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Abstract

Multivariate zero-inflated count data arise in a wide range of areas such as eco-
nomics, social sciences, and biology. To infer causal relationships in zero-inflated
count data, we propose a new zero-inflated Poisson Bayesian network (ZIPBN)
model. We show that the proposed ZIPBN is identifiable with cross-sectional
data. The proof is based on the well-known characterization of Markov equiva-
lence class which is applicable to other distribution families. For causal structural
learning, we introduce a fully Bayesian inference approach which exploits the
parallel tempering Markov chain Monte Carlo algorithm to efficiently explore the
multi-modal network space. We demonstrate the utility of the proposed ZIPBN
in causal discoveries for zero-inflated count data by simulation studies with com-
parison to alternative Bayesian network methods. Additionally, real single-cell
RNA-sequencing data with known causal relationships will be used to assess the
capability of ZIPBN for discovering causal relationships in real-world problems.

1 Introduction

This paper addresses causal structural learning problems for zero-inflated count data. While true
causality can only be determined using controlled experimentation (Gourévitch et al., 2006), statistical
methods are useful in generating testable causal hypotheses which can semi-automate and expedite
the causal discovery process. Bayesian networks (BNs) are popular approaches for causal structural
learning and inference (Pearl, 2009). However, BNs may not be identifiable with cross-sectional
data due to Markov equivalence class (MEC, Heckerman et al. 1995) in which all BNs encode the
same conditional independence assertions. This implies that without further assumptions, one cannot
differentiate BNs that belong to the same MEC.

Several approaches have been developed to address the identifiability issue of BNs. BNs for con-
tinuous data are often represented as sparse additive noise models. Under such representation, BNs
are identifiable if the noises are non-Gaussian (Shimizu et al., 2006), if the functional form of the
additive noise model is nonlinear plus very mild additional conditions (Hoyer et al., 2009; Zhang &
Hyvärinen, 2009), or if the noise variances are equal (Peters & Bühlmann, 2014). When the noises are
non-Gaussian (Shimizu et al., 2006), a BN is identifiable because it is equivalent to the independent
component analysis (ICA) and hence its identifiability theory applies. To learn the causal structure,
they extended the ICA algorithm with additional steps of rotation, normalization, and test-based
pruning. Hoyer et al. (2009) proposed to learn the structure of a nonlinear BN by testing whether the
noises are independent and showed that nonlinear BNs are identifiable for bivariate case. Zhang &
Hyvärinen (2009) further considered additional nonlinear effects of measurement errors and proposed
an ICA-based algorithm for bivariate BNs and a two-step approach (first identifying MEC by condi-
tional independence tests and then determining a unique BN with a similar approach in Hoyer et al.
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2009) for multivariate BNs. Peters et al. (2014) formally established the identifiability conditions for
general multivariate additive noise models and developed test-based and score-and-greedy-search
learning algorithms.

Identifiability of BNs for count data is less studied. Recent work by Park & Raskutti (2015) proposed
a Poisson BN and showed that it is identifiable based on the overdispersion properties of Poisson
BNs. Their learning algorithm consists of two steps: first obtaining an ordering of the variables with
overdispersion scoring and then estimating the causal structure given the ordering. By replacing
overdispersion score with moment ratio score, Park & Park (2019) extended Poisson BNs to the
generalized hypergeometric family which contains many count distributions such as binomial, Poisson,
and negative binomial.

This paper is motivated by causal structural learning for zero-inflated count data which arise in
a wide range of areas such as educational psychology (Fox, 2013), genomic experiments (Kang
et al., 2011), ecology (Barry & Welsh, 2002), behavior studies (Hua et al., 2014), and economics
(Staub & Winkelmann, 2013). Particularly, we consider an application in reverse-engineering causal
gene regulatory networks from single-cell RNA-sequencing (scRNA-seq) data. scRNA-seq data are
zero-inflated due to the detection limit of the current techniques in capturing the low amounts of
mRNA in individual cells. Standard distributions such as Gaussian and Poisson cannot adequately
capture the excessive zeros in zero-inflated count data.

To explicitly account for zero-inflation, we propose a zero-inflated Poisson Bayesian network (ZIPBN)
model. While generalized hypergeometric BNs are a fairly general class of discrete BNs, the proposed
ZIPBN is not a special case. We establish the identifiability theory for the proposed ZIPBN without
assuming causal faithfulness. The proof is based on the characterization of MEC, and is applicable to
other distribution families. We introduce a fully Bayesian learning approach based on Markov chain
Monte Carlo (MCMC) to explore the network space. Compared to the vast majority of the existing
casual BN learning algorithms, the proposed Bayesian approach has the advantage of being able to
naturally quantify the uncertainties associated with the estimated networks via posterior distributions.
Moreover, unlike heuristic/greedy search algorithms, MCMC is theoretically guaranteed to converge
to its stationary distribution (i.e., the targeted posterior distribution). The Bayesian formulation also
automatically guards against the multiplicity problem often experienced by test-based algorithms.
Practically, we adopt parallel tempering technique (Geyer, 1991) for efficient exploration of the
multi-modal network space. We demonstrate the utility of the proposed ZIPBN in causal discoveries
using synthetic data and real scRNA-seq data with known causal relationships.

2 Zero-inflated Poisson Bayesian networks

2.1 Sampling model

Let X = {X1, . . . , Xp} denote a set of p random zero-inflated counts, of which the causal relation-
ships will be investigated with BNs. A BN B = (G,✓) consists of two parts: a directed acyclic graph
(DAG) G and a set of parameters ✓ associated with the DAG. A DAG G = (V,E) is defined by a set
of nodes V = {1, . . . , p}, representing the random variables in X , and a set of arrows or directed
edges E = [ejk]j,k such that ejk = 1 if k ! j, representing causal relationships between the nodes.
Matrix E is also known as the adjacency matrix of graph G. Node k is said to be a parent of j if
k ! j. Denote the set of all the parents of j by pa(j) = {k 2 V : k ! j}. For example, in Figure
1(d), pa(2) = {1, 3} and pa(1) = ;. DAGs allow no directed cycle (i.e., one cannot return to the
same node by following the arrows) and the acyclic assumption leads to a convenient factorization of
the joint distribution of X into a product of conditional distributions,

p (X) =
pY

j=1

p
�
Xj

��Xpa(j)

�
, (1)

where Xpa(j) = {Xk : k 2 pa(j)}. To explicitly account for excessive zero counts, we assume each
conditional distribution in the factorization (1) to be a zero-inflated Poisson regression,

Pr
�
Xj = x

��Xpa(j)

�
=

(
⌘j + (1� ⌘j) exp (��j) if x = 0

(1� ⌘j)
exp(��j)�

x
j

x! if x > 0,
(2)
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where log{⌘j/(1 � ⌘j)} =
P

k2pa(j) ↵jkXk + �j and log(�j) =
P

k2pa(j) �jkXk + �j . The
parameter ⌘j accounts for the extra zeros in addition to the zeros that arise from the Poisson
component, while the parameter �j is the rate parameter of the Poisson component. It is clear from
(2) that k /2 pa(j) if and only if ↵jk = �jk = 0. Therefore, learning the graph structure is equivalent
to finding which pairs (↵jk,�jk) are (not) zeros. Let ↵ = {↵jk}j,k,� = {�jk}j,k, � = {�j}j ,� =
{�j}j , and let ✓ = {↵,�, �,�}. Models (1) and (2) define the sampling distribution of the proposed
ZIPBN parameterized by the graph structure E and the associated parameters ✓.

2.2 Identifiability

BNs in the same MEC are generally not distinguishable from each other as they have exactly the same
Markov properties (i.e., conditional independence assertions). For instance, despite the seemingly
different graph structures, the BNs in Figure 1(a)-(c) encode the same conditional independence of
X1 and X3 given X2 whereas the BN in (d) encodes the marginal independence of X1 and X3. No
additional independence can be read off from any of these BNs. What it implies in graph structural
learning is that BNs are only identifiable up to MEC without further distributional assumptions.
For example, the well-known nonparametric PC algorithm (Spirtes et al., 2000) only outputs the
best MEC rather than individual BNs. However, even with additional distributional assumptions,
BNs may still be non-identifiable due to distribution equivalence (Spirtes & Zhang, 2016): two BNs
B1 = (G1,✓1) and B2 = (G2,✓2) are distribution equivalent if for any parameter values ✓1 of B1

there exists parameter values ✓2 of B2 that represents the same distribution, and vice versa. Gaussian
and binary BNs are two examples of distribution equivalent BNs and hence are non-identifiable.

The identifiability issue of discrete BNs has been addressed in prior work (Park & Raskutti, 2015;
Park & Park, 2019) for Poisson and generalized hypergeometric family under the causal sufficiency

assumption that all relevant variables have been observed. However, the identifiability property of
the ZIPBN has not been studied and we will show that the proposed ZIPBN is identifiable with a
different proof technique from those in prior work, which can also be used to prove identifiability for
other distribution families. Our proof relies on a well-known characterization of MEC, i.e., Markov
equivalent BNs must have the same skeleton – the skeleton of a BN is the undirected graph resulting
from converting all directed edges to undirected edges.
Theorem 1. Assume causal sufficiency, ZIPBNs are identifiable (i.e., no two ZIPBNs are distribution

equivalent).

The main idea behind the proof is to show that any two Markov equivalent ZIPBNs B1 = (G1,✓1)
and B2 = (G2,✓2) are not distribution equivalent. Without loss of generality, we assume variables
are sorted according to the perfect ordering of G1 so that if k ! j then k must appear before j.
For example, the BN in Figure 1(a) is complied with the perfect ordering whereas those in Figures
1(b)-(d) are not. We first show that the parent set pa(p) of the last node p has to be identical in G1

and G2 if they have the same skeleton and they are distribution equivalent. Then we use mathematical
induction to show that this is true for any node and therefore G1 and G2 have to be identical. The
detailed proof is provided in the Supplementary Material. As an illustration of the generality of our
proof, we adapt it for Poisson BN (different from that in Park & Raskutti 2015) which is shown in the
Supplementary Material as well.

!" !#

!$

!" !#

!$

!" !#

!$

!" !#

!$

(a) (b) (c) (d)

Figure 1: Examples of Bayesian networks with three nodes. The BNs in (a)-(c) are Markov equivalent
and form a Markov equivalence class (X1 ? X3|X2). The BN in (d) forms another Markov
equivalence class (X1 ? X3).

Note that we do not assume causal faithfulness which is adopted by many existing BN learning
algorithms (Chickering, 2002; Peters & Bühlmann, 2014). A distribution p(·) is faithful to the causal
graph G if G encodes all the conditional independencies in p(·). Faithfulness can be violated with a
limited sample size (Uhler et al., 2013) or in an equilibrium-maintaining system such as a biological
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system. While both Gaussian and multinomial BNs can have accidental cancellation of positive
and negative effects and therefore become unfaithful, the proposed ZIPBN does not allow such
cancellation because of its count nature; also see Park & Park (2019).

2.3 Prior model

In this section, we introduce prior distributions of E and ✓ which allow for a fully Bayesian learning
approach to infer sparse ZIPBN.

Prior of E. We assume a Bernoulli prior for each edge ejk with edge-inclusion probability ⇢ subject
to the constraint that the resulting graph G is DAG,

p(E|⇢) = z(⇢)�1
Y

j 6=k

⇢ejk(1� ⇢)1�ejkI(G 2 D), (3)

where I(·) is a binary indicator function (=1 if the input is true and 0 otherwise), D is the collection
of all DAGs with p nodes, and z(⇢) is the normalizing constant.

A hyperprior proportional to the product of a beta distribution and the normalizing constant z(⇢) is
defined for the edge-inclusion probability ⇢:

p(⇢) / z(⇢)⇢a⇢�1(1� ⇢)b⇢�1. (4)

Including z(⇢) in the prior of p(⇢) serves to cancel out z(⇢)�1 in (3) so that the full conditional of ⇢
is beta distribution. Similar cancellation trick has been used and thoroughly investigated in Bayesian
graphical lasso (Wang et al., 2012).

Bayesian structural learning has a built-in penalty (also known as Bayesian Ockham’s razor) for
network complexity naturally induced by marginal likelihood with ✓ integrated out (Jefferys & Berger,
1992). Moreover, the beta-like prior of ⇢ allows for automatic multiplicity control in a way similar to
beta prior for linear regression model (Scott & Berger, 2010). The additional multiplicity penalty
is contained in the marginal prior of E (the analytical integration is provided in the Supplementary
Material),

p(E) / B

0

@
X

j 6=k

ejk + a⇢,
X

j 6=k

(1� ejk) + b⇢

1

A I(G 2 D), (5)

where B(·, ·) is the beta function. Unlike the penalty induced by the marginal likelihood, the multi-
plicity penalty increases with the number of variables p and hence guards against false discoveries as
graph size increases. For example, the marginal prior (5) favors the empty graph over a graph with
one edge by a factor of p2 � p when a⇢ = b⇢ = 1 which clearly increases in p.

Prior of ✓. Conditional on the graph structure E, we assume a spike-and-slab prior on the edge
strength (↵jk,�jk). Spike-and-slab prior is a two-component mixture distribution. The first com-
ponent is a bivariate normal distribution indicating the presence of a significant causal relationship
ejk = 1, while the second component is a point mass at 0 = (0, 0) representing a missing edge
ejk = 0. Let N2(0,P�1) denote a centered bivariate normal density with precision matrix P and let
�0 denote the Dirac measure at 0. Then the spike-and-slab prior is given by,

(↵jk,�jk)|ejk, ⌧1, ⌧2 ⇠ ejkN2(0,P
�1) + (1� ejk)�0 for j 6= k,

where P = diag(⌧1, ⌧2) is a diagonal matrix.

For the intercepts �j and �j , we assign normal priors �j |⌧3 ⇠ N(0, ⌧�1
3 ) and �j |⌧4 ⇠ N(0, ⌧�1

4 ),
where ⌧3 and ⌧4 are the precision parameters. That is, the intercepts are not subject to selection.
Finally, we assume that ⌧` follows a gamma distribution, ⌧` ⇠ gamma(a⌧ , b⌧ ) for ` = 1, 2, 3, 4, to
complete the hierarchical formulation of our model.

2.4 Posterior inference

The sampling distribution (Section 2.1) and the prior distribution (Section 2.3) will be combined as
posterior distribution,

⇡(E,✓, |X) / p(X|E,✓)p(✓|E, ⌧ )p(E|⇢)p(⌧ )p(⇢), (6)
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which reflects one’s updated belief regarding the unknown graph structure E, the associated parame-
ters ✓, and hyperparameters  = {⇢, ⌧} with ⌧ = {⌧1, ⌧2, ⌧3, ⌧4}. The posterior distribution enables
us to not only obtain a point estimate of the structure E but also naturally quantify the associated
uncertainties through e.g., the posterior probability of edge inclusion p(ejk = 1|X).

Since the posterior distribution in (6) is analytically intractable, we use an MCMC sampler to draw
posterior samples. The space of the causal structure E is discrete and high dimensional, resulting in a
multi-modal posterior distribution. MCMC samplers relying on local moves such as Gibbs samplers
are easily trapped in local modes, which yields inefficient exploration of the network space. To
alleviate the multi-modal issue, we design a parallel-tempered MCMC (Geyer, 1991).

Specifically, we run M Markov chains in parallel with different, but related, target distributions
⇡1, . . . ,⇡M . These target distributions are defined as fractional power of the posterior distribution
⇡m / ⇡(E,✓, |X)1/Tm for m = 1, . . . ,M where 1 = T1 < T2 < · · · < TM are a sequence of
increasing “temperatures". Clearly, the first target distribution ⇡1 = ⇡(E,✓, |X) with the lowest
temperature T1 = 1 (the cold chain) is our desired posterior distribution. The parallel tempering
technique utilizes the other M � 1 heated chains to avoid being trapped in local modes. This is
because the fractional power (for temperature Tm > 1) flattens the distribution ⇡m, which makes it
easier to move between local modes and explore the multi-modal network space. At each iteration
of the MCMC, we perform one of the two updating steps, a swapping step with probability ps or a
Gibbs step with probability 1� ps.

Swapping. We randomly pick two chains ` and m and propose to swap their states. The swapping is
accepted with probability min{1, Rs} where Rs is the Metropolis-Hasting (MH) acceptance ratio,

Rs =
⇡(E`,✓`, `|X)1/Tm⇡(Em,✓m, m|X)1/T`

⇡(E`,✓`, `|X)1/T`⇡(Em,✓m, m|X)1/Tm
,

where the subscript of each parameter indicates which chain it comes from. The swapping helps
chains with lower temperatures mix better, but induces dependence across the chains which makes
each chain no longer Markov. However, the M chains together form a Markov chain with the target
distribution ⇧ = ⇡1 ⇥ · · ·⇥ ⇡M . The Monte Carlo samples from the cold chain target the marginal
distribution ⇡1 of ⇧ and therefore the right posterior distribution.

Gibbs. We update all the parameters E,✓ = {↵,�, �,�}, and  = {⇢, ⌧} in each chain inde-
pendently. The Metropolis-within-Gibbs approach is employed to update the causal structure E
and model parameters ✓, while the hyperparameters  are updated based on their full conditional
distributions. We proceed with the sequence: (i) [E,✓ |  ], (ii) [✓ | E, ], and (iii) [ | E,✓].

(i) [E,✓ |  ]. When updating E, we need to jointly update ✓ at the same time because a change in
E alters the dimension of ✓. Let E? and ✓? = {↵?,�?, �?,�?} denote new parameter values that
we propose. They are accepted with probability min{1, Rm

E} with

Rm
E =

{p(X|E?,✓?)p(✓?|E?, ⌧ )p(E?|⇢)}1/Tmq(E,✓|E?,✓?)

{p(X|E,✓)p(✓|E, ⌧ )p(E|⇢)}1/Tmq(E?,✓?|E,✓)
,

where q(· | ·) denotes a proposal density. The specific form of the proposal is obtained by randomly
selecting one of the following two schemes with equal probabilities.

1. Birth or death: For j 6= k, update one edge ejk at a time jointly with (↵jk,�jk, �j , �j). We
propose a new state e?jk of ejk, either from 0 to 1 (birth of an edge) or from 1 to 0 (death
of an edge). If the resulting E? contains a directed cycle, go to next step. If e?jk = 1, we
generate ↵?

jk and �?
jk from independent normal distributions centered at zero; otherwise we

set ↵?
jk = �?

jk = 0. New states (�?j , �?
j ) are proposed using Gaussian random walks.

2. Reversal: Update (ejk, ekj ,↵jk,↵kj�jk,�kj , �j , �k, �j , �k) for each (j, k) 2 {(j, k) :
ejk = 1} sequentially. We form new states (e?jk, e

?
kj) by flipping ejk from 1 to 0 and

ekj from 0 to 1 (reversal of an arrow). If it creates a directed cycle, go to next step. Other-
wise, we propose ↵?

kj and �?
kj from independent centered normal distributions with and set

↵?
jk = �?

jk = 0. Gaussian random walks are used to generate new states (�?j , �?k, �
?
j , �

?
k).

(ii) [✓ | E, ]. Conditional on E, we update ↵ through Gaussian random walk. We pro-
pose a new state ↵?

jk from the normal distribution centered at ↵jk and accept it with
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min


1,
n

p(X|E,↵?,�,�,�)p(↵?|E)
p(X|E,↵,�,�,�)p(↵|E)

o1/Tm
�

for each (j, k) such that ejk = 1. Parameters �, �,�

are updated in a similar way.

(iii) [ | E,✓]. The precision parameters ⌧ are drawn from their full conditional distributions, ⌧1 ⇠
gamma(

P
j 6=k ejk/2+a⌧ ,

P
j 6=k ↵

2
jk/2+ b⌧ ), ⌧2 ⇠ gamma(

P
j 6=k ejk/2+a⌧ ,

P
j 6=k �

2
jk/2+ b⌧ ),

⌧3 ⇠ gamma(p/2 + a⌧ ,
P

j �
2
j /2 + b⌧ ), and ⌧4 ⇠ gamma(p/2 + a⌧ ,

P
j �

2
j /2 + b⌧ ). Likewise, ⇢ is

sampled from its full conditional distribution, beta(
P

j 6=k ejk + a⇢,
P

j 6=k(1� ejk) + b⇢).

For each Markov chain, the worst-case per iteration cost is O(np2) mainly due to the likelihood
evaluation, which is reduced to O(max(n, p)p) for sparse networks (i.e., |E| = O(p)). The complete
MCMC algorithm is provided as pseudo-code in Algorithm 1. In the algorithm, parfor indicates
a parallelizable loop, while for indicates a sequential loop. The code implementing the MCMC is

Algorithm 1 Parallel-Tempered MCMC for ZIPBN
1: Input: data X , hyperparameters (a⇢, b⇢, a⌧ , b⌧ ), temperatures 1 = T1 < · · · < TM , swapping

probability ps, and number of iterations N
2: Initialize all the parameters for every chain {E(0)

m ,✓(0)m , (0)
m }Mm=1

3: for i in 1, . . . , N do

4: Draw a Bernoulli random variable u with probability ps
5: if u = 1 then

6: Perform a swapping step to swap {E(i)
m ,✓(i)m , (i)

m } and {E(i)
` ,✓(i)` , (i)

` }
7: else

8: parfor m in 1, . . . ,M do

9: Perform a Gibbs step for chain m to update E(i)
m ,✓(i)m , (i)

m

10: end parfor

11: end if

12: end for

13: Output: Monte Carlo samples from the cold chain, {E(i)
1 ,✓(i)1 , (i)

1 }Ni=1

available in the Supplementary Material.

At the completion of MCMC, we retain the samples from the cold chain,

E(1),✓(1), (1), . . . ,E(N),✓(N), (N),

where the superscript is the sample index. To infer the causal structure E, we compute the marginal
posterior inclusion probabilities pjk = p(ejk |X) ⇡ N�1

PN
i=1 ejk. For a point estimate bE = [bejk],

we set bejk = I(pjk > c) where c is a pre-specified cutoff. We set the cutoff at c = 0.5 in the
simulation for simplicity. In the application, the cutoff is chosen to control the posterior expected
false discovery rate (Müller et al., 2006). Posterior estimates of ✓ and  can be easily obtained
conditional on bE.

We remark that MCMC-based BN learning algorithm has at least two prominent advantages over
heuristic/greedy search algorithms (e.g., Chickering (2002)). First, the posterior inference based on
the proposed MCMC allow us to naturally quantify the uncertainties associated with the estimated
causal networks. The uncertainty quantification is especially important in BN learning, as multiple
BNs may explain the data equally well with a limited sample size and hence point estimates are
often not satisfactory. Second, the convergence of MCMC algorithms requires a sufficient number of
MCMC iterations whereas the convergence of heuristic/greedy search algorithms often requires a
sufficiently large sample size. In practice, it is often infeasible and expensive to obtain a large enough
sample size relatively to the super-exponential size of DAG space. However, it is comparatively
much easier and cheaper to increase the size of MCMC. Additionally, the practical convergence of
MCMC can be monitored via various diagnostics, e.g., Gelman-Rubin’s potential scale reduction
factor (Gelman et al., 1992).
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3 Experiments

3.1 Simulations

We empirically evaluated the causal discovery of the proposed ZIPBN with synthetic data. We
simulated data under different samples sizes n 2 {250, 500, 1000} and different numbers of nodes
p 2 {25, 50, 75}. A sparse DAG was randomly generated with p edges and the causal structure was
assumed to be constant for each simulation setting. Given the DAG, we generated non-zero elements
of the edge-specific parameters (↵jk,�jk) from independent uniform distributions: ↵jk ⇠ U(0.3, 1)
and �jk ⇠ U(�1,�0.3). Likewise, the intercepts �j and �j were also generated uniformly �j 2
U(�2,�1) and �j 2 U(1, 2). These ranges were chosen so that the resulting observations were not
all zeros or extremely large values. The resulting observations have ⇠50% zeros. Each simulation
setting was repeated 30 times.

For comparison, we considered two alternative discrete BN learning algorithms: the OverDispersion
Scoring (ODS) algorithm for Poisson BNs (Park & Raskutti, 2015) and the Moments Ratio Scoring
(MRS) algorithm for the generalized hypergeometric BNs (Park & Park, 2019).

For the proposed ZIPBN, we used non-informative prior by setting the hyperparameters to be
(a⌧ , b⌧ ) = (0.01, 0.01) and (a⇢, b⇢) = (0.5, 0.5) which are commonly used in Bayesian variable
selection and have negligible influence on the posterior inference. We ran M = 10 parallel chains for
3, 000 iterations, of which the first 1, 500 iterations were discarded as burn-in. The temperatures were
chosen uniformly between 0 and 1 on the log-scale, i.e., log(Tm) = (m� 1)/9 for m = 1, . . . , 10.
The swapping probability ps was chosen to be 10%. To summarize the operating characteristics,
we calculated the true positive rate (TPR), the false discovery rate, and the Mattews correlation
coefficient (MCC) defined as

MCC =
TP ⇥ TN � FP ⇥ FNp

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP, TN, FP, and FN denote the true positives, true negatives, false positives, and false negatives,
respectively. MCC takes value between -1 and 1 with 1 being perfect selection and 0 being random
guess.

The operating characteristics of each scenario are summarized in Table 1. The proposed ZIPBN
consistently outperformed both ODS and MRS across scenarios, indicating the inadequacy of Poisson
and hyper-Poisson in modeling zero-inflated count data. Although MRS had similar, sometimes even
slightly higher, TPR compared to ZIPBN, FDR of MRS was always substantially higher than that of
ZIPBN, resulting in lower MCC. Additionally, as the network size increased, FDR of MRS increased
rapidly, while FDR of the proposed ZIPBN was much better controlled. This result demonstrated the
power of automatic multiplicity adjustment of our priors in (3)-(5). As expected, ODS did not work
well due to lack of flexibility in accommodating the zero-inflation. Note that as the sample size n
increases from 500 to 1, 000, the average operating characteristics of ZIPBN became slightly worse.
This is because larger sample size leads to peakier local modes which can be alleviated by increasing
the number of parallel chains or the number of MCMC iterations (results not shown).

Next, we performed additional simulations to assess ZIPBN under different percentages of zeros.
Three different sets of true parameters are produced to generate datasets having ⇠25%, ⇠50%, and
⇠75% zeros for n = 500 and p = 50. The simulation results are reported in Table 2. ZIPBN clearly
outperformed both ODS and MRS in every case. As the percentage of zeros increased up to ⇠75%,
the overall performance of ZIPBN did not deteriorate much while FDR of MRS was doubled.

Lastly, we tested robustness of ZIPBN on misspecified models. We considered (i) Poisson BN that
does not include a zero-inflation component and (ii) zero-inflated negative binomial (ZI-NegBin)
BN in which the Poisson distribution of ZIPBN is replaced by a more flexible negative binomial
distribution. Since Poisson BN is a special case of ZIPBN, we also tested the Bayesian inference
algorithm for Poisson BN by fixing ⌘j = 0 in the proposed MCMC, denoted by BayPBN hereafter.
Again, ODS and MRS were used as benchmarks. For Poisson BN, we generated the data with
n = 500 and p = 50 in the same way as before except that the zero-inflation probability ⌘j was
fixed at 0. For ZI-NegBin BN, we generated the data with ⇠ 50% zeros and dispersion parameters
uniformly drawn from (1, 5). The results are shown in Table 3. When Poisson BN is the true model,
BayPBN was clearly the best and ZIPBN still outperformed (higher TPR and lower FDR) ODS and
MRS even though the data are not zero-inflated, which demonstrates the utility of Bayesian inference
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for Bayesian networks. In the scenario of ZI-NegBin BN, the overall performance of ZIPBN was still
better than MRS, but with a smaller gap (MCC 0.540 vs 0.455). We anticipate MRS to outperform
ZIPBN as the percentage of zeros goes to 0.

Table 1: Average operating characteristics over 30 simulations for each zero-inflated scenario. The
standard error for each statistic is given in parentheses. The best performance is in boldface.

p = 50
n

n = 1000
p

Method 250 500 1000 25 50 75

ZIPBN
TPR 0.813 (0.010) 0.839 (0.010) 0.811 (0.007) 0.851 (0.014) 0.811 (0.007) 0.750 (0.012)

FDR 0.178 (0.011) 0.180 (0.010) 0.246 (0.009) 0.186 (0.016) 0.246 (0.009) 0.267 (0.013)

MCC 0.814 (0.011) 0.826 (0.010) 0.777 (0.008) 0.825 (0.015) 0.777 (0.008) 0.738 (0.013)

ODS
TPR 0.403 (0.006) 0.452 (0.006) 0.451 (0.006) 0.347 (0.008) 0.451 (0.006) 0.344 (0.004)
FDR 0.679 (0.006) 0.685 (0.006) 0.657 (0.005) 0.751 (0.007) 0.657 (0.005) 0.727 (0.004)
MCC 0.345 (0.005) 0.351 (0.006) 0.379 (0.005) 0.258 (0.007) 0.379 (0.005) 0.296 (0.004)

MRS
TPR 0.786 (0.008) 0.799 (0.007) 0.817 (0.008) 0.871 (0.010) 0.817 (0.008) 0.733 (0.007)
FDR 0.403 (0.010) 0.438 (0.007) 0.425 (0.007) 0.268 (0.012) 0.425 (0.007) 0.561 (0.006)
MCC 0.678 (0.008) 0.662 (0.007) 0.678 (0.007) 0.789 (0.012) 0.678 (0.007) 0.560 (0.006)

Table 2: Average operating characteristics over 30 simulations for zero-inflated scenarios having
⇠25% zeros, ⇠50% zeros, and ⇠75% zeros, respectively. The standard error for each statistic is
given in parentheses. The best performance is in boldface.

Percentage of zeros

Method ⇠25% ⇠50% ⇠75%

ZIPBN
TPR 0.849 (0.010) 0.839 (0.010) 0.693 (0.010)

FDR 0.230 (0.013) 0.180 (0.010) 0.312 (0.009)

MCC 0.805 (0.012) 0.826 (0.010) 0.684 (0.010)

ODS
TPR 0.370 (0.008) 0.452 (0.006) 0.317 (0.008)
FDR 0.648 (0.007) 0.685 (0.006) 0.780 (0.006)
MCC 0.348 (0.007) 0.351 (0.006) 0.246 (0.008)

MRS
TPR 0.776 (0.010) 0.799 (0.007) 0.681 (0.012)
FDR 0.403 (0.011) 0.438 (0.007) 0.805 (0.003)
MCC 0.673 (0.011) 0.662 (0.007) 0.343 (0.006)

Table 3: Average operating characteristics over 30 simulations for misspecified models: Poisson BN
and ZI-NegBin BN. The standard error for each statistic is given in parentheses. The best performance
is in boldface and the second best is underlined. We did not apply BayPN to ZI-NegBin BN data,
which is indicated by NA’s.

Poisson BN ZI-NegBin BN

Method TPR FDR MCC TPR FDR MCC

ZIPBN 0.743 (0.012) 0.259 (0.014) 0.736 (0.013) 0.698 (0.013) 0.564 (0.013) 0.540 (0.013)

BayPBN 0.779 (0.008) 0.168 (0.010) 0.801 (0.009) NA NA NA
ODS 0.569 (0.009) 0.331 (0.009) 0.609 (0.008) 0.281 (0.008) 0.832 (0.004) 0.196 (0.005)
MRS 0.517 (0.007) 0.507 (0.006) 0.494 (0.006) 0.719 (0.010) 0.692 (0.006) 0.455 (0.008)

3.2 Real data analyses

We illustrated the proposed ZIPBN with two sets of analyses on a scRNA-seq dataset that consists of
⇠30,000 intestinal cells from 5 aryl hydrocarbon receptor (AhR)-knockout mice.
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3.2.1 Pairs of transcription factors and targets

We verified the identifiability of ZIPBN (Theorem 1) in real data. Specifically, we obtained a list of
literature-curated pairs of transcription factor (X) and its target (Y) from the TRRUST database (Han
et al., 2018). This list provided biological ground truth of the cause-and-effect relationships, namely
X!Y. For each pair in the list, we extracted the corresponding genes from our scRNA-seq dataset.
Removing genes with more than 70% zeros, we retained 479 pairs for causal validation (the list is
provided in the Supplementary Material). Subsequently, ZIPBN was applied to one pair at the time.
Given the simplicity of the network space with two nodes, the sophisticated MCMC algorithm was
not required. We were able to correctly identify 304 causal relationships out of 479 pairs. Compared
to random guesses, the p-value was 1.1⇥ 10�9 (binomial test with H0 : p = 0.5 vs Ha : p > 0.5).
For comparison, we applied MRS which correctly identified 198 causal relationships.

3.2.2 Pathway analysis

We expanded the analysis to p = 40 genes that are part of the Wnt signaling pathway. We focused on
n = 1, 025 cells from one AhR-knockout mouse. These cells were of the same cell type that was
identified by the scRNA-seq clustering algorithm in R package Seurat (Butler et al., 2018). We
provide the list of genes and the data preprocessing procedure in the Supplementary Material. We ran
M = 10 parallel chains for 5, 000 iterations with 2, 500 as burn-in and the same temperatures and
prior specifications as in Section 3.1. The CPU time was 1.7 hours on an i9-9880H 2.3GHz CPU.
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Figure 2: The estimated gene regulatory network using the ZIPBN models. Disconnected genes were
not plotted: Axin1, Csnk1e, Frat1, Mapk8, Myc, and Nlk.

Figure 2 shows the estimated gene regulatory network using the posterior samples. The cutoff for
determining Ê was chosen to control the posterior expected FDR at 1%. We found 60 edges in
total, some of which are consistent with known gene regulations in the biological literature. For
example, the estimated network confirmed gene regulation involving Ctnnb1, a key factor in the
Wnt signaling pathway: Ctnnb1 increases the transcription of Jun (Mann et al., 1999) and Csnk1a1
phosphorylates Ctnnb1 (Amit et al., 2002). Moreover, our network analysis also discovered several
hub genes – Csnk1a1, Rhoa, and Rac1, with degrees of 15, 12, and 10, respectively. Hub genes
are of particular importance because they are often involved in multiple regulatory activities. In
fact, the importance of these genes has been well established. Csnk1a1 is a core member of Ctnnb1
destructive complex which interacts with multiple members of the Wnt signaling pathway (Amit
et al., 2002). Rhoa and Rac1 regulate epithelial intercellular junctions via distinct morphological and
biochemical mechanisms (Bruewer et al., 2004).
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Broader Impact

The proposed ZIPBN will be useful for constructing causal gene regulatory network at the cell type
level, which will assist biologists in generating causal hypotheses of gene regulation and expediting
causal discovery processes. Without the proposed method, mechanistic understanding of cell-type-
specific gene regulation will likely remain difficult. Additionally, the proposed method is broadly
applicable to other applications (including educational psychology, ecology, behavior science, and
economics) where data are zero-inflated and causal network inference is of interest.
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