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Abstract—Accurate identification of contracting muscles can
help us to understand the muscle function in both physio-
logical and pathological conditions. Conventional elec-
tromyography (EMG) have limited access to deep muscles,
crosstalk, or instability in the recordings. Accordingly, a
novel framework was developed to detect contracting muscle
regions based on the deformation field of transverse ultra-
sound images. We first estimated the muscle movements in a
stepwise calculation, to derive the deformation field. We then
calculated the divergence of the deformation field to locate
the expanding or shrinking regions during muscle contrac-
tions. Two preliminary experiments were performed to
evaluate the feasibility of the developed algorithm. Using
concurrent intramuscular EMG recordings, Experiment I
verified that the divergence map can capture the activity of
superficial and deep muscles, when muscles were activated
voluntarily or through electrical stimulation. Experiment II
verified that the divergence map can only capture contracting
muscles but not muscle shortening during passive move-
ments. The results demonstrated that the divergence can
individually capture the activity of muscles at different
depths, and was not sensitive to muscle shortening during
passive movements. The proposed framework can automat-
ically detect the regions of contracting muscle, and could
potentially serve as a tool to assess the functions of a group
of muscles concurrently.

Keywords—Transverse ultrasound imaging, Muscle contrac-

tion, Muscle function, Finger muscle, Deformation estima-

tion.

ABBREVIATIONS

sEMG Surface electromyography
iEMG Intramuscular electromyography
US Ultrasound
DIP Distal interphalangeal
PIP Proximal interphalangeal
FDP Flexor digitorum profundus
FDS Flexor digitorum superficialis
RMS Root mean square
fps Frames per second
Def. Deformation
Div. Divergence

INTRODUCTION

The complex muscle activation patterns allow us to
perform a variety of coordinated motions. On the
other hand, neuromuscular disorders can affect the
functionality of muscles, resulting in abnormal muscle
activation patterns.5,9 Accurate identification of the
activated muscle can help us to better understand the
functions of muscles in both physiological and patho-
logical conditions. Surface electromyography (sEMG)
has been widely used to measure muscle activity in
both scientific and clinical settings.12,14 However,
sEMG has several limitations such as the inability to
access the deep muscles19,27 and signal cross-talk of
surrounding muscles, especially for the small hand
muscles.17,26 Alternatively, intramuscular EMG
(iEMG) is also used to capture muscle activity in a
variety of settings.13,25 However, several factors,
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including the invasive procedure, instability of the
electrode position, and a small recording volume, can
limit wide applications.

Instead of detecting the electrical activity, muscle
activity can also be measured by quantifying the
structural and morphologic changes of the muscle
during contractions. Among the different imaging
modalities, ultrasound (US) imaging has been widely
used to detect and measure muscle architectures
in vivo, such as fascial length,15 muscle thickness,4

cross-sectional area7 and pennation angle.8 In addi-
tion, US imaging is recognized as an attractive tech-
nique to measure muscle activity,2,3,10,11,29 and it can
provide real-time information regarding the movement
of muscle tissues under dynamic conditions.23,24 For
example, M-mode US can evaluate the activity of the
lateral abdominal muscle by measuring the thickness
or a change of the thickness of muscles.2,16 B-mode US
combined with a speckle tracking algorithm can mea-
sure the activity of muscles with the US transducer
placed longitudinally along the fascicle direction.3,10,29

Briefly, the algorithm estimates the tissue displacement
between two consecutive US frames by cross-corre-
lating two-dimensional (2-D) segments of the US
images. Revell et al.20 employed a 2-D variable-sized
block matching algorithm to estimate the flow fields of
muscle movement. Li et al.11 utilized a primal–dual
algorithm to visualize the muscle movement. All these
studies characterized muscle or tendon tissue move-
ments longitudinally. Transverse US that quantifies
muscle movements in the transverse plane has also
been performed, in order to capture muscle activity
from a group of muscles, such as the small forearm
muscles controlling wrist and finger joints.1 Compared
with muscle tissue movements longitudinally along the
muscle fascicle direction, tissue movements in the
transverse plane result in more complex shifting pat-
terns of the US image which imposes a challenge to
detect the activity of a particular muscle from these
images. Instead, the image sequences are fed into a
machine learning algorithm for prosthetic control
purposes, without an explicit knowledge on the activity
of individual muscles.6 Accordingly, the purpose of the
current study was to develop an automatic algorithm
based on transverse US image that can capture the
active regions of different finger muscles in the fore-
arm.

When muscles contract, depending on the position
of the observation plane, the muscle area in the
transverse US image could either expand (close to the
muscle belly) or shrink (close to the tendon), which can
be tracked with a motion estimation algorithm. In this
study, a novel framework was developed to estimate
the muscle movements in the transverse plane and
detect the activated muscles from transverse US image.

Specifically, an image registration procedure was first
performed using a demons algorithm,28 which can
track the displacement of muscles and generate a
deformation field in the transverse plane. The resultant
deformation filed has been previously applied to clas-
sify the movements of different fingers.21 A calculation
of the divergence of the deformation field allowed us to
identify regions of contracting muscles based on two
distinct patterns: peaks of the divergence can capture
the expanding muscle regions, and the troughs can
capture the shrinking muscle regions. Two preliminary
experiments were performed to evaluate the feasibility
of the developed algorithm. First, the flexion of indi-
vidual finger joints was produced either voluntarily or
through transcutaneous nerve stimulation. Concurrent
transverse US imaging and iEMG recordings from
finger flexors were performed. iEMG served as a ref-
erence standard of muscle activation. Second, the
flexion of finger joints was produced either voluntarily
or through slow passive movements (while the subject
was relaxed). The deformation field and the divergence
were compared between the voluntary and passive
conditions. It was hypothesized that the developed
algorithm can be used as an effective method to
automatically identify contracting muscles at deep and
superficial layers.

MATERIALS AND METHODS

Ultrasound Deformation and Divergence Calculation

For every movement event, the US image defor-
mation between the start and end of the flexion was
obtained first using a stepwise calculation. A demons
image registration algorithm28 was used to quantify the
pixel-wise deformation between pairs of ultrasound
images. Each US frame was a 400 9 400-pixel image in
this study. Specifically, the diffeomorphic demons
algorithm30 implemented in MATLAB (imregdemons)
was utilized to obtain a differentiable and invertible
displacement vector field, which prevents physically
impossible transformations from occurring, such as a
folding of the image. These 2D vector fields represent
the estimated ‘‘diffusion’’ or movement of individual
pixels from one image to another. The displacement
field can be considered as a mapping function (~s) of
each pixel from the moving image (IM) to the fixed
(reference) image (IF). That is, a mapping function
applied to the moving image is approximately equal to
its fixed image (~sðIMÞ ffi IF).Previous work used US
image registration to estimate finger muscle contrac-
tions21; however, only the image frames from the start
and end of the motion were used for the deformation
calculation. In the current study, five equally spaced
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images (I1; . . . ; I5) between the start and end of each
flexion were extracted for each motion (Fig. 1). In
general, the calculation can be generalized to other
numbers of image segments. These smaller time steps
were used to isolate the smaller regional deformations
of the muscles through the flexion movement. The
earlier image frame was considered the fixed image
between each subsequent image pair, and the defor-
mation of each step was calculated between adjacent
images.

I1 !
~s1

I2 !
~s2

I3 !
~s3

I4 !
~s4

I5 ð1Þ

With multiple sequential steps, each mapping
function only represented the deformation that oc-
curred between steps relative to the fixed image of the
pair. (e.g. ~s1 represents the deformation of I1 onto I2
with respect to I1). By applying subsequent mapping
functions recursively, it was possible to transform a
deformation step to the reference coordinates of a
previous image.

D1!2;I1 ¼~s1

D2!3;I1 ¼~s1ð~s2Þ
D3!4;I1 ¼~s1ð~s2ð~s3ÞÞ

D4!5;I1 ¼~s1ð~s2ð~s3ð~s4ÞÞÞ

ð2Þ

A summation of each of these smaller deformations

then represented the total deformation (~F) that oc-
curred between the starting and ending image frames
of a single flexion motion.

~F1!5 ¼~s1 þ~s1ð~s2Þ þ~s1ð~s2ð~s3ÞÞ þ~s1ð~s2ð~s3ð~s4ÞÞÞ ð3Þ

Then, the cubic root of a 400 9 400 Hann window

was applied to the original image deformation (~F1!5)
to remove the inaccurate edge effects from the diver-
gence calculation. The image deformation was further
downsampled to a 20 9 20 deformation vector field
using a bicubic interpolation function with antialias-
ing, in order to obtain a global estimate of the macro
tissue movement. Lastly, the divergence of this down-
sampled deformation field was calculated to reduce the
dimensionality of the deformation, i.e. from a vector
field to a scalar field, which can also better quantify the
regions of concentric expansion due to muscle con-
traction.

div~F1!5 ¼ r � ~F1!5 ¼
@Fx

@x
þ @Fy

@y
ð4Þ

The divergence of a vector field measures the flux or
change of the field and is related to the magnitude of a
source or sink in a fluid flow. The divergence of the
deformation in our case represents the relative expan-
sion or shrinkage of the muscle tissue at each pixel

location. The 20 9 20 divergence field was then
upsampled back to a 400 9 400 scalar map for a
smooth appearance. Figure 1 shows an overview of all
the calculation steps of the US deformation and
divergence.

Experiments

The performance of the developed algorithm was
evaluated preliminarily using two experiments.
Experiment I was performed to verify that the diver-
gence of the deformation field reflected the muscle
activity of superficial and deep muscles. The flexion of
the distal interphalangeal (DIP) joint or the proximal
interphalangeal (PIP) joint were generated either vol-
untarily or via transcutaneous electrical nerve stimu-
lation. To verify the activation of the corresponding
muscles, iEMG recordings were acquired from the
flexor digitorum profundus (FDP) muscle that flexes
the DIP joints and the flexor digitorum superficialis
(FDS) muscle that flexes the PIP joints, respectively.
Experiment II was performed to verify that the diver-
gence of the deformation field only captured con-
tracting muscles but not muscle passive shortening.
The same joints as in Experiment I were moved vol-
untarily or moved passively by an experimenter. The
passive movement condition was designed to verify
that our contracting muscle detection method was
insensitive to passive muscle shortening (Fig. 2).

Subjects

Two neurologically intact male subjects were re-
cruited. The two subjects participated in the two dif-
ferent experiments, respectively. Both subjects gave
informed consent with protocols approved by the
Institutional Review Board of the University of North
Carolina at Chapel Hill.

Apparatus and Data Acquisition

Electrical Stimulation (Experiment I) Sixteen gel-
based electrodes with a diameter of approximately
1 cm (Vermed Inc, Buffalo, NY) were arranged in a
2 9 8 array and placed near the short head of the bi-
ceps brachii on the medial side (Fig. 2a) where the
median and ulnar nerve bundles are superficial. The
electrode array technique has been used in our previ-
ous studies to selectively elicit flexion or extension
motions of different finger joints.22,31,32 The 16 elec-
trodes were connected to the columns of a switch
matrix (34904A; Agilent Technologies, Santa Clara,
CA) and the rows of the switch matrix was connected
to the anode and cathode of one channel of a pro-
grammable multi-channel stimulator (STG4008; Mul-
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tichannel Systems, Reutlingen, Germany). The elec-
trodes were secured in place using a custom vice that
applied pressure over the electrode array into the
subject’s upper arm. The stimulator and the switch
matrix were controlled using a custom MATLAB
(version 2016b, MathWorks Inc) user-interface such
that stimulation trains can be delivered to any elec-
trode pair.

Intramuscular EMG Recordings (Experiment I) iEMG
signals were detected from the FDP and FDS muscles
using separate monofiler finewire electrodes (diameter:
0.05 mm; California finewire) inserted with 30-gauge
hypodermic needles. The depth of the electrode was
adjusted until we observed obvious muscle activity
when the subject repeated the flexion of the corre-
sponding joint but no activity when other joints moved

FIGURE 1. Overall procedures of ultrasound deformation and divergence calculation. Step 1, N (N = 5 in this study) equally
spaced image frames (I1; . . . ; I5) between the start and end of each flexion were extracted. The size of each frame was 400 3 400
pixels in this study. Step 2, the step deformation of two adjacent images was obtained through the diffeomorphic demons
algorithm and related to the reference coordinates of the first image by applying subsequent mapping functions recursively. For a
clear appearance, the original 400 3 400 deformation field was downsampled to a 20 3 20 vector field using a bicubic interpolation
function with antialiasing. Step 3, all the original step deformations were summed up to represent the total deformation (~F1!5) that
occurred between the starting and ending image frames of a single flexion. The color (pale green) shown in the results of Step 2
and Step 3 represents the difference between two US images. Step 4, before calculating the divergence of the deformation field, the
original deformation field was first processed using the cubic root of a 400 3 400 Hann window to remove the inaccurate edge
effects from the divergence calculation and then downsampled to a 20 3 20 deformation field. The resultant divergence (color map
shown in the results of Step 4) of the deformation field was upsampled back to a 400 3 400 scalar map for a smooth appearance.
Numerically the divergence signifies the sources and sinks from the deformation field and is an indication of the regions of
concentric expansion and shrink of tissues, respectively.
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voluntarily. Monopolar signals were amplified, band-
pass filtered (20–450 Hz), and sampled at 2000 Hz via
the Trigno system (Delsys Inc, Natick, MA). A ground
electrode was placed around the olecranon process at
the elbow.

Finger Motion Tracking (Experiment II) The subject’s
finger kinematics were recorded using an 8-camera
optical motion tracking system (Optitrack; Natural
Point, Inc.). Four 6 mm IR-reflective markers were
placed on the back side of the index and middle fingers
to measure the angles of the DIP and PIP joints
(Fig. 2b). The 3D positions of the markers were
recorded in 100 frames per second (fps) (Motive;
Natural Point, Inc.).

Surface EMG Recordings (Experiment II A wireless
sEMG electrode (Trigno, Delsys Inc., Natick, MA)
was placed over the finger flexors (Fig. 2b). The subject
was requested to repeat the finger flexion. The place-
ment of electrodes was determined initially by palpat-
ing the muscle belly of the contracting muscles, and
was then fine-tuned to maximize the EMG amplitude
recordings. Bipolar sEMG signals were amplified,
band-pass filtered (20–450 Hz), and sampled at
2000 Hz.

Ultrasound Recordings (Experiments I and II) The
transverse US images of muscle contraction were
recorded using a clinical Doppler ultrasound system
(S2; SonoScape Medical Corp.) with a 5–10 MHz lin-

FIGURE 2. Experimental setup. Experiment I (a): transverse Ultrasound images were recorded from mid-point along the forearm.
A 2 3 8 stimulation electrode array was placed beneath the short head of the biceps brachii along the ulnar/median nerve bundles
to elicit various finger flexions via electrical stimulation. Two finewire EMG electrodes were inserted into the flexor digitorum
profundus (FDP) and flexor digitorum superficialis (FDS) muscles respectively to capture contacting muscle activities. Experiment
II (b): reflective markers were placed on the back side of hand to track the joint angle of the distal interphalangeal (DIP) and
proximal interphalangeal (PIP) joints. Ultrasound images were also recorded from mid-point along the forearm. A surface EMG
electrode was placed over the finger flexors to record the FDS and FDP muscle activity.
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ear array transducer (L741, SonoScape Medical
Corp.). The probe was secured to the arm using a
custom 3D printed holder (Figs. 2a and 2b) at mid-
point (50% length) of the forearm from the cubital
fossa to the wrist joint. The ultrasound images were
recorded at a sampling rate of 54 fps, and then ex-
ported to MATLAB in sets of 46 9 46 mm image
frames.

Synchronization of Recordings In Experiment I, the
electrical stimulator, the intramuscular EMG acquisi-
tion system, and the ultrasound acquisition system
were synchronized using a synchronization pulse from
the stimulator. In Experiment II, the surface EMG
acquisition system, the motion capture system, and the
ultrasound acquisition system were synchronized using
a synchronization pulse from the motion capture sys-
tem.

Experimental Procedure

Both subjects were seated comfortably in a chair
with their right arm resting on a table. In Experiment I,
to evoke joint movements using electrical stimulation,
a searching procedure was performed to select the
stimulation electrode pairs and the corresponding
current intensity that can elicit independent PIP or
DIP joint movement of a single finger. Then, the se-
lected electrode pair was used to elicit single PIP or
DIP joint movement repeatedly in a trial, which in-
cluded eight 1-s long stimulation trains with a 1-s
resting time in between. Each stimulation train con-
tained biphasic pulses with a 500-ls width at a stimu-
lation frequency of 30 Hz. After each stimulation
train, the subject was asked to voluntarily move the
fingers to the same pre-stimulation baseline position.
In the voluntary activation condition, the subject was
requested to flex the DIP or PIP joint of a single finger
repeatedly at approximately 0.5 Hz, or alternate
between the DIP and PIP joints of a single finger in a
trial.

In Experiment II, during passive movements, the
subject was asked to be completely relaxed. An
experimenter held the subject’s finger and moved the
finger joint slowly with a speed of approximately 25�/s.
The slow movement speed was needed to avoid any
reflex activities. A sensitivity analysis was performed in
the Supplementary Material to determine that the rate
of change of the fascicle displacement did not bias the
estimation of the muscle deformation. When sEMG
activities were observed, the trial was repeated. In the
voluntary condition, the subject was requested to flex
the PIP and DIP joints of a specific finger (at 0.5 Hz
per joint) in an alternating manner in a single trial.

Data Processing

Identification of Flexion Time

Before using the US images to detect the muscle
contraction regions, we first determined the timings
of the start and the end of each flexion. In the
electrical stimulation condition of Experiment I, the
start and end times of the stimulated flexion were
obtained directly from the timings of each 1-s
stimulation train. In the voluntary condition of
Experiment I, the start and end timings of each
flexion was visually identified from the ultrasound
video. In Experiment II, the timings were identified
using the PIP and DIP joint kinematic data based on
marker positions. The joint angle was defined in
Fig. 2b. A full extension position corresponded to a
joint angle of approximately 180� and joint flexion
resulted in a decreased angle. The resultant joint
kinematic data were then used to obtain the timings
of the start and end of every voluntary/passive
flexion. These flexion times were then used to extract
the corresponding US image frames and iEMG/
sEMG activities.

EMG Activity

EMG During Electrical Stimulation The iEMG seg-
ments that started from 0 ms and ended 33 ms after
the onset of individual stimulation pulses were ex-
tracted, and the muscle compound action potentials
were then averaged within each 1-s stimulation train
for individual channels. Stimulation artifacts were
identified manually based on the average iEMG and
excluded from further analysis. The iEMG amplitude
was calculated as the difference between the maximum
and minimum of the average compound action
potential for individual stimulation trains and indi-
vidual channels.

EMG During Voluntary/Passive Joint Flex-
ion iEMG signals from Experiment I and sEMG sig-
nals from Experiment II were first filtered with a high-
pass filter (zero-phase forward and reverse digital IIR
filtering) with a cut-off frequency of 50 Hz (iEMG)
and 10 Hz (sEMG), respectively to remove motion
artifacts. Then, the iEMG and sEMG signals were
filtered with notch filters at 60 Hz and its higher order
harmonics to remove the power-line noise. The
amplitude (root mean square, RMS) of both iEMG
and sEMG was calculated for individual flexions
which were determined by the start and end of flex-
ions.
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RESULTS

Experiment I

An electrode pair was used to elicit independent PIP
flexion of the middle finger. Figures 3a and 3b illus-
trate the iEMG signals from the trial with elicited PIP
flexion of the middle finger. The stimulation started at
0 s. The thin gray lines represent the iEMG segments
after the stimulation onset from all the eight stimula-

tion trains, and the thick black lines were the average
iEMG of the individual segments. The FDS muscle
(channel 2) controlling the PIP flexion showed an
obvious H-reflex activity at approximately 20 ms, and
the FDP (channel 1) showed relatively low iEMG
activity at approximately 20 ms. In order to compare
the iEMG amplitude between the two channels, the
average iEMG amplitude (peak-to-peak) was calcu-
lated as shown in Fig. 3c. The two-sample t test

FIGURE 3. The iEMG signals and the ultrasound deformation field with divergence from an electrical stimulation trial with
independent PIP flexion of the middle finger. The iEMG signals of the FDP (a) and FDS (b) muscles, respectively from eight
stimulation trains of the trial. The stimulation started at 0 s. Comparison of the average iEMG amplitude between the FDS and FDP
muscles (c). Error bars represent the standard error of the iEMG amplitude across individual stimulation trains. The average
deformation (Def.) field of the ultrasound image and the resultant divergence (Div.) field (d).
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showed that the iEMG amplitude of the FDS muscle
was significantly higher than the FDP muscle
(t(14) = 2 30.6189, p < 0.0001). Figure 3d illustrates
the deformation field with divergence of the ultrasound
image. The deformation field was obtained by aver-
aging the deformation calculations from all flexions to
reduce the sampling bias, and the divergence was cal-
culated based on the average deformation field. The
divergence with positive peak values was located at the
FDS muscle area, which demonstrated that the pixels
from the FDS muscle region expanded. This was
consistent with the iEMG recordings that demon-
strated the activation of the FDS muscle.

Figure 4 shows the results of two voluntary trials
with independent PIP or DIP flexion of the middle
finger, respectively. In the PIP flexion trial (Figs. 4a,
4b, 4c, and 4d), the FDS muscle showed strong muscle
activities during joint flexions. Figure 4b illustrates the
average iEMG amplitude (RMS) across all flexions
from the two channels. The statistical analysis (paired
t-test) results showed that the iEMG amplitude of the
FDS was significantly larger compared with that of the
FDP (0.0658 mV vs. 0.0072 mV, t(5) = 2 9.1723,
p = 0.0003). The divergence map showed that the
expansion area was located at the FDS muscle, which
demonstrated the shortening and contraction of the
FDS muscle (Fig. 4d), leading to a PIP flexion. In the
DIP flexion trial (Figs. 4e, 4f, 4g, and 4h), the average
iEMG amplitude across all flexions for the two chan-
nels is illustrated in Fig. 4f. Compared with the PIP
flexion trial, the iEMG amplitude of the FDP muscle
increased (from 0.0072 to 0.0111 mV) and the iEMG
amplitude of the FDS muscle decreased (from 0.0658
to 0.0169 mV), even though the iEMG amplitude of
the FDS muscle was still significantly higher than that
of the FDP muscle (t(9) = 2 3.6218, p = 0.0056).
The peak of the divergence map was at the FDP
muscle region. This demonstrated the expansion and
contraction of the FDP muscle (Fig. 4h), leading to a
DIP flexion in this trial.

Figure 5 illustrates the iEMG signals and the
ultrasound deformation field with divergence from the
trial in which the PIP and DIP joints flexed alternately.
The iEMG amplitude was calculated for individual

flexions and individual channels. Figure 5b shows the
average iEMG amplitude of the FDP muscle when the
PIP and DIP joint flexed, respectively. The statistical
analysis (paired t-test) results showed that the iEMG
amplitude of the FDP muscle during the DIP flexion
was significantly larger than that during the PIP flexion
(t(5) = 2 6.9740, p = 0.0009). Figure 5e shows the
average iEMG amplitude of the FDS muscle when the
PIP and DIP joint flexed, respectively. The statistical
analysis (paired t-test) results showed that the iEMG
amplitude of the FDS muscle during the PIP flexion
was significantly larger than that during the DIP flex-
ion (t(5) = 4.4687, p = 0.0066). Consistent with the
results shown in Figs. 4d and 4h, the peak of the
divergence map during the PIP joint flexion and the
DIP joint flexion was located at the FDS (Fig. 5c) and
FDP (Fig. 5f) muscles, respectively.

Experiment II

The US deformation field with divergence between
the voluntary and passive joint movement conditions
was compared. Figures 6a and 6b illustrate the joint
kinematics and the sEMG signal, respectively from a
representative trial, with voluntary PIP and DIP joint
flexions alternately. Due to the enslavement of the DIP
joint movement with the PIP joint for the subject, the
flexion of the DIP joint was always accompanied with
the flexion of the PIP joint when the subject tried to
flex the DIP joint independently (Fig. 6a). In order to
simplify the description, the ‘DIP flexion’ condition
was still used to represent the condition when the DIP
joint was supposed to flex independently, even though
the PIP joint also flexed simultaneously. Figures 6c
and 6d illustrate the joint kinematics and the sEMG
signal, respectively from a representative trial, with
passive PIP and DIP joint flexions alternately. In the
DIP flexion condition, both the DIP and PIP joints
were passively moved to mimic the situation in the
voluntary DIP flexion condition. The range of motion
(the absolute difference of the joint angle between the
start and end of individual flexions) was first calculated
for individual joints and individual flexions, respec-
tively, and was then summed up across the two joints.
Since the range of motion during voluntary PIP flexion
was significantly larger than that during passive PIP
flexion, the end timing of individual voluntary PIP
flexions was corrected to match the joint range of
motion between the voluntary and passive conditions.
The corrected timings were subsequently used for the
sEMG and US image processing. The statistical anal-
ysis (two-sample t-test) results showed that the joint
kinematics after correction were matched during the
DIP flexion (t(10) = 2 0.3697, p = 0.7193) and PIP
flexion (t(11) = 2 0.2265, p = 0.8250).

bFIGURE 4. The iEMG signals (a and c) and the ultrasound
deformation field with divergence (d) from the trial with the
voluntary independent PIP flexion. The iEMG signals (e and g)
and the ultrasound deformation field with divergence (h) from
the trial with the voluntary independent DIP flexion. Orange
thick and thin vertical lines represent the start and end of
individual PIP flexions, respectively (a, c). Blue thick and thin
vertical lines represent the start and end of individual DIP
flexions, respectively (e, g). The iEMG amplitude (root mean
square) was calculated within individual flexions and then
compared between the FDS and FDP muscles (b, f).
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Figure 6e compares the sEMG amplitude between
three different conditions, i.e. the voluntary condition,
the passive condition, and the baseline condition. The
sEMG amplitude of the baseline condition was calcu-
lated using the recording segment when there was no
passive or voluntary joint motion. The results (two-
sample t-test with Bonferroni correction) showed that
the sEMG amplitude in the voluntary condition was
significantly larger than the passive condition
(t(10) = 2 4.5460, p < 0.01) and the baseline condi-
tion (t(11) = 2 5.0852, p < 0.01) during the DIP
flexion, and there was no significant difference between
the baseline condition and the passive condition
(t(7) = 0.4623, p > 0.05). Similar results were obtained
during the PIP flexion such that the sEMG amplitude in
the voluntary condition was significantly larger than the
passive condition (t(11) = 2 18.9990, p < 0.0001) and
the baseline condition (t(10) = 2 17.3265,
p < 0.0001), and there was no significant difference
between the baseline condition and the passive condi-
tion (t(9) = 2 1.0058, p > 0.05).

The US deformation field with the divergence from
the voluntary and passive DIP flexions is illustrated in
Figs. 6f and 6h, respectively. The positive peaks of the
divergence map were located at both the FDS and
FDP muscles (Fig. 6f) due to the fact that both the
DIP and PIP joints flexed during the DIP flexion
condition. Certain regions showed a negative diver-
gence with large absolute values, which demonstrated

the shrinkage of these regions. The shrunk pixels in
these regions could be caused by the expanding pixels
in the surrounding regions like the FDS and FDP
muscles. In the passive flexion condition (Fig. 6h), the
ultrasound deformation (arrow length) was smaller
compared with the deformation in the voluntary con-
dition (Fig. 6f). As a result, the divergence map
showed minimal expanding or shrinking regions,
compared with the voluntary condition. Figure 6g
illustrates the deformation field with divergence during
voluntary PIP flexions. The contracting region of the
FDS muscle shifted leftwards compared with the vol-
untary DIP flexion condition. Same as the passive DIP
flexion condition, the deformation field and the
divergence were both negligible in the passive PIP
flexion condition (Fig. 6i).

DISCUSSION

This study developed a novel framework to auto-
matically identify the contracting muscles at different
depths by measuring muscle tissue movements from
transverse US images without the need of invasive
methods such as intramuscular EMG recordings. We
first estimated the muscle tissue movements (defor-
mation field), which was performed in a stepwise
manner in order to cope with the large muscle defor-
mation in the transverse plane. We then calculated the

FIGURE 5. The iEMG signals and the ultrasound deformation field with divergence from the trial with the voluntary movement of
the PIP and DIP joint alternately. Orange thick and thin vertical lines represent the start and end of individual PIP flexions,
respectively, and blue thick and thin vertical lines represent the start and end of individual DIP flexions, respectively (a, d). The
iEMG amplitude of the first channel (FDP muscle) was calculated within individual flexions and then compared between the PIP and
DIP joint flexions (b). The iEMG amplitude of the second channel (FDS muscle) was calculated within individual flexions and then
compared between the PIP and DIP joint flexions (e). The ultrasound deformation field with divergence when the PIP joint flexed
(c). The ultrasound deformation field with divergence when the DIP joint flexed (f).
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divergence of the deformation field to quantify the
expansion or shrinkage of different areas to identify
the activated muscles. The first experiment showed that
our method can correctly identify the contracting
muscles at both superficial and deep layers using con-
current intramuscular recordings. The second experi-
ment demonstrated that our method is insensitive to
passive muscle shortening.

Unlike the previous studies3,10,11,20,29 in which lon-
gitudinal US images were used to estimate the muscle
tissue movement along the fascicle direction, our
algorithm utilized the transverse US images, which
could detect the contracting regions of a group of
muscles concurrently, by identifying the expanding or
shrinking muscle regions. Compared with the longi-
tudinal US images, the transverse US can capture the
movements of different muscles simultaneously, which
can be beneficial when multiple muscles need to be
monitored concurrently, such as capturing different
compartments of the extrinsic finger muscles during
dexterous finger movements. Our method can also
capture the activity of both deep and superficial mus-
cles. For example, the sEMG recorded comparable
activity level when FDP and FDS activated in an
alternating manner. In contrast, the US images can

individually capture the activity of these two muscles
reliably (Figs. 5 and 6). The capacity to detect the
muscle activity at different muscle depths also has
potential clinical applications. Our method provides a
potentially valuable tool to detect the contracting
regions of different muscles concurrently, which can
help to understand the mechanism of pathological
conditions. For example, the altered coordination of
the upper limb and hand post stroke5,9 might result
from the abnormal activation of multiple muscles.
With further development, our method may serve as an
assessment tool for clinicians to evaluate the function
of muscles and the effect of treatments in individuals
with neuromuscular disorders.

The results of the second experiment showed that
the developed framework was insensitive to muscle
passive shortening. First, since the joint motion speed
was slow and no stretch reflex activity was elicited, the
muscle deformation was small in the passive movement
condition. In addition, the stepwise calculation of the
deformation field could also average out inconsistent
small movements of muscle tissues, resulting in a small
muscle deformation field and therefore a small diver-
gence value. In the current study, we only evaluated
the finger muscles that have small sizes. As for the

FIGURE 6. The joint kinematics (a) and sEMG signal (b) from the trial with voluntary PIP and DIP joint flexions alternately. The
joint kinematics (c) and sEMG signal (d) from the trial with passive PIP and DIP joint flexions alternately. Orange thick and thin
vertical lines represent the start and end of individual voluntary flexions of PIP joint, respectively, and blue thick and thin vertical
lines represent the start and end of individual voluntary flexions of DIP joint, respectively (a, b, c, and d). The comparison of the
sEMG amplitude (e). The ultrasound deformation field with the divergence from the voluntary DIP flexions (f) and PIP flexions (g).
The ultrasound deformation field with the divergence from the passive DIP flexions (h) and PIP flexions (i). *p < 0.01, **p < 0.0001.
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muscles with large sizes such as the leg muscles, the
muscle tissue displacements might be larger in the
passive movement condition compared with the small
finger muscles. Therefore, in future studies, we will also
evaluate larger muscles to confirm that the developed
method was not sensitive to passive shortening for
muscles with different sizes.

In a previous study, the muscle activation level
characterized by sEMG and muscle thickness mea-
sured using US was compared, and the results showed
that the muscle thickness measured using US can be a
reliable measurement of muscle activation level.14 In
the current study, we calculated the divergence of the
deformation field to identify the contracting muscle
regions. Since the divergence itself gives the quantity of
the source of the deformation field, which should be
related with the volume change of the muscle during
contractions. The divergence has the potential to
quantitatively characterize the muscle activation level.
In further studies, the divergence of the muscle defor-
mation field will be compared with the strength of the
sEMG or iEMG signals at different contraction levels.
In addition, the divergence of the muscle deformation
field was not compared between the passive condition
and the baseline condition when there were no joint
flexions. Further development of our method can
potentially provide a tool to visualize the muscle acti-
vation level on a US image in real-time.

In individuals with neuromuscular disorders, the
muscle structure might be altered with decreased
muscle cross-section, increased connective tissue or
redistribution of collagen in the extracellular matrix.
Since our method identifies the regions of contracting
muscle by estimating the muscle tissue displacement,
theoretically, the contracting muscles can still be
identified as long as the muscle volume alters during
contraction, resulting in muscle tissue displacement in
the transverse plane. An earlier study showed that
fascicle displacement was smaller in the affected mus-
cles post-stroke during passive movement and volun-
tary movement.18 In a previous study,10 the abnormal
muscle activation pattern with facioscapulohumeral
muscular dystrophy was investigated by exploring the
muscle tissue displacement along the longitudinal
direction, which demonstrated the feasibility of track-
ing muscle tissue displacement with altered muscle
structures. However, it still needs further verification
on whether the estimation of the muscle tissue dis-
placement in the transverse plane and the performance
of the proposed method can be affected by the altered
muscle structure. In addition, we will also investigate
the ability of our method to reflect the abnormal
muscle activation pattern by comparing with other
measurements like electromyography in the future.

One limitation of the current study was that the
developed framework was evaluated only in a limited
number of subjects. As a preliminary study, the results
showed that the developed method can automatically
identify the contracting muscles in the transverse plane
at different depths. The other limitation was that only
finger muscles were captured. Compared with lower
limb muscles, the finger muscles were significantly
smaller. In our future studies, we plan to evaluate
other muscles with different sizes in a larger subject
sample to investigate the performance of the frame-
work in a more extensive manner.

In conclusion, we developed a novel framework to
detect the contracting muscles in the transverse US
images. The algorithm includes mainly two steps. The
first step estimates the muscle tissue movements in the
transverse plane in a stepwise manner, resulting a
deformation field. The second step calculates the
divergence of the deformation field to identify
expanding or shrinking regions that are typically
resulted from the muscle contraction observed in the
transverse plane. Two preliminary experiments were
performed to evaluate the feasibility of the framework.
The results showed that the developed framework can
automatically detect the contracting muscles at differ-
ent depths and could potentially complement other
conventional methods in assessing the function of
muscles such as EMG and kinetic measurements.
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