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Concurrent Estimation of Finger Flexion and
Extension Forces using Motoneuron Discharge
Information

Yang Zheng and Xiaogang Hu

Abstract— Objective: A reliable neural-machine interface
offers the possibility of controlling advanced robotic hands with
high dexterity. The objective of this study was to develop a
decoding method to estimate flexion and extension forces of
individual fingers concurrently. Methods: First, motor units
(MUs) firing information were identified through surface
electromyogram (EMG) decomposition, and the MUs were
further categorized into different pools for the flexion and
extension of individual fingers via a refinement procedure. MU
firing rate at the populational level was calculated, and the
individual finger forces were then estimated via a bivariate linear
regression model (neural-drive method). Conventional EMG
amplitude-based method was used as a comparison. Results: Our
results showed that the neural-drive method had a significantly
better performance (lower estimation error and higher
correlation) compared with the conventional method. Conclusion:
Our approach provides a reliable neural decoding method for
dexterous finger movements. Significance: Further exploration of
our method can potentially provide a robust neural-machine
interface for intuitive control of robotic hands.

Index Terms— Finger force estimation, Flexion and extension,
Isometric contractions, Neural-machine interface,
Neural-decoding

I. INTRODUCTION

Areliable neural-machine interface allows intuitive
interaction with assistive devices such as prostheses and
exoskeletons [1] or remote control of devices [2]. In the past
few decades, substantial scientific and technological efforts
have been made to develop central and peripheral neural
interfaces between humans and machines [3, 4]. Among these
neural signals, SEMG has been widely used in neural-machine
interface [5, 6], largely because SsEMG can be obtained
non-invasively and can yield segregated neural activities of
individual muscles. As a result, SEMG-based interface can be
used to control robotic devices with multiple degrees of
freedom. For example, with pattern recognition of sEMG
signals of both extrinsic and intrinsic muscles, up to 19 hand
gestures can be identified with an accuracy of 96% [7].
However, pattern recognition can only specify a discrete
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number of states [8]. In order to control individual degrees of
freedom in a continuous manner, proportional control was
needed to improve intuitive control. Specifically, EMG global
features, such as the amplitude, are extracted as the control
input signals. However, the control performance can degrade
over time, since the EMG amplitude can be affected
substantially by factors such as motion artifact, background
noise, and muscle fatigue. In addition, the cancellation and
summation of superimposed motor unit action potentials
(MUAPs) from different motor units (MUs) can lead to
complex relation between the level of muscle contraction and
EMG amplitude.

Instead of using global EMG features, MU firing activity has
been used as an alternative neural interface. Specifically,
populational MU firing frequency reflects the neural drive
input to the motoneuron pool and can be used to estimate the
muscle activation level [9]. The decoded motoneuron activity
has been used to predict joint kinematics of wrist [10, 11] or
fingers [12, 13]. In addition, it has also been demonstrated that
the MU firing information is more robust to estimate the
isometric finger extension force for both intact [14, 15] and
stroke subjects [16], compared with the conventional EMG
method. On average, the error between the measured and
estimated forces decreases by 16.03% and 22.45% for intact
and stroke subjects, respectively, using the MU firing
information. However, these studies only focused on finger
extension. To enable dexterous finger movement, finger force
estimation needs to be performed when both finger flexion and
extension are involved. Despite the success of estimating
isometric finger extension force, it remains a big challenge to
estimate the finger flexion and extension force concurrently in a
dexterous manner. First, the flexor digitorum superficialis
(FDS) muscle is located relatively far away from the skin,
making it difficult to reliably extract MU firing activities
specific to individual fingers. Second, finger enslavement from
co-activation of flexor or extensor muscle compartments poses
additional challenge to estimate individual finger forces. Lastly,
co-activation of agonist-antagonists can occur during fine
motor control [17, 18]. This means that the net extension or
flexion force of a specific finger is not determined by the
activation of just extensor or flexor muscles, but a combination
of both muscles. However, as far as we know, no previous
studies have investigated the net effect of neural drive to
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Fig. 1. Monopolar EMG signals were recorded from the finger extensor and
flexor, respectively, with two 8x16 electrode arrays, and the flexion/extension
forces of the index, middle, ring, and pinky fingers were recorded (A). The
trapezoidal force target from the single-finger extension and flexion trial (B)
and the multi-finger trial (C). The force target of the multi-finger trial was
shown with different colors to represent the three fingers, i.e. index (red),
middle (brown), and ring-pinky (green) as the target finger, respectively.
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agonist-antagonist muscles, in terms of net force output.

To address these issues, we developed a force estimation
method based on MU firing activities, in order to estimate the
individual fingertip forces concurrently during dexterous finger
flexion and extension. Specifically, High-density EMG
(HD-EMQG) signals were recorded from the finger flexors and
extensors. The MU firing events were extracted through a
source separation algorithm, and were further classified into
different pools associated with the flexion and extension of
individual fingers. Then, the MU firing rate in each pool was
calculated to estimate the neural-drive (neural command), and a
regression model was then used to estimate individual finger
forces based on the finger-specific neural-drive. The
conventional EMG amplitude-based method was also
performed as a comparison. The results showed that the force
estimation performance of the neural-drive method was
significantly better (a higher correlation and a smaller
estimation error between the estimated force and the measured
force) than that of the conventional method. The neural-drive
method also showed a larger estimation error in finger flexion
than extension, which was partly due to a smaller number of
identifiable MUs from the flexor compared with the extensor.
Overall, our method can potentially provide a robust
neural-machine interface for intuitive control of advanced
robotic hands.

II. METHODS

A. Experiment
1) Subjects

Seven neurologically intact participants (age: 21-35) were
recruited in the study. All subjects gave informed consent with
protocols approved by the Institutional Review Board of the
University of North Carolina at Chapel Hill.
2) Data recording

Two 8x16 electrode arrays with a 3 mm single-electrode
diameter and a 10 mm inter-electrode distance covered the
anterior and posterior sides of the forearm to record EMG
signals from the finger flexor (FDS) and extensor (extensor
digitorum communis (EDC)), respectively (Figure 1 A). The

placement of the electrode was determined by palpating the
finger flexor or extensor when the subjects flexed or extended
fingers. The EMG-USB2+ (OT Bioelettronica) system was
used to amplify and sample the monopolar EMG signals with a
gain of 1000, a pass band of 10-900 Hz and a sampling rate of
2048 Hz. The reference was placed at the wrist.

The index, middle, ring, and pinky fingers were individually
secured to four miniature load cells (SM-200N, Interface), to
measure the flexion and extension forces of individual fingers
at 1000 Hz (Figure 1 A). The forearm was supported at the
neutral position with the wrist fixed by two stiff foam pads, in
order to minimize the force transmission from the wrist to the
load cells. Before each trial, the offsets of individual load cells
were removed such that a positive force reading represented
flexion and a negative reading represented extension.

3) Experiment procedure

The maximum voluntary contraction (MVC) force was first
measured for the flexion and extension of individual fingers.
During the main experiment, the subject was requested to
follow a predefined force target that had a repeated trapezoidal
pattern with a maximum force of 50% MVC of each finger
(Figure 1 B and C). The 50% MVC was selected to avoid
muscle fatigue at higher force levels, and was sufficient to
induce co-activations between muscle compartments and
between agonist-antagonist musles. Due to high enslavement
between ring and pinky fingers [19], the subjects were
requested to extend or flex the two fingers simultaneously all
the time, and the two fingers were considered as one finger
(ring-pinky finger in the subsequent text) during the main
experiment and data processing. The MVC of the ring-pinky
finger was the summation of the MVC of the ring and pinky
fingers. The force measurements from the ring and pinky
fingers were always summed up before displaying to the
subjects on the monitor.

Subjects performed two different types of trials. The first
type involved the flexion or extension of a single finger
(single-finger trial) and the force target contained a single
trapezoid (Figure 1 B). During the single-finger trials, the
subjects were requested to avoid co-contractions of other
fingers. Four single-finger trials were performed for the flexion
and extension, respectively, resulting in eight single-finger
trials for each finger. The second type involved at least two
fingers flexing and extending sequentially (multi-finger trial).
The force target of a multi-finger trial with finger (index,
middle, and ring-pinky) flexion and extension in sequence is
illustrated in Figure 1 C. Within a given period of individual
trapezoidal force target of the multi-finger trials, one finger
(target finger) was requested to flex or extend to maintain the
targeted force, while the requirement of the other two fingers
(non-target finger) was not specified (i.e., co-activation was
allowed). The order of the target fingers was randomized across
the multi-finger trials. Each subject performed a total of 16
multi-finger trials.

B. Data processing
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Fig. 2. Flowchart illustrating the processing steps that extract the MUs separately for flexion and extension of individual fingers, including MU decomposition (A)
and MU pool refinement (B). The extension of the middle finger was used as an example. ® : apply the separation vectors to EMG signals after extension and
whitening. The performance evaluation procedure of one of the 4-fold cross-evaluations (C). After the 4-fold evaluation, each group was used as the testing set once.

A high pass filter (Butterworth zero-phase shift with an order
of 4 and a cutoff frequency of 10 Hz) was used to filter all the
EMG signals, and motion artifacts were removed using a
previously developed method [20].

1) Force estimation using the MU discharge information
Calculation of MU separation vector (Figure 2 A). In order to
reduce the computational load, only 60 out of the 128 channels
were used to perform EMG decomposition for the flexion or
extension of each finger. Specifically, the EMG amplitude (root
mean square, RMS) was calculated for all 128 channels from
the corresponding flexor or extensor muscles using the
single-finger trials, and then averaged across all the
single-finger trials. The top 60 channels with the maximum
amplitude were used to extract MU separation vectors. The
selection of 60 was based on our preliminary test to balance
computational time and the accuracy of MU information.
Figure 3 B and C illustrate the EMG amplitude (RMS) when
individual fingers flexed or extended in a multi-finger trial
(Figure 3 A), and the red curves encircled the 60 channels used
for EMG decomposition. The selected channels covered the
most active area under different conditions.

The MU discharge information was obtained through the
EMG decomposition procedure, using the Fast Independent
Component Analysis (FastiCA) algorithm [21-23]. The
detailed decomposition steps are in the Supplementary Material.

Briefly, EMG signals were first preprocessed through a signal
extension (extension factor of 9) and whitening procedure. The
extension procedure added 9 delayed versions of each channel,
resulting in 600 channels in total after extension. Through a
fixed-point iteration procedure, the FastiICA method can obtain
the separation vectors and the source signals of individual MUs
from a given segment of preprocessed HD-EMG signals. The
source signal can be further converted into discharge event train
via a Kmeans++ cluster algorithm [24, 25] for binary
classification.

Both the single-finger trials and the multi-finger trials were
used to obtain the MU separation vectors. When the
single-finger trials were used, the 60 channels of the target
finger of a trial were used, and the decomposed MUs were
initially labeled with a specific finger (index, middle, and
ring-pinky) and a motion type (flexion or extension). When
decomposing the multi-finger trials, the MU separation vectors
were obtained for the flexion and extension of individual
fingers separately. The co-contraction in the multi-finger trials
can help to identify some MUs recruited at low contraction
levels for individual fingers, which can improve the force
estimation performance when the contraction force level was
low. To this end, six MU pools were obtained corresponding to
the flexion and extension of three fingers, respectively. The
classification of MUs into individual pools was based on the
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tested finger and the EMG channels used to perform EMG
decomposition. This was a preliminary labeling procedure,
because the EMG channels used for different fingers had
substantial overlap, and co-contractions could occur in the
single-finger trials. Therefore, a refinement procedure was
needed to further refine the MU pools for the flexion and
extension of individual fingers.

MU pool refinement (Figure 2 B). The MU pools were
refined using the multi-finger trials. The rationale was that the
MU firing rate associated with a given finger should be
modulated by that given finger force, and should therefore have
a high correlation with the force of the given finger.
Accordingly, the MU separation vectors obtained earlier were
applied to the EMG data of the multi-finger trials to calculate
the MU discharge events. The event trains were then processed
using a 1-second average window with a 0.1-second moving
step (in subsequent text, the average windows were all the same
unless otherwise noted), resulting in the time courses of firing
rate for individual MUs. Meanwhile, the force data of three
fingers were also smoothed using the average window. For a
given MU from the pool, a regression analysis was performed
between the firing rate and the smoothed force of the three
fingers. Before the regression analysis, if the MU pool was
associated with finger flexion, the extension force data were set
to zero, and vice versa. The coefficients of determination
(r-squared, R?) values were obtained for each finger. If the R?
value of the specific finger was larger than that of the other two
fingers, the MU was kept. Otherwise, it was removed from the
MU pool. After the regression analysis and R? comparison were
performed for all the MUs, the MU pool was refined.

Performance of force estimation. During the force estimation
procedure, the separation vectors were directly applied to the
new EMG data. The discharge events of MUs with known
finger labels were obtained, which has been used in our
previous study to obtain the MU discharge information in
real-time [14]. In order to avoid in-sample optimization, the
multi-finger trials were divided into training and testing sets,
with the training set for MU separation vector calculation and
MU pool refinement and the testing set for force estimation.
Specifically, a four-fold cross-evaluation was performed. The
multi-finger trials were divided into 4 equal groups. For each
fold, one group was selected as the testing set and the other 3
groups constituted the training set. The final force estimation
performance was obtained by averaging across all folds of
evaluations (Figure 2C).

The force estimation was performed using the multi-finger
trials in the testing set. The firing event trains of individual
MUs from the refined pool were first obtained. Then, the
populational MU firing rate was calculated using the average
window for each refined pool. Since no previous studies have
explored the relation between the net force and the neural drive
signal of the flexors and the extensors, a simple linear relation
was hypothesized to exist between the three variables.
Therefore, a bivariate linear regression analysis was performed
between the smoothed force data and the populational firing
rate of MUs specific to the flexors and extensors for individual
fingers.
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Fig. 3. The force data from a representatlve multi-finger trial (A). The EMG

amplitude (root mean square) distribution when individual fingers flexed (B)
and extended (C). The EMG segments used to calculate the EMG amplitude
corresponded to the plateau period of the force target shown in Figure 1 B. The
red dashed lines encircled the 60 channels used to perform EMG
decomposition for the flexion and extension of individual fingers. The back
solid line encircled the channels used to estimate the EMG amplitude for the
flexion and extension of individual finger in the EMG-amp method.

where F; is the force of the ith finger (i = index, middle, and

.and D,

the flexion and extension of the ith finger, respectively. The
resultant R? value and the root mean square error (RMSE) were
used to quantify the performance of force estimation.

2) Force estimation using EMG amplitude

EMG channel selection and refinement. Even though the top
60 channels covered the most active areas when the
corresponding fingers flexed or extended, there were
substantial overlaps between fingers (Figure 3 B and C).
Therefore, a refinement procedure was also performed to refine
the EMG channel set for individual fingers using the
multi-finger trials in the training set. Specifically, the EMG
amplitude (RMS) was calculated using the average window for
individual channels. For a given channel, a regression analysis
was performed between the EMG amplitude and the smoothed
forces of three fingers. Three R? values were obtained with each
corresponding to one finger. If the R? value of the specific
finger was larger than the remaining fingers, the given EMG
channel was kept. Otherwise, it was removed from the EMG
channel set. The procedure was repeated for all EMG channels
before force estimation. The black curves in Figure 3 B and C
encircled the channels used in the EMG-amp method for the
flexion or extension of individual fingers.

Performance of force estimation. The multi-finger trials in
the testing set were used to evaluate the force estimation
performance of the EMG-amp method. The EMG amplitude
was first calculated using the average window and then
averaged across all retained EMG channels. Lastly, a bivariate
linear regression analysis was performed between the smoothed

ring-pinky), D, , .are the populational firing rate for
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force data and the overall EMG amplitude of channel sets
covering the flexors and extensors for individual fingers.

F=a4 , +b4,, @
where F; is the force of the ith finger (i = index, middle, and
ring-pinky), 4, , and 4, are the overall EMG amplitude for
the flexion and extension of the ith finger, respectively.

TABLEI
AVERAGE MU NUMBER OBTAINED FROM EACH TRIAL

Flexors Extensors

Multi-finger ~ Single-finger =~ Multi-finger  Single-finger

Index 7347.0 17.811.3 13.844.8 232481
Middle 7.445.5 15.7£13.0 15.0£2.4 21.846.0
Ring- 9.1:6.4 15.1211.5 16.7+5.0 16.9+8.9
pinky

Mean + Standard deviation

III. RESULTS

Table I illustrates the average number of MUs decomposed
from the multi-finger and the single-finger trials, respectively
across all subjects before the refinement procedure. On
average, more MUs can be obtained from the single-finger trial
compared with the multi-finger trial, and more MUs can be
obtained from the finger extensors compared with the finger
flexors.

Figure 4 A illustrates the discharge event trains of MUs of
the extensors and flexors of the middle finger from a
representative multi-finger trial in the testing set. The thick blue
and red curves represent the normalized populational firing rate
of the extensors and flexors, respectively. The force estimation
results using both the neural-drive and EMG-amp methods are
shown in Figure 4 B. The estimated force using the neural-drive
method can accurately track the actual force. From

(A) Spike trains and normalized neural drive (Middle) (B)

MuU1
MU3
MU5
Mu7
MU9
MuU11
MU13
MU15
MuU17
MU19
Mu21
Mu23
MuU25
muz27
MuU29

Extensors

~A_

/\

MuU1
MU3
MU5
Mu7
MU9
MuU11
MU13
MU15

Flexors

50l \oJ
405 0 10
Q sot i
=
= g <
[+}]
: Y
<0 uo_ -50 Extension

approximately 8 to 13 second, there was an underestimation in
the flexion force of the middle finger. From approximately 28
to 34 second, most of the MUs from both the flexors and
extensors of the middle finger were active, and the overall
firing rates of both increased. However, the estimated force
within this period was small because the flexion firing rate and
extension firing rate cancelled out in Equation (1). This
co-contraction can lead to a smaller final force output. When
the EMG-amp method was used, the overestimation and
underestimation issue was more obvious, especially for the
index finger.
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Fig. 5. The R? value (A) and the RMSE (B) across all trials of the neural-drive
and EMG-amp methods. Symbols represent individual subjects. The R? value
(C) and the RMSE (D) across all trials of the neural-drive and EMG-amp
methods for individual fingers. *, p<0.05. **, p<0.01.
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Figure 4: The discharge event trains and the normalized populational firing rate of MUs of the extensor and flexor of the middle finger from a representative
multi-finger trial (A). Only odd-numbered MUs are shown for better illustration. The concurrent force estimation results of a single trial using both the neural-drive

method and the EMG-amp method (B).
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The R? value (Figure 5A) and the RMSE (Figure 5B) was
first averaged across fingers and then across trials to represent
the overall force estimation performance for individual
subjects. Paired -test showed that the R? value of the
neural-drive method was significantly larger than that of the
EMG-amp method (#6)=4.06, p=0.0033, Cohen’s d=1.5362),
and the RMSE of the neural-drive method was significantly
smaller than that of the EMG-amp method (#6)=-3.55,
p=0.0061, Cohen’s d=-1.3408). In order to explore the force
estimation performance for individual fingers, the two
measurements were averaged across trials for individual fingers
(Figure 5 C and D). Paired t-test revealed that the neural-drive
method showed significantly better performance than the
EMG-amp method for the index (R #(6)=5.40, p=0.0008,
Cohen’s d= 2.0406; RMSE: #(6)=-7.08, p=0.0002, Cohen’s
d=-2.6755) and ring-pinky finger (R?: #6)=2.96, p=0.0126,
Cohen’s d=1.1195; RMSE: #6)=-2.25, p=0.0325, Cohen’s
d=-0.8523). For the middle finger, there was no significant
difference between the two methods (R?: #(6)=-0.34, p=0.6266,
RMSE: #6)=-0.71, p=0.2517).
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Fig. 6. The RMSE from the target finger during the flexion and extension of
the target finger of both methods (A). The RMSE from the non-target finger
during the flexion and extension of the target finger of both methods (B).
Symbols represent individual subjects. *, p<0.05. **, p<0.01.

In order to further analyze the source of force estimation
error, the RMSE was calculated within individual plateaus of
the trapezoidal force target for individual fingers. Then, the
average RMSE of the target finger was obtained separately for
the flexion and extension conditions (Figure 6 A). Two-way
(method: neural-drive vs. EMG-amp, and motion: flexion vs.
extension) repeated measures ANOVA showed that only the
motion type (F(1,6)=7.27, p=0.0358) had a significant
influence on the RMSE with no interaction (p>0.05). Further
post-hoc test with Holm—Bonferroni correction showed that the
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Fig. 7. The average number of MUs for the flexion and extension across all

fingers (A). Correlation between the number of MUs and the RMSE (B). The

error bars represent the standard deviation. *, p<0.05.
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RMSE during the flexion of the target finger was significantly
larger than that during the extension of the target finger when
the EMG-amp method was used (p<0.01, Cohen’s d=1.3448).
The average RMSE of the non-target finger was also calculated
in a similar manner (Figure 6 B). The ANOVA showed that
both the motion type (F(1,6)=20.70, p=0.0039) and the method
(F(1,6)= 18.53, p=0.0051) had a significant influence on the
RMSE with no interaction (p>0.05). Further post-hoc test
showed that the RMSE from the non-target finger of the
neural-drive method was significantly smaller compared with
that of the EMG-amp method, for both finger flexion (p<0.05,
Cohen’s d=-1.1166) and extension (p<0.05, Cohen’s
d=-0.7906). The RMSE during target-finger flexion was
significantly larger than that during target-finger extension of
the neural-drive (p<0.05, Cohen’s d=1.2744) and the
EMG-amp (p<0.01, Cohen’s d=1.6755) method.

In addition, the number of MUs identified for the flexion or
extension also varied significantly (Figure 7 A, #6)= -3.4206,
p=0.0141, Cohen’s d=-1.2929). A correlation between the
average RMSE and the number of MUs was performed for the
flexion or extension of individual fingers (Figure 7 B). The
results showed a weak but significant linear relation (R-value =
-0.31) between the MU number and the RMSE (p<0.05),
indicating that a larger number of MUs can lead to a smaller
estimation error.

IV. DISCUSSION

The objective of this study was to develop a neural decoding
method to estimate flexion and extension forces of individual
fingers concurrently using motoneuron discharge information.
Our main results showed that the force estimation performance
of the neural-drive method was significantly better (a higher
correlation and a smaller error between the estimated force and
the measured force), in comparison with that of the
conventional EMG amplitude-based method, when the net
forces of multiple fingers (especially the non-target fingers)
need to be estimated concurrently. Our findings indicate that
the continuous and concurrent decoding of individual finger
force can potentially provide a robust human-machine interface
that allows intuitive control of robotic hand with high dexterity.

In order to estimate both the flexion and extension forces of
individual fingers, the MUs of the flexors and extensors were
identified separately, and the neural drive signals to the flexors
and extensors were then calculated separately. During finger
flexion and extension, agonist-antagonist co-contraction can
occur, and the final force output was determined by the force
generated by both the flexors and the extensors. To address the
agonist-antagonist co-contraction issue, a bivariate linear
regression model was performed. The force estimation results
for the middle finger in the representative trial (Figure 4)
demonstrated that this model can reduce the influence of
muscle co-contractions. For example, even when firing events
were detected from both the flexors and extensors, the
estimated force followed the measured total force accurately.
However, in certain segments of the data, we also observed a
large error between the estimated force and the measured force.
This indicates that linear regression model might be insufficient
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to fully capture the complex relation between the total force
output and the neural drive signals of antagonists. In further
studies, more complex models will be explored to address
frequent muscle co-contractions, because co-contraction of
antagonists is an important motor control strategy to improve
joint stability [17, 18].

Besides agonist-antagonist co-contraction, finger enslaving
can also lead to co-activation of multiple muscle compartments,
controlling different fingers. To address the finger enslaving
issue, the decomposed MU pools were further refined to only
include MUs that associated with the finger force output. In
contrast, a relatively larger force overestimation and
underestimation was observed near peak flexion or extension
forces when using the EMG-amp method, compared with the
neural-drive method (Figure 4 B). The main source of error was
that the channels selected for one finger can inevitably capture
EMG activity of other fingers [26], even though a channel
refinement procedure was performed. The neural-drive method
alleviated these issues (Figure 5 and 6) because the MU pool
refinement procedure removed MUs associated with the
activation of other fingers. In addition, other factors might also
lead to a better force estimation of the neural-drive method
compared with the EMG-amp method, such as, the background
noise and motion artifacts. It is because that the neural-drive
method utilized the motoneuron discharge information, which
was a binary time course. The background noise and motion
artifacts could affect the extraction of several firing events, but
have little influence on the calculation of the populational firing
rate [20].

Lastly, the results showed that more MUs can be identified
from the extensors than the flexors (Figure 7 A), which is
largely due to the fact that the FDS muscle is located far away
from the skin surface compared with the EDC muscle.
Therefore, action potentials from the EDC muscle may have a
higher amplitude and a shorter duration compared with that of
the FDS muscle, due to the spatial low-pass filtering effect of
the tissue as a volume conductor [27]. The larger and shorter
action potentials can help to isolate and identify more MUs
from the EDC muscle. In addition, a previous simulation study
has shown that the depth of the muscle can influence the
number of identifiable MUs [28]. Our results further
demonstrated that a better force estimation performance can be
obtained if more MUs can be identified for force estimation,
which provides a potential way to further improve the force
estimation performance by increasing the number of MUs that
can be identified through EMG decomposition.

In Figure 6, we compared the estimation errors for the target
and non-target fingers, respectively, in order to investigate the
source of the estimation errors of different methods. The
‘target’ finger only means that the subjects were instructed to
adjust the force of that particular finger to follow the target
force trajectory. The force of the non-target fingers was also
measured and compared with the estimated force. When
multiple fingers extend and flex dexterously, the force of all
fingers need to be estimated accurately, which was the main
goal of this study. Therefore, one advantage of the neural-drive
method was an accurate force estimation of non-target fingers.

Namely, it can accurately estimate finger-specific force output.

It is true that the overall improvement based on RMSE of the
neural-drive method seems to be small compared with the
conventional EMG-amp method from Figure 5B, 5D and
Figure 6. However, the RMSE was calculated as the average
difference between the measured and estimated forces across
the entire trial, which possibly reduced the large difference of
estimation bias between two methods at some key timings, for
example, during the flexion or extension peaks of the index
finger in Figure 4B. In our previous study, it has been
demonstrated that the neural-drive method can obtain a better
force estimation performance compared with the conventional
EMG amplitude-based method in the real-time condition,
especially for prolonged muscle contractions when the
EMG-amp method showed time-dependent increase in the
estimation bias [14]. In the current study, in order to label the
MUs for individual fingers, the MU separation vectors were
obtained in advance. In the force estimation phase, the vectors
were directly applied to the new EMG data to calculate the
firing events, which makes our method readily applicable for
the real-time condition. In our future study, we will investigate
the estimation of dexterous finger force in real-time using the
motoneuron discharge information. Compared with the
conventional EMG-amp method, the neural-drive method is
much more time consuming, which requires a more powerful
hardware, and more investigation needs to be done to improve
the efficiency of the algorithms. In addition, even though the
accuracy of the firing event detection in the real-time condition
can be assessed using the same measurement as the offline
condition [14], the performance of the measurement decreases
in the real-time condition, mainly because only a much shorter
data segment (e.g. 1 second) is used compared with the offline
condition.

The other limitation of the neural-drive method for real-time
applications is that it cannot handle the situation of new MU
recruitment after the initialization phase. It is likely that new
MUs will be recruited during sustained muscle contraction. To
identify those newly recruited MUs, the separation matrix
needs to be updated periodically, potentially in a parallel
background calculation. We also observed that the neural-drive
method performed worse than the EMG-Amp method in some
subjects as shown in Figures 5 and 6, partly due to a small
number of MUs that can be extracted (Figure 7). Therefore,
when the decomposition yield is low, the extracted MUs may
not be able to accurately reflect the descending neural drive.

Only isometric muscle contractions were involved in this
study. In future studies, dynamic contractions with joint
movements will be investigated to see whether the neural-drive
method can estimate the joint angle accurately when individual
fingers flex and extend concurrently in a dexterous manner.

Lastly, even though the configuration contained 256
channels, the number of channels that was actually used during
the analysis was much less (i.e., 60 channels or less). The 256
channels may be excessive/redundant for realistic applications.
However, the electrode grid allows us to cover the entire
muscle or muscle groups without knowing the optimal
placement of the electrodes, and we can then select the best
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channels based on the EMG signal properties as shown in
Figure 3B. This built-in redundancy can accommodate
non-functioning channels during the experiment by switching
to a different channel. It can also accommodate electrode shift
relative to targeted muscles during large movement by
adjusting the set of channels based on EMG amplitude. We
have discussed this in the revised manuscript.

V. CONCLUSIONS

In this study, a reliable finger force estimation method was
developed to estimate dexterous flexion and extension forces of
individual fingers concurrently, based on the motoneuron
discharge information of flexor and extensor muscles. Our
results showed that the MU discharge information extracted
from both finger flexors and extensors combined with a
bivariate linear regression model can obtain a better force
estimation performance compared with the conventional EMG
amplitude-based method. Further development of this method
can potentially provide a more robust human-machine interface
based on surface EMG signals to achieve seamless and intuitive
control of individual fingers of advanced robotic hands with
high dexterity.
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