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 

Abstract— Objective: A reliable neural-machine interface 

offers the possibility of controlling advanced robotic hands with 

high dexterity. The objective of this study was to develop a 

decoding method to estimate flexion and extension forces of 

individual fingers concurrently. Methods: First, motor units 

(MUs) firing information were identified through surface 

electromyogram (EMG) decomposition, and the MUs were 

further categorized into different pools for the flexion and 

extension of individual fingers via a refinement procedure. MU 

firing rate at the populational level was calculated, and the 

individual finger forces were then estimated via a bivariate linear 

regression model (neural-drive method). Conventional EMG 

amplitude-based method was used as a comparison. Results: Our 

results showed that the neural-drive method had a significantly 

better performance (lower estimation error and higher 

correlation) compared with the conventional method. Conclusion: 

Our approach provides a reliable neural decoding method for 

dexterous finger movements. Significance: Further exploration of 

our method can potentially provide a robust neural-machine 

interface for intuitive control of robotic hands. 

Index Terms— Finger force estimation, Flexion and extension, 

Isometric contractions, Neural-machine interface, 

Neural-decoding 

I. INTRODUCTION 

 reliable neural-machine interface allows intuitive 

interaction with assistive devices such as prostheses and 

exoskeletons [1] or remote control of devices [2]. In the past 

few decades, substantial scientific and technological efforts 

have been made to develop central and peripheral neural 

interfaces between humans and machines [3, 4]. Among these 

neural signals, sEMG has been widely used in neural-machine 

interface [5, 6], largely because sEMG can be obtained 

non-invasively and can yield segregated neural activities of 

individual muscles. As a result, sEMG-based interface can be 

used to control robotic devices with multiple degrees of 

freedom. For example, with pattern recognition of sEMG 

signals of both extrinsic and intrinsic muscles, up to 19 hand 

gestures can be identified with an accuracy of 96% [7]. 

However, pattern recognition can only specify a discrete 
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number of states [8]. In order to control individual degrees of 

freedom in a continuous manner, proportional control was 

needed to improve intuitive control. Specifically, EMG global 

features, such as the amplitude, are extracted as the control 

input signals. However, the control performance can degrade 

over time, since the EMG amplitude can be affected 

substantially by factors such as motion artifact, background 

noise, and muscle fatigue. In addition, the cancellation and 

summation of superimposed motor unit action potentials 

(MUAPs) from different motor units (MUs) can lead to 

complex relation between the level of muscle contraction and 

EMG amplitude. 

Instead of using global EMG features, MU firing activity has 

been used as an alternative neural interface. Specifically, 

populational MU firing frequency reflects the neural drive 

input to the motoneuron pool and can be used to estimate the 

muscle activation level [9]. The decoded motoneuron activity 

has been used to predict joint kinematics of wrist [10, 11] or 

fingers [12, 13]. In addition, it has also been demonstrated that 

the MU firing information is more robust to estimate the 

isometric finger extension force for both intact [14, 15] and 

stroke subjects [16], compared with the conventional EMG 

method. On average, the error between the measured and 

estimated forces decreases by 16.03% and 22.45% for intact 

and stroke subjects, respectively, using the MU firing 

information. However, these studies only focused on finger 

extension. To enable dexterous finger movement, finger force 

estimation needs to be performed when both finger flexion and 

extension are involved. Despite the success of estimating 

isometric finger extension force, it remains a big challenge to 

estimate the finger flexion and extension force concurrently in a 

dexterous manner. First, the flexor digitorum superficialis 

(FDS) muscle is located relatively far away from the skin, 

making it difficult to reliably extract MU firing activities 

specific to individual fingers. Second, finger enslavement from 

co-activation of flexor or extensor muscle compartments poses 

additional challenge to estimate individual finger forces. Lastly, 

co-activation of agonist-antagonists can occur during fine 

motor control [17, 18]. This means that the net extension or 

flexion force of a specific finger is not determined by the 

activation of just extensor or flexor muscles, but a combination 

of both muscles. However, as far as we know, no previous 

studies have investigated the net effect of neural drive to 
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agonist-antagonist muscles, in terms of net force output. 

To address these issues, we developed a force estimation 

method based on MU firing activities, in order to estimate the 

individual fingertip forces concurrently during dexterous finger 

flexion and extension. Specifically, High-density EMG 

(HD-EMG) signals were recorded from the finger flexors and 

extensors. The MU firing events were extracted through a 

source separation algorithm, and were further classified into 

different pools associated with the flexion and extension of 

individual fingers. Then, the MU firing rate in each pool was 

calculated to estimate the neural-drive (neural command), and a 

regression model was then used to estimate individual finger 

forces based on the finger-specific neural-drive. The 

conventional EMG amplitude-based method was also 

performed as a comparison. The results showed that the force 

estimation performance of the neural-drive method was 

significantly better (a higher correlation and a smaller 

estimation error between the estimated force and the measured 

force) than that of the conventional method. The neural-drive 

method also showed a larger estimation error in finger flexion 

than extension, which was partly due to a smaller number of 

identifiable MUs from the flexor compared with the extensor. 

Overall, our method can potentially provide a robust 

neural-machine interface for intuitive control of advanced 

robotic hands. 

II. METHODS 

A. Experiment 

1) Subjects 

Seven neurologically intact participants (age: 21–35) were 

recruited in the study. All subjects gave informed consent with 

protocols approved by the Institutional Review Board of the 

University of North Carolina at Chapel Hill. 

2) Data recording 

Two 8×16 electrode arrays with a 3 mm single-electrode 

diameter and a 10 mm inter-electrode distance covered the 

anterior and posterior sides of the forearm to record EMG 

signals from the finger flexor (FDS) and extensor (extensor 

digitorum communis (EDC)), respectively (Figure 1 A). The 

placement of the electrode was determined by palpating the 

finger flexor or extensor when the subjects flexed or extended 

fingers. The EMG-USB2+ (OT Bioelettronica) system was 

used to amplify and sample the monopolar EMG signals with a 

gain of 1000, a pass band of 10-900 Hz and a sampling rate of 

2048 Hz. The reference was placed at the wrist. 

The index, middle, ring, and pinky fingers were individually 

secured to four miniature load cells (SM-200N, Interface), to 

measure the flexion and extension forces of individual fingers 

at 1000 Hz (Figure 1 A). The forearm was supported at the 

neutral position with the wrist fixed by two stiff foam pads, in 

order to minimize the force transmission from the wrist to the 

load cells. Before each trial, the offsets of individual load cells 

were removed such that a positive force reading represented 

flexion and a negative reading represented extension.  

3) Experiment procedure 

The maximum voluntary contraction (MVC) force was first 

measured for the flexion and extension of individual fingers. 

During the main experiment, the subject was requested to 

follow a predefined force target that had a repeated trapezoidal 

pattern with a maximum force of 50% MVC of each finger 

(Figure 1 B and C). The 50% MVC was selected to avoid 

muscle fatigue at higher force levels, and was sufficient to 

induce co-activations between muscle compartments and 

between agonist-antagonist musles. Due to high enslavement 

between ring and pinky fingers [19], the subjects were 

requested to extend or flex the two fingers simultaneously all 

the time, and the two fingers were considered as one finger 

(ring-pinky finger in the subsequent text) during the main 

experiment and data processing. The MVC of the ring-pinky 

finger was the summation of the MVC of the ring and pinky 

fingers. The force measurements from the ring and pinky 

fingers were always summed up before displaying to the 

subjects on the monitor. 

Subjects performed two different types of trials. The first 

type involved the flexion or extension of a single finger 

(single-finger trial) and the force target contained a single 

trapezoid (Figure 1 B). During the single-finger trials, the 

subjects were requested to avoid co-contractions of other 

fingers. Four single-finger trials were performed for the flexion 

and extension, respectively, resulting in eight single-finger 

trials for each finger. The second type involved at least two 

fingers flexing and extending sequentially (multi-finger trial). 

The force target of a multi-finger trial with finger (index, 

middle, and ring-pinky) flexion and extension in sequence is 

illustrated in Figure 1 C. Within a given period of individual 

trapezoidal force target of the multi-finger trials, one finger 

(target finger) was requested to flex or extend to maintain the 

targeted force, while the requirement of the other two fingers 

(non-target finger) was not specified (i.e., co-activation was 

allowed). The order of the target fingers was randomized across 

the multi-finger trials. Each subject performed a total of 16 

multi-finger trials. 

B. Data processing 

 
Fig. 1. Monopolar EMG signals were recorded from the finger extensor and 

flexor, respectively, with two 8×16 electrode arrays, and the flexion/extension 

forces of the index, middle, ring, and pinky fingers were recorded (A). The 

trapezoidal force target from the single-finger extension and flexion trial (B) 

and the multi-finger trial (C). The force target of the multi-finger trial was 

shown with different colors to represent the three fingers, i.e. index (red), 

middle (brown), and ring-pinky (green) as the target finger, respectively. 
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A high pass filter (Butterworth zero-phase shift with an order 

of 4 and a cutoff frequency of 10 Hz) was used to filter all the 

EMG signals, and motion artifacts were removed using a 

previously developed method [20]. 

1) Force estimation using the MU discharge information 

Calculation of MU separation vector (Figure 2 A). In order to 

reduce the computational load, only 60 out of the 128 channels 

were used to perform EMG decomposition for the flexion or 

extension of each finger. Specifically, the EMG amplitude (root 

mean square, RMS) was calculated for all 128 channels from 

the corresponding flexor or extensor muscles using the 

single-finger trials, and then averaged across all the 

single-finger trials. The top 60 channels with the maximum 

amplitude were used to extract MU separation vectors. The 

selection of 60 was based on our preliminary test to balance 

computational time and the accuracy of MU information. 

Figure 3 B and C illustrate the EMG amplitude (RMS) when 

individual fingers flexed or extended in a multi-finger trial 

(Figure 3 A), and the red curves encircled the 60 channels used 

for EMG decomposition. The selected channels covered the 

most active area under different conditions. 

The MU discharge information was obtained through the 

EMG decomposition procedure, using the Fast Independent 

Component Analysis (FastICA) algorithm [21-23]. The 

detailed decomposition steps are in the Supplementary Material. 

Briefly, EMG signals were first preprocessed through a signal 

extension (extension factor of 9) and whitening procedure. The 

extension procedure added 9 delayed versions of each channel, 

resulting in 600 channels in total after extension. Through a 

fixed-point iteration procedure, the FastICA method can obtain 

the separation vectors and the source signals of individual MUs 

from a given segment of preprocessed HD-EMG signals. The 

source signal can be further converted into discharge event train 

via a Kmeans++ cluster algorithm [24, 25] for binary 

classification.  

Both the single-finger trials and the multi-finger trials were 

used to obtain the MU separation vectors. When the 

single-finger trials were used, the 60 channels of the target 

finger of a trial were used, and the decomposed MUs were 

initially labeled with a specific finger (index, middle, and 

ring-pinky) and a motion type (flexion or extension). When 

decomposing the multi-finger trials, the MU separation vectors 

were obtained for the flexion and extension of individual 

fingers separately. The co-contraction in the multi-finger trials 

can help to identify some MUs recruited at low contraction 

levels for individual fingers, which can improve the force 

estimation performance when the contraction force level was 

low. To this end, six MU pools were obtained corresponding to 

the flexion and extension of three fingers, respectively. The 

classification of MUs into individual pools was based on the 

 
Fig. 2. Flowchart illustrating the processing steps that extract the MUs separately for flexion and extension of individual fingers, including MU decomposition (A) 

and MU pool refinement (B). The extension of the middle finger was used as an example.  : apply the separation vectors to EMG signals after extension and 

whitening. The performance evaluation procedure of one of the 4-fold cross-evaluations (C). After the 4-fold evaluation, each group was used as the testing set once.  
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tested finger and the EMG channels used to perform EMG 

decomposition. This was a preliminary labeling procedure, 

because the EMG channels used for different fingers had 

substantial overlap, and co-contractions could occur in the 

single-finger trials. Therefore, a refinement procedure was 

needed to further refine the MU pools for the flexion and 

extension of individual fingers.  

MU pool refinement (Figure 2 B). The MU pools were 

refined using the multi-finger trials. The rationale was that the 

MU firing rate associated with a given finger should be 

modulated by that given finger force, and should therefore have 

a high correlation with the force of the given finger. 

Accordingly, the MU separation vectors obtained earlier were 

applied to the EMG data of the multi-finger trials to calculate 

the MU discharge events. The event trains were then processed 

using a 1-second average window with a 0.1-second moving 

step (in subsequent text, the average windows were all the same 

unless otherwise noted), resulting in the time courses of firing 

rate for individual MUs. Meanwhile, the force data of three 

fingers were also smoothed using the average window. For a 

given MU from the pool, a regression analysis was performed 

between the firing rate and the smoothed force of the three 

fingers. Before the regression analysis, if the MU pool was 

associated with finger flexion, the extension force data were set 

to zero, and vice versa. The coefficients of determination 

(r-squared, R2) values were obtained for each finger. If the R2 

value of the specific finger was larger than that of the other two 

fingers, the MU was kept. Otherwise, it was removed from the 

MU pool. After the regression analysis and R2 comparison were 

performed for all the MUs, the MU pool was refined.  

Performance of force estimation. During the force estimation 

procedure, the separation vectors were directly applied to the 

new EMG data. The discharge events of MUs with known 

finger labels were obtained, which has been used in our 

previous study to obtain the MU discharge information in 

real-time [14]. In order to avoid in-sample optimization, the 

multi-finger trials were divided into training and testing sets, 

with the training set for MU separation vector calculation and 

MU pool refinement and the testing set for force estimation. 

Specifically, a four-fold cross-evaluation was performed. The 

multi-finger trials were divided into 4 equal groups. For each 

fold, one group was selected as the testing set and the other 3 

groups constituted the training set. The final force estimation 

performance was obtained by averaging across all folds of 

evaluations (Figure 2C).  

The force estimation was performed using the multi-finger 

trials in the testing set. The firing event trains of individual 

MUs from the refined pool were first obtained. Then, the 

populational MU firing rate was calculated using the average 

window for each refined pool. Since no previous studies have 

explored the relation between the net force and the neural drive 

signal of the flexors and the extensors, a simple linear relation 

was hypothesized to exist between the three variables. 

Therefore, a bivariate linear regression analysis was performed 

between the smoothed force data and the populational firing 

rate of MUs specific to the flexors and extensors for individual 

fingers.  

, ,i i flx i extF aD bD                                   (1) 

where iF is the force of the ith finger (i = index, middle, and 

ring-pinky), 
,i flxD and

,i extD are the populational firing rate for 

the flexion and extension of the ith finger, respectively. The 

resultant R2 value and the root mean square error (RMSE) were 

used to quantify the performance of force estimation.  

2) Force estimation using EMG amplitude 

EMG channel selection and refinement. Even though the top 

60 channels covered the most active areas when the 

corresponding fingers flexed or extended, there were 

substantial overlaps between fingers (Figure 3 B and C). 

Therefore, a refinement procedure was also performed to refine 

the EMG channel set for individual fingers using the 

multi-finger trials in the training set. Specifically, the EMG 

amplitude (RMS) was calculated using the average window for 

individual channels. For a given channel, a regression analysis 

was performed between the EMG amplitude and the smoothed 

forces of three fingers. Three R2 values were obtained with each 

corresponding to one finger. If the R2 value of the specific 

finger was larger than the remaining fingers, the given EMG 

channel was kept. Otherwise, it was removed from the EMG 

channel set. The procedure was repeated for all EMG channels 

before force estimation. The black curves in Figure 3 B and C 

encircled the channels used in the EMG-amp method for the 

flexion or extension of individual fingers.   

Performance of force estimation. The multi-finger trials in 

the testing set were used to evaluate the force estimation 

performance of the EMG-amp method. The EMG amplitude 

was first calculated using the average window and then 

averaged across all retained EMG channels. Lastly, a bivariate 

linear regression analysis was performed between the smoothed 

 
Fig. 3. The force data from a representative multi-finger trial (A). The EMG 

amplitude (root mean square) distribution when individual fingers flexed (B) 

and extended (C). The EMG segments used to calculate the EMG amplitude 

corresponded to the plateau period of the force target shown in Figure 1 B. The 

red dashed lines encircled the 60 channels used to perform EMG 

decomposition for the flexion and extension of individual fingers. The back 

solid line encircled the channels used to estimate the EMG amplitude for the 

flexion and extension of individual finger in the EMG-amp method. 
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force data and the overall EMG amplitude of channel sets 

covering the flexors and extensors for individual fingers. 

, ,i i flx i extF aA bA                                     (2) 

where iF is the force of the ith finger (i = index, middle, and 

ring-pinky), 
,i flxA and 

,i extA are the overall EMG amplitude for 

the flexion and extension of the ith finger, respectively. 

III. RESULTS 

Table I illustrates the average number of MUs decomposed 

from the multi-finger and the single-finger trials, respectively 

across all subjects before the refinement procedure. On 

average, more MUs can be obtained from the single-finger trial 

compared with the multi-finger trial, and more MUs can be 

obtained from the finger extensors compared with the finger 

flexors.   

Figure 4 A illustrates the discharge event trains of MUs of 

the extensors and flexors of the middle finger from a 

representative multi-finger trial in the testing set. The thick blue 

and red curves represent the normalized populational firing rate 

of the extensors and flexors, respectively. The force estimation 

results using both the neural-drive and EMG-amp methods are 

shown in Figure 4 B. The estimated force using the neural-drive 

method can accurately track the actual force. From 

approximately 8 to 13 second, there was an underestimation in 

the flexion force of the middle finger. From approximately 28 

to 34 second, most of the MUs from both the flexors and 

extensors of the middle finger were active, and the overall 

firing rates of both increased. However, the estimated force 

within this period was small because the flexion firing rate and 

extension firing rate cancelled out in Equation (1). This 

co-contraction can lead to a smaller final force output. When 

the EMG-amp method was used, the overestimation and 

underestimation issue was more obvious, especially for the 

index finger.  

 
Fig. 5.  The R2 value (A) and the RMSE (B) across all trials of the neural-drive 

and EMG-amp methods. Symbols represent individual subjects. The R2 value 

(C) and the RMSE (D) across all trials of the neural-drive and EMG-amp 

methods for individual fingers. *, p<0.05. **, p<0.01. 

 
Figure 4: The discharge event trains and the normalized populational firing rate of MUs of the extensor and flexor of the middle finger from a representative 

multi-finger trial (A). Only odd-numbered MUs are shown for better illustration. The concurrent force estimation results of a single trial using both the neural-drive 

method and the EMG-amp method (B). 

TABLE I 

AVERAGE MU NUMBER OBTAINED FROM EACH TRIAL 

 Flexors Extensors 

 Multi-finger Single-finger Multi-finger Single-finger 

Index 7.3±7.0 17.8±11.3 13.8±4.8 23.2±8.1 

Middle  7.4±5.5 15.7±13.0 15.0±2.4 21.8±6.0 

Ring- 

pinky 
9.1±6.4 15.1±11.5 16.7±5.0 16.9±8.9 

Mean ± Standard deviation 

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on April 02,2021 at 02:45:47 UTC from IEEE Xplore.  Restrictions apply. 



0018-9294 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2021.3056930, IEEE
Transactions on Biomedical Engineering

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

The R2 value (Figure 5A) and the RMSE (Figure 5B) was 

first averaged across fingers and then across trials to represent 

the overall force estimation performance for individual 

subjects. Paired t-test showed that the R2 value of the 

neural-drive method was significantly larger than that of the 

EMG-amp method (t(6)=4.06, p=0.0033, Cohen’s d=1.5362), 

and the RMSE of the neural-drive method was significantly 

smaller than that of the EMG-amp method (t(6)=-3.55, 

p=0.0061, Cohen’s d=-1.3408). In order to explore the force 

estimation performance for individual fingers, the two 

measurements were averaged across trials for individual fingers 

(Figure 5 C and D). Paired t-test revealed that the neural-drive 

method showed significantly better performance than the 

EMG-amp method for the index (R2: t(6)=5.40, p=0.0008, 

Cohen’s d= 2.0406; RMSE: t(6)=-7.08, p=0.0002, Cohen’s 

d=-2.6755) and ring-pinky finger (R2: t(6)=2.96, p=0.0126, 

Cohen’s d=1.1195; RMSE: t(6)=-2.25, p=0.0325, Cohen’s 

d=-0.8523). For the middle finger, there was no significant 

difference between the two methods (R2: t(6)=-0.34, p=0.6266, 

RMSE: t(6)=-0.71, p=0.2517).  

In order to further analyze the source of force estimation 

error, the RMSE was calculated within individual plateaus of 

the trapezoidal force target for individual fingers. Then, the 

average RMSE of the target finger was obtained separately for 

the flexion and extension conditions (Figure 6 A). Two-way 

(method: neural-drive vs. EMG-amp, and motion: flexion vs. 

extension) repeated measures ANOVA showed that only the 

motion type (F(1,6)=7.27, p=0.0358) had a significant 

influence on the RMSE with no interaction (p>0.05). Further 

post-hoc test with Holm–Bonferroni correction showed that the 

RMSE during the flexion of the target finger was significantly 

larger than that during the extension of the target finger when 

the EMG-amp method was used (p<0.01, Cohen’s d=1.3448). 

The average RMSE of the non-target finger was also calculated 

in a similar manner (Figure 6 B).  The ANOVA showed that 

both the motion type (F(1,6)=20.70, p=0.0039) and the method 

(F(1,6)= 18.53, p=0.0051) had a significant influence on the 

RMSE with no interaction (p>0.05). Further post-hoc test 

showed that the RMSE from the non-target finger of the 

neural-drive method was significantly smaller compared with 

that of the EMG-amp method, for both finger flexion (p<0.05, 

Cohen’s d=-1.1166) and extension (p<0.05, Cohen’s 

d=-0.7906). The RMSE during target-finger flexion was 

significantly larger than that during target-finger extension of 

the neural-drive (p<0.05, Cohen’s d=1.2744) and the 

EMG-amp (p<0.01, Cohen’s d=1.6755) method. 

In addition, the number of MUs identified for the flexion or 

extension also varied significantly (Figure 7 A, t(6)= -3.4206, 

p=0.0141, Cohen’s d=-1.2929). A correlation between the 

average RMSE and the number of MUs was performed for the 

flexion or extension of individual fingers (Figure 7 B). The 

results showed a weak but significant linear relation (R-value = 

-0.31) between the MU number and the RMSE (p<0.05), 

indicating that a larger number of MUs can lead to a smaller 

estimation error. 

IV. DISCUSSION 

The objective of this study was to develop a neural decoding 

method to estimate flexion and extension forces of individual 

fingers concurrently using motoneuron discharge information. 

Our main results showed that the force estimation performance 

of the neural-drive method was significantly better (a higher 

correlation and a smaller error between the estimated force and 

the measured force), in comparison with that of the 

conventional EMG amplitude-based method, when the net 

forces of multiple fingers (especially the non-target fingers) 

need to be estimated concurrently. Our findings indicate that 

the continuous and concurrent decoding of individual finger 

force can potentially provide a robust human-machine interface 

that allows intuitive control of robotic hand with high dexterity. 

In order to estimate both the flexion and extension forces of 

individual fingers, the MUs of the flexors and extensors were 

identified separately, and the neural drive signals to the flexors 

and extensors were then calculated separately. During finger 

flexion and extension, agonist-antagonist co-contraction can 

occur, and the final force output was determined by the force 

generated by both the flexors and the extensors. To address the 

agonist-antagonist co-contraction issue, a bivariate linear 

regression model was performed. The force estimation results 

for the middle finger in the representative trial (Figure 4) 

demonstrated that this model can reduce the influence of 

muscle co-contractions. For example, even when firing events 

were detected from both the flexors and extensors, the 

estimated force followed the measured total force accurately. 

However, in certain segments of the data, we also observed a 

large error between the estimated force and the measured force. 

This indicates that linear regression model might be insufficient 

 
Fig. 6.  The RMSE from the target finger during the flexion and extension of 

the target finger of both methods (A). The RMSE from the non-target finger 

during the flexion and extension of the target finger of both methods (B). 

Symbols represent individual subjects. *, p<0.05. **, p<0.01. 

 
Fig. 7. The average number of MUs for the flexion and extension across all 

fingers (A). Correlation between the number of MUs and the RMSE (B). The 

error bars represent the standard deviation. *, p<0.05.  
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to fully capture the complex relation between the total force 

output and the neural drive signals of antagonists. In further 

studies, more complex models will be explored to address 

frequent muscle co-contractions, because co-contraction of 

antagonists is an important motor control strategy to improve 

joint stability [17, 18].  

Besides agonist-antagonist co-contraction, finger enslaving 

can also lead to co-activation of multiple muscle compartments, 

controlling different fingers. To address the finger enslaving 

issue, the decomposed MU pools were further refined to only 

include MUs that associated with the finger force output. In 

contrast, a relatively larger force overestimation and 

underestimation was observed near peak flexion or extension 

forces when using the EMG-amp method, compared with the 

neural-drive method (Figure 4 B). The main source of error was 

that the channels selected for one finger can inevitably capture 

EMG activity of other fingers [26], even though a channel 

refinement procedure was performed. The neural-drive method 

alleviated these issues (Figure 5 and 6) because the MU pool 

refinement procedure removed MUs associated with the 

activation of other fingers. In addition, other factors might also 

lead to a better force estimation of the neural-drive method 

compared with the EMG-amp method, such as, the background 

noise and motion artifacts. It is because that the neural-drive 

method utilized the motoneuron discharge information, which 

was a binary time course. The background noise and motion 

artifacts could affect the extraction of several firing events, but 

have little influence on the calculation of the populational firing 

rate [20]. 

Lastly, the results showed that more MUs can be identified 

from the extensors than the flexors (Figure 7 A), which is 

largely due to the fact that the FDS muscle is located far away 

from the skin surface compared with the EDC muscle. 

Therefore, action potentials from the EDC muscle may have a 

higher amplitude and a shorter duration compared with that of 

the FDS muscle, due to the spatial low-pass filtering effect of 

the tissue as a volume conductor [27]. The larger and shorter 

action potentials can help to isolate and identify more MUs 

from the EDC muscle. In addition, a previous simulation study 

has shown that the depth of the muscle can influence the 

number of identifiable MUs [28]. Our results further 

demonstrated that a better force estimation performance can be 

obtained if more MUs can be identified for force estimation, 

which provides a potential way to further improve the force 

estimation performance by increasing the number of MUs that 

can be identified through EMG decomposition. 

In Figure 6, we compared the estimation errors for the target 

and non-target fingers, respectively, in order to investigate the 

source of the estimation errors of different methods. The 

‘target’ finger only means that the subjects were instructed to 

adjust the force of that particular finger to follow the target 

force trajectory. The force of the non-target fingers was also 

measured and compared with the estimated force. When 

multiple fingers extend and flex dexterously, the force of all 

fingers need to be estimated accurately, which was the main 

goal of this study. Therefore, one advantage of the neural-drive 

method was an accurate force estimation of non-target fingers. 

Namely, it can accurately estimate finger-specific force output. 

It is true that the overall improvement based on RMSE of the 

neural-drive method seems to be small compared with the 

conventional EMG-amp method from Figure 5B, 5D and 

Figure 6. However, the RMSE was calculated as the average 

difference between the measured and estimated forces across 

the entire trial, which possibly reduced the large difference of 

estimation bias between two methods at some key timings, for 

example, during the flexion or extension peaks of the index 

finger in Figure 4B. In our previous study, it has been 

demonstrated that the neural-drive method can obtain a better 

force estimation performance compared with the conventional 

EMG amplitude-based method in the real-time condition, 

especially for prolonged muscle contractions when the 

EMG-amp method showed time-dependent increase in the 

estimation bias [14]. In the current study, in order to label the 

MUs for individual fingers, the MU separation vectors were 

obtained in advance. In the force estimation phase, the vectors 

were directly applied to the new EMG data to calculate the 

firing events, which makes our method readily applicable for 

the real-time condition. In our future study, we will investigate 

the estimation of dexterous finger force in real-time using the 

motoneuron discharge information. Compared with the 

conventional EMG-amp method, the neural-drive method is 

much more time consuming, which requires a more powerful 

hardware, and more investigation needs to be done to improve 

the efficiency of the algorithms. In addition, even though the 

accuracy of the firing event detection in the real-time condition 

can be assessed using the same measurement as the offline 

condition [14], the performance of the measurement decreases 

in the real-time condition, mainly because only a much shorter 

data segment (e.g. 1 second) is used compared with the offline 

condition.  

The other limitation of the neural-drive method for real-time 

applications is that it cannot handle the situation of new MU 

recruitment after the initialization phase. It is likely that new 

MUs will be recruited during sustained muscle contraction. To 

identify those newly recruited MUs, the separation matrix 

needs to be updated periodically, potentially in a parallel 

background calculation. We also observed that the neural-drive 

method performed worse than the EMG-Amp method in some 

subjects as shown in Figures 5 and 6, partly due to a small 

number of MUs that can be extracted (Figure 7). Therefore, 

when the decomposition yield is low, the extracted MUs may 

not be able to accurately reflect the descending neural drive.  

Only isometric muscle contractions were involved in this 

study. In future studies, dynamic contractions with joint 

movements will be investigated to see whether the neural-drive 

method can estimate the joint angle accurately when individual 

fingers flex and extend concurrently in a dexterous manner. 

Lastly, even though the configuration contained 256 

channels, the number of channels that was actually used during 

the analysis was much less (i.e., 60 channels or less). The 256 

channels may be excessive/redundant for realistic applications. 

However, the electrode grid allows us to cover the entire 

muscle or muscle groups without knowing the optimal 

placement of the electrodes, and we can then select the best 
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channels based on the EMG signal properties as shown in 

Figure 3B. This built-in redundancy can accommodate 

non-functioning channels during the experiment by switching 

to a different channel. It can also accommodate electrode shift 

relative to targeted muscles during large movement by 

adjusting the set of channels based on EMG amplitude. We 

have discussed this in the revised manuscript. 

V. CONCLUSIONS 

In this study, a reliable finger force estimation method was 

developed to estimate dexterous flexion and extension forces of 

individual fingers concurrently, based on the motoneuron 

discharge information of flexor and extensor muscles. Our 

results showed that the MU discharge information extracted 

from both finger flexors and extensors combined with a 

bivariate linear regression model can obtain a better force 

estimation performance compared with the conventional EMG 

amplitude-based method. Further development of this method 

can potentially provide a more robust human-machine interface 

based on surface EMG signals to achieve seamless and intuitive 

control of individual fingers of advanced robotic hands with 

high dexterity.  
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