one for each
type of z termination). This is illustrated in Fig. 10 for the case
of yolzi,2 hinges, using zj/-terminated slabs. As expected,
Wannier flow is present on the yy gap at ¢ = 5 /4 but not
at¢ = 3w /4 or 0.

3. Interpretation in terms of charge pumping at the surface

The information in Figs. 9 and 10 about the topology of y|z
hinges can be presented concisely in the language of charge
pumping. Let us describe the procedure for the case of Fig. 9,
where the slab is terminated along y. Following Ref. [28],
we assign to the +¥ surface a quantity with units of charge
defined as

PR k) === 3 (ke ko), (13)

where p,” is given by Eq. (12). For a given value of k,, this

quantity is a measure of the charge pumped along z on the
+¥ edge of the ribbon (finite in y, infinite in z) described by
Hg. (k). However, its physical interpretation is rather subtle.
For example, consider a weak electric field along x that acts
for one Bloch period. In this case, the continuous change in
P as k, increases by 27 is quantized in units of e, and it
describes the +2-directed flow of current on the +¥ surface
relative to the —y-directed current on the +Z surface (that
is, the quantized difference An in surface AHC). Note that
Eq. (13) depends on the choice of Wannier unit cell, and again
the answer will only be correct if that cell is chosen correctly
for the +2-terminated surface of interest.

In Fig. 11, P is plotted at ¢ = 57 /4 for two different
cell choices. In panel (a), the black zj cell in Fig. 9 was used.
Since in Fig. 9(a) the chiral Wannier band localized on the

+¥ surface does not cross the boundaries of that cell, P;r Y
does not exhibit flow as a function of k,, indicating that no
protected gapless modes are present on the yg|zp hinges. In
Fig. 11(b) the calculation was repeated using the gray z > cell
in Fig. 9. Now the surface-localized band does cross the cell
boundaries, and as a result P;r Y exhibits flow as a function
of k, (when viewed as a continuous but multivalued function),
indicating the presence of gapless modes on the yo|z1 > hinges.
Also shown in Fig. 11 is P, obtained by replacing p,” with
o) =1—p inEq. (13).

IV. SUMMARY AND OUTLOOK

We have shown that gapless modes appear naturally on the
hinges of 3D insulators undergoing an axion pumping cycle.
The basic idea is illustrated in Figs. 1 and 2. When a surface is
introduced in the system, the valence and conduction surface
bands must exhibit at least one nodal touching along the
cycle. If, as is generically the case, those band touchings
occur on adjacent surfaces at different values of the pumping
parameter ¢, then the connecting hinge will host chiral modes
over the intervening ¢ range. Those modes are boundary
manifestations of the second-Chern number characterizing the
axion pump, and they can be viewed as Fermi arcs in the BZ
of the 2D hinge connecting the 3D surfaces of a 4D sample
with (ky, ky, k;, ¢) reciprocal space.

Note that at any given value of ¢ the appearance of
1D modes on the hinges of the 3D crystal represents an
“extrinsic” higher-order topological phase in the language of
Refs. [14,29], since the bulk is topologically trivial and hinge
modes are not required. Instead, the presence of Fermi arc
states is generically required on the 2D surfaces of the 4D
second-Chern insulator, thus representing “intrinsic” topology
when the system is viewed from the standpoint of the global
(ky, ky, k., ¢) parameter space.

We have exemplified these behaviors by means of a tight-
binding model, but the same methodology could easily be
applied in the framework of ab initio calculations. However,
it remains a major challenge to devise a physical mechanism
leading to the adiabatic pumping of axion coupling in a real
material.

Alternatively, it may be possible to demonstrate axion
pumping behavior in other settings such as photonic crystals,
ultracold atoms, or electrical circuits. The physics of second-
Chern insulators is already being explored in such systems
[30-37], and we hope that the present paper may inspire future
efforts towards the observation of the associated topological
hinge states.
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