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A reliable neural-machine interface is essential for humans to intuitively interact with advanced robotic
hands in an unconstrained environment. Existing neural decoding approaches utilize either discrete hand
gesture-based pattern recognition or continuous force decoding with one finger at a time. We developed a
neural decoding technique that allowed continuous and concurrent prediction of forces of different fingers
based on spinal motoneuron firing information. High-density skin-surface electromyogram (HD-EMG)
signals of finger extensor muscle were recorded, while human participants produced isometric flexion
forces in a dexterous manner (i.e. produced varying forces using either a single finger or multiple fingers
concurrently). Motoneuron firing information was extracted from the EMG signals using a blind source
separation technique, and each identified neuron was further classified to be associated with a given
finger. The forces of individual fingers were then predicted concurrently by utilizing the corresponding
motoneuron pool firing frequency of individual fingers. Compared with conventional approaches, our
technique led to better prediction performances, i.e. a higher correlation (0.71± 0.11 versus 0.61± 0.09),
a lower prediction error (5.88 ± 1.34% MVC versus 7.56 ± 1.60% MVC), and a higher accuracy in finger
state (rest/active) prediction (88.10± 4.65% versus 80.21± 4.32%). Our decoding method demonstrated
the possibility of classifying motoneurons for different fingers, which significantly alleviated the cross-
talk issue of EMG recordings from neighboring hand muscles, and allowed the decoding of finger forces
individually and concurrently. The outcomes offered a robust neural-machine interface that could allow
users to intuitively control robotic hands in a dexterous manner.
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1. Introduction

Manual dexterity allows humans to use our hands
in a skillful and coordinated way to produce a vari-
ety of precisely controlled movements. With excit-
ing development of robotics, advanced prosthetic
and exoskeletal hands now have the ability to con-
trol individual fingers or even individual joints,1 and

the dexterity is approaching the human hand. To
make full use of these advanced robots for reha-
bilitation, assistance, or remote operation purposes,
a reliable neural-machine interface is essential for
seamless human–robot interactions. Neural signals
can be obtained at different levels including brain,2–4

peripheral nerve,5,6 and muscles.7–9 These signals are
processed to identify the user’s intention and are
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translated into commands to interface with exter-
nal devices, termed movement decoding.10–12 Biome-
chanical measurements of body segments have also
been used to either predict intent13,14 or therapeu-
tic outcomes.15–17 Currently, the decoding of individ-
ual finger movements remains a substantial challenge
in neural-machine interface. Finger kinematics can
be predicted from electrocorticogram or intracortical
recordings on the motor cortex.18,19 Motoneuron dis-
charge information obtained directly at the periph-
eral nerve through nerve implants has also been used
to predict finger kinematics.5,20 Despite the success,
the low signal quality and invasive nature of these
methods limit wide applications.

Surface electromyography (sEMG) is a nonin-
vasive approach to obtain muscle activities from
the skin surface,21 which constitutes the temporal
and spatial summation of hundreds of motor unit
action potentials (MUAP) from motoneuron dis-
charge events of active motor units (MUs) (Fig. 1).
Decoding of movement intention from sEMG has

Fig. 1. (Color online) High-density electromyogram (EMG) recordings, and the force prediction procedures using the
conventional EMG amplitude-based method and the neural-drive method. Two groups of motoneurons (blue and purple)
innervate different finger muscles. A motoneuron discharge can generate motor unit action potentials (MUAPs) recorded
at different locations of the skin surface (MUAPs in an 8× 20 recording array). EMG recordings reflect the temporal and
spatial summation of different MUAPs of all activated motor units (MUs). In the conventional EMG amplitude-based
method, an EMG channel selection procedure is conducted, and the EMG channels are classified into different groups
that reflect the muscle activities of different fingers. EMG amplitude can then predict the forces of individual fingers.
In the neural-drive method, MU firing activities are first extracted through EMG decomposition (source separation and
clustering). A MU classification is then used to categorize the MUs into different groups for different fingers. The neural
drive is calculated as the populational firing frequency of the MU pool to predict the forces of individual fingers.

been widely used in neural-machine interface due
to its noninvasive nature.22–24 Current state-of-
the-art decoding methods use pattern recognition
techniques,25,26 which recognize specific patterns of
muscle activity and translate them into a set of
predefined commands, such as hand open or close.
Even though a large number of hand motions can
be classified,26 the motions cannot be identified in
a continuous manner. A second approach, termed
proportional control,22,27 enables users to control a
single degree of freedom (DOF) in a continuous man-
ner by varying the control input such as the EMG
amplitude. Intuitively, by placing the electrodes at
different muscles or muscle compartments, the mus-
cle activity associated with the movements of dif-
ferent fingers could be acquired via different elec-
trodes. The information can then be converted into
control inputs for different degrees of freedom of
the robots. However, since individual finger muscles
or muscle compartments are anatomically close to
each other, a single electrode can inevitably capture
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activities from nearby muscles or muscle compart-
ments of different fingers.28,29 Additionally, multiple
intrinsic and extrinsic interference can substantially
bias EMG recordings, such as cancellation of super-
imposed MUAPs, background noise, motion artifact,
and muscle fatigue.30,31 All these factors can impose
a challenge to decode individual finger movements
when global EMG features are used,32,33 such as
Mean Absolute Value, Root Mean Square (RMS),
Zero Crossing, and Slope Sign Changes.34

Instead of using global EMG features, MU dis-
charge information (firing event trains in Fig. 1) can
be employed to predict the motor output.35 because
the discharge frequency of the MUs at the popula-
tion level reflects the descending neural drive (i.e.
net excitatory drive) input to the spinal cord, which
transforms the neural drive to the motoneurons into
MU firing event trains.36 It has been demonstrated
that the neural drive information (decoded from the
binary events of neuronal firings) is more robust for
motor output decoding compared with global EMG
features, during isometric muscle contractions,37,38

and joint movements.39,40 This is largely because the
neural drive information is less sensitive to intrin-
sic and extrinsic interference to EMG signals. These
studies predicted forces one finger at a time. How-
ever, there are partially overlapping muscle com-
partments of different fingers and co-activation of
these compartments. It remains a substantial chal-
lenge to concurrently decode the neural drive to
individual fingers in a continuous manner when the
finger (thumb excluded) forces vary randomly (i.e.
produced varying forces using either a single finger
or multiple fingers concurrently). Accordingly, the
current study sought to develop a neural decoding
method based on firing frequency summed across
MUs (termed neural-drive method), in order to pre-
dict the extension forces of individual fingers concur-
rently and continuously (Fig. 1). The conventional
EMG amplitude-based force prediction method was
also performed as a comparison.

This paper was organized as follows. Section 2
describes the experiment procedures and method-
ologies in the proposed neural-drive method and
the conventional EMG amplitude-based method.
Section 3 evaluates the performance of the pro-
posed method in comparison with the conventional
method. The discussion and conclusion were drawn
in Sec. 4.

2. Methods

2.1. Experimental design

Eight subjects (one female, seven males, age: 21–35)
without any known neural or muscular disorders
were recruited in this study. All subjects gave
informed consent with protocols approved by the
Institutional Review Board of the University of
North Carolina at Chapel Hill (Approval #: 16-
0801).

The subjects were seated comfortably in a height-
adjustable chair during the experiment. The fore-
arm was supported on the desk at the neutral posi-
tion with a soft foam. The palm and back sides of
the hand was restricted to avoid force contamina-
tions. The index, middle, ring, and pinky fingers
were individually secured to four miniature load cells
(SM-200N, Interface), to measure individual finger
extension forces (Fig. 1). The subjects were asked to
perform isometric finger extensions at various force
levels using one or multiple fingers. Earlier stud-
ies have reported a relatively large enslaving effect
between the ring and pinky fingers,41,42 compared
with other finger pairs. The activation patterns of the
extensor digitorum communis (EDC) muscle com-
partments of the ring and pinky fingers were also sim-
ilar based on surface EMG recordings.43 As a result,
these two fingers were always requested to extend
concurrently and their forces were summed-up before
displayed to the subjects and during post-processing.

Before the main experiment, the maximum vol-
untary contraction (MVC) forces of individual fin-
gers were measured when the subjects performed
maximum isometric extension of individual fingers.
During the experiment, two different types of tasks
were performed. The first type (termed single-finger
task) involved single finger (ring and pinky were con-
sidered as one finger) extension that followed a trape-
zoid force target with the maximum contraction level
at 50% MVC, with a trial duration of 21 s. Subjects
were instructed to minimize co-activation of other
fingers. In the second type (termed multi-finger task),
the target force contained a series of trapezoids with
1-s rest in between for a duration of 36 (three fin-
gers involved) or 12 (two fingers involved) s, and the
maximum contraction level was 50% MVC. Subjects
were requested to extend at least two different fin-
gers, which were selected randomly before each trial.
Co-contraction of other fingers was allowed in the
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multi-finger trials. Fifteen single-finger trials were
performed with five trials for each finger and 28
multi-finger trials were also performed.

The force data were sampled at 1000Hz and dis-
played to the subjects. An 8× 20 high-density (HD)
electrode array with a 3-mm single electrode diame-
ter and a 10-mm inter-electrode distance was placed
over the EDC muscles. The placement of the array
was guided by palpating the EDC muscle when the
subjects extended their fingers. Monopolar EMG sig-
nals were amplified with a gain of 1000 and a pass
band of 10–900Hz and were sampled at 2048 Hz via
EMG-USB2+ (OT Bioelettronica).

2.2. Force prediction using MU
discharge information

The processing included two main steps: MU extrac-
tion and MU pool refinement for individual fingers.
The data in the single-finger trials were first used
to extract the MU information. The multi-finger tri-
als were randomly divided into four sets evenly, with
seven trials in each set to perform a four-fold cross-
evaluation. For each fold of evaluation, a single set
was selected as the testing set and the remaining
three were the training sets. The force prediction per-
formance was assessed using the multi-finger trials in
the testing set, and the trials in the training sets were
used for the MU pool (Sec. 2.2.2) refinement proce-
dure, in order to avoid in-sample optimization bias.

2.2.1. Extraction of MU information

The EMG decomposition procedure44–46 was imple-
mented to extract the firing information of individual
MUs through the FastICA algorithm,47 which has
been used in previous studies on EMG decomposi-
tion.48–50 Specifically, given an m×D matrix X rep-
resenting the original HD skin-surface electromyo-
gram (HD-EMG) recordings, where m is the number
of EMG channels and D is the duration of the record-
ings (in sample points). The procedure to extract the
information of individual MUs is as follows:

(1) Extend the raw EMG signals by adding R (R =
10) delayed versions of each observation, obtain-
ing the new data matrix X with a dimension of
m(R + 1) × D.

(2) Whiten the extended signals Z = WX with
the whitening matrix W obtained via eigenvalue
decomposition.

(3) Decompose the signals using the FastICA
algorithm47:

(a) Select the skewness G(x) = x3/3 as the con-
trast function for fast convergence, which
has been used in our previous study.37

(b) Start the iteration procedure and the itera-
tion is considered converged if the old (w(n))
and new (w(n+1)) separation vectors point
to the same direction, i.e. |w(n)w(n+1)T −
1| < threshold, where n is the number of
iterations and threshold equals 10−4 in this
study.

(c) Repeat the iteration procedure multiple
times (300 here) and obtain the separation
vectors wi(i = 1, 2, . . . , 300) of 300 ‘MUs’,
which constitute the separation matrix B0 =
[w1,w2, . . . ,w300].

(d) Get the source signal s for individual MUs
by Eq. (1).

si = wT
i Z i = 1, 2, . . . , 300. (1)

(4) Convert the source signal to a binary firing
event train, ti, i = 1, 2, . . . , 300. All peaks in
s are identified and classified into two categories
through a binary cluster classification using the
K-means++ algorithm.51 Peaks in the category
with large values are considered the timing of
firing events, and are set to 1. Other peaks and
nonpeak samples are set to 0.

(5) Remove the separation vectors corresponding to
the source signals with poor classification qual-
ity using the silhouette distance, resulting in n1

separation vectors B1 = [w1,w2, . . . ,wn1 ].
The silhouette value for the ith peak, Si, is

defined as follows:

Si =
bi − ai

max(ai, bi)
, (2)

where ai is the average Euclidean distance from
the ith peak to the other peaks in the same clus-
ter as i, and bi is the minimum average Euclidean
distance from the ith peak to points in a dif-
ferent cluster. The silhouette value ranges from
−1 to +1. A high silhouette value indicates that
the peak is well-matched to its own cluster. The
overall binary classification quality was then cal-
culated as a weighted average of the silhouette
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distance of each cluster (termed SIL):

SIL =

⎛
⎝ 1

C1

C1∑
i=1

S1
i +

1
C2

C2∑
j=1

S2
j

⎞
⎠

/
2, (3)

where S1
i is the silhouette value for the ith peak

in cluster 1, S2
j is the silhouette value for the

jth peak in cluster 2, C1 and C2 are the num-
ber of peaks in clusters 1 and 2, respectively.
A source signal with a low SIL value meant that
the spikes were not well separated from the base-
line noise, and the detected firing events could be
inaccurate. Therefore, the MUs corresponding to
source signals with low SIL values (<0.7) were
excluded from further analysis. The selection of
the SIL threshold was mainly based on our pre-
liminary test to guarantee the accuracy of the
firing events while maintaining enough MUs for
the neural-drive estimation.

(6) Remove the separation vectors of duplicate
MUs, resulting in n2 separation vectors B2 =
[w1,w2, . . . ,wn2 ].

Due to the extension procedure in Step 1, differ-
ent source signals might reflect the activity of the
same MU. Based on the extension factor and the
sampling rate, a± 2.5ms (10/2048∗1000 ms ≈ 5 ms)
window was used to quantify the synchronization
level between two firing event trains. If any of the
two firing event trains had more than 80% synchro-
nized discharge events after shifting the delay within
±2.5ms, the two firing event trains were considered
to be duplicates and the one with a smaller SIL value
was excluded from further analysis.

The extraction of MU information was imple-
mented using the single-finger trials. After the
removal of duplicate MUs and MUs with low SIL val-
ues, all the MUs of the same target finger were pooled
together to constitute the MU pool for individual
fingers, resulting in three separation matrixes, i.e.
B2,I, B2,M, and B2,RP for the index (I), middle (M),
and ring-pinky (RP) fingers, respectively. This can
be considered as a preliminary classification of MUs
into different fingers. To maintain this classification
of MUs, the separation vectors from the single-finger
trials were applied directly to the EMG recordings
(after extension and whitening) of the multi-finger
trials for force prediction. This method has been used
in a previous study37 to obtain the firing event trains
of the given MUs in real-time decoding.

Figure 2(a) illustrates the recorded forces of a
representative single-finger trial with the index fin-
ger as the target finger. The MU firing event trains
are shown in Fig. 2(b). The blue curve represents
the normalized populational discharge frequency of
all the MUs, which reflects the neural drive. However,
the neural drive signal increased substantially even
though the actual force level plateaued. This incon-
sistency meant that the MU pool at this stage for a
specific finger possibly included some MUs of other
fingers due to muscle compartment co-contractions,
which led to the overestimation of neural drive sig-
nals for the specific finger.

2.2.2. MU pool refinement for individual
fingers

To reduce the interference of co-contractions, an MU
pool refinement procedure was performed to remove
the MUs of other fingers using the multi-finger trials
in the training set. For example, to remove the sep-
aration vectors of MUs associated with the middle
and RP fingers from the separation matrix B2,I, the
following procedures were performed. The rational
was that the firing rate of the MUs of a given finger
should be correlated with the force of that specific
finger.

(1) Apply the separation vectors to the EMG signals
of the multi-finger trials to obtain the source sig-
nals si,I (i = 1, 2, . . . , n2,I) using Eq. (1). n2,I is
the number of separation vectors in matrix B2,I.

(2) Convert si,I to firing event trains ti,I and calcu-
late the SIL values of individual trains. The firing
event trains are eliminated if the SIL values are
<0.6 (Fig. 2(d)).

(3) Calculate the time courses of the firing rate (fi,I)
of individual MUs (Fig. 2(d)). The firing event
train of each MU is segmented using 0.5-s sliding
windows with a sliding step of 0.1 s, and the firing
rate from each 0.5-s window is calculated (if not
specified, the sliding windows are the same in
subsequent text).

(4) Process the forces of the three fingers using the
same sliding window, obtaining the forces of indi-
vidual fingers Ftrn

l (l = I, M, RP).
(5) Perform a linear regression analysis between the

firing rate (fi,I) and the forces of individual fin-
gers Ftrn

l . For example, obtain the coefficient of
determination R2

i,I−l between the ith MU of the
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Fig. 2. (Color online) Extraction of motor unit (MU) information through electromyogram (EMG) decomposition, and
refinement of the MU pool for the exemplar index finger in the neural-drive method. (a) The recorded forces of a
representative single-finger trial are shown. (b) The firing event trains of individual MUs as vertical bars are obtained
through EMG decomposition of the single-finger trial corresponding to the finger forces shown in (a). The blue curve
represents the populational discharge frequency of all MUs, which is proportional to the neural drive. (c) The finger forces
of a representative multi-finger trial. The force data of the middle and ring-pinky (RP) fingers are in shaded color to give a
better illustration of the force of the index finger. (d) The MU firing event trains are obtained by applying the separation
vectors of MUs obtained from the single-finger trial shown in (b) to the multi-finger trial. The blue curves represent the
time courses of the normalized firing rates of individual MUs. The MUs with italic bars and red crosses (e.g. MU2I-3I and
MU5I-9I) are excluded from the MU pool of the index finger because their firing rates have a weaker correlation with the
force of the index finger compared with other fingers. The MUs with vertical bars are retained for the index finger.

index (I) finger and the force of finger l. All the
multi-finger trials in the training set were used
to refine the MU pool and the R2

i,I−l values were
averaged across all trials.

(6) Remove the separation vector of the MUs of a
given finger with lower coefficients. Take index
finger as an example, if R2

i,I−I < R2
i,I−M or

R2
i,I−I < R2

i,I−PR (Fig. 2(d)), ith MU of the index
(I) finger is removed. To this end, the refined
MU pools specific to individual fingers, i.e. B3,I,
B3,M, and B3,RP were obtained to predict the
force of individual fingers.

In Step (2), a lower threshold was selected here
because the separation vectors were obtained using
the single-finger trials, and their performance would
typically decrease due to variations of EMG activity
in the multi-finger trials compared with the single-
finger trial. The firing event train would have a SIL

value lower than the threshold typically when the
corresponding MUs were de-recruited (e.g. MU 1I,
4I, 12I–14I, 16I, 17I, and 20I in Fig. 2(d)).

2.2.3. Force prediction using neural drive
signals

For a given multi-finger trial in the testing set, the
force prediction performance was evaluated via the
following procedure:

(1) Apply the separation vectors of individual fingers
to the EMG signals to obtain the source signals
si,I(i = 1, 2, . . . , n3,I), sj,M(j = 1, 2, . . . , n3,M),
and sk,RP(k = 1, 2, . . . , n3,RP), where n3,I, n3,M,
and n3,RP are the number of MUs after MU pool
refinement for the index, middle, and RP fingers,
respectively.

(2) Convert si,I, sj,M, and sk,RP to the firing event
trains ti,I, tj,M, and tk,RP, and calculate the SIL
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values of individual trains. The firing events were
eliminated if the SIL values were smaller than
0.6.

(3) Calculate the time courses of firing rate (fi,I,
fj,M, and fk,RP) for individual MUs using the
sliding window.

(4) Calculate the neural drive signals for individual
fingers as

Dl =
∑

i

fi,l l = I, M, RP. (4)

(5) Smoothen the neural drive signal using a Kalman
filter with the system matrix, the observation
matrix, the system covariance and the obser-
vation covariance set to 1, 1, 0.1, and 0.5,
respectively, in order to eliminate sporadic, iso-
lated, and large-amplitude fluctuations.37,52 (if
not specified, the Kalman filter settings are the
same in the subsequent text).

(6) Process the force of individual fingers using the
average window, resulting in Ftst

l (l = I, M, RP).
(7) Use a linear regression model to establish the

relation between the neural drive signal and the
force of the corresponding finger.

Ftst
l = alDl + bl l = I, M, RP. (5)

(8) Use the resultant R2 value and the root mean
square error (RMSE) between the predicted
force and the actual force to quantify the force
prediction performance.

2.3. Force prediction using EMG
amplitude information

The finger extension force was also predicted using
the EMG amplitude information as a comparison.
Earlier work has shown that the EMG amplitude was
a preferred feature for force prediction among the dif-
ferent time and frequency features.53 Two different
EMG amplitude-based methods were performed in
this study. In the first method, the number of EMG
channels to calculate muscle activation strength was
fixed to 60 for different fingers (termed the EMG60-
amp method). The specific procedures are described
as follows:

(1) Calculate the EMG amplitude (RMS) for indi-
vidual channels using the single-finger trials
(Fig. 3(b)).

(2) Average the amplitude across the single-finger
trials with the same target finger respectively for
individual channels.

Fig. 3. Electromyogram (EMG) channel selection and refinement procedure of the EMG amplitude-based method. (a)
The finger forces of the multi-finger trial used to perform the EMG channel refinement procedure. (b) The EMG dis-
tribution of a representative single-finger trial (same as shown in Fig. 2(a)) for the index finger. The dash lines encircle
the 60 channels with the maximum EMG amplitude. (c) The EMG amplitudes of the retained channels have a stronger
correlation (R2 value) with the forces of the index finger, compared with the other two fingers. (d) The EMG amplitudes
of the excluded channels after the refinement procedure have a weaker correlation with the forces of the index finger,
compared with the other two fingers. (e) The EMG amplitude distribution when the index finger extended during the
multi-finger trial. The index finger extension period was marked within the corresponding shaded period shown in (a). The
dash lines encircle the retained EMG channels after the refinement procedure, which are used in the EMG-amp method.
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(3) Select the 60 channels with the largest amplitude
for individual fingers, obtaining the EMG chan-
nel pool C60,I, C60,M, and C60,RP (Fig. 3(b)).
The channel number of 60 was selected based on
our initial test such that most EMG activities
can be captured.

(4) For a given multi-finger trial in the testing set,
calculate the EMG amplitude of individual chan-
nels in the EMG channel pools using the sliding
window, and then average across the channels
within individual channel pools, resulting in the
time courses of overall EMG amplitude for indi-
vidual fingers, i.e. A60,l, l = I, M, RP.

(5) Smooth the A60,l using the Kalman filter.
(6) Process the force of individual fingers using the

sliding window, resulting in Ftst
l (l = I, M, RP).

(7) Use a linear regression model to predict the force
level of individual fingers

Ftst
l = clA60,l + dl l = I, M, RP, (6)

and the resultant R2 value and RMSE were used
to evaluate the force prediction performance.

As a preliminary selection of EMG channels
for individual fingers, there is a substantial over-
lap of EMG channels between fingers,54 as shown
in Fig. 3(b), cross-talk related interference of the
EMG amplitude may bias the force prediction. In
addition, different fingers have muscle compartments
with different spatial distributions, a fixed channel
number can also bias the EMG amplitude. There-
fore, a second EMG amplitude-based method was
performed, which further refined the EMG channel
pool to reduce EMG channel overlap (termed the
EMG-amp method). The major difference compared
with the EMG60-amp method was that a channel
refinement procedure was added after Step (3) of the
EMG60-amp method. The specific channel refine-
ment procedures are described as follows:

(1) For a given multi-finger trial in the training set,
calculate the time courses of EMG amplitude
of individual channels in the EMG channel pool
C60,I, C60,M, and C60,RP using the sliding win-
dow, obtaining pi,I, pj,M, and pk,RP (i, j, k =
1, 2, . . . , 60).

(2) Process the force data using the sliding win-
dow, resulting in time courses of force Ftrn

l (l =
I, M, RP).

(3) Perform a linear regression analysis between
individual EMG amplitudes pi,l and individual
forces Ftrn

l , obtaining the coefficient of determi-
nation R2

i,l1−l2
between the ith channel in the

channel pool C60,l1 and the force of finger l2
(i = 1, 2, . . . , 60, l1, l2 = I, M, RP).

(4) If R2
i,l1−l1

< R2
i,l1−l2

and l2 �= l1, then remove the
ith channel from the channel pool C60,l1 , result-
ing in the refined channel pool for individual fin-
gers, i.e. CI, CM, and CRP, which can be used
for force prediction in the EMG-amp method.

For example, Fig. 3(a) illustrates the forces of
a multi-finger trial used to refine EMG channels.
Figure 3(c) illustrates the EMG amplitudes of the
retained channels that had a stronger correlation
(R2 value) with the force level of the index finger
compared with other fingers (middle and RP). Fig-
ure 3(d) shows the channels excluded from the 60-
channel pool since their amplitudes had a stronger
correlation with other finger forces. The refined EMG
channels are shown as the encircled area in Fig. 3(e)
for the index finger.

2.4. Detection of muscle contraction
state

Both the recorded forces and the predicted forces
using different methods were further categorized into
two states, i.e. active and rest, in order to investi-
gate the performance of different methods on iden-
tifying the muscle contraction or relaxation states.
Specifically, the recorded and predicted forces were
averaged separately within each plateau of the tar-
geted force trace for individual fingers. If the force
was above a threshold (2%, 5%, or 10% MVC), it was
considered an active state. Otherwise, it was consid-
ered a rest state. The states calculated based on the
actual forces were considered the true states. The
states identified from the predicted forces were com-
pared with the true states, and three metrics were
evaluated: the false active rate, false rest rate, and
the accuracy. The false active rate was defined as the
number of the rest cases that were falsely identified
as active normalized by the total number of true rest
cases. The false rest rate was defined as the num-
ber of the active cases that were falsely identified as
rest normalized by the total number of true active
cases. The accuracy was calculated as the number of
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Fig. 4. (Color online) A representative example of concurrent and continuous force prediction of different fingers. (a)–(c)
The firing event trains of MUs of the index, middle, and ring-pinky (RP) fingers are shown. The overlaid blue curves
show the normalized populational discharge frequency of individual fingers. (d) The EMG amplitude distribution for the
six repetitions when the force of a specific finger is plateaued. The solid lines encircle the EMG channels used to predict
the overall EMG amplitude for individual fingers in the EMG-amp method. (e) The force prediction of the neural-drive
method and the EMG-amp method is shown.

correctly identified active and rest cases normalized
by the total number of cases.

3. Results

3.1. Force prediction performance

3.1.1. Force prediction results of a
representative trial

Figures 4(a)–4(c) illustrate the MU firing event
trains used to predict forces of the index, middle,
and RP fingers, respectively from a representative
multi-finger trial in the testing set. The populational
firing frequency (blue curves) of all the MUs was cal-
culated to represent the strength of the neural drive
for individual fingers. Figure 4(d) displays the EMG
amplitude distribution when the force of the specific
fingers reached the target, and the EMG channels
used for individual fingers in the EMG-amp method.
The trial contained six repetitions of extensions as
shown in Fig. 4(e). A linear regression was performed
between the neural-drive signals of individual fin-
gers and the corresponding finger forces, as well as
between the overall EMG amplitude of individual fin-
gers and the corresponding finger forces. The force
prediction results based on the regression analysis

are shown in Fig. 4(e). The predicted force using
the neural-drive method followed the actual force
accurately. In contrast, overestimation and under-
estimation errors were evident using the EMG-amp
method.

3.1.2. Performance measured with R2 and
RMSE

To evaluate whether the neural-drive method can
improve force prediction performance across sub-
jects, their performances were compared using the R2

value and the RMSE. The R2 value (Fig. 5(a)) and
the RMSE (Fig. 5(b)) were first averaged across tri-
als and then averaged across fingers to compare the
overall force prediction performance. The repeated
measures analysis of variance (ANOVA) demon-
strated that three force prediction methods (neural-
drive, EMG-amp, and EMG60-amp) showed signif-
icant differences in both the R2 value (F (2, 14) =
22.12, p < 0.0001, where 2 is the DOF of the
method, 14 is the DOF of error) and the RMSE
(F (2, 14) = 17.36, p = 0.0002). Further post-hoc test
with Holm–Bonferroni correction showed that the R2

value of the neural-drive method was significantly
larger than those of both EMG amplitude-based
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Fig. 5. (a) The average correlation (R2 value) between the predicted and actual forces for individual subjects, (b) the
average root-mean-square-error (RMSE) between the predicted and actual forces for individual subjects, (c) the average
R2 value of individual fingers, (d) the average RMSE of individual fingers, (e) the average false active rate across all
subjects, (f) the average false rest rate across all subjects, and (g) the average accuracy across all subjects. The error bars
represent the standard error. ∗p < 0.05, ∗∗p < 0.01.

methods (p < 0.05), and the R2 value of the EMG-
amp method was significantly larger compared with
the EMG60-amp method (p < 0.05). The compari-
son of the RMSE also demonstrated that the RMSE
of the neural-drive method was significantly smaller
compared with both EMG amplitude-based methods
(p < 0.05). The RMSE of the EMG-amp method was
also significantly smaller compared with the EMG60-
amp method (p < 0.05).

To further evaluate the performance of the three
methods for individual fingers, the R2 value and the
RMSE were averaged across trials for individual fin-
gers as shown in Figs. 5(c) and 5(d). The repeated
measures ANOVA showed that there were significant
differences of the R2 value and the RMSE between
the three methods for both the index and the RP
fingers (p < 0.05). However, there was no signifi-
cant difference of either the R2 value (F (2, 14) =
2.05, p = 0.1653) or the RMSE (F (2, 14) = 2.12, p =
0.1572) for the middle finger. Further post-hoc tests
showed that the R2 value of the neural-drive method
was significantly larger than those of both EMG
amplitude-based methods for both the index and
RP fingers (p < 0.05), and the R2 value of the
EMG-amp method was also significantly larger than
the EMG60-amp method for both the index and
RP fingers (p < 0.05). As for the RMSE, the

neural-drive and the EMG-amp methods had signifi-
cantly smaller force prediction errors compared with
the EMG60-amp method (p < 0.05) for the index
finger. However, the improvement of the neural-drive
method compared with the EMG-amp method was
not significant (p = 0.0743). For the RP finger,
the RMSE of the neural-drive method was signifi-
cantly smaller compared with the other two EMG
amplitude-based methods (p < 0.05), and the EMG-
amp method also had a significantly smaller RMSE
value compared with the EMG60-amp method
(p < 0.05).

3.1.3. Performance measured with detection
accuracy of muscle contraction state

Finally, the number of false detections of finger acti-
vations was evaluated. Figures 5(e)–5(g) illustrate
the average false active rate, false rest rate, and the
accuracy across all subjects, respectively, when dif-
ferent thresholds were used. The repeated measures
ANOVA showed that the false active rate differed sig-
nificantly between the three methods (neural-drive,
EMG-amp, and EMG60-amp) regardless the choice
of the threshold (2% MVC: F(2, 14) = 16.52, p =
0.0002; 5% MVC: F(2, 14) = 24.45, p < 0.0001;
10% MVC: F(2, 14) = 29.02, p < 0.0001). Further
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post-hoc test showed that the false active rate of the
neural-drive method was significantly smaller than
both EMG amplitude-based methods (p < 0.01),
while there was no significant difference between
the EMG-amp method and the EMG60-amp method
(p > 0.05). However, the false rest rate of the neural-
drive method was higher than the other two meth-
ods. The repeated measures ANOVA results showed
that there were significant differences between the
three methods for all the thresholds (2% MVC:
F(2, 14) = 6.95, p = 0.008; 5% MVC: F(2, 14) =
27.96, p < 0.0001; 10% MVC: F(2, 14) = 11.96, p =
0.0009). Post-hoc test showed that the false rest rate
of the neural-drive method was significantly larger
than both EMG amplitude-based methods (2% and
10% MVC: p < 0.05; 5% MVC: p < 0.01), and there
was no significant difference between the two EMG
amplitude-based methods for any of the three thresh-
olds (p > 0.05). As for the overall accuracy, there
were also significant differences between the three
methods (2% MVC: F(2, 14) = 8.51, p = 0.0038;
5% MVC: F(2, 14) = 15.65, p = 0.0003; 10% MVC:

F(2, 14) = 18.47, p < 0.0001). Post-hoc test showed
that the neural-drive method obtained a significantly
higher accuracy compared with the other two meth-
ods for all the thresholds (2% MVC: p < 0.05; 5%
and 10% MVC: p < 0.01). Meanwhile, the accuracy
of the EMG-amp method was significantly higher
than the EMG60-amp method when 10% MVC was
selected as the threshold (p < 0.05).

3.2. Overlap of muscle activity
distribution between fingers

We further analyzed the relation between the amount
of the muscle activity overlap and the force pre-
diction error (RMSE). Figure 6(a) illustrates the
peak-to-peak amplitude distribution of the MUAP
from three representative MUs for the index, mid-
dle, and RP fingers, respectively. The MUAP of indi-
vidual channels was obtained through a spike trig-
gered averaging of the 8 × 20-channel EMG signals
from the single-finger trials.55 Figure 6(b) shows the
average EMG amplitude distribution across all the

Fig. 6. Electromyogram (EMG) amplitude distribution analysis. (a) The motor unit action potential (MUAP) amplitude
(monopolar peak-to-peak) distribution of three representative MUs for the index, middle, and ring-pinky (RP) fingers,
respectively. (b) The EMG amplitude distribution across all single-finger trials for individual fingers from a representative
subject. The dots represent the centroids of the amplitude distribution. (c) The average centroid positions across all
single-finger trials for individual fingers and individual subjects.
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corresponding single-finger trials. Figure 6(c) shows
the average positions of the centroids from all the
single-finger trials for individual subjects. The cen-
troids of the index and RP fingers were close to each
other but were relatively far from the centroid of the
middle finger.

3.2.1. Centroid distance of EMG distribution
between fingers

The distance between the centroids of any two fin-
gers was then calculated for individual subjects.
Figure 7(a) illustrates the range of the centroid
distance from all subjects. The repeated measures
ANOVA showed that there was significant differ-
ence between the three centroid distances i.e. the
distance between index & middle fingers, the dis-
tance between index & RP fingers, and the distance
between middle & RP fingers (F(2, 14) = 17.12, p =
0.0002). Further post-hoc test showed that the index
& middle centroid distance was significantly larger
than the index & RP distance (p < 0.01), and the
middle & RP distance (p < 0.05). The middle &

RP centroid distance was numerically larger than the
index & RP centroid distance. However, the differ-
ence was not significant (p = 0.0650).

3.2.2. 2-D correlation coefficient of EMG
distribution between fingers

The 2-D correlation coefficient was used to further
quantify the amount of overlap of EMG amplitude
distribution between fingers. The EMG amplitude
distribution was first averaged across all single-finger
trials for individual fingers and then used to cal-
culate the 2-D correlation coefficient between any
two fingers. Figure 7(b) illustrates the range of the
correlation coefficient between any two fingers from
all subjects. The repeated measures ANOVA showed
that there was a significant difference between the
three types of overlap coefficients (F(2, 14) = 7.87,
p = 0.0051). Further post-hoc test showed that the
index & RP correlation coefficient was significantly
larger than that between the index and middle fin-
gers (p < 0.01), and that between the middle and
RP fingers (p < 0.05).

(a) (b)

(c)

Fig. 7. (a) The range of the centroid distance between the index and middle fingers, between the index and ring-pinky
(RP) fingers, and between the middle and RP fingers. (b) The range of the 2D correlation coefficient between the index
and middle fingers, between the index and RP fingers, and between the middle and RP fingers. (c) Pearson correlation
between the RMSE and the 2-D correlation coefficient of the three methods. ∗p < 0.05, ∗∗p < 0.01.
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3.2.3. Correlation between EMG distribution
overlap and force prediction error

In order to quantify the relation between the amount
of muscle activity overlap and the force prediction
error, the RMSE values were first calculated for each
repetition when the target force reached the max-
imum, i.e. within the shaded period as determined
by the dash lines in Fig. 3(a), for individual fin-
gers. Then, the RMSE values of any two fingers were
averaged across all extensions and all trials, which
resulted in three RMSE values for each subject. Sim-
ilarly, three 2-D correlation coefficients between fin-
gers were also calculated for each subject. Then,
all three RMSE values with their corresponding 2-
D correlation coefficients were pooled together to
perform the Pearson correlation analysis (Fig. 7(c)).
The results showed that there was a significant cor-
relation between the RMSE value and the 2-D cor-
relation coefficient when the two EMG amplitude-
based methods were used (EMG-amp: r = 0.4073,
p < 0.05, EMG60-amp: r = 0.5807, p < 0.01).
On the contrary, the RMSE was not influenced by
the muscle activity overlap when the neural-drive
method was used (r = 0.1080, p > 0.05).

4. Discussion

This study sought to concurrently and continuously
predict dexterous isometric extension forces of indi-
vidual fingers based on source separation of MU pool
discharge information. We decomposed the EMG sig-
nals to obtain the information of MUs. The MUs
were then classified into different groups specific to
individual fingers. The populational firing frequency
of MUs were used to predict extension forces of indi-
vidual fingers. The results demonstrated that the
neural-drive method based on MU firing activities
had a significantly better force prediction perfor-
mance (a higher R2, a lower RMSE, and a high
accuracy of detecting finger active or rest states)
compared with the conventional EMG amplitude-
based methods. Compared with the global EMG-
based force prediction methods, these findings indi-
cate that the MU pool binary firing events are more
robust for concurrent and continuous force predic-
tions of individual fingers. The outcomes can help
provide a robust neural-machine interface that can

allow users to intuitively control advanced robotic
hands in a dexterous manner.

The improved performance of the neural-drive
method compared with the EMG-amp method
largely arose from several aspects. Certain channels
still contained cross-talk of different fingers due to
proximity of finger muscle compartments,54,56 which
resulted in overestimated and underestimated forces.
When the muscles of different fingers are anatomi-
cally close to each other, it is inevitable for an elec-
trode to capture the activities of other muscles. In
contrast, the key procedure to classify the MUs spe-
cific to individual fingers made it possible to predict
the neural drive signals of individual fingers concur-
rently and independently, thereby resulting in more
accurate force predictions of individual fingers, even
when muscles are anatomically close to each other.

This can also be demonstrated by the correla-
tion analysis between the force prediction errors and
the muscle activity overlap, and the performance
of detecting muscle states. The correlation analysis
showed that the amount of muscle activity overlap
between fingers can significantly influence the perfor-
mance of both EMG amplitude-based methods, but
no significant influence was observed on the predic-
tion error using the neural-drive method. The false
active rate of both EMG amplitude-based methods
was significantly higher compared with the neural-
drive method, mainly due to the markedly reduced
force overestimation in the neural-drive method. In
addition, compared with the EMG amplitude infor-
mation, the binary firing events were less influenced
by various sources of interference to the EMG record-
ings, such as cancellation of MUAPs, variations of
MUAP amplitude, background noise, and motion
artifacts. For example, motion artifacts can lead to
a significant increase of the estimated EMG ampli-
tude and an overestimation of the finger force. On
the contrary, a motion artifact can only lead to the
false detection of one or several firing events, which
have little influence on the estimation of the firing
rate of the MU pool and the estimation of the finger
force.

It has been demonstrated that the neural-drive
method was more accurate compared with the EMG
amplitude-based method for all fingers on either
force prediction.38 or joint kinematic prediction.39

In these studies, the experiment was well controlled
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such that subjects were instructed to extend one fin-
ger at a time and any co-contraction was avoided.
Finger forces or joint angles were predicted for one
finger at a time. On the other hand, in this study,
co-contractions were allowed, and the forces of dif-
ferent fingers were predicted concurrently. In our
study, the performance of the neural-drive and the
EMG-amp methods was comparable for the middle
finger, partly because the muscle activation region
of the middle finger was far away from that of the
index and RP fingers,54 resulting in a minimal cross-
talk from the index and RP fingers. The inconsis-
tency compared with the previous studies38,39 could
arise from two factors. First, there was no EMG
channel refinement procedure in the previous stud-
ies, which improved the performance of the EMG
amplitude-based method in the current study. Sec-
ond, different from the previous study,38 the sepa-
ration vectors used to extract the MU firing event
trains for neural-drive calculation in the multi-finger
trials were obtained through the EMG decomposi-
tion information obtained from the single-finger tri-
als. The variation of the MUAP shape between trials
can arise from the shift of electrodes.57 and mus-
cle morphology change, which could lead to degra-
dation of the accuracy of the firing events.37 Even
though the performance of the EMG amplitude-
based method and the neural-drive method was
comparable for the middle finger, we expect that
the neural-drive method can outperform the EMG
amplitude-based method with prolonged muscle
contractions.37

The muscle contraction state was also simpli-
fied into two states, i.e. rest and active. For realis-
tic applications, it was relevant to identify the mus-
cle contraction state accurately for making decisions
when to start and stop the actuators of robotic
devices. Since the EMG amplitude-based method
can fail to distinguish the force between different
fingers, especially between the index and RP fin-
gers, a number of rest states can be falsely identi-
fied as active states, resulting a higher false active
rate. Surprisingly, the EMG-amp method after chan-
nel refinement showed no significant improvement in
muscle contraction state detection, compared with
the EMG60-amp method. This may be due to a
substantial level of force overestimation above the
selected thresholds, which can still lead to state

detection errors. In contrast, the false active rate
of the neural-drive method was significantly smaller
than both EMG amplitude-based methods. The
results indicated that the force overestimation was
markedly reduced in the neural-drive method. The
false rest rate using the neural-drive method, how-
ever, was significantly higher compared with the
EMG amplitude-based methods, which indicated
that the neural-drive method may fail to detect small
force levels. The possible sources of error were that
the small MUs recruited at low force levels were not
identified in the MU pool of different fingers, because
the MU information was obtained via decompos-
ing EMG recordings from the trials with large con-
traction forces (50% MVC). Adding additional MU
information decomposed from trials with low force
levels may help to improve the ability of the neural-
drive method to accurately predict low forces. In
addition, the firing rate to MU force relation has a
relatively shallow slope.58 The sparse firing events
at the low excitation drive may underestimate the
muscle force, when a linear regression function is
developed at moderate to high force levels. Even
though the neural-drive method had a larger false
rest rate, the overall accuracy of the neural-drive
method was significantly higher compared with the
EMG amplitude-based methods, demonstrating the
high performance of the neural-drive method in iden-
tifying active muscle contraction states from rest
states.

Although the results were promising in the pre-
diction of individual finger forces,38 the iteration pro-
cedure in the Fast-ICA algorithm was time consum-
ing and infeasible for direct real-time applications.
Instead of repeating the iterations for every trial
to predict the muscle force, the separation vectors
obtained using the single-finger trials were directly
applied to the EMG data from the multi-finger tri-
als in this study. Therefore, it is feasible to obtain
the MU separation vector information during an
initialization phase, and the MU firing information
can then be obtained in real-time using the pre-
computed separation vectors, which can be used to
predict finger forces in real time. Even though the
MUAP features can change over time, resulting in a
degradation of the separation matrix to extract the
discharge information of motoneurons, the detected
firing events were still valid to predict the force
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accurately in the real-time condition, compared with
the EMG amplitude-based method, especially with
prolonged contractions.37

One limitation of this study was that the force
prediction was performed during isometric contrac-
tion conditions. Previous studies have used motoneu-
ron discharge information to predict finger joint
movements.39 Clearly, further studies are necessary
to evaluate the performance of the neural-drive
method during dynamic muscle contractions with
multi-finger motions.

The other limitation is that the thumb was not
involved in this study. A neural-machine interface for
the realistic control of prosthetic hands should have
the ability to decode the movement intention of the
thumb, which plays an important role in daily life.
The main contribution of this study is that the MU
firing information was used to decode the isometric
force of individual fingers concurrently by classify-
ing the MUs associated with different fingers. The
proposed method alleviated the cross-talking issue
when different muscles are anatomically close to each
other. Therefore, it is reasonable to speculate that
the proposed method can also be applied to decode
the thumb force. Its performance will be explored on
the thumb in future studies.

This study can help in developing a reliable
neural-machine interface for the control of exter-
nal devices, such as the control of prosthetic hands
for amputees or the control of remote devices for
able-bodied individuals. In this study, we focused
on the able-bodied individuals and the results are
promising. In amputees, the available muscles can be
different from able-bodied subjects, especially con-
sidering the varied level of amputation. Meanwhile,
the inaccessibility of finger forces or kinematics also
brings challenges to the classification of MUs. There-
fore, in our further study, it is necessary to evalu-
ate the performance of our method on amputees. In
addition, only one female participant was recruited.
Considering the relatively low EMG activity level
in female participants, the number of detectable
MUs and the accuracy of the firing events might
be decreased, which might degrade the performance
of the neural-drive method. However, the degraded
EMG recordings could also decrease the performance
of the EMG amplitude-based method. In our further
study, we will explore whether the performance of the

neural-drive method differs between male and female
participants.

5. Conclusion

In summary, the goal of this study was to concur-
rently predict individual finger forces using MU fir-
ing information. The extracted firing information
was used to reliably predict the finger forces even
when the forces of different fingers varied in a dex-
terous manner. The developed key procedure to clas-
sify the MUs to be associated with different fingers
was shown to be effective to alleviate the cross-talk
issue of EMG recordings from multiple muscle com-
partments. This allowed the decoding of finger forces
independently and concurrently. The findings can
provide a robust neural-machine interface that could
allow individuals with arm amputation to intuitively
control wearable robotic hands or could allow trained
individuals to remotely operate advanced robotic
hands.

References

1. B. N. Perry, C. W. Moran, R. S. Armiger, P. F.
Pasquina, J. W. Vandersea and J. W. Tsao, Initial
clinical evaluation of the modular prosthetic limb,
Front. Neurol. 9 (2018) 153.

2. A. Ortiz-Rosario, H. Adeli and J. A. Buford, Wavelet
methodology to improve single unit isolation in pri-
mary motor cortex cells, J. Neurosci. Methods 246
(2015) 106–118.

3. A. Burns, H. Adeli and J. A. Buford, Brain–
computer interface after nervous system injury, Neu-
roscientist 20 (2014) 639–651.

4. Q. Wu, Y. Zhang, J. Liu, J. Sun, A. Cichocki and
F. Gao, Regularized group sparse discriminant anal-
ysis for p300-based brain-computer interface, Int. J.
Neural Syst. 29 (2019) 1950002.

5. G. Dhillon, T. Kruger, J. Sandhu and K. Horch,
Effects of short-term training on sensory and motor
function in severed nerves of long-term human
amputees, J. Neurophysiol. 93 (2005) 2625–2633.

6. A. Ortiz-Rosario, I. Berrios-Torres, H. Adeli and
J. A. Buford, Combined corticospinal and reticu-
lospinal effects on upper limb muscles, Neurosci.
Lett. 561 (2014) 30–34.

7. A. Suberbiola, E. Zulueta, J. M. Lopez-Guede,
I. Etxeberria-Agiriano and M. Grana, Arm ortho-
sis/prosthesis movement control based on surface
EMG signal extraction, Int. J. Neural Syst. 25
(2015) 1550009.

2150010-16



Page Proof

January 12, 2021 19:16 2150010

Concurrent Prediction of Dexterous Finger Forces Based on Source Separation and Classification

8. T. Lenzi, S. M. De Rossi, N. Vitiello and M. C.
Carrozza, Intention-based EMG control for powered
exoskeletons, IEEE Trans. Biomed. Eng. 59 (2012)
2180–2190.

9. A. O. Andrade and C. I. Andrade, On the rela-
tionship between features extracted from EMG and
force for constant and dynamic protocols, Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc. 2012 (2012) 3392–
3395.

10. A. Ortiz-Rosario and H. Adeli, Brain-computer
interface technologies: From signal to action, Rev.
Neurosci. 24 (2013) 537–552.

11. J. A. Barios, S. Ezquerro, A. Bertomeu-Motos, M.
Nann, F. J. Badesa, E. Fernandez, S. R. Soekadar
and N. Garcia-Aracil, Synchronization of slow cor-
tical rhythms during motor imagery-based brain–
machine interface control, Int. J. Neural Syst. 29
(2019) 1850045.

12. M. C. Corsi, M. Chavez, D. Schwartz, L. Hugueville,
A. N. Khambhati, D. S. Bassett and F. De Vico Fal-
lani, Integrating EEG and MEG signals to improve
motor imagery classification in brain-computer inter-
face, Int. J. Neural Syst. 29 (2019) 1850014.

13. M. Grana, M. Aguilar-Moreno, J. De Lope Asiain, I.
B. Araquistain and X. Garmendia, Improved activ-
ity recognition combining inertial motion sensors and
electroencephalogram signals, Int. J. Neural Syst. 30
(2020) 2050053.

14. S. H. George, M. H. Rafiei, A. Borstad, H. Adeli
and L. V. Gauthier, Gross motor ability predicts
response to upper extremity rehabilitation in chronic
stroke, Behav. Brain Res. 333 (2017) 314–322.

15. S. H. George, M. H. Rafiei, L. Gauthier, A. Borstad,
J. A. Buford and H. Adeli, Computer-aided predic-
tion of extent of motor recovery following constraint-
induced movement therapy in chronic stroke, Behav.
Brain Res. 329 (2017) 191–199.

16. M. H. Rafiei, K. M. Kelly, A. L. Borstad, H.
Adeli and L. V. Gauthier, Predicting improved daily
use of the more affected arm poststroke following
constraint-induced movement therapy, Phys. Ther.
99 (2019) 1667–1678.

17. Z. Yang, M. H. Rafiei, A. Hall, C. Thomas, H. A.
Midtlien, A. Hasselbach, H. Adeli and L. V. Gau-
thier, A novel methodology for extracting and eval-
uating therapeutic movements in game-based motion
capture rehabilitation systems, J. Med. Syst. 42
(2018) 255.

18. G. Hotson, D. P. McMullen, M. S. Fifer, M. S.
Johannes, K. D. Katyal, M. P. Para, R. Armiger, W.
S. Anderson, N. V. Thakor and B. A. Wester, Indi-
vidual finger control of a modular prosthetic limb
using high-density electrocorticography in a human
subject, J. Neural Eng. 13 (2016) 026017.

19. Q. Wei, S. Zhu, Y. Wang, X. Gao, H. Guo and X. Wu,
A training data-driven canonical correlation analy-
sis algorithm for designing spatial filters to enhance

performance of SSVEP-based BCIs, Int. J. Neural
Syst. 30 (2020) 2050020.

20. G. S. Dhillon and K. W. Horch, Direct neural sen-
sory feedback and control of a prosthetic arm, IEEE
Trans. Neural Syst. Rehabil. Eng. 13 (2005) 468–472.

21. Y. Liu, Y. Ning, S. Li, P. Zhou, W. Z. Rymer and Y.
Zhang, Three-dimensional innervation zone imaging
from multi-channel surface EMG recordings, Int. J.
Neural Syst. 25 (2015) 1550024.

22. A. Fougner, Ø. Stavdahl, P. J. Kyberd, Y. G. Losier
and P. A. Parker, Control of upper limb prostheses:
Terminology and proportional myoelectric control —
A review, IEEE Trans. Neural Syst. Rehabil. Eng. 20
(2012) 663–677.

23. D. Leonardis, M. Barsotti, C. Loconsole, M. Solazzi,
M. Troncossi, C. Mazzotti, V. P. Castelli, C. Proco-
pio, G. Lamola, C. Chisari, M. Bergamasco and A.
Frisoli, An EMG-controlled robotic hand exoskele-
ton for bilateral rehabilitation, IEEE Trans. Haptics
8 (2015) 140–151.

24. Z. Li, B. Wang, F. Sun, C. Yang, Q. Xie and
W. Zhang, sEMG-based joint force control for an
upper-limb power-assist exoskeleton robot, IEEE J.
Biomed. Health Inform. 18 (2014) 1043–1050.

25. Z. Lu, X. Chen, X. Zhang, K.-Y. Tong and P. Zhou,
Real-time control of an exoskeleton hand robot with
myoelectric pattern recognition, Int. J. Neural Syst.
27 (2017) 1750009.

26. A. A. Adewuyi, L. J. Hargrove and T. A. Kuiken,
An analysis of intrinsic and extrinsic hand mus-
cle EMG for improved pattern recognition control,
IEEE Trans. Neural Syst. Rehabil. Eng. 24 (2015)
485–494.

27. J. G. Ngeo, T. Tamei and T. Shibata, Continu-
ous and simultaneous estimation of finger kinemat-
ics using inputs from an EMG-to-muscle activation
model, J. Neuroeng. Rehabil. 11 (2014) 122.

28. J. N. Leijnse, N. H. Campbell-Kyureghyan, D. Spek-
tor and P. M. Quesada, Assessment of individual fin-
ger muscle activity in the extensor digitorum com-
munis by surface EMG, J. Neurophysiol. 100 (2008)
3225–3235.

29. J. Leijnse, S. Carter, A. Gupta and S. Mccabe,
Anatomic basis for individuated surface EMG and
homogeneous electrostimulation with neuroprosthe-
ses of the extensor digitorum communis, J. Neuro-
physiol. 100 (2008) 64–75.

30. T. Moritani, M. Muro and A. Nagata, Intramuscular
and surface electromyogram changes during muscle
fatigue, J. Appl. Physiol. 60 (1986) 1179–1185.

31. Y. Zheng and X. Hu, Dexterous force estimation
during finger flexion and extension using motor unit
discharge information, Annu. Int. Conf. IEEE Eng.
Med. Biol. Soc. 2020 (2020) 3130–3133.

32. A. Gijsberts, R. Bohra, D. Sierra González, A.
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