
PHYSICAL REVIEW B 103, 035147 (2021)

Quadrupole moments, edge polarizations, and corner charges in the Wannier representation

Shang Ren ,1,* Ivo Souza ,2,3 and David Vanderbilt 1

1Department of Physics & Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
2Centro de Física de Materiales, Universidad del País Vasco, 20018 San Sebastián, Spain

3Ikerbasque Foundation, 48013 Bilbao, Spain

(Received 26 October 2020; revised 31 December 2020; accepted 6 January 2021; published 28 January 2021)

The modern theory of polarization allows for the determination of the macroscopic end charge of a truncated

one-dimensional insulator, modulo the charge quantum e, from a knowledge of bulk properties alone. A more

subtle problem is the determination of the corner charge of a two-dimensional insulator, modulo e, from a

knowledge of bulk and edge properties alone. While previous works have tended to focus on the quantization of

corner charge in the presence of symmetries, here we focus on the case that the only bulk symmetry is inversion,

so that the corner charge can take arbitrary values. We develop a Wannier-based formalism that allows the corner

charge to be predicted, modulo e, only from calculations on ribbon geometries of two different orientations.

We elucidate the dependence of the interior quadrupole and edge dipole contributions upon the gauge used to

construct the Wannier functions, finding that while these are individually gauge dependent, their sum is gauge

independent. From this we conclude that the edge polarization is not by itself a physical observable and that

any Wannier-based method for computing the corner charge requires the use of a common gauge throughout the

calculation. We satisfy this constraint using two Wannier construction procedures, one based on projection and

another based on a gauge-consistent nested Wannier construction. We validate our theory by demonstrating the

correct prediction of corner charge for several tight-binding models. We comment on the relations between our

approach and previous ones that have appeared in the literature.
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I. INTRODUCTION

From elementary electrostatics it is well known that the

electric polarization in an insulator, corresponding to the

dipole density, gives rise to bound charges at the surface.

However, the definition of bulk dipole density is not obvious

in the context of a quantum treatment of the electron system,

since the electron charge cloud is not naturally decomposable

into localized entities. This problem was solved by the modern

theory of polarization, which can be formulated in the single-

particle context either in terms of Berry phases of the Bloch

functions or in terms of dipole moments of Wannier functions

(WFs) [1–3].

Adopting the latter point of view, the polarization is defined

in terms of the dipole moment of the unit cell, taken to consist

of point ionic charges and the continuous but exponentially

localized charge clouds of the WFs attached to that cell. Cru-

cially, although gauge transformations of the Bloch functions

result in changes of both the shapes and charge centers of

the WFs, the vector sum of the Wannier centers in one unit

cell is gauge invariant up to a lattice vector. As a result, the

polarization is well defined modulo a quantum eR/Vcell, where

e is the quantum of charge, R is a real-space lattice vector, and

Vcell is the unit cell volume.

Recently, several groups have explored generalizations of

this theory to the quadrupole and higher moments of the
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charge distributions in insulating crystalline solids. Benal-

cazar, Bernevig, and Hughes [4,5] introduced the concept

of “topological quadrupole insulators,” in which the cor-

ner charge is quantized by symmetries, as examples of

“higher-order topological insulators” [6]. This work attracted

considerable attention. Several authors adopted a Wannier

(or hybrid Wannier) representation as a means to define the

topological indices in such higher-order topological insulators

[7–11]. Attempts were put forward to derive a formula for

the corner charge, either when it is quantized by symme-

tries [8,12–14] or in the more general case where it takes

a nonquantized value [15]. It was shown that even common

ionic compounds such as NaCl may display a fractional cor-

ner charge [16]. Other works [17,18] attempted to extend

a quadrupole-moment expression to the many-body case by

making use of Resta’s position operator formalism [19], but

these approaches have proven to be controversial [13,20].

Most of these previous works have mainly been concerned

with systems whose symmetry quantizes the corner charges.

In the absence of symmetry, however, it is unclear whether

a robust definition of a bulk quadrupole density, analogous

to that of the electric polarization for the dipole density, is

possible, even at the single-particle level [13,17,18,20]. The

essential problem is that unlike the total dipole of the Wannier

charge distribution associated with a unit cell, the correspond-

ing quadrupole is not gauge invariant. In fact, the trace of

the Wannier quadrupole is essentially the spread functional

that is minimized when arriving at maximally localized WFs

[21,22]; the very fact that it can be minimized is a reflection
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of its gauge dependence. It is not surprising, then, that the

off-diagonal elements of the quadrupole tensor are also gauge

dependent, i.e., they vary according to the exact locations and

shapes of the WFs. For this reason, the theory of quadrupoles

and higher multipoles is fundamentally different from the

theory of dipoles that underlies the modern theory of polar-

ization.

Just as a bulk dipole density results in a bound surface

charge, so a bulk quadrupole density is expected to result in

bound surface polarizations and edge charges in 3D, or edge

polarizations and corner charges in 2D [4,5,15,23], where it

is understood that we refer to the polarization tangential to

the surface or edge. Intuitively, a quadrupole density Qxy in a

2D sample results in bound 1D dipole densities Px = Qxy at

the +ŷ-normal edge and Py = Qxy at the +x̂-normal edge. It

also results in an overall bound charge Qc = Qxy at the corner

where these edges meet, but this Qc is not simply the sum of

the contributions expected from the edge polarizations. Thus,

such definitions become quite subtle, even for simple classical

charge distributions [4,5,15].

In fact, there are serious reasons to question whether the

edge polarization is a physical observable at all. We give

two arguments that it is not. To do so, we focus on a large

rectangular flake cut from an insulating 2D crystal and frame

the discussion in terms of spinless electrons.

First, recall that in the case of dipole densities, there is a

robust bulk-boundary correspondence in that the macroscopic

edge charge density is exactly given by the bulk polarization

projected onto the edge unit normal, modulo a quantum of one

electron per edge unit cell [24]. This means that no adiabatic

periodicity-preserving perturbation at the edge, such as a dis-

placement of a sublattice of edge atoms, can have any effect

whatsoever on the edge charge density. It is natural, then, to

regard the macroscopic edge charge density as a manifestation

of a bulk property. The edge dipole density, on the other hand,

is obviously modified by such edge-atom displacements, sug-

gesting that it is not a manifestation of a bulk property in the

same sense.

Second, insofar as a 1D polarization P is well defined,

we would expect its time derivative dP/dt to correspond to

a physically observable edge current. However, this is prob-

lematic in the case of edge polarizations and currents. For

example, if the insulating flake in question has been cut from

a bulk that has some nonzero orbital magnetization Morb (as

a consequence of broken time-reversal symmetry), then there

will be a persistent counterclockwise current I = Morb on each

edge, forcing the nonsensical conclusion that P increases

linearly in time. In fact, even if the bulk material itself is time-

reversal invariant, so that its intrinsic orbital magnetization

vanishes, Trifunovic, Ono, and Watanabe [25] have shown

that when such a system is carried adiabatically around a

parametric loop, this results in a net circulation of current

around the perimeter of the sample. This would imply that

the edge polarization can be changed by an arbitrary amount

by such an adiabatic cycle. These arguments suggest that any

attempt to define the change in edge polarization in terms of

an integrated current, as is done for the bulk polarization, is

bound to run into grave difficulties.

The arguments given above imply that there are seri-

ous difficulties associated with attempts to define the bulk

quadrupole density and edge dipole density in a 2D system.

By contrast, the macroscopic corner charge is unambiguously

a physical observable. Thus, given details of the geometric

structure and the electronic Hamiltonian of the 1D-periodic

edges as well as of the 2D-periodic bulk, a robust theory

should be capable of correctly predicting the macroscopic

corner charges modulo e.

In this work, we show how to construct such a theory

for the case of centrosymmetric 2D insulators, based on a

Wannier representation of the electronic system at the single-

particle level. In our formulation, we first identify a bulk unit

cell, or “tile,” composed of a set of ionic positive point charges

and the charge distributions associated with a set of bulk WFs.

The quadrupole density Qxy associated with this unit cell is

gauge dependent, i.e., dependent on the exact locations and

shapes of WFs in the unit cell. We also construct “edge tiles”

consisting of ions and WFs in a “skin” region close to the

edge and associate surface polarizations P to these edges. In

our formulation the edge P’s are defined independently of

the bulk Qxy, as they must be since they depend upon the

detailed form of the Hamiltonian at the edge. While the P’s

are independent of a gauge change localized at the edge, they

are, like Qxy, dependent on the choice of bulk WF gauge.

Nevertheless, we find that all gauge dependence cancels out

when the various contributions are summed, thus allowing for

a robust prediction of the corner charge.

Specifically, we work in the context of tight-binding mod-

els of centrosymmetric 2D insulators whose bulk and edge

electronic structures are gapped. We solve for the ground-state

electronic structure in four configurations, namely the infinite

bulk with 2D periodic boundary conditions, 1D-periodic rib-

bons of finite width in the x direction, the same but finite in the

y direction, and rectangular flakes with fully open boundary

conditions. We develop two formalisms for computing the

macroscopic corner charge (mod e) from the bulk and ribbon

calculations alone, and demonstrate their success by direct

calculation on the rectangular flake.

In the course of preparing this paper, we became aware of

related work of Trifunovic [15], in which similar questions

are addressed from a somewhat different point of view. While

that work considers more general unit cell shapes and corner

geometries than we do, the implementation was only pre-

sented for the case of single-occupied-band models and for the

isolated molecular limit of the Benalcazar-Bernevig-Hughes

model [4,5]. We occasionally comment on similarities and

differences below.

This paper is organized as follows. In Sec. II, we introduce

an expression for the macroscopic corner charge in terms

of contributions from bulk, edge, and corner charge densi-

ties based on a tiling approach. We explain how quadrupole,

dipole, and monopole contributions from bulk, edge, and

corner tiles, respectively, add up to give the observable macro-

scopic corner charge. In this formulation, the electronic charge

density associated with each tile is that of the WFs attached

to it, raising questions about the dependence of the bulk

and edge contributions on the gauge used to construct these

WFs. This issue is addressed in Sec. III, where we show

that the sum of bulk and edge contributions is indeed gauge

invariant, even though the individual contributions are not. In

Sec. IV, we provide additional details about our methodology.
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Specifically, in Sec. IV A we discuss how we calculate the

macroscopic corner charge directly from a finite flake. Then in

Sec. IV B we present several approaches to the construction of

Wannier functions for ribbon models, including a projection

approach (Sec. IV B 1) and approaches based on maximal

localization applied first transverse (Sec. IV B 2) or paral-

lel (Sec. IV B 3) to the extended ribbon direction. We then

demonstrate in Sec. V the limitations of a naive hybrid Wan-

nier implementation and show that these are overcome using

the gauge-consistent projection method, for three centrosym-

metric tight-binding models at half filling. Specifically, we

consider a two-band model [23], a related four-band model,

and the four-band model proposed in Refs. [4,5] to discuss

quantization of the corner charges. In Sec. VI, we present

a nested maximally-localized Wannier construction that also

generates a consistent gauge, and working in the context of

the four-band model show that this also provides a correct

prediction of the corner charge. We discuss some possible

generalizations of our approach and its relation to the the-

ory of orbital magnetization in Sec. VII and summarize in

Sec. VIII.

II. PRELIMINARIES

A. General considerations from tiling

We consider a centrosymmetric 2D crystalline material

having a rectangular unit cell with lattice vectors a = ax̂ and

b = bŷ. A finite sample, or “flake,” has been cut from this

material, and its charge density is assumed to be written as the

sum of Nx × Ny contributions from the individual unit cells.

In the deep interior all these cells are identical, but those near

the edges and corners are modified by the presence of the

boundaries.

We identify a “skin region” on each edge, consisting of My

cells at top and bottom and Mx cells at left and right, where

Mx and My are chosen large enough that the deeper tiles are

bulklike to some desired accuracy. This is illustrated in Fig. 1,

where Mx = My = 2. We decompose the charge density of the

flake as a whole into contributions from the interior, the four

skin regions, and the four leftover corner regions. That is, we

write

ρflake(r) = ρI(r) + ρS(r) + ρC(r), (1)

where the superscripts denote “interior,” “skin,” and “corner”

contributions (black, red, and blue regions in Fig. 1), respec-

tively.

The first term in Eq. (1) is the superposition of the identical

interior tile charge densities, i.e.,

ρI(r) =
∑

�x∈Ix

∑

�y∈Iy

ρ I
tile(r − �xa − �yb), (2)

where �x ∈ Ix means Mx + 1 � �x � Nx − Mx, and similarly

for �y ∈ Iy. The tile density ρ I
tile(r) represents one unit cell but

does not have to be confined inside the rectangular boundaries

of the cell; it can leak into neighboring cells, but the sum of

these tile densities must exactly reproduce the bulk periodic

density. Note that ρ I
tile is net neutral, and since we assume

inversion symmetry, we also require it to have a vanishing

dipole moment.

R L 

B 

T 

BL 

TR TL 

BR 

 

FIG. 1. Sketch of tiling scheme for a rectangular sample cut from

a 2D crystal. Small square tiles (black) correspond to single interior

(‘I’) unit cells. Rectangular edge tiles (red) and larger corner tiles

(blue), which may extend to a depth of two or more cells, define the

skin region. Edges are labeled as ‘T’ (top), ‘R’ (right), ‘B’ (bottom),

and ‘L’ (left), and corners are labeled by combinations such as ‘TR’

(top right).

The second term in Eq. (1) is a sum of four skin contribu-

tions, ρS = ρT + ρR + ρB + ρL (top, right, bottom, and left,

respectively). Here, for example, the top skin contribution is

ρT(r) =
∑

�x∈Ix

ρ T
tile(r − �xa − Nyb), (3)

where the “tile” ρT
tile(r) is only one unit cell wide but

comprises all of the My vertically stacked cells in the top

skin region. The density ρT
tile(r) must have the property that

ρ I(r) + ρ T(r) is identical to ρflake(r) in the central region of

the top edge. Similarly, in

ρR(r) =
∑

�y∈Iy

ρ R
tile(r − �yb − Nxa) (4)

the density ρ R
tile(r) describes a region one cell high and Mx

cells wide at the right skin region. Since we are only interested

in neutral edges, we will require all the tiles in the skin regions

to be neutral, but they are generally not dipole free.

The last term in Eq. (1) is a sum of contributions from the

four corner regions,

ρC(r) = ρ TR
tile (r) + ρBR

tile (r) + ρBL
tile (r) + ρTL

tile (r), (5)

where each of these tiles is a larger one covering an entire

corner region comprised of Mx × My unit cells. These corner

tile densities need to make up for whatever charge density is

missing after accounting for interior and skin contributions.

For example, the top-right tile charge density is

ρ TR
tile (r) = ρflake(r) − ρ I(r) − ρ T(r) − ρ R(r) (6)

restricted to the vicinity of this corner.

We now focus on the top-right corner and let Qc be the

macroscopic charge of this corner, defined as the integral of

035147-3



SHANG REN, IVO SOUZA, AND DAVID VANDERBILT PHYSICAL REVIEW B 103, 035147 (2021)

a smoothened charge density over the corner region (see also

Sec. IV A). This is given by

Qc =
1

ab
q I

xy +
1

a
d T

x +
1

b
d R

y + QTR, (7)

where

q I
xy =

∫
x y ρ I

tile(r) d2r, (8)

d T
x =

∫
x ρ T

tile(r) d2r, (9)

d R
y =

∫
y ρ R

tile(r) d2r, (10)

QTR =
∫

ρ TR
tile (r) d2r. (11)

Working from right to left in Eq. (7), the contribution of QTR

is obvious. The contribution from the right-edge tiles is that

of a 1D chain of entities of dipole moment d R
y , Eq. (10),

with density 1/b; this has 1D polarization d R
y /b and thus

contributes a bound end charge of that magnitude to the top

end of the chain. The same applies to the 1D chain of d T
x

dipoles of density 1/a at the top edge via Eq. (9). Finally, the

superposition with density 1/ab of identical, neutral, dipole-

free quadrupoles q I
xy, Eq. (11), produces no macroscopic edge

charge, but it does generate four macroscopic corner charges:

+q I
xy/ab at TR and BL, and −q I

xy/ab at TL and BR. Com-

bining all the contributions at the TR corner coming from

Eqs. (8)–(11) results in Eq. (7), which will serve as an im-

portant basis for the remainder of this work.

Equation (7) is claimed to hold in the thermodynamic limit,

but we expect rapid convergence with system size. The ideal

situation occurs when the tile densities all have finite support,

each vanishing outside its own local region. In that case, the

2D periodicity relating interior tiles and the 1D periodicity

relating edge tiles guarantees that the coarse-grained charge

density ρ̄(r), obtained using the sliding window average to

be described in Sec. IV A, vanishes except near the corners

as soon as Mx and My are large enough. The corner charge

obtained by integrating ρ̄(r) over one of the corner regions

then remains unchanged by any further increase of Mx or My,

so that perfect convergence to the thermodynamic limit is al-

ready achieved for modest values of Mx and My. In practice the

tile densities have exponential tails, in which case we expect

exponential convergence with sample size, an expectation that

is confirmed in the results to be presented below.

For future reference, it is useful to introduce the interior

quadrupole density

Q I
xy =

1

ab
q I

xy (12)

and edge dipole densities

P T
x =

1

a
d T

x (13)

for the top edge and similarly for the other three edges. In this

language, the top-right corner charge is

Qc = Q I
xy + P T

x + P R
y + QTR. (14)

All quantities in Eq. (14) have units of charge e.

We emphasize that other definitions of edge polarizations

are possible. First, the definitions of the bulk quadrupole

density and surface dipole densities may differ from one for-

mulation to another and even within our approach, where it

can depend on the choice of tile. Second, we would also be

free to define

P̄ T
x = P T

x + 1
2
Q I

xy

P̄ R
y = P R

y + 1
2
Q I

xy

}
Qc = P̄ T

x + P̄ R
y (15)

or
¯̄P T

x = P T
x + Q I

xy

¯̄P R
y = P R

y + Q I
xy

}
Qc = ¯̄P T

x + ¯̄P R
y − Q I

xy (16)

(written here for QTR = 0) in the spirit of some previous

works [4,5,15]. Because we have concluded that the edge

polarization is not a physical observable, we do not think that

any one of these definitions is “more correct” than another.1

The reader is encouraged to beware of different definitions of

these quantities when comparing papers from the literature.

B. System of quantized charges

We now assume that the charge density of the crystal is

composed of quantized charges in multiples of e. This could

be the fictitious world of integer point “ions” and integer point

“electrons,” but we will focus below on the case that the

electrons are represented by WFs, each carrying charge −e

and exponentially localized in the vicinity of its WF center.

The bulk tile ρ I
tile(r) is then constructed by choosing a set of

representative ions and WFs to include in the home cell.

The dipole moment of this interior tile is

d I
μ =

∫
rμρ I

tile(r)d2r. (17)

Because we assumed inversion symmetry, the formal polar-

ization, expressed in reduced units px = d I
x/ae, py = d I

y/be,

must map to itself, modulo integers, under inversion. There

are four possible cases in which (px, py) is either (0,0), (0, 1
2

),

( 1
2
, 0), or ( 1

2
, 1

2
), modulo integers. Only the first is fully non-

polar. The other three cases are somewhat trickier to handle,

and for these we adopt a split-basis convention [24]. That

is, we split one or more ions into several equal pieces, as-

signing these to unit cells in such a way that the home cell

is dipole-free. For example, suppose there is one +e ion at

(0,0) and one Wannier center at (a/2, b/2), which would give

p = (− 1
2
,− 1

2
). In this case we could choose the home tile to

consist of the WF density plus point ions of charge +e/4 at

(0,0), (a, 0), (0, b), and (a, b), making for a dipole-free home

cell. In this way, we will always arrange for ρ I
tile to have zero

dipole moment as well as zero net charge.

We also want to restrict ourselves to neutral edges, since

otherwise the definition of a corner charge is problematic. For

the (0,0) case the edges are naturally neutral, and the edge tile,

say at the top, just consists of some overall-neutral leftover

set of ions and WFs. For the other cases, some edges are

1Note, however, that the formulation of Eq. (15) has the advantage

of being easily generalized to treat corners subtending angles other

than 90◦, as shown in Ref. [15].
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not naturally neutral, but they can always be made so by a

period-doubling (or, for threefold symmetries, period-tripling)

edge reconstruction. We shall require that this has always been

done. Since the (possibly split-basis-containing) bulk tiles are

dipole-free by construction, the (possibly enlarged) edge tiles

may also contain some fractional ionic charges, but they will

always be neutral overall.

We note in passing that a similar split-basis approach was

recently used to derive formulas for the quadrupole moment

and corner charge [13]. The authors pointed out the gauge

dependence of the quadrupole moment but observed that it

can be removed when the system has a Cn rotational symmetry

(n = 3, 4, 6). Mapping to a picture in which electrons are

represented by point charges located at Wannier centers, they

construct a charge-neutral and polarization-free basis by an

appropriate assignment of Wannier centers to Wyckoff posi-

tions, an approach that is quite similar in spirit to our tiling

decomposition. The method was implemented for a variety of

model geometries in subsequent work [16]. However, these

papers did not address the nonquantized corner charge that

can appear when the Cn symmetries are absent.

C. Wannier representation and choice of home cell

We now explicitly require that our 2D insulator must have a

vanishing Chern number, since otherwise the presence of gap-

less edge channels would give rise to metallic boundaries, and

there would be a topological obstruction to the construction of

bulk WFs spanning the occupied bands. Regarding the ionic

charges, let the ith ion in the home cell R = 0 be located at

τ i and carry charge Zie. Each ionic site τ i either sits on one

of the four inversion centers in the unit cell, or they appear in

pairs symmetrically arranged around an inversion center.

As for the electrons, we assume that a smooth and periodic

bulk gauge has been chosen for the wave functions |ψnk〉 of

the n = {1, ..., J} occupied bands and that this gauge also

respects the inversion symmetry. The WFs constructed from

these bands have centers

r̄Rn = 〈Rn|r|Rn〉 = R + r̄n. (18)

Since the gauge respects inversion symmetry, the r̄n are also

located on inversion centers or are symmetrically disposed

about them in pairs. When we consider our flake, we assume

that the WFs of the flake become identical to these bulk WFs

deep in the interior of the flake, so that the home-cell charge

distribution ρ I
tile is just built from these ions and WFs. As

discussed in the previous section, this tile will always be

dipole-free, even if it requires splitting some ionic charges.

It may be useful to introduce a set of reference WF center

positions as follows. For each WF |0n〉 that sits on one of

the inversion centers, we define tn to be the location of that

inversion center (i.e., equal to r̄n), and for every pair of WF

centers symmetrically disposed about one of the inversion

centers, we again assign tn for each of them to be at that

inversion center. Then the interior tile charge density

ρ I
tile(r) = e

∑

i

Ziδ
2(r − τ i ) − e

∑

n

|〈r|0n〉|2 (19)

can be written as

ρ I
tile(r) = ρ ion

tile (r) + ρ el
tile(r), (20)

where

ρ ion
tile (r) = e

∑

i

Ziδ
2(r − τ i ) − e

∑

n

δ2(r − tn) (21)

and

ρ el
tile(r) = −e

∑

n

[|〈r|0n〉|2 − δ2(r − tn)]. (22)

The advantage of this formulation is that ρ ion
tile is a purely

classical point charge distribution that is gauge independent,2

while all of the electronic gauge dependence is carried by ρ el
tile.

D. Wannier quadrupoles and dipoles

We are now ready to put it all together. The ingredients

needed to compute the upper-right corner charge of Eq. (7)

are given as follows. The bulk quadrupole is

q I
xy = e

I∑

i

Ziτixτiy − e

I∑

n

〈0n|xy|0n〉

= q ion
xy + q el

xy, (23)

where the sums are over the contents of the interior (I) tile,

and q ion
xy and q el

xy are the quadrupoles of the distributions in

Eqs. (21) and (22), i.e.,

q ion
xy = e

I∑

i

Ziτixτiy − e

I∑

n

tnxtny, (24)

q el
xy = −e

I∑

n

[〈0n|xy|0n〉 − tnxtny]. (25)

The x dipole of a top-edge tile is

d T
x = e

T∑

i

Ziτix − e

T∑

n

〈0n|x|0n〉, (26)

where this time the sum is over the contents of the top edge

tile, and |lxn〉 denotes a WF belonging to the l th
x tile along the

edge. Similarly,

d R
y = e

R∑

i

Ziτiy − e

R∑

n

〈0n|y|0n〉, (27)

where the ket notation is |lyn〉. Finally,

QTR = e

TR∑

i

Zi − eN TR, (28)

where N TR is the number of WFs associated with the top-

right corner tile. Inserting Eqs. (23)–(28) into Eq. (7) yields

the desired expression for the top-right corner charge.

2To be clear, there are “large” or “radical” gauge transformations

that shift one or more WF centers by a lattice vector, and “small”

or “progressive” ones that can be smoothly connected to the identity

gauge transformation. We assume that the former are built into the

definition of the contents of the unit cell, so at this point when we

speak of gauge transformations, we mean progressive ones only.
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If we are only interested in the corner charge mod e, then no

electronic solution is needed for the TR region; QTR vanishes

mod e if fractional ionic charges Zi are absent and are easily

determined if they are present. Thus, Qc can be determined

mod e using only calculations on two infinite ribbons and

a knowledge of the ionic arrangement at the corner. If we

want to know Qc fully, not just mod e, then we also need

enough information about the electronic structure of the flake

to decide the number N TR of occupied WFs in the corner tile.

III. GAUGE DEPENDENCE OF INTERIOR QUADRUPOLES

AND EDGE DIPOLES

In Secs. II C and II D we assumed some definite choice

of WFs providing a representation of the occupied electronic

states of the flake. Specifically, the set of all bulk, skin, and

corner WFs must be orthonormal and must exactly span the

occupied band subspace of the flake. We refer to any particular

choice of WFs as a “choice of gauge.” This choice is not

unique, so it is important to discuss the gauge dependence of

quantities such as q el
xy and d T

x of Eqs. (25) and (26).

A general gauge transformation corresponds to a unitary

mixing of the WFs according to

|R1n1〉new =
∑

R2n2

UR2n2,R1n1
|R2n2〉, (29)

where U is unitary. For our purposes, it is sufficient to con-

sider the transformation properties under infinitesimal unitary

transformations, since finite gauge transformations can always

be built up by using these as generators.3 The general form

of an infinitesimal unitary operator is U = eA = 1 + A for

infinitesimal anti-Hermitian A. In the bulk part of the flake,

we want the WFs to retain the property of being periodic

images of each other, so we require that A be lattice periodic,

i.e., AR1n1,R2n2
= AR1+R′,n1,R2+R′,n2

. We further specialize to

the case that A specifies a mixing of amplitude ε between WF

n1 = m in cell R1 = R and WF n2 = n in cell R2 = R + R′,
since more general gauge transformations can again be built

up from elementary ones such as this.

The first-order changes in the WFs in tile R are then given

by

δ|Rm〉 = ε|R + R′, n〉,
δ|Rn〉 = −ε∗|R − R′, m〉, (30)

with other WFs in the cell being unaffected. The mixing

pattern is illustrated in Fig. 2. For an arbitrary single-particle

operator O, the change of its trace over the WFs in cell R is

given by

δ〈O〉tile = δ〈Rm|O|Rm〉 + δ〈Rn|O|Rn〉
= 2Re[ε〈Rm|O|R + R′, n〉 − ε〈R − R′, m|O|Rn〉]
= 2Re[ε〈Rm|[O, TR′ ]|Rn〉], (31)

3Strictly speaking, this only applies to “small” or “progressive”

gauge transformations, i.e., those that can be continuously deformed

to the identity. “Large” or “radical” gauge transformations that shift

some WFs into a neighboring cell are also possible, but these would

correspond to a different choice of tiling.

− ∗

|Rn

− ∗

− ∗

|Rm

|R+R ,n

− ∗

− ∗

− ∗

TOP EDGE 

|R−R ,m

FIG. 2. Sketch of top edge of sample, showing mixing of

Wannier functions under the infinitesimal gauge transformation of

Eq. (30). Gray cell is an interior cell whose dipole moment is un-

changed due to cancellation of the ε contribution from above and the

−ε∗ one from below; pink cell is a top skin cell whose dipole does

shift as a result of the unbalanced −ε∗ contribution from below.

where TR is the operator that translates by lattice vector R.

For a lattice-periodic operator such as the bulk Hamiltonian,

the commutator in Eq. (31) vanishes, and the density of O per

unit cell is gauge invariant.

However, we are interested in dipoles and quadrupoles, and

for these cases we have that [x, TR] = RxTR, [y, TR] = RyTR,

and [xy, TR] = (yRx + xRy + RxRy)TR. Using the orthogonal-

ity of the WFs, 〈Rm|R + R′, n〉 = δ0R′δmn, it follows that

δ〈x〉tile = δ〈y〉tile = 0, (32)

δ〈xy〉tile = 2R′
xRe

[
εY R′

mn

]
+ 2R′

yRe
[
εX R′

mn

]
, (33)

where

X R
mn = 〈0m|x|Rn〉,

Y R
mn = 〈0m|y|Rn〉. (34)

Equation (32) confirms that the dipole moment of the Wannier

charge distribution in a bulk tile is gauge invariant, as expected

since it corresponds to the electric polarization. Another way

to see this is to compute the shifts of the Wannier centers

x̄Rm = 〈Rm|x|Rm〉 = Rx + x̄m; using the same methods, we

obtain

δx̄m = −δx̄n = 2Re
[
εX R′

mn

]
, (35)

and similarly for δȳ. The two WF centers thus shift by equal

distances but in opposite directions, preserving the overall cell

dipole.

However, the gauge invariance of the dipole does not ex-

tend to the quadrupole. From Eq. (12), (23), and (33) we

obtain

δQ I
xy = −

2e

ab

(
R′

xRe
[
εY R′

mn

]
+ R′

yRe
[
εX R′

mn

])
. (36)

This shows that the bulk quadrupole moment of an interior tile

is not a gauge-invariant quantity. In particular, this suggests

that it is not a physical observable.
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Now let us concentrate our attention on the skin region,

specifically at the top edge of the flake. The quadrupoles in

this region are of no interest, since the area of the skin region

becomes negligible in the limit of a large flake. A gauge

change that is restricted only to the skin region cannot change

the dipole moment of an edge tile, by an argument similar to

that leading to Eq. (32).

Surprisingly, though, the dipole of an edge tile can be

modified by an interior gauge transformation. To see this,

we return to Fig. 2 and discuss it in the context of Eq. (35).

Note that Fig. 2 is drawn for the case that R′ = �xa + �yb

with �x = �y = 1, and for simplicity we assume that the skin

tile is only one unit cell thick. In this case, each skin tile

“donates” a contribution −2eRe[εX R′

mn] to one of the topmost

interior tiles below it, as illustrated by the blue arrow marked

ε∗ pointing from |R + R′, n〉 in the pink skin cell to |Rm〉 in

the gray interior cell in Fig. 2. As a result, the shift of r̄R+R′,n

adds to the dipole of the pink edge tile by 2eRe[εX R′

mn], and

the shift of r̄Rm in the gray tile makes an equal and opposite

contribution to the gray-tile dipole. However, there is no net

change of the gray-tile dipole, since it receives a compensating

donation marked by the −ε∗ arrow from the deeper tile below

it. By contrast, no such cancellation occurs for the pink tile,

so there is a net change of its dipole, and a resulting change

by (2e/a)Re[εX R′

mn] of the edge polarization P T
x .

This result depends crucially on the choice of �y = 1, as in

Fig. 2, for the relative lattice vector R′ involved in the unitary

mixing. If �y = 2, then there are two uncompensated contri-

butions to the edge tile instead of one, and if �y = −1, then

the transfer of dipole moment goes in the reverse direction.

Overall, then, we find that δd T
x = 2e�yRe[εX R′

mn], and using

Eqs. (13) and (26) together with �y = R′
y/b, and applying

similar considerations to the right edge, we find that the bulk-

gauge-induced changes to the edge dipole densities are

δP T
x =

2e

ab
R′

yRe
[
εX R′

mn

]
, (37)

δP R
y =

2e

ab
R′

xRe
[
εY R′

mn

]
. (38)

Finally, as for the top-right corner tile, neither its

quadrupole nor its dipole can contribute to the macroscopic

corner charge. Moreover, its net charge density, given by

Eq. (28), is obviously gauge invariant, so that δQTR = 0.

Combining these contributions to Eq. (14), we find that the

contributions from Eqs. (37) and (38) exactly cancel the one

from Eq. (36), so that

δQc = δQ I
xy + δP T

x + δP R
y = 0. (39)

In other words, the bulk quadrupole density and edge dipole

densities are individually gauge dependent, but their sum is

gauge invariant and describes a physical observable, the cor-

ner charge. This is a major result of our work.

A crucial consequence of this result is that the corner

charge Qc can be obtained modulo e from independent calcu-

lations of Q I
xy, P T

x , and P R
y , but only if all three contributions

are computed using the same bulk gauge. For example, by

studying ribbons that are finite in y and infinite along x, we

can compute Q I
xy from the charge density of a deep interior

tile, and P T
x from that of an edge tile, and we can get P R

y in a

similar way from a ribbon that is finite in x instead. However,

unless we insist that the bulk gauge is the same, we cannot

use Eq. (14) to compute the corner charge by summing these

ingredients. For example, if one obtains P T
x from a y-finite

ribbon Wannierized along ŷ and P R
y from an x-finite ribbon

Wannierized along x̂ as described in Sec. IV B 2 below, then in

general the gauges are not consistent, and the sum P T
x + P R

y

is not meaningful. (An exception to this rule will be discussed

in Sec. V A.)

While preparing this paper, we became aware of a recent

work that proposes a “thermodynamic” definition of gauge-

invariant electric quadrupole moments [26]. However, the

underlying formulation of this approach is very different from

ours; it aims to describe local polarizations induced by slow

spatial variations of a bulk Hamiltonian and makes no claim

to predict surface or corner properties except in the case of

quantizing symmetries. The two approaches are thus comple-

mentary, and investigations into the relations between them

may be a fruitful avenue for future investigation.

IV. METHODS

In this work, we use simple tight-binding models for the

purpose of implementing our formalism and testing its predic-

tions. These will be introduced in detail in Sec. V. Each model

is specified by providing the location of each basis orbital |ϕ0i〉
in the rectangular a × b home unit cell, implying periodic

images |ϕRi〉 = TR|ϕ0i〉 in other cells. The on-site energy of

each basis orbital, and the hoppings connecting near-neighbor

orbitals, are also specified. The position operator is assumed

to be diagonal in the tight-binding basis, 〈ϕRi|r|ϕR′ j〉 = (R +
τ i )δR,R′δi j , with τ i denoting the location of the ith basis func-

tion in the home cell. We treat the charge density of each basis

orbital as a Dirac delta function, |〈r|ϕRi〉|2 = δ2(r − R − τ i ),

so that the basis functions themselves have zero spread. Posi-

tive ionic charges are assigned to all of the tight-binding sites

to neutralize the unit cell. The electronic Hamiltonian for bulk,

ribbon, and flake geometries is constructed and solved using

the PYTHTB code package [27].

A. Corner charge and macroscopic averaging

To calculate the corner charge directly, we construct a

rectangular flake consisting of Nx × Ny unit cells and obtain

the total charge qRi (ionic plus electronic) on every site. Since

we associate the electronic charge to delta functions on the

sites, the total charge density takes the form

ρ(r) =
∑

Ri

qRiδ
2(r − R − τ i ). (40)

The macroscopic corner charge is determined by first

applying a smoothening procedure, since simple sums of

individual charges are not convergent. For this purpose we

adopt the sliding window average approach [3,28], in which

a broadened charge density ρ̄(r) is obtained by convoluting

ρ(r) with a “window function”

w(x, y) =
{

1/ab if |x| < a/2, |y| < b/2

0 otherwise,
(41)
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FIG. 3. Sketch of sliding-window approach for obtaining macro-

scopic corner charges. The macroscopically averaged charge density

ρ̄(r0 ) is defined as the average of ρ(r) over a rectangular cell cen-

tered at r0 = (x0, y0 ). For this model of ±e point charges, ρ̄ vanishes

except in the blue and pink rectangles, where it takes values +e/ab

and −e/ab, respectively. Integration of the charge in one of these col-

ored rectangles yields the corresponding macroscopic corner charge.

i.e.,

ρ̄(r0) =
∫

ρ(r0 − r′) w(r′) d2r′. (42)

The advantage of this procedure is that ρ̄(r) is guaranteed to

vanish in the bulklike regions of the sample as a result of the

charge neutrality of the bulk unit cell. We also assume that

the bulk has been terminated in such a way as to yield neutral

edges, as described in Sec. II B, so that ρ̄(r) vanishes there

as well. The corner charge is then obtained by integrating the

smoothened charge density over the corner of interest.

The application of the above macroscopic averaging pro-

cedure to a simple checkerboard arrangement of ±e point

charges is illustrated in Fig. 3. The range of the window func-

tion centered on position r0 = (x0, y0) is shown by the gray

rectangle. As one slides this window around on the sample,

the charge contained in it vanishes except when r0 falls in the

rectangular a/2 × b/2 regions, where ±ρ̄ = e/ab in the blue

and red rectangles, respectively. Thus, the macroscopic edge

charges are zero for this model crystal, and the macroscopic

corner charges are ±e/4, with the positive charges at top right

and bottom left.

Other coarse-graining approaches will lead to the same re-

sult. For example, Gaussian broadening can also be used, but

then a careful treatment of the two limits max(a, b) � σ �
min(Lxa, Lyb) has to be enforced, where σ is the Gaussian

width. The sliding window approach avoids such complica-

tions. Note, however, that a simple summation of the charges

in a quadrant of the flake, as shown by the heavy black lines,

does not yield the correct corner charge. For the quadrant

shown, it yields zero; if the quadrant contained 5 × 5 instead

of 4 × 4 cells, it would yield +e. Neither value is correct.

The technical implementation of the sliding window aver-

aging procedure is as follows. We can write

Qc =
∫

d2r 
(r) ρ̄(r), (43)

where 
(r) = 1 in an upper-right-hand region x > x0 and

y > y0 and zero otherwise for appropriately chosen x0 and y0.

In the language of function spaces this is the inner product


 ◦ ρ̄, while ρ̄ is the convolution ρ̄ = ρ ∗ w; noting that

w(r) = w(−r), this is equivalent to Qc = W ◦ ρ with W =

 ∗ w. Thus, in practice we compute the macroscopic corner

charge as

Qc =
∫

d2r W (r) ρ(r), (44)

with W (x, y) = fa(x − x0) fb(y − y0) given by the product of

two “ramp functions” defined as fd (u) = 0 for u < −d/2,

1 for u > d/2, and 1/2 + u/d in the interval [−d/2, d/2].

Note that Eq. (44) is not the same as the bare Qc obtained

by integrating ρ(r) over a quadrant, i.e,

Qbare
c =

∫
d2r 
(r) ρ(r) (45)

for x0 and y0 at the sample center. This definition of Qc was

used in Refs. [5,8,17,18], and the difference with respect to

the macroscopic Qc of Eqs. (43) and (44) will be discussed in

Sec. V C.

B. Wannier construction for ribbon models

Our goal is to use our formalism to predict corner charges

from edge polarizations and interior quadrupoles computed

for x- and y-finite ribbon models. For example, we cut from

the infinite 2D bulk a ribbon that is finite and Ny cells thick in

the y direction, but still infinite and periodic in the x direction.

In this case the wave vector kx is a good quantum number,

and we obtain the Bloch states according to the eigenvalue

equation

H
∣∣ψkxn

〉
= Ekxn

∣∣ψkxn

〉
. (46)

We are interested only in the occupied wave functions, so for

consistency with the bulk which has J occupied bands, we let

n run over NyJ occupied ribbon bands at each kx. We then

need to construct a specific gauge for the WFs spanning the

occupied states, and in the following we present three different

strategies for doing so.

We first present, in Sec. IV B 1, a method based on project-

ing onto trial functions. As the same trial functions are used

for both x-finite and y-finite ribbons, this yields a consistent

gauge, allowing for a viable calculation of the corner charge.

Next, we discuss Wannier constructions based on assigning

states to layers via a preliminary maximal localization in one

direction, followed by maximal localization within each layer

in the orthogonal direction. If the first step is taken in the trans-

verse (finite) direction, it corresponds to the “hybrid Wannier”

construction; the occupied subspace is represented in terms of

states that are exponentially localized in the transverse direc-

tion, while remaining extended and labeled by wave vector

in the longitudinal direction. However, we then follow by a

second localization step to arrive at fully localized WFs. This
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“transverse-first” nested Wannier construction is described in

Sec. IV B 2. We also consider the reverse order of operations,

in which the preliminary localization is carried out in the

extended direction; this “longitudinal-first” nested Wannier

construction is described in Sec. IV B 3.

In Ref. [23], the transverse-first hybrid Wannier construc-

tion was applied to both the x-finite and y-finite ribbons. We

emphasize that in general this does not produce the same

gauge for the interior WFs of the two ribbons, and hence

it cannot safely be used to predict the corner charge. This

will later be demonstrated explicitly in Sec. V B. (Centrosym-

metric models with a single occupied band and time-reversal

symmetry provide an exception, as will be discussed in

Sec. V A.) Instead, if either the x-first or y-first nested Wannier

scheme is consistently adopted for both ribbons (transverse

for one ribbon and longitudinal for the other), then we arrive

at a second viable approach for computing the corner charge,

as discussed later in Sec. VI. In the following, we focus for

concreteness on y-finite ribbons and discuss each of the WF

construction schemes in this context.

1. Projection-based Wannier construction

One approach to the construction of a gauge, and one

that automatically produces the same gauge for both ribbons,

is to use the trial function projection method [21,22]. In

this approach, one invents J trial functions |gn〉 in the home

unit cell that are intended as a rough approximation to the

desired bulk WFs, with g�x�yn(r) = gn(r − �xa − �yb) being

their translational images. Then considering a y-finite ribbon,

for example, we construct a set of ribbon trial functions by

taking the |g�x�yn〉 with �x running over all integers while �y

runs over the Ny layers in the ribbon, with possible additions or

deletions in the skin region to match the expected occupation

of edge and corner states (see, e.g., Sec. V C). The goal then

is to construct a set of WFs |w�x�yn〉 that look “as similar as

possible” to these |g�x�yn〉, while still being built only from

occupied Bloch states.

This is most easily done by going to reciprocal space.

Temporarily introducing the composite index α = (�yn), we

define trial Bloch functions

∣∣g̃kxα

〉
= N−1/2

x

∑

�x

eikx�xa
∣∣g�xα

〉
(47)

and construct the overlap matrix

Bkx,αβ =
〈
ψkxα

∣∣g̃kxβ

〉
. (48)

If our choice of trial functions had been ideal in the sense

that the |g̃kxα〉 had spanned the occupied subspace at kx, Bkx

would be a unitary matrix. More generally, we find the uni-

tary part B of the B matrix by subjecting it to the singular

value decomposition B = V 
W † (V and W are unitary and


 is positive real diagonal) and choosing B = VW †. We also

monitor the singular values (diagonal elements of 
); if any

of them becomes much less than unity, this signals the need to

choose a different set of trial functions.

We then construct mixtures of Bloch functions such

that the resulting ones are maximally aligned to the |g̃kxα〉

according to

∣∣hkxα

〉
=

∑

β

Bkx,βα

∣∣ψkxβ

〉
. (49)

Restoring α = (�yn), these |hkx�yn〉 can be interpreted as hy-

brid Wannier functions, as they are exponentially localized

in the finite direction while remaining extended and labeled

by wave vector kx in the extended direction. From these, we

can construct fully localized WFs by carrying out the Fourier

transform

∣∣
w�x�yn

〉
=

a

2π

∫
dkxe−ikx�xa

∣∣hkx�yn

〉
. (50)

In the deep interior of the ribbon, all of these WFs will be

periodic images of those in neighboring cells.

We now pick the WFs associated with one central cell with

labels (�x�y) and sum the 〈w�x�yn|xy|w�x�yn〉 over n to obtain

the interior quadrupole q I
xy via Eq. (23), where |0n〉 in the

notation of Eq. (23) is the same as |w�x�yn〉 here. Similarly, we

define the skin region at the top edge of the sample to consist

of some number My of the topmost layers. Since the dipole

moments of these cells vanish exponentially with depth, a

fairly small value of My is typically sufficient. Then, the x

dipole moments 〈w�x�yn|x|w�x�yn〉 are summed to provide the

needed contributions to the total dipole d T
x of Eq. (26).

We emphasize that our projection procedure insures that

if we start from the same set of trial functions, the gauges in

the interior region are the same by construction for y-finite

and x-finite ribbons. Thus, we should expect to find the same

Q I
xy for both ribbons; we confirm this below. Moreover, with

the results of both ribbon calculations in hand, we are assured

that the set of quantities P T
x , P R

y , and Q I
xy have been computed

in a common gauge and can confidently be combined as in

Eq. (14) to predict the corner charge.

2. Transverse-first nested Wannier construction

Let us now discuss an alternative Wannier construction

procedure that does not require choosing a set of trial func-

tions. Again taking a y-finite ribbon and noting that matrix

elements of the position operator ŷ are well defined, it is

straightforward to obtain the matrix

Ykx,mn =
〈
ψkxm

∣∣y
∣∣ψkxn

〉
, (51)

where m and n run over the NyJ occupied bands of the ribbon

at a given kx, and to diagonalize it,
∑

n

Ykx,mnξkxα,n = ȳkxαξkxα,m, (52)

where α = {1, ..., NyJ} now labels the eigenvalues and eigen-

vectors of Ykx
. Then the maximally localized states along y,

known as hybrid Wannier functions, are constructed according

to
∣∣hkxα

〉
=

∑

n

ξkxα,n

∣∣ψkxn

〉
. (53)

As we shall see, the spatial locations of their Wannier centers

ȳkxα cluster in groups of J per unit cell along y, correspond-

ing roughly to the locations along y of the true 2D WFs

assigned to a unit cell. Thus, we relabel ȳkxα → ȳkx�yn and
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|hkxα〉 → |hkx�yn〉, where �y is a layer index specifying the unit

cell along y and n = {1, ..., J} labels the Wannier bands within

a layer.

Then, for each layer that has been identified in this way,

we treat the entire layer as a multiband group and carry out

a maximal localization procedure in the extended direction.

To do so, we transform to a twisted parallel transport gauge,

i.e., one that makes the Berry connections 〈h̃kx�yn|i∂kx
|h̃kx�yn′〉

diagonal and kx independent, where |h̃kx�yn〉 = e−ikxx|hkx�yn〉.
The fully localized WFs are constructed from the Fourier

transform in Eq. (50), thus arriving at WFs that are expo-

nentially localized in both directions. The computation of q I
xy

from deep interior WFs, and d T
x from skin-region WFs, then

proceeds as described in the previous subsection.

We note in passing that another option for computing d T
x is

to bypass the second maximal localization step and simply

compute it from Berry phases, as was done in Ref. [23].

That is, having constructed the |h̃kx�yn〉, we compute the Berry

phases

γ
(x)
�yn =

∫
dkx

〈
h̃kx�yn

∣∣i∂kx

∣∣h̃kx�yn

〉
(54)

on a discretized kx mesh using standard methods. In this

context the last term in Eq. (26) becomes (−e/2π )
∑T

�yn γ
(x)
�yn ,

where the sums are restricted to the cells associated with the

top-edge tiles. However, we find in practice that PT
x computed

in this way converges more slowly with respect to k-mesh

density than does the method based on the direct summation

of WF dipoles, which we have therefore adopted below.

3. Longitudinal-first nested Wannier construction

The nested procedure outlined in the previous subsection

consists of a sequence of two maximal localization steps, the

first along the ribbon’s finite direction y and the second along

the extended direction x. If we reverse the order of those

two operations, we again arrive at fully localized WFs, albeit

in a different gauge. Since the first localization step is now

along the extensive direction of the ribbon, we refer to this

as the longitudinal-first nested Wannier construction. We note

that a similar construction was used in Refs. [4,5], although

the subsequent steps making use of the construction were

different there.

We again start from the Bloch eigenstates |ψkxn〉 of

Eq. (46). We first transform all of them to a twisted parallel

transport gauge in the extensive direction x and then carry out

the Fourier transform

∣∣h′
�xn

〉
=

a

2π

∫
dkxe−ikx�xa

∣∣ψkxn

〉
. (55)

These new states are maximally localized along x, but typ-

ically they are extended across the width of the ribbon in

the y direction. In a sense, they can still be regarded as a

species of hybrid WFs. Those with the same index n but

different cell indices �x are translational copies of one another

along x. Finally we localize along y the NyJ hybrid Wannier

functions in each horizontal cell �x by performing the steps

in Eqs. (51)–(53) with |ψkxn〉 therein replaced by |h′
�xn〉. This

yields a set of fully localized WFs |w�x�yn〉, from which the

interior quadrupole q I
xy and edge dipoles d T

x can be evaluated

as described below Eq. (50).

4. Quantum distance between Wannier gauges

Once specific gauges have been chosen for differently ori-

ented ribbons or different Wannier constructions, it is useful

to check whether those gauges are consistent. By “consistent

gauges” we mean that the sets {|wint,n〉} and {|w̃int,n〉} of J

WFs in one interior cell span the same Hilbert space in both

cases. If so, the two sets of WFs are related by a J × J unitary

transformation

|w̃int,n〉 =
J∑

m=1

Umn|wint,m〉 (56)

that only mixes WFs within the same interior cell. On the

other hand, Eqs. (36)–(38) show that Q I
xy, P T

x , and P R
y only

change under gauge transformations that mix WFs belonging

to different cells (R′ 
= 0). This means that we are allowed to

evaluate the corner charge as the sum of those three quantities

provided that they are evaluated using gauges for the two

ribbons that are consistent in the above sense.

The degree of “gauge inconsistency” can be quantified by

measuring the “quantum distance” between the two sets of

interior WFs. Here the square of the quantum distance D is

defined as [29]

D2 = J − Tr[PintP̃int]

= J −
J∑

m,n=1

|〈wint,m|w̃int,n〉|2, (57)

where Pint and P̃int are the projection operators onto each set.

A vanishing D indicates that the two sets are related by a

unitary transformation. Allowing for numerical error, we take

the gauges to be consistent whenever D < 10−5.

V. RESULTS

We study three tight-binding models of increasing com-

plexity. All models are centrosymmetric and spinless, and we

consider them at half filling. The first is a two-band model

(one occupied band), and the other two are four-band models

(two occupied bands). In the first two models the symmetry

is sufficiently low that the corner charge is not quantized,

while the third model has a high-symmetry phase where the

corner charge is quantized to either zero or e/2, depending on

the choice of parameters. For ribbons and finite flakes, edges

are always constructed by simply truncating the bulk, i.e., the

hoppings to vacant sites are removed while other hoppings

and site energies are unchanged.

In this section, we restrict ourselves to a comparison of the

transverse-first nested Wannier construction as applied to both

ribbons, as in Ref. [23], and the projection construction. In

Sec. VI we will return to the four-band model of Sec. V B and

consider the gauge-consistent nested Wannier construction,

i.e., y first (or x first) for both ribbons, and show that this also

yields a consistent gauge and a correct prediction of the corner

charge.
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FIG. 4. (a) Visualization of the two-band model. Atoms in the

home cell are shown as black dots, the intracell hopping t1 as a

solid line, and intercell hoppings t2 to t5 as dashed lines. (b) Bulk

band structure for the parameters given in the main text. The Fermi

level (dashed line) has been placed at midgap. The inset shows the

2D Brillouin zone and the high-symmetry points � (0, 0), X ( 1

2
, 0),

X′(0, 1

2
), and M ( 1

2
, 1

2
).

A. Two-band model

The first model we consider was introduced in Ref. [23]

and is illustrated in Fig. 4(a). The rectangular unit cell (gray

square) has an aspect ratio of b/a = 0.8 and contains two

atoms along its diagonal, with reduced coordinates (− 1
6
,− 1

6
)

and (+ 1
6
,+ 1

6
) relative to the center of inversion in the middle

of the cell. Since we treat the model as spinless and at half

filling, we assign a positive charge of +e/2 to each atom to

neutralize the unit cell.

Our choice of bulk tile corresponds to the contents of the

unit cell in Fig. 4(a), with the reference position tn chosen

at the origin, which is also the location of the WF center.

As a result, the ionic part of the interior quadrupole q I
xy of

Eqs. (23) and (24) is immediately given as q ion
xy = (e/36)ab.

The electronic contribution qel
xy in Eq. (25) is determined by

the shape asymmetry of the WF charge distribution around its

center and remains to be calculated, as do the dipoles of the

edge tiles. From these, Q I
xy, P T

x , and P R
y are trivially obtained

from Eqs. (12)–(14).

To evaluate these quantities we construct two ribbons span-

ning ten unit cells along the x and y directions, respectively.

We begin by applying the transverse-first nested Wannier con-

struction of Sec. IV B 2 to both ribbons. That is, the maximal

localization procedure is first carried out along the finite direc-

tion of the ribbon to generate hybrid WFs and then along the

extended direction. The result is illustrated in Fig. 5 for the

y-finite ribbon. Panel (a) shows the Wannier centers ȳkx�y
=

〈hkx�y
|y|hkx�y

〉 obtained in the first step. In the second step,

an optimally-smooth gauge along x is enforced within each

hybrid Wannier band, resulting in fully localized WFs. Panel

(b) shows the layer-resolved dipole moment density along x;

as expected, it vanishes in the interior region and assumes

equal and opposite values at the two edges.

The values of P T
x , P R

y , and Q I
xy calculated from those

WFs are indicated in the left column of Table I. We find

that Q I
xy has the same value in the two ribbons, suggest-

ing that their gauges are consistent. Decomposing Q I
xy into

ionic and electronic parts, we find Q ion
xy = q ion

xy /ab = e/36 ≈
0.027778e and Qel

xy = q el
xy/ab = −0.027808e. We also find

that the corner charge predicted from Eq. (14) is in excellent

Γ X Γ

0

2

4

6

8

(a)

1 10�y

4

0

4

(b)

FIG. 5. (a) Wannier bands (i.e., hybrid Wannier centers) ȳkx�y
(in

units of b) for a ribbon of the two-band model with a width of ten unit

cells along y. The red Wannier band deep inside the ribbon is selected

to construct the fully localized interior Wannier function that is used

to evaluate Q I
xy. (b) Layer-resolved dipole density Px,�y

= dx,�y
/a,

computed from the dipole moments of the fully localized Wannier

functions in each layer.

agreement with that obtained from a direct calculation on a

10 × 10 flake using Eq. (44), again suggesting that the gauges

are consistent (as well as validating our formalism). The last

row of Table I lists the value of the bare corner charge,

obtained by simply adding up the charges inside the 5 × 5

tiles forming the top-right quadrant of the flake, according to

Eq. (45); as expected, the bare corner charge differs signifi-

cantly from the macroscopic corner charge listed in the two

rows above it.

To confirm that the gauges are consistent between the two

ribbons, we calculate the quantum distance D according to

Eq. (57) and find that it is zero to numerical accuracy. Since

there is a single WF per cell, gauge consistency means that the

WFs deep inside the two ribbons are the same up to an overall

phase factor. The site amplitudes of one such interior WF are

listed in Table II.

Recall that the transverse-first nested Wannier construction

is not guaranteed to yield consistent gauges for two differently

oriented ribbons of a generic model. The reason why it does

so for this particular model is the following. In addition to

spatial inversion, the model has time-reversal symmetry, and

in the presence of both symmetries the k-space Berry curva-

ture of each band vanishes identically. Since the curvature

is the curl of the connection, it follows that both the x and

y components of the Berry connection can be chosen to be

TABLE I. The values of P T
x , P R

y , and Q I
xy, calculated for ribbons

of the two-band model using the transverse-first hybrid Wannier and

projection methods. In the bottom half of the table, the corner charge

Qc predicted from Eq. (14) is compared with the value obtained from

a direct calculation on a finite flake using Eq. (44) and with the “bare”

corner charge obtained from Eq. (45).

Hybrid Wannier Projection

(10−3 e) (10−3 e)

P T
x −0.531575 −0.531574

P R
y −1.164427 −1.164427

Q I
xy −0.030068 −0.030068

Qc (predicted) −1.726070 −1.726069

Qc (direct) −1.726068 −1.726068

Qbare
c −0.071873 −0.071873
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TABLE II. The bulklike Wannier function |wint〉 in the home unit

cell of the two-band model. |φR j〉 is the basis orbital at site R + τ j ,

given in reduced coordinates. The 12 largest coefficients are listed;

only half of them are shown, as the other half can be obtained by an

inversion operation.

R + τ j 〈φR j |wint〉 R + τ j 〈φR j |wint〉

(− 1

6
, − 1

6
) 0.70565 (− 5

6
, 1

6
) 0.02662

(− 7

6
, − 1

6
) −0.02634 (− 1

6
, 5

6
) 0.01777

(− 1

6
, − 7

6
) −0.01752 ( 7

6
, 7

6
) 0.00328

constant. Moreover, these constant values are a measure of the

electric polarization, which vanishes here. Thus, in this case

of a single occupied band with inversion and time-reversal

symmetry, there is a unique “natural” gauge with vanishing

Berry connection. This same gauge is arrived at regardless of

whether maximal localization is applied first in x and then in

y, first in y then in x, jointly as in conventional 2D maximal lo-

calization, or using the projection technique discussed next.4

We now repeat the calculations using the projection

method of Sec. IV B 1 to fix the gauge. We choose as the trial

function the eigenstate of an isolated tile, without any intercell

hoppings. The trial function in the home unit cell is then
1√
2
|φ1〉 + 1√

2
|φ2〉, where |φ1〉 and |φ2〉 are the basis orbitals

located at (− 1
6
,− 1

6
) and ( 1

6
, 1

6
), respectively. After confirming

that the resulting gauges for the two ribbons are consistent

(D = 0 to numerical accuracy), we have recalculated P T
x , P R

y ,

and Q I
xy, obtaining the values in the right column of Table I.

They are identical to the ones in the left column, confirming

that the transverse-first hybrid Wannier and projection meth-

ods yield consistent gauges for this model. To further verify

this, we measure the quantum distance between the interior

WFs obtained with the two methods, again obtaining D = 0.

We conclude by commenting on the results obtained in

Ref. [23] for the same model. In that work, P T
x and P R

y were

calculated for y- and x-finite ribbons using the transverse-first

nested Wannier construction, and P T
x + P R

y was found to be

in good agreement with a direct calculation of Qc for a flake.

Our analysis reveals an oversight in that work, also pointed

out in Ref. [15], namely the omission of the Q I
xy term in

Eq. (14). For the choice of parameters in Ref. [23], |Q I
xy| is

much smaller than both |P T
x | and |P R

y |, helping to explain

why that omission was not revealed by the numerical tests

carried out there. Reference [23] also neglected to discuss

the gauge-consistency issue that arises in more general cases,

although as discussed above, it is not a problem for single-

occupied-band models with time-reversal symmetry. It does

become an issue for multiband cases, as we shall see in our

next example.

4The order of the two Wannierization steps becomes irrelevant

when the projected position operators PxP and PyP commute, which

was shown in Appendix C of Ref. [21] to occur if and only if the

Berry curvature vanishes identically.
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FIG. 6. (a) Visualization of the four-band model. Atoms are la-

beled from 1 to 4 as shown at upper right. The intracell hoppings t1,

t2, t3, and t4 are shown as solid lines, while the intercell hoppings

t5 and t6 are shown as dashed lines. Sites denoted by open and

filled circles have onsite energies ±δ, respectively. (b) Band structure

of the model. The Fermi energy (dashed line) has been placed at

midgap.

B. Four-band model

Our second test case is the model depicted in Fig. 6(a). The

unit cell is rectangular with b/a = 0.8 as before, but it now

contains four atoms instead of two, with reduced coordinates

(− 1
6
,− 1

6
), ( 1

6
,− 1

6
), ( 1

6
, 1

6
), and (− 1

6
, 1

6
) relative to the center

of inversion in the middle of the cell. The hopping amplitudes

are t1 = −2.0, t2 = −1.5, t3 = −0.8, and t4 = −0.6 eV (in-

tracell hoppings), and t5 = −0.5 and t6 = −0.4 eV (intercell

hoppings). The sites depicted as open and filled circles have

onsite energy ±δ, where δ = 0.8. The band structure is shown

in Fig. 6(b); at half filling the two lowest bands are occupied,

and we assign a charge of +e/2 to each atom to render

the cell neutral. The bulk tile again corresponds to the unit

cell, and the reference positions of Eqs. (21) and (22) are

again t1 = t2 = 0; now q ion
xy = 0 and only q el

xy will contribute

to q I
xy.

As in our previous example, the model has both spatial

inversion and time-reversal symmetry. However, since we now

have two occupied bands, the transverse-first nested Wan-

nier construction is no longer expected to produce consistent

gauges for the two ribbons. Its application to a 20-cell-thick

y-finite ribbon is illustrated in Fig. 7. Panel (a) shows the

Wannier bands obtained in the first step, with the two bands

in each vertical cell being closer to one another than to their

neighbors in adjacent cells. In the second step, the maximal

Γ X Γ

16

17
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19

20

(a)

15 20
y

−0.5

0.0

0.5

(b)

FIG. 7. (a) Wannier bands ȳkx�yn (in units of b) for a y-finite

ribbon of the four-band model with a width of 20 layers and two

bands per layer. (b) Dipole moment density of the layers near the top

edge of the ribbon.
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TABLE III. The values of P T
x , P R

y , Q I
xy, calculated for ribbons

of the four-band model using the transverse-first hybrid Wannier

and projection methods. In the center column, the identical value

of Q I
xy found for both ribbons is reported. In the last two rows, the

corner charge Qc predicted from Eq. (14) is compared with the value

obtained from a direct calculation on a finite flake.

Hybrid Wannier Projection

(10−2 e) (10−2 e)

P T
x 0.300250 0.254669

P R
y 0.476420 0.446029

Q I
xy −3.756016 −3.684265

Qc (predicted) −2.979346 −2.983567

Qc (direct) −2.983567 −2.983567

localization procedure is applied along x, treating the two

hybrid Wannier functions within a cell as a composite group,

resulting in two fully localized WFs per 2D cell. When applied

to the x-finite ribbon, the transverse-first procedure results in a

similar pair of WFs but now obtained by localizing first along

x and then along y.

The center column of Table III lists the calculated values of

P T
x (for the y-finite ribbon), P R

y (for the x-finite ribbon), and

Q I
xy (for both). Even though Q I

xy has identical values in both

ribbons, the predicted corner charge Qc differs by about 0.14%

from that obtained via a direct calculation on a 20 × 20 flake,

indicating some degree of gauge inconsistency. The gauges

of the two ribbons are indeed slightly different, as can be

seen by inspecting the second and third columns of Table IV,

where we list the site amplitudes of one of the two interior

WFs per cell (the other is related to it by spatial inversion) in

each ribbon. To check that this difference cannot be accounted

for by a 2 × 2 intracell gauge transformation described by

Eq. (56), we calculate the quantum distance of Eq. (57) to

be D = 0.0138. This nonzero value confirms that the interior

gauges produced by this naive hybrid Wannier approach is

inconsistent between the two ribbons.

TABLE IV. One of the two bulklike Wannier functions in the

home unit cell of the four-band model, constructed in three different

ways. |w(y)

int,1〉 and |w(x)
int,1〉 are obtained by applying the transverse-first

nested Wannier construction to y- and x-finite ribbons, respectively,

while |w(p)

int,1〉 is obtained by applying the projection method to both

ribbons starting from the trial function |g1〉 described in the main text.

|φR j〉 is the basis orbital at site R + τ j , given in reduced coordinates.

R + τ j 〈φR j |w(y)

int,1〉 〈φR j |w(x)
int,1〉 〈φR j |w(p)

int,1〉 〈φR j |g1〉

(− 1

6
, − 1

6
) −0.86557 −0.86563 −0.86481 −0.87128

(− 1

6
, 1

6
) −0.42664 −0.42656 −0.42851 −0.45897

( 1

6
, − 1

6
) −0.17659 −0.17654 −0.17732 −0.15379

(− 1

6
, − 5

6
) −0.11485 −0.11527 −0.10720 0

(− 5

6
, − 1

6
) −0.07271 −0.07294 −0.07163 0

( 1

6
, 1

6
) 0.07108 0.07108 0.07185 0.08101

( 1

6
, 5

6
) 0.06598 0.06548 0.06286 0

( 5

6
, 1

6
) 0.04861 0.04798 0.04626 0

To arrive at a common gauge for the two ribbons we

use the projection method, choosing as trial functions |g1〉 =
1√
2
|ψ1〉 + 1√

2
|ψ2〉 and |g2〉 = 1√

2
|ψ1〉 − 1√

2
|ψ2〉, where |ψ1〉

and |ψ2〉 are the two lowest-energy eigenstates of an isolated

tile, i.e., with intercell hoppings set to zero. These two eigen-

states are of even and odd parity, respectively, so that |g1〉 and

|g2〉 are each off-centered with respect to the origin and map

into one another under inversion.

Applying the projection method to ribbon models cut from

the bulk as described in Sec. IV B 1, we find as expected that

the pair of WFs taken from the deep interior of the x-finite

ribbon match those extracted from the y-finite ribbon within

numerical precision. We denote as |w(p)

int,1〉 and |w(p)

int,2〉 the

WFs projected from |g1〉 and |g2〉, respectively. Like the trial

functions, these lie off-center and map into one another under

inversion. In the last two columns of Table IV we list the site

amplitudes of |w(p)

int,1〉 and |g1〉. It is evident that the projected

WFs are similar, but not identical, to the ones obtained by the

transverse-first hybrid Wannier approach; we find quantum

distances of D = 0.03844 and 0.03857, respectively, from the

projected pair to the pairs generated via the transverse-first

nested Wannierization of x-finite and y-finite ribbons, respec-

tively.

Having verified that the projection method leads to two

ribbons described by the same bulk gauge, we proceeded to

calculate P T
x for the y-finite ribbon and P R

y for the x-finite

ribbon; their values are listed in the right column of Table III,

followed by the common value of Q I
xy in both ribbons. In con-

trast to the center column, the sum of the three now matches

perfectly the value of Qc in the finite flake.

This example confirms our expectation that the corner

charge can reliably be predicted from ribbon calculations

alone, provided that consistent gauges are used for both rib-

bons, even in the case of multiple occupied bands. It also

illustrates the fact that this gauge consistency is achieved only

via the projection method,5 while the transverse-first hybrid

Wannier approach fails in this case.

C. Benalcazar-Bernevig-Hughes (BBH) model

Our final test case is a model introduced by Benalcazar,

Bernevig, and Hughes as an example of a topological phase

with quantized corner charges [4,5]. The BBH model is pic-

tured in Fig. 8(a). It has four sites per cell as in our previous

example but now placed on a square lattice. We again choose

the atoms to have reduced coordinates (− 1
6
,− 1

6
), ( 1

6
,− 1

6
),

( 1
6
, 1

6
), and (− 1

6
, 1

6
) relative to the origin at the center of a

small square.6 Figure 8(a) shows four unit cells (gray squares)

centered in the same way, but as we shall see later, our choice

of bulk tile may or may not coincide with this unit cell. Each

5A gauge-fixing method was recently proposed in Ref. [15] based

on parallel transport as intercell hoppings are varied. Although this

was applied only to a single-occupied-band case, we expect that

this method, while more complicated than ours, would also lead to

bulklike WFs in a multiband case.
6The location of the sites was not specified in Refs. [4,5]. Our

choice of 1/6 is arbitrary.
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FIG. 8. (a) Visualization of the Benalcazar-Bernevig-Hughes

model. Atoms are labeled from 1 to 4 inside the unit cell, as shown at

upper right. Intracell hoppings of amplitude ±γ are shown as solid

or dashed red (short) lines, and intercell hoppings of amplitude ±λ

as solid or dashed blue (long) lines. In the calculations reported in

the main text, sites denoted by open and filled circles have small

on-site energies ±δ, respectively. (b) Band structure of the model for

λ = 1.0, δ = 0, and two different values of γ . The solid bands were

calculated at γ = 1.5 (trivial phase, Qc = 0), and the dashed ones at

γ = 0.5 (topological phase, Qc = e/2). In both cases, the bands are

doubly degenerate. The Fermi energy (dashed line) has been placed

at midgap.

site also carries an ionic charge of +e/2, so that the system is

neutral at half filling.

When viewed along x or y, the model consists of parallel

chains with dimerized bonds. The hopping amplitudes along

x alternate between γ (intracell) and λ (intercell). The same

bond alternation occurs along y, except that the hopping am-

plitudes change sign from one chain to the next, as though

π fluxes have been threaded through the plaquettes. Follow-

ing BBH, we also include an optional parameter δ which, if

present, assigns an onsite energy ±δ to the sites depicted as

open and filled circles, respectively, in Fig. 8(a).

The model always has inversion and time-reversal sym-

metry, and in the absence of δ it also has Mx and My mirror

and C4 rotational symmetries. (Strictly speaking, the spatial

symmetry operators only return the system to itself after a

sign-flip gauge change, but this does not affect the symmetry

arguments.) The BBH model was introduced largely for the

purpose of investigating the consequences of symmetry for

the bare model (δ = 0). The BBH and subsequent papers have

shown that the presence of Mx and My symmetries, or C4

symmetry, constrains the corner charge of a rectangular flake

to be a multiple of e/4 quite generally, or of e/2 in some

cases [4,5,8,12–14,30], stimulating interest in the theory of

higher-order topological phases [6]. We can understand this

in the context of our Eq. (14) by noting that P T
x = −P R

y

and Qxy = 0 in a C4-respecting gauge, leaving only the QTR

contribution of Eq. (28). For a general rectangular-lattice sys-

tem, this must be either zero or a multiple of e/4 (mod e),

depending on whether any fractional ionic charges were left

over in the corner tile after the bulk and edge tiling. (In the

context of the BBH model, C4 symmetry implies Qc = 0 or

e/2.)

Here, instead, we are more interested in the case that spa-

tial symmetries other than inversion are not present, so that

γ

(a)

λ

(b)

FIG. 9. Visualization of the isolated tiles whose low-energy

eigenstates serve as trial functions for constructing Wannier func-

tions in ribbons of the Benalcazar-Bernevig-Hughes model. The

figures represent y-finite ribbons three unit cells high, while those

used in the actual calculations are 40 unit cells high. (a) Tiles used

for the trivial phase (red squares). (b) Tiles used for the topological

phase. The blue squares are interior tiles. At the edges and corners,

there are “leftover” dimers and isolated atoms, respectively.

the corner charge is not quantized. Returning to the BBH

model, at δ = 0 the model has two gapped phases, a trivial

phase with Qc = 0 for |γ /λ| > 1 and a topological phase with

Qc = ±e/2 for |γ /λ| < 1. The bulk energy gap closes at the

M point in the BZ at the critical |γ /λ| = 1. In what follows

a small δ is applied to break the mirror and C4 symmetries.

Note that we continue to refer to the resulting systems as

being in the “trivial” or “topological” phase, even though such

a classification is no longer strictly well defined.

1. Trivial and topological phases

In our calculations we set λ = 1.0 and choose γ = 1.5

and γ = 0.5 to put the system in the trivial and topological

phases, respectively. The resulting energy dispersions, plotted

in Fig. 8(b), consist of two doubly-degenerate bands separated

by finite gaps. To fix the sign of the corner charge in the

topological phase, BBH weakly broke the quantizing symme-

tries Mx, My, and C4 while preserving inversion symmetry by

adding a nonzero δ term to the Hamiltonian [4,5]. When δ

is small, Qc deviates slightly from the quantized value. The

results reported below are obtained using δ = 0.001 for both

phases. Since the model has two occupied bands, we know

from our previous example that the transverse-first nested

Wannier construction cannot be trusted to produce consistent

gauges for the two ribbons, so we focus here on the projection

approach from the outset.

In view of the qualitative difference between the trivial and

topological phases, we adopt a different choice of bulk tile

for each case. For the trivial phase we choose the bulk tile to

correspond to the unit cell centered on the small red square

in Fig. 9(a), with reference locations t1 = t2 = 0. The ionic

interior quadrupole in Eq. (24) is thus q ion
xy = 0, with q el

xy in

Eq. (25) left to be determined by the anisotropy of the Wannier

charge distribution. Since we assume the sample has been cut
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as shown in Fig. 8(a), there will be no leftover charges in the

top-right corner tile, i.e., QTR = 0.

By contrast, for the topological phase, the WFs are chosen

to be associated with a large blue square in Fig. 9(b), e.g.,

the one centered at (1/2,1/2). A choice of tile involving these

WFs together with ions centered around (0,0) would gener-

ate a bulk dipole, which our approach requires us to avoid.

Instead, we choose the bulk tile as the unit cell centered on

the large blue square in Fig. 9(b), with reference positions

t1 = t2 = (1/2, 1/2) at the center of this square.7 Again the

symmetry is such that q ion
xy = 0 in Eq. (24), and q el

xy in Eq. (25)

is left to be determined. Note that there are now two leftover

ionic charges that need to be assigned to each top tile as shown

in Fig. 9(b) and similarly for the right edge tiles. Each corner

tile acquires one ionic charge of +e/2, so QTR of the corner

tile will be −e/2 if there is an occupied WF in that tile and

+e/2 otherwise. From a minimal knowledge of the model, we

can anticipate that a WF will be present in the top-right tile if

and only if δ < 0.

To obtain gauge-consistent values for P T
x , P R

y , and Q I
xy via

projection, we begin by considering a y-finite ribbon 40 unit

cells high, with simple periodic boundary conditions along

x. The trial functions are chosen as the low-energy eigen-

states of the isolated tiles obtained by removing the weaker

of the two hoppings. For the trivial phase, we take as trial

functions the two lowest-energy eigenstates of the isolated

small red square in Fig. 9, replicated 40 times to cover the

entire ribbon. For the topological phase the WF centers shift

to the large blue squares [7,9,10], so we take their isolated

eigenstates as our projection functions, replicated 39 times.

We also include two edge tiles, one at the top and one at the

bottom of the ribbon, each consisting of a single dimer with

its single low-energy eigenstate. Taken together, these states

comprise our trial functions for the ribbon in the topological

phase. We do the same for x-finite ribbons, and we confirm

that within each phase, the deep interior WFs are identical for

x- and y-finite ribbons. The site amplitudes of the resulting

WFs are given in Table V for the trivial phase and in Table VI

for the topological phase, together with the trial functions for

comparison.

From the consistent sets of WFs obtained for the two rib-

bons, we calculate edge polarizations and interior quadrupoles

in the usual manner. To accommodate the leftover dimer WFs

in the outermost layers in the topological phase, the edge

polarizations are evaluated from edge tiles containing an odd

number of WFs, while in the trivial phase that number is

even. The values of P T
x , P R

y , and Q I
xy are listed in Table VII.

These are all very small, of order 10−5 e and 10−4 e in the

trivial and topological phases, respectively, as a consequence

of the small δ. The fourth contribution QTR vanishes in the

trivial phase and is e/2 in the topological phase. Summing

all four contributions, we find excellent agreement with the

directly calculated macroscopic corner charge in both phases.

7Note that here, if we had taken a model with ionic charge 2e at

the origin from the outset, we would have needed to use the split-

basis approach discussed below Eq. (17), yielding the same pattern

of fractional charges. This is not the case for the trivial phase.

TABLE V. Bulklike Wannier functions in the home unit cell

of the BBH model in the trivial phase. The Wannier functions are

constructed using the projection method, choosing as trial orbitals

|g1〉 and |g2〉 the lowest-energy eigenstates of the isolated red-square

tile in Fig. 9(a). |φR j〉 is the basis orbital located at site R + τ j , given

in reduced coordinates.

R + τ j 〈φR j |w(p)

int,1〉 〈φR j |g1〉 〈φR j |w(p)

int,2〉 〈φR j |g2〉

( 1

6
, 1

6
) 0.67899 0.70694 0 0

(− 1

6
,− 1

6
) 0 0 0.67899 0.70694

(− 1

6
, 1

6
) −0.48037 −0.50012 0.48037 0.50012

( 1

6
,− 1

6
) −0.48037 −0.50012 −0.48037 −0.50012

( 5

6
, 1

6
) −0.12012 0 −0.03317 0

( 1

6
, 5

6
) −0.12012 0 0.03317 0

(− 5

6
,− 1

6
) 0.03317 0 −0.12012 0

(− 1

6
,− 5

6
) 0.03317 0 0.12012 0

( 5

6
,− 1

6
) 0.10844 0 0.06157 0

(− 1

6
, 5

6
) −0.10844 0 0.06157 0

(− 5

6
, 1

6
) 0.06157 0 −0.10844 0

( 1

6
,− 5

6
) 0.06157 0 0.10844 0

( 1

6
, 7

6
) −0.05019 0 −0.00333 0

( 7

6
, 1

6
) −0.05019 0 0.00333 0

(− 1

6
,− 7

6
) 0.00333 0 −0.05019 0

(− 7

6
,− 1

6
) −0.00333 0 −0.05019 0

Thus, in both cases, the small deviation from the quantized

Qc value caused by the staggered onsite potential is precisely

reproduced by the ribbon calculations.

2. Corner charge pumping cycle

In this section, we carry out calculations of the interior

quadrupole and edge polarizations, and compare the predicted

corner charge with the directly calculated one, for the same

adiabatic cycle

(δ, λ, γ ) =

{
(cos(t ), sin(t ), 0) 0 < t � π

(cos(t ), 0, | sin(t )|) π < t � 2π
(58)

considered previously by BBH [4,5]. This cycle is somewhat

artificial; in that one or the other of the hoppings γ or λ is al-

ways zero. However, to make contact with previous literature,

we apply our method to the same system here.

At t = 0 the system starts in a state in which the sites are

completely decoupled, with only black sites in Fig. 9 occupied

as a result of the positive δ. In the interval 0 < t < π , a set

of positive λ hoppings are first turned on and then turned

off on the edges of the large blue squares in Fig. 9. In this

interval, the system takes the form of a molecular crystal with

“molecules” centered on the large blue squares. At t = π/2

where δ vanishes, the symmetry suffices to define the topo-

logical index, and the system is in the nontrivial phase. Once t

passes π/2 the sign of δ is reversed, so that at t = π we again

reach a state of completely decoupled sites, but now with only

the open-circle sites occupied. The second half of the loop

is similar, except that now the γ hoppings are progressively
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TABLE VI. Same as Table V but for the topological phase of the

BBH model. The trial orbitals |g1〉 and |g2〉 are now chosen as the

lowest-energy eigenstates of the isolated blue-square tile in Fig. 9(b).

R + τ j 〈φR j |w(p)

int,1〉 〈φR j |g1〉 〈φR j |w(p)

int,2〉 〈φR j |g2〉

( 1

6
, 1

6
) 0.69081 0.70686 0 0

( 5

6
, 5

6
) 0 0 0.69081 0.70686

( 5

6
, 1

6
) −0.48885 −0.50018 0.48885 0.50018

( 1

6
, 5

6
) −0.48885 −0.50018 −0.48885 −0.50018

(− 1

6
, 1

6
) −0.09152 0 −0.02753 0

( 1

6
, − 1

6
) −0.09152 0 0.02753 0

( 7

6
, 5

6
) 0.02753 0 −0.09152 0

( 5

6
, 7

6
) 0.02753 0 0.09152 0

( 5

6
, − 1

6
) −0.08424 0 0.04535 0

(− 1

6
, 5

6
) 0.08424 0 0.04535 0

( 1

6
, 7

6
) 0.04535 0 0.08424 0

( 7

6
, 1

6
) 0.04535 0 −0.08424 0

(− 5

6
, 1

6
) −0.04049 0 0.00160 0

( 1

6
, − 5

6
) −0.04049 0 −0.00160 0

( 11

6
, 5

6
) −0.00160 0 −0.04049 0

( 5

6
, 11

6
) 0.00160 0 −0.04049 0

turned on and off, so that the system is molecular once more

but centered on the small red squares. The topology is again

defined at t = 3π/2, now being trivial, and the system returns

to its starting point at t = 2π .

We use two different sets of trial functions for the Wannier

projection during the first and second halves of the cycle. For

t ∈ [0, π ] we adopt the trial functions of the topological state,

while for t ∈ [π, 2π ] we choose those of the trivial state, as

described in the previous subsection and detailed in Tables VI

and V, respectively. We thus have a gauge discontinuity at

t = π and again at t = 2π . For a mesh of t values, we com-

pute Q I
xy, P T

x , and P R
y , and compare the prediction of Eq. (14)

with the directly computed macroscopic corner charge of a

TABLE VII. Individual contributions and total predicted macro-

scopic corner charge Qc in Eq. (14), compared with a direct

calculation, for the trivial and topological phases of the BBH model

as depicted in Fig. 8(b). In both cases, the symmetries that quantize

the corner charge are weakly broken by a staggered onsite potential

(see main text). The values of P T
x , P R

y , and Q I
xy are obtained from

ribbon calculations, while QTR is inferred mod e from the tiling

procedure. The last line reports the bare corner charge computed by

summing over the top-right quadrant.

Trivial Topological

P T
x 0.854 × 10−5 −44.077 × 10−5

P R
y 0.854 × 10−5 −44.077 × 10−5

Q I
xy 4.517 × 10−5 18.412 × 10−5

QTR 0 0.5

Qc (predicted) 6.225 × 10−5 0.5 − 69.743 × 10−5

Qc (direct) 6.225 × 10−5 0.5 − 69.743 × 10−5

Qbare
c 1.602 × 10−5 0.5 − 84.817 × 10−5

0 π/2 π 3π/2 2π

t

−0.5

0.0

0.5

1.0

Q
c

Prediction

Direct calculation

FIG. 10. Evolution of the corner charge Qc (in units of e) during

the adiabatic pumping cycle described by Eq. (58). The ribbon cal-

culations only predict Qc modulo e, so three branches are plotted vs t

as the blue dots. The evolution of the actual corner charge of a finite

flake is indicated by the red circles.

large but finite flake. The results are presented in Fig. 10.

Since the corner charge is predicted only mod e, we plot

several branches corresponding to the periodicity of e along

the vertical axis as blue dots, and the directly calculated corner

charges are the red circles.

We confirm that Qc = e/2 and zero (mod e) at π/2 and

3π/2, respectively, where the topology is sharply defined.

However, we find that most of the pumping of the corner

charge occurs in the first half of the cycle. That is, Qc grows

from e/18 to 17e/18 in this interval, for an increase of 8e/9,

while the growth in the second half of the cycle is only by the

remaining amount e/9.

Note that the gauge discontinuities at t = π and 2π intro-

duce no discontinuities in the predicted value of Qc. However,

there are discontinuities in the individual values of Q I
xy, P T

x ,

and P R
y . In the first half of the cycle, Q I

xy comes from the

larger blue-square tile and changes from 2e/9 to −2e/9, while

in the second half Q I
xy comes from the twice-smaller red-

square tile and grows from −e/18 to e/18. In the first half

cycle, P T
x = P R

y each increase from −e/3 to e/3, while in the

second half P T
x and P R

y are identically zero. Finally, our tiling

is such that QTR = e/2 (mod e) in the first half cycle and zero

(mod e) in the second half. Adding the various contributions

according to Eq. (14), we find that the total Qc evolves as

described in the previous paragraph.

Without a knowledge of the population of WFs in the cor-

ner tile, we can only make predictions “mod e” as done above.

In particular, we cannot predict precisely when the corner

charge will make the discontinuous jump needed to allow it

to return to its initial state at the end of the pumping cycle.

However, by inspecting the Hamiltonian, we can anticipate

that a WF will be present in the top-right tile in the interval

π/2 < t < π , when the open circle at top right in Fig. 9(b)

has negative energy but not otherwise. Making use of this

additional information about QTR, we expect the discontinuity

in the macroscopic corner charge to occur at t = π/2. We then
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correctly predict not only the value mod e, but also the correct

branch choice, of Qc over the entire cycle.

A comparison of our Fig. 10 with Fig. 37 of Ref. [5], which

also compares predictions from ribbons with a computed cor-

ner charge, shows important differences. In their case, all the

change in the corner charge occurs in the first half cycle,

when it evolves from 0 to e, and there is no change in the

second half cycle. While the computed corner charges agree

with the predictions in their theory, as they do in ours, it

is important to keep in mind that the two approaches differ

in crucial ways. (i) In Ref. [5], BBH do not compute the

macroscopic corner charge defined by Eq. (43); instead, they

compute the total charge of the upper-right quadrant, that

is, the bare corner charge of Eq. (45). In fact, since they

did not specify the positions of the orbitals, the macroscopic

corner charge is ill determined in their case. For the triv-

ial and topological cases discussed in Sec. V C 1, we obtain

the values of Qbare
c presented in the last row of Table VII,

which are clearly very different from the macroscopic corner

charges.8 (ii) Their edge polarizations pedge are not defined in

the same way as ours. For the specified cycle, their pedge is

defined in such a way that d pedge/dt corresponds to the flow

of current into a quadrant, while our dP/dt corresponds to

the polarization current associated with the changing dipole

moments of the edge tiles in the skin region. (iii) In our

theory, in order to correctly predict the macroscopic corner

charge, we also insist that bulk quadrupole and surface dipole

contributions are computed in a common Wannier gauge. As

a result of these differences, each theory obtains internally

consistent results, although we argue that ours is more phys-

ical in that it predicts a macroscopically observable corner

charge.

VI. GAUGE-CONSISTENT NESTED WANNIER

CONSTRUCTION

In the previous section, we demonstrated that a naive

application of the hybrid Wannier approach, in which the

transverse-first nested Wannier construction is applied to rib-

bons of both orientations, is not gauge consistent, whereas an

alternative projection construction does result in a consistent

gauge. Here, we demonstrate a second successful method for

generating a consistent gauge, this time without the need for

providing trial functions. We do this using the nested Wan-

nier constructions described in Secs. IV B 2 and IV B 3, but

now insuring that the two localization steps are executed in

the same order for both the x-finite and y-finite ribbons. In

other words, one should apply the transverse construction of

Sec. IV B 2 to one ribbon and the longitudinal construction of

Sec. IV B 3 to the other.

8If all sites are located precisely at the origin in the middle of the

unit cell, the bare and macroscopic corner charges become equal.

This follows because W (x, y) in Eq. (44) is identical for all electronic

and ionic charges in the cell, and the total charge of the cell vanishes

both for deep interior cells and for skin cells far from the corners.

Thus, Eq. (44) is equivalent to integrating the charge density over a

quadrant.

TABLE VIII. Individual contributions and total predicted macro-

scopic corner charge Qc in Eq. (14), compared with a direct

calculation, for the four-band model of Fig. 6. The ribbon calcu-

lations were performed using a gauge-consistent nested Wannier

construction where we first Wannierize along y and then along x

(middle column) or vice versa (right column).

Wannierize y then x Wannierize x then y

(10−2 e) (10−2 e)

P T
x 0.300250 0.296029

P R
y 0.472198 0.476420

Q I
xy −3.756016 −3.756016

Qc (predicted) −2.983567 −2.983567

Qc (direct) −2.983567 −2.983567

Let us apply this procedure to the four-band model of

Fig. 6, for which we obtained inconsistent gauges in Sec. V B

by applying the transverse construction to both ribbons. We

choose to localize first along y and then along x. Thus we

apply the same transverse construction as before to the y-finite

ribbon and apply the longitudinal construction to the x-

finite ribbon. We find that deep inside the two ribbons the

resulting WFs are identical: Within numerical accuracy, their

site amplitudes are the same and the quantum distance be-

tween them vanishes. We then repeat the entire procedure but

localizing first along x and then along y, and again we arrive

at the same interior gauge for both ribbons (but different from

the previous one).

Table VIII shows the individual contributions and total

predicted corner charge in the two nested Wannier gauges.

The predicted corner charges are the same in both, and they

agree perfectly with the actual corner charge of a finite flake.

Note that while the edge polarizations are different between

those two gauges, the interior quadrupoles are identical. The

reason is that Q I
xy is a symmetric tensor, and hence it remains

unchanged upon reversing the order of the x and y localization

steps.

We have also tested this gauge-consistent nested Wannier

approach for the BBH model [4,5], and we again find that the

corner charge is correctly predicted. The implementation is

straightforward following the example of the four-band model

discussed above.

Before concluding the discussion of this method, we note

that it is possible to bypass the second step of the longitudinal-

first construction. Briefly, again working in the y-first context,

we carry out only the first step of the y-first construction

for the x-finite ribbon. We identify the total charge ρ�y
(r)

of the ions and WFs associated with any one of the single-

cell-high layers �y and compute its y-dipole density d (y)(x) =∫
y ρ�y

(x, y) dy. This quantity is independent of �y, and let-

ting d̄ (y)(x) be its window average in the x direction, we

note that d̄ (y)(x) vanishes except near the edges of the rib-

bon, and its integral over the right skin region gives Q I
xy +

P R
y . Adding this to the P T

x obtained from the transverse-

first nested Wannier construction for the y-finite ribbon then

gives the correct corner charge as before. Nevertheless, we

recommend applying the two-step nested procedure to both

ribbons, as this increases the reliability of the method by
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allowing a cross check on the equivalence of the two sets

of WFs.

VII. DISCUSSION

Several generalizations of our work remain to be devel-

oped. Our current formulation is trivially extended to the case

of broken time-reversal symmetry, and the presence of spinor

electrons entails no special difficulty. The case of nonrectan-

gular crystals and corner angles other than 90◦ can be treated

following the methods of Ref. [15]. By contrast, generaliza-

tions to topological systems, such as 2D Chern insulators or

Z2-odd quantum spin Hall insulators, do not look straightfor-

ward. In these cases, metallic edge states are topologically

protected, interfering with any natural definition of edge po-

larization. Finally, while we have focused here on the case

of low-symmetry systems such that the corner charge is not

quantized, further exploration of the connections to the the-

ory of higher-order topological insulators in higher-symmetry

systems is desirable.

Generalizations to higher dimensions are easily antici-

pated. The line of intersection of two surface facets of a 3D

crystal, generally known as a “hinge,” carries a linear charge

density that can be computed via an elementary extension

of the present methods, either by Wannierizing in all three

dimensions or by Wannierizing in 2D at each k‖ (wave vector

along the hinge) and averaging over k‖. The prediction of the

corner charge in 3D, while perhaps more difficult in practice,

should follow the same principles outlined here. That is, one

would need to compute the octupoles of interior bulk tiles far

from any surfaces, the quadrupoles of surface tiles far from

any hinges, and the dipoles of hinge tiles. While these will not

be individually gauge invariant, their sum will be, allowing

for a prediction of the corner charge mod e. So, for example,

a calculation of three rectangular rod geometries, one each

extending along x̂, ŷ, and ẑ, should provide all the needed

information.

Throughout this work we have assumed the presence of

bulk inversion symmetry so that the bulk cell can be chosen to

be free of an electric dipole moment. However, other symme-

tries can also force a nonpolar point group. In 2D these would

be the C6, C4, and C3 rotations (C2 is equivalent to inversion in

2D). All of these Cn symmetries force q I
xy to vanish and result

in quantized corner charges for a crystallite in the shape of a

regular n-gon. However, there could be cases of inequivalent

edges meeting, as for example a 90◦ corner of a material

with bulk C3 symmetry. In such cases the adjoining edges are

inequivalent and could result in a generic corner charge. More

opportunities arise for nonpolar but noncentrosymmetric point

groups in 3D. It should be straightforward to generalize our

theory to such cases.

We end this section with a discussion of connections to

the theory or orbital magnetization, which we already briefly

invoked to argue that surface polarization is not a physical

observable. We argued that if it were, its time derivative ought

to correspond to a physical flow of current at the edge of the

2D sample. However, for a time-reversal broken system with

a nonzero orbital magnetization, a steady current circulates

around the edges of the sample, which is inconsistent with a

uniquely defined edge polarization. By contrast, it is clear that

the edge current is a physical observable; it can be evaluated

as an expectation value of a Hermitian operator in the usual

way and is fully gauge invariant.

There is a strong formal similarity between the theory

presented here and that developed by Thonhauser et al. [31]

and Ceresoli et al. [32] to derive the modern-theory expression

for orbital magnetization using the Wannier representation. In

fact, that work made use of an identical decomposition of

the Wannier functions of a large but finite flake into those

associated with interior and skin regions, and identified two

contributions to the orbital magnetization. One, denoted as the

“local circulation,” was identified with the internal circulation

of charge in a deep-interior WF. The second, labeled “itinerant

circulation,” arises from edge currents defined as the expecta-

tion value of the current operator traced over WFs in the skin

region. The current of this type on the right-hand edge, labeled

as Iy in Ref. [31] and denoted as I R
y henceforth, is just the time

derivative of the edge polarization P R
y defined here. Indeed

the expression for I R
y in Eq. (9) of Ref. [31] takes the form of

a sum of contributions from hoppings that cross the boundary

between the interior and skin regions, just as our expression in

Eq. (38) for the change in P R
y under a gauge change depends

on lattice vectors R′ crossing that same boundary.

This is no accident. Since we are in the ground state, the

unitary time-evolution operator e−iHt/h̄ does not change the

occupied subspace, but it does modify the gauge by multi-

plying each energy eigenstate by a phase factor e−iEt/h̄. An

infinitesimal time step δt corresponds to an infinitesimal uni-

tary transformation in which the deep interior WFs change

by δ|0m〉 =
∑

R′n εR′,nm|R′n〉, using a notation consistent with

Eq. (30), with

εR′,nm = −i
δt

h̄
〈R′n|H |0m〉. (59)

Substituting into Eq. (38) and using Eq. (34), the upward-

flowing current I R
y = δP R

y /δt on the right edge of the sample

is

I R
y =

2e

ab

1

h̄

∑

R′
x>0

∑

nm

R′
x〈0m|y|R′n〉〈R′n|H |0m〉. (60)

In other words, time evolution within the occupied sub-

space generates a gauge evolution, and the changing gauge

drives a displacement of WF centers in the skin region that

corresponds precisely to the itinerant edge current I R
y . Equa-

tion (60) reproduces the expressions derived in Refs. [31,32]

for the single-band and multiband cases, respectively. The

(counterclockwise) itinerant-circulation contribution to the or-

bital magnetization is given by the average of I R
y on the right

edge and −I T
x on the top edge, while instead the difference

between I R
y and −I T

x (that is, I R
y + I T

x ) corresponds to a skin

contribution to the time rate of change of the top-right corner

charge. The latter is in fact independent of time, so this must

be exactly canceled by a contribution from the time depen-

dence of the interior-tile Wannier quadrupole, which is more

closely related to the local circulation in the orbital magne-

tization theory. These relationships indicate a deep formal

connection between the theory of orbital magnetization and

that of edge polarizations and corner charges presented here.

035147-18



QUADRUPOLE MOMENTS, EDGE POLARIZATIONS, AND … PHYSICAL REVIEW B 103, 035147 (2021)

VIII. SUMMARY

In summary, we have considered the case of a 2D cen-

trosymmetric insulator in which the corner charges are not

quantized by additional symmetries. Decomposing the large

but finite flake into bulk, skin, and corner regions, and intro-

ducing a tiling in this context, we have shown that the corner

charge can be written as a sum of a quadrupole contribution

associated with the bulk tiles, and two dipole contributions

associated with the two edges that meet at the corner. Having

introduced a Wannier representation to attach electron charges

to these tiles, we demonstrated that the bulk quadrupole and

two edge dipole contributions are not individually gauge in-

variant, although their sum is. As a consequence, we argue

that it is crucially important to adopt a common gauge for

the computation of all of these quantities in the two ribbon

geometries.

To verify the correctness of our approach, we have tested it

via calculations on three different tight-binding models. We

have demonstrated two different methods for arriving at a

consistent gauge for ribbons of both orientations, one based

on projection from trial functions and another based on a con-

sistently applied nested Wannier construction. We emphasize

that the macroscopically observable corner charge has to be

computed by an appropriate coarse-graining procedure and

not simply by counting charges in a quadrant of the sam-

ple. Having taken all these constraints into account, we have

demonstrated that the corner charge can indeed be computed

modulo e, to numerical accuracy, from calculations on two

ribbon geometries alone. We are hopeful that our work paves

the way toward the emergence of a deeper and more general

understanding of the intimate connections between bulk and

surface properties of crystalline materials.
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