Real-time finger force prediction via parallel convolutional neural
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Abstract— Continuous and accurate decoding of intended
motions is critical for human-machine interactions. Here, we
developed a novel approach for real-time continuous prediction
of forces in individual fingers using parallel convolutional
neural networks (CNNs). We extracted populational motor unit
discharge frequency using CNNs in a parallel structure without
spike sorting. The CNN parameters were trained based on two
features from high-density electromyogram (HD-EMG), namely
temporal energy heatmaps and frequency spectrum maps. The
populational motor unit discharge frequency was then used to
continuously predict finger forces based on a linear regression
model. The force prediction performance was compared with a
motor unit decomposition method and the conventional EMG
amplitude-based method. Our results showed that the correla-
tion coefficient between the predicted and the recorded forces
of the CNN approach was on average 0.91, compared with the
offline decomposition method of 0.89, the online decomposition
method of 0.82, and the EMG amplitude method of 0.81.
Additionally, the CNN based approach showed generalizable
performance, with CNN trained on one finger applicable to
a different finger. The outcomes suggest that our CNN based
algorithm can offer an accurate and efficient force decoding
method for human-machine interactions.

I. INTRODUCTION

The accurate estimation of individual finger forces is a cru-
cial part of the precise control of a fully-functional prosthetic
hand. It is also a non-trivial task in driving assistive [1] or
rehabilitative devices [2]. Surface electromyogram (SEMG)
is a promising neural interface [|] with wide applications.
In order to continuously predict finger forces, one intuitive
approach is to predict the forces proportionally relative to
the EMG amplitude [3], as the muscle force is correlated
with the EMG amplitude. However, interference to the EMG
amplitude-based method, such as EMG amplitude drift over
time due to fatigue [4], or electrode shifts [5], can deteriorate
the control of robotic hands.

EMG signals are composed of a large number of motor
unit action potentials (MUAPs), and the motor unit (MU)
discharge frequency can be a reliable source to estimate the
motor output. Earlier studies [6], [7], [8] have used a MU
decomposition (i.e., spike sorting) of EMG signals to extract
MU discharge activities. The populational MU discharge
frequency can then be calculated to predict muscle forces or
joint kinematics [9], [10], [11]. In this approach, the decom-
posed MU spike trains are merged to a single composite train
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to predict the forces. Thus, the initially obtained individual
MU information, with a high computational load, is lost,
indicating that the spike sorting method is inefficient.

In recent years, artificial neural networks have gained
considerable interest in many research fields such as com-
puter vision [12], [13] and natural language processing [14],
largely because of the outstanding performance on mapping
from the input data to categorical distribution over different
labels [15], and the fast learning rate on feature representa-
tions from scratch. For example, recurrent neural networks
(RNNs) [16] are promising on continuous prediction of
motor output because the lateral propagation structure allows
them to exhibit temporal dynamic behavior. The internal
state (memory) can be used to process a sequence of inputs.
However, Schluter et al. [17] has shown that convolutional
neural networks (CNNSs) could achieve better results because
of the ability to capture the temporal-frequency relation in
the two-dimensional (2-D) feature images and the frequency
spectrum maps of the 1-D signals. Previously, Wei et al. [ 18]
has proposed a CNN-based model using multiple features of
EMG signals to classify a limited number of hand gestures.
Kim et al. [19] has also proposed a CNN-based framework
to classify finite states of movement based on EMG signals
in a cross-subject manner. These earlier works suggest that
the learned parameters of the CNNs potentially can be
generalized across subjects.

Inspired by deep learning approaches with parallel CNN
models [12], [18] that are capable of extracting multiple
desired features from different aspects, we implemented a
CNN-based model with a paralleled structure, in order to
continuously predict individual finger forces in real-time
using populational MU discharge frequency without spike
sorting. The implemented model was used to first extract
two types of EMG features: EMG amplitude map and
frequency spectrum map. After CNN layers, the features
were fused together, and further used to predict the MU
discharge frequency. We compared the finger force decoding
performance of our model with previous spike-sorting and
conventional EMG methods.

II. METHODS

A. Farticipants

Three neurologically intact participants (age: 22-31) were
recruited to the study to preliminarily evaluate the perfor-
mance of our method. All participants gave informed consent
via protocols approved by the Institutional Review Board of
the University of North Carolina at Chapel Hill.
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B. Data acquisition

The subjects were seated in front of a desk resting
their forearms on a soft foam pad on the desk during the
experiment. The elbow extended approximately 135°. Stiff
foam pads were placed to hold the hand and to reduce hand
movement and force transmission from the wrist. To record
individual finger extension forces, all four fingers (index,
middle, ring, and pinky) were respectively secured (Figure 1)
to four miniature load cells (SM-200N, Interface), and the
forces were sampled at 1000 Hz. An 8x20 high-density
electromyogram (HD-EMG) electrode array was attached to
each subject’s forearm to obtain activities of the extensor
digitorum communis (EDC) muscle. Each electrode was in
3 mm diameter and 10 mm spaced apart from each other.
The HD-EMG recordings were sampled at 2048 Hz using
EMG-USB2+ (OT Bioelettronica) with a gain of 1000 and
band-passed at 10-900 Hz. The force data were upsampled
to 2048 Hz linearly to match the dimension of the EMG
data. During the data acquisition period, the subjects were
requested to perform isometric finger extension and followed
a preset pseudorandom target trajectory ranging from 0% to
40% MVC after the MVC has been measured for individual
fingers.

Ul
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Fig. 1.

Experimental setups for the data acquisition.
C. Data processing

Ground truth of composite firing frequency as the target
output of the CNNs was calculated using the FastICA-based
decomposition algorithm as mentioned in [4]. The output
of the algorithm was the binary firing events of individual
MUs. The composite firing frequency was then calculated by
summing up the firing events of all the retained MUs.

We then calculated the two features within a sliding
window, and rearranged the ground truth in the same time
range as well. The length of the sliding window was 64
samples and the step length was 16 samples, both at 2048
Hz, as a shorter window length and step length can provide
shorter delay for the real-time calculation. For example, a
trial of 25 seconds will be separated into n_section =
tmal_length—(L:éz:ll:rsg:z—step_length) = 3197 sections.

First, the feature of frequency spectrum maps were calcu-
lated using Fourier transform (FT) including all the sampled
EMG points within the window for each channel. As the
spectrum was calculated channel-wise, there were 160 spec-
trum vectors within a single window.

Then, the feature of energy heatmaps were calculated
based on the mean square (MS) value within the window

of each channel. As a result, the dimension of the energy
heatmap feature was 20x8 (heightxwidth) for a single
window.

D. Neural network model

Inspired by a multi-view neural network study [20] that
input multiple features into separate CNN pathways, our
implemented model (Figure 2) had four convolutional layers
for each pathway before three fully connected layers for the
output of the populational discharge rate.

After the raw HD-EMG signals were passed through the
data processing module (shown as a yellow cycle with
annotation ‘DP’), the two features were fed into the CNNs.
One feature was Feyngy € RTXHXW (Figure 2(A)), where
T was the number of consecutive time frames, which was
also the number of heatmaps. H and W represented the
height and the width of each energy heatmap. The second
feature was Fgpec € RYXMXT 'where N = H x W denoted
the number of HD-EMG channels, 1" denoted the number
of consecutive time frames, and M was the length of the
frequency components after FT. A value of 7" larger than 1
denotes the number of consecutive windows that used for
separate FT calculation.

Figure 2(B) illustrates the two pathways of CNNs, with
kernel sizes indicated in the blocks. The upper pathway ex-
tracted high-level representations from the feature of energy
heatmaps. The lower pathway extracted high-level represen-
tations from the feature of frequency spectrum maps. Each
convolutional layer was followed by a max-pool module
and activated by the ReLU function [21], and the Dropout
(p = 0.5) was also adopted to reduce the possibility of
overfitting [22]. Afterwards, the extracted representations
were viewed as a feature vector and were fed to the fully
connected layers (Figure 2). The number of neurons of the
output layers was set to 8. Therefore, a higher discharge
frequency (close to the class 7) represented a higher force
level, while a lower discharge frequency (close to the class
0) indicated a lower force level.

The optimizer Adam set [23] was selected at an initial
learning rate of 3e-4. The training, validation, and test epochs
were 25-second of non-overlapped raw data randomly chosen
from a 5-minute trial for the index, middle, and ring-pinky
fingers, respectively. We also evaluated our model for the
cross-finger conditions, where the 25-second training epochs
were from a particular finger, but the validation and test
epochs were from a different finger. The targets for training
were derived from the spike trains calculated by the FastICA-
based method, and summed 2-dimensionally (summed ones
for all spike trains within a single window’s timespan) for
the two input features, leading to a 1-D target array in a
chronological order. Each target in the array was divided
by a constant and floored to the nearest integer to ensure
that each target represents a class from O to 7. The constant
was decided by the largest number in the target array which
could be scaled to 7. The number of classes equaled to the
number of neurons at the output layer of the model. An
inadequate number of classes would reduce the accuracy in
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Fig. 2.

Tllustration of the proposed paralleled Convolutional Neural Networks model for finger force prediction. DP denotes the data processing module.

The upper part of panel A illustrates the amplitude map feature from five consecutive windows. In the lower part of panel A, #Channel represents the index
of EMG channels from which the frequency spectrum map is extracted. For each map, five time segments are used to calculate the spectrum, leading to a
map of 5 X frequency bands. In panel B, each block represents a convolutional layer with the ReLU activation function and the Pooling layer. The number
after ‘Conv’ denotes the number of kernels, and the numbers after ‘@’ denotes the size of the kernels. In panel C, the blocks represent tensor viewing
operation, fully-connected layers for each feature, tensor concatenation, fully-connected layers for all features, and the softmax function for calculating the

probabilities for each class.

predicting discharge frequency, while an overly large number
would exert difficulty for the neural network to fit to the
target. During the training session, training data fed to the
model were shuffled among the windows. The model was
saved and evaluated using the validation epoch every 500
iterations. The optimal number of iterations was determined
in the validation session, in which the model output (popula-
tional discharge frequency) achieved the highest correlation
coefficient with the force trajectory. In both the validation
and test sessions, the processed data from each period were
fed to the model in a chronological order.

We low-pass filtered the model-predicted discharge fre-
quencies to a 3"% order Butterworth filter with a cutoff
frequency of 10 Hz. Lastly, a linear regression model was
used to predict the forces based on the smoothed discharge
frequency. The regression model parameters were obtained
in the validation session of the optimal number of iterations.
The criteria used are the correlation coefficient between the
measured force and the estimated force by the FastICA-based
method, EMG amplitude-based method, and our developed
methods, respectively. For the FastICA-based method, the
firing event train of a single MU was obtained through
spike sorting, in both offline [24] and online [4] manner.
The calculation of the EMG amplitude-based method was
performed as the RMS of the EMG signals. The RMS was
averaged across all 160 channels to represent the overall
EMG amplitude. We used a low-pass filtered with the same
parameters aforementioned for both the EMG amplitude-
based method and the FastICA-based method. Two linear re-
gression models for the FastICA-based method and the EMG
amplitude-based method were applied after initialization.

III. RESULTS

An example force prediction is shown in Figure 3. The
results were averaged across three subjects and all fingers
for each subject. It showed that the CNN-based method
(Correlation coefficient = 0.91, SD = 0.069) achieved sim-
ilar performance compared with the FastICA-based method
(Correlation coefficient = 0.89, SD = 0.052) (Figure 4). Both

showed better performance than the EMG amplitude-based
method (Correlation coefficient = 0.81, SD = 0.095). The
results showed that the CNN-based method tended to show a
slightly higher correlation coefficient than the FastICA-based
method. It also showed a higher correlation coefficient than
the real-time calculation of the FastICA-based method [4]
(Correlation coefficient = 0.82, SD = 0.073). Specifically,
the CNN-based method achieved higher correlation in the
same finger conditions (Correlation coefficient = 0.93, SD =
0.045), compared with the cross-finger conditions (Correla-
tion coefficient = 0.89, SD = 0.077). The delay for real-
time decoding was 15.6 ms for the CNN-based method,
because two windows were needed in advance to calculate
the features.

Force/% MVC
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—— EMG —— Forces
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Fig. 3. Force estimation by CNN-based method (Real-time), FastICA-based
method, and EMG amplitude-based method. *Online FastICA.

IV. DISCUSSION

The current study developed a continuous and gener-
alizable finger force prediction method based on parallel
CNNs. As input signals to the CNN, frequency spectrum map
and energy heatmap features were extracted from HD-EMG
signals. We then used the CNN-based model to estimate
populational MU discharge frequency without spike sorting.
The obtained discharge frequency was used to continuously
predict individual finger forces via a linear model.

Convolution with kernels is the key operation of the
convolutional layers and our model. The CNN kernel is
applied to a small portion of the entire map to explore
the local pixels’ relationships. Particularly, it explores the
regional characteristics of the amplitude map feature, while
also explores the correlations among frequency and time in
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Fig. 4. The correlation coefficient of the three methods. *Same finger
conditions. **Cross finger conditions. ***Online FastICA.

the frequency spectrum map. The explored correlation in the
form of activation maps, after one or several convolutional
layers, can be utilized by fully connected layers to predict
the global discharge frequency. Although square kernels
and square pooling are commonly used in computer vision
rectangular shapes with adjustable width and length are
more effective, when dealing with signal feature images
extracted from short-time windows. Another advantage of
CNN is that it can identify the profile of the activated area,
and capture the spatiotemporal relation among channels and
the global energy, which promoted the cross-finger force
predictions. Additionally, a key setting of our method is
that the populational MU discharge frequency is set as the
training output of CNN, instead of directly training on forces.
Our rationale is that the finger forces are positively correlated
with the global MU discharge frequency. Training on the
discharge frequency can enable the model to be generalizable
to other tasks, such as the prediction of individual finger
flexion forces or finger joint angles.

There are several limitations on the developed method.
First, we observed a low prediction accuracy of the discharge
frequency in the near-0 and near-7 classes, which may be
caused by the similarity of feature patterns at such low or
high force levels. Second, the performance of our model
relies on the accuracy of the decomposition results of the
FastICA-based method. During the initial training phase of
the CNNs, the decomposition results were used as lost/cost
functions. Inaccurate decomposition may lead to CNN pa-
rameters converge to regions that can lead to large errors in
the estimation of discharge frequency, and subsequently lead
to large force prediction errors.

In conclusion, we developed a novel approach for the
real-time prediction of individual finger extension forces
using a CNN-based model. The output of the model was
the global MU discharge frequency. The finger forces were
then predicted using a linear regression of the global dis-
charge frequency. Our method outperforms the FastICA-
based method in terms of generalizability across fingers,
and is more accurate compared with the conventional EMG
amplitude-based method.
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