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Abstract— With the development of advanced robotic hands, 

a reliable neural-machine interface is essential to take full 

advantage of the functional dexterity of the robots. In this 

preliminary study, we developed a novel method to estimate 

isometric forces of individual fingers continuously and 

concurrently during dexterous finger flexion and extension. 

Specifically, motor unit (MU) discharge activity was extracted 

from the surface high-density electromyogram (EMG) signals 

recorded from the finger extensors and flexors, respectively. 

The MU information was separated into different groups to be 

associated with the flexion or extension of individual fingers and 

was then used to predict individual finger forces during 

multi-finger flexion and extension tasks. Compared with the 

conventional EMG amplitude-based method, our method can 

obtain a better force estimation performance (a higher 

correlation and a smaller estimation error between the 

predicted and the measured force) when a linear regression 

model was used. Further exploration of our method can 

potentially provide a robust neural-machine interface for 

intuitive control of robotic hands.  

I. INTRODUCTION 

Recently, a variety of advanced robotic hands have been 
developed with the ability to control individual fingers [1-3], 
which makes it possible for individuals with arm amputation 
or hand impairment to perform dexterous finger movements 
for rehabilitative or assistant purposes. In order to take full 
advantage of these robots, a reliable neural-machine interface 
is needed to transfer human movement intention into robot 
control command. Among different kinds of neural signals 
[4-6] to predict finger kinematics, surface electromyogram 
(EMG) signals have the advantage of non-invasive nature, low 
cost, high signal-to-noise ratio, and stable data recordings, and 
therefore show promising application prospects [7, 8].  

Pattern recognition techniques have been widely used to 
decode the movement intention from EMG recordings [9]. 
Typically, EMG signals during different hand motions were 
captured and the global features were extracted for individual 
motions. Then, the features were fed into a classifier to 
classify between different motions. In this way, some specific 
motions can be recognized and translated into the predefined 
commands. Although a large number of hand motions can be 
recognized with an accuracy as high as 96% [9], the pattern 
recognition-based method cannot decode the motions in a 
continuous manner and therefore, the robot hand cannot be 
controlled continuously. Instead, proportional control [10, 11] 
can be used to control a specific degree of freedom in a 
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continuous manner. Global features such as the EMG 
amplitude were extracted continuously and used as the control 
input of robots. However, due to some factors that can 
substantially affect the EMG recordings, such as the 
background noise, motion artifacts, and the cancellation of 
superimposed motor unit action potentials (MUAP), the 
control performance can decrease significantly. In order to 
address these issues, previous studies have demonstrated that 
the motor unit (MU) discharge information decoded from the 
EMG signals [12, 13] was less affected by these factors, and 
can be a more robust measurement of the muscle activation 
level when fingers performed isometric extension [14-16]. 
However, only finger extension was involved, and EMG 
signals were captured from the extensor digitorum communis 
(EDC) muscle that is superficial to the skin surface. It is not 
clear whether the MU discharge information can be extracted 
accurately from the deeper flexor digitorum superficialis (FDS) 
muscle to predict the finger flexion force. In addition, it needs 
to be investigated how to predict dexterous finger force when 
both flexion and extension are involved.  

Accordingly, we utilized the MU discharge information to 
predict force output when fingers performed dexterous 
isometric flexion and extension (i.e. individual fingers flexed 
and extended sequentially or concurrently). High-density 
EMG (HD-EMG) recordings were recorded from the EDC 
and FDS muscles. MU discharge information was extracted, 
and the neural drive signal was estimated from the 
populational MU discharge frequency of the EDC and FDS, 
respectively for individual fingers. The neural drive signals 
were then used to predict the finger flexion or extension force 
with a linear regression model (termed neural-drive method). 
The conventional force prediction method using the EMG 
amplitude (root mean square) information was also performed 
as a comparison (EMG-amp method). The results showed that 
the neural-drive method can obtain a better force prediction 
performance compared with the EMG-amp method when a 
linear regression model was used. A further exploration of the 
proposed method can potentially provide a robust 
neural-machine interface for intuitive control of advanced 
robotic hands with manual dexterity. 

II. METHODS 

A.  Subjects 

Three neurologically intact subjects were recruited in this 
study. All subjects gave informed consent with protocols 
approved by the Institutional Review Board of the University 
of North Carolina at Chapel Hill. 

B. Experimental Setup 

During the experiment, the forearm of the subjects was 
supported with a foam in a neutral position and the wrist was 
restrained from movements using two stiff foam pads. The 
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index, middle, ring and pinky fingers were secured to four 
load cells (SM-200N, Interface), respectively to measure the 
finger flexion and extension force with a sampling rate of 
1000 Hz (Figure 1). The real-time force data was displayed on 
a monitor with the target force level.  

Two 8×16 HD-EMG electrode arrays covered the 
posterior and anterior sides of the forearm to measure EMG 
activities from the EDC and FDS, respectively (Figure 1). The 
individual electrodes have a 3-mm diameter with a 10-mm 
inter-electrode distance. Using the EMG-USB2+ system (OT 
Bioelettronica), monopolar EMG signals were amplified and 
sampled at 2048 Hz with the reference placed at the wrist. The 
amplifier was set to have a gain of 1000 and a pass band of 10–
900 Hz.  

 

Figure 1: Experimental setup. Two 8×16 HD-EMG electrode arrays 
measuring the EMG activities from the extensor digitorum communis and the 
flexor digitorum superficialis, respectively, and four load cells measuring 
individual finger flexion and extension forces.  

C. Experimental Procedures 

Since two motion types (finger flexion and finger 
extension) were involved in this study, the maximum 
voluntary contraction (MVC) forces of isometric flexion and 
extension were first measured separately for individual 
fingers. Due to the enslaving effect between the ring and pinky 
fingers, the subjects were requested to extend or flex the two 
fingers concurrently, and their forces were summed up. 
Predefined force traces required subjects to follow a repeated 
trapezoidal pattern that had a maximum flexion and extension 
force of 50% of their finger-specific flexion and extension 
MVC, respectively. Two different types of trials were 
performed. In the first type, the subjects were asked to flex or 
extend one specific finger (index, middle, or ring-pinky) in a 
trial, while avoiding co-contractions of other fingers 
(single-finger trial). For each finger, four trials for flexion and 
extension were performed resulting in a total of eight 
single-finger trials.  In the second type, two or three fingers 
flexed and extended in sequence within a trial (multi-finger 
trial), and co-contraction of other fingers was allowed. The 
order of fingers in the multi-finger trials was random, and 16 
multi-finger trials were performed in total.  

D. Data Analysis 

EMG signals were first filtered using a high-pass filter at 
10 Hz and the motion artifacts were removed using an 
independent component analysis-based algorithm [17]. 

1) Force prediction using the neural-drive method 
The neural-drive method to predict finger force includes 

four steps, i.e., EMG decomposition, MU pool refinement, 
neural drive estimation, and force prediction.  

EMG decomposition. The separation vector w of 

individual MUs was first obtained by decomposing the EMG 
signals from the single-finger trials using the Fast-ICA 

algorithm [18] that has been used in our previous studies [14, 
15]. If the task of a single-finger trial was finger 
flexion/extension, then only the EMG from the corresponding 
muscle was used to extract the MU information. The source 
signal s  can be obtained by multiplying the separation vector 

with the extended and whitened EMG signal Z : 

s wZ                                             (1) 

The MU discharge activity i.e., spike train T , was obtained by 
classifying the peaks of the source signal using the Kmeans++ 
algorithm.  

Figure 2A illustrates the force data of a representative trial 
with middle finger extension. The spike trains of the MUs 
obtained from the same trial are illustrated in Figure 2B. Based 
on the finger (index, middle, or ring-pinky) and the motion 
type (flexion or extension), the MUs decomposed from 
individual trials were initially pooled into 6 MU groups for the 
extension and flexion of individual fingers, respectively.  

 

Figure 2: The force data of a representative single-finger trial with middle 
finger extension (A). The spike trains of individual MUs decomposed using 
the EMG signal from finger extensors of the trial (B). The MUs with red spike 
trains were excluded from the MU pool of the middle finger extension after 
the refinement procedure. The EMG amplitude (root mean square) 
distribution from finger extensors of the trial (C). The dashed lines encircled 
the channels used in the EMG-amp method.  

MU pool refinement. A refinement procedure was used to 
remove the MUs that were falsely identified into a specific 
group. The MUs obtained from a single-finger trial of a 
specific finger might be associated with the muscle of other 
fingers because muscle contraction of other fingers still 
existed to some degree. Multi-finger trials were used to refine 
the MU pool. Since the multi-finger trials were also used to 
evaluate the force prediction performance (see below), the 
multi-finger trials were randomly divided into four groups, 
and a four-fold cross evaluation was performed to avoid 
in-sample optimization, which has been used previously [19, 
20]. The MU pool refinement was performed using the 
training set while the prediction performance was evaluated 
using the testing set.  

Specifically, for a given multi-finger trial, the separation 
vector of a MU from a specific finger (for example, middle 
finger) and motion type (for example, extension) was applied 
to the corresponding EMG signal using Equation (1), resulting 
in a source signal and a spike train [14]. Then, the firing rate 
was calculated from the spike train using a 0.5-second-long 
sliding window with a step of 0.1 second (all sliding windows 
are the same in the subsequent text unless otherwise noted). A 
linear regression analysis was performed between the firing 
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rate and the force signals of individual fingers, obtaining three 
coefficient of determination values (R2) corresponding to 
three fingers. This procedure was repeated for all multi-finger 
trials in the training set, and the three R2 values were averaged 
across all trials. If the R2 of the specific finger (middle) was 
larger than that of other fingers (index and ring-pinky), the 
MU was kept in the MU pool. Otherwise, the MU was 
excluded. The rational was that the firing rate of the MUs was 
associated with the force level. The red spike trains illustrated 
in Figure 2B were removed from the MU pool for the middle 
finger extension and the blue ones were retained. To this end, 
the MUs in a pool were considered to solely reflect the flexion 
or extension of a specific finger.  

Neural drive estimation. For a given multi-finger trial, the 
separation vectors of individual MU pools were applied to the 
EMG signals using Equation (1) to obtain the spike trains of 
individual MUs. The firing rate of individual MUs was 
calculated using the sliding window and summed up across all 
MUs for individual MU pools. The firing rate summation 
represented the neural drive signal for individual MU pools.  

Force prediction. After obtaining the neural drive signal of 
individual MU pools, a two-variable linear regression analysis 
between the force data and the two (extension and flexion) 
neural drive signals was performed for individual fingers: 

extensor flexorF a D b D                              (2) 

where F  was the force, 
extensorD and flexorD were the neural 

drive of extension and flexion, respectively. The resultant R2 
value and root mean square error (RMSE) between the actual 
force and predicted force were averaged across all trials from 
the testing set to evaluate the force prediction performance.  

2) Force prediction using the EMG-amp method 
The performance of the neural-drive method was 

compared with the conventional EMG-amp method. The 
EMG channels used for individual fingers were also selected 
via a two-step procedure. The first step used the single-finger 
trials to select the top 60 channels that had the maximum EMG 
amplitude when individual fingers moved. When the motion 
type of a single-finger trial was finger flexion or extension, 
only the corresponding EMG signals were considered. After 
the first step, the EMG channels were divided into 6 groups 
with each representing a specific finger and a motion type. 
This preliminary EMG channel classification procedure can 
lead to substantial overlap of channels between fingers. 
Therefore, the second step was performed to refine the EMG 
channel groups for individual fingers and motion types using 
the multi-finger trials in the training set. For a given 
multi-finger trial, the EMG amplitude of individual channels 
of all groups was calculated using the sliding window and a 
linear regression analysis was performed between the EMG 
amplitude and the force of individual fingers, resulting in three 
R2 values for each EMG channel. For a given EMG channel 
group of a specific finger, if a channel had a larger R2 value 
with the specific finger compared with the other two fingers, 
then the channel was kept. Otherwise, the channel was 
removed. Figure 2C shows the EMG amplitude distribution 
from finger extensors of a single-finger trial with the middle 
finger extension and the dashed lines encircled the channels 
for the middle finger extension after the EMG channel 
refinement procedure. The procedure was repeated across all 

groups until all groups were refined. The force prediction 
procedure of the EMG-amp method was similar with the 
neural-drive method. Instead of calculating the neural drive 
signal of individual pools, the EMG amplitude was averaged 
across all retained channels for individual groups.  

III. RESULTS 

Figures 3A and B illustrate the spike trains of individual 
MUs for the index extensor and the flexor, respectively, from 
a representative multi-finger trial in the testing set. The thick 
curves in Figure 3A and B represent the normalized neural 
drive signal calculated as the firing rate summation across all 
MUs in the pool. Figure 3C illustrates the force prediction 
results of individual fingers using both the neural-drive 
method and the EMG-amp method from the same trial. The 
neural-drive method can predict the force accurately in most 
cases. On the contrary, the force predicted using the 
EMG-amp method had both overestimation and 
underestimation issues, especially for the index finger. In 
some cases, the EMG-amp method can even predict the force 
to the opposite direction, such as the force of the middle and 
ring-pinky fingers at around 3 second with the extension force 
falsely estimated as the flexion force.  

 

Figure 3: The spike trains and neural drive signals of the index extension (A) 
and flexion (B), respectively of a representative multi-finger trial. Only 
odd-numbered MUs are illustrated to save space for the extension. The 
corresponding force prediction results of the trial (C).  

The average R2 values and RMSE across the four-fold 
cross-evaluation are shown in Table I for individual subjects. 
The results showed that for all subjects, the R2 value using the 
neural-drive method was larger than that of the EMG-amp 
method. In addition, the RMSE using the neural-drive method 
was smaller than that of the EMG-amp method for all subjects. 

TABLE I.  FORCE PREDICTION PERFORMANCE 

Sub. 
R2 RMSE (%MVC) 

Neural-drive EMG-amp Neural-drive EMG-amp 

1 0.765 0.666 8.657 10.471 

2 0.821 0.752 5.953 7.811 

3 0.666 0.561 8.063 10.108 

IV. DISCUSSION 

In this study, a novel method was developed to predict 
isometric finger flexion and extension forces based on the 
discharge information of MUs. Our preliminary results 
demonstrated that by extracting the MU discharge information 
from the finger flexors and extensors separately, the 
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neural-drive method can predict the isometric finger force 
accurately when the fingers performed dexterous flexion and 
extension. In addition, the neural-drive method had a better 
force prediction compared with the conventional EMG-amp 
method when a linear regression model was used, manifested 
as a higher correlation and a lower estimation error.  

Compared with the EMG-amp method, the neural-drive 
method had less overestimation and underestimation 
problems. For the EMG-amp method, the overestimation and 
underestimation issue was mainly from the cross-talk of EMG 
activities between different fingers due to proximity of finger 
muscle compartments [21]. Even though an EMG channel 
refinement procedure was performed to exclude the overlap of 
channels between different fingers, it is still possible for an 
electrode to capture the EMG activities of different fingers. On 
the contrary, the neural-drive method was less affected by the 
crosstalk activities, which demonstrated the potential of the 
neural-drive method to distinguish the muscle activation 
between anatomically close muscles. The overestimation and 
underestimation in the neural-drive method mainly came from 
the false positive or negative firing events because the 
separation matrix used to extract firing events was obtained 
using different EMG data. Some other factors might also 
influence the performance of the EMG-amp method, but may 
had less influence on the estimation of the neural drive signal, 
such as background noise and motion artifacts [17]. 

The MU number identified from the extensors was larger 
than that from the flexors (Figure 3A and B). The possible 
reason was that the position of the FDS muscle is deeper than 
that of the EDC muscle. The proximity to the skin surface 
leads to a larger amplitude and a narrower width of the MUAP 
and therefore more identified MUs.  

One limitation of the current study was that only a simple 
two-variate linear regression model was used to establish the 
relation between the force and the information (neural drive or 
EMG amplitude) of extensors and flexors. However, since the 
force output can be affected by the contraction of both 
extensors and flexors. The linear regression model might be 
insufficient to explain the complex condition when 
antagonists contract concurrently. In our future study, more 
complex models will be tested to evaluate whether the force 
prediction performance can be further improved. In addition, 
more subjects will be recruited and more metrics such as the 
time delay will be used to verify the performance of the neural 
drive method in predicting dexterous finger flexion and 
extension forces. 
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