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Abstract— With the development of advanced robotic hands,
a reliable neural-machine interface is essential to take full
advantage of the functional dexterity of the robots. In this
preliminary study, we developed a novel method to estimate
isometric forces of individual fingers continuously and
concurrently during dexterous finger flexion and extension.
Specifically, motor unit (MU) discharge activity was extracted
from the surface high-density electromyogram (EMG) signals
recorded from the finger extensors and flexors, respectively.
The MU information was separated into different groups to be
associated with the flexion or extension of individual fingers and
was then used to predict individual finger forces during
multi-finger flexion and extension tasks. Compared with the
conventional EMG amplitude-based method, our method can
obtain a better force estimation performance (a higher
correlation and a smaller estimation error between the
predicted and the measured force) when a linear regression
model was used. Further exploration of our method can
potentially provide a robust neural-machine interface for
intuitive control of robotic hands.

1. INTRODUCTION

Recently, a variety of advanced robotic hands have been
developed with the ability to control individual fingers [1-3],
which makes it possible for individuals with arm amputation
or hand impairment to perform dexterous finger movements
for rehabilitative or assistant purposes. In order to take full
advantage of these robots, a reliable neural-machine interface
is needed to transfer human movement intention into robot
control command. Among different kinds of neural signals
[4-6] to predict finger kinematics, surface electromyogram
(EMG) signals have the advantage of non-invasive nature, low
cost, high signal-to-noise ratio, and stable data recordings, and
therefore show promising application prospects [7, 8].

Pattern recognition techniques have been widely used to
decode the movement intention from EMG recordings [9].
Typically, EMG signals during different hand motions were
captured and the global features were extracted for individual
motions. Then, the features were fed into a classifier to
classify between different motions. In this way, some specific
motions can be recognized and translated into the predefined
commands. Although a large number of hand motions can be
recognized with an accuracy as high as 96% [9], the pattern
recognition-based method cannot decode the motions in a
continuous manner and therefore, the robot hand cannot be
controlled continuously. Instead, proportional control [10, 11]
can be used to control a specific degree of freedom in a
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continuous manner. Global features such as the EMG
amplitude were extracted continuously and used as the control
input of robots. However, due to some factors that can
substantially affect the EMG recordings, such as the
background noise, motion artifacts, and the cancellation of
superimposed motor unit action potentials (MUAP), the
control performance can decrease significantly. In order to
address these issues, previous studies have demonstrated that
the motor unit (MU) discharge information decoded from the
EMG signals [12, 13] was less affected by these factors, and
can be a more robust measurement of the muscle activation
level when fingers performed isometric extension [14-16].
However, only finger extension was involved, and EMG
signals were captured from the extensor digitorum communis
(EDC) muscle that is superficial to the skin surface. It is not
clear whether the MU discharge information can be extracted
accurately from the deeper flexor digitorum superficialis (FDS)
muscle to predict the finger flexion force. In addition, it needs
to be investigated how to predict dexterous finger force when
both flexion and extension are involved.

Accordingly, we utilized the MU discharge information to
predict force output when fingers performed dexterous
isometric flexion and extension (i.e. individual fingers flexed
and extended sequentially or concurrently). High-density
EMG (HD-EMG) recordings were recorded from the EDC
and FDS muscles. MU discharge information was extracted,
and the neural drive signal was estimated from the
populational MU discharge frequency of the EDC and FDS,
respectively for individual fingers. The neural drive signals
were then used to predict the finger flexion or extension force
with a linear regression model (termed neural-drive method).
The conventional force prediction method using the EMG
amplitude (root mean square) information was also performed
as a comparison (EMG-amp method). The results showed that
the neural-drive method can obtain a better force prediction
performance compared with the EMG-amp method when a
linear regression model was used. A further exploration of the
proposed method can potentially provide a robust
neural-machine interface for intuitive control of advanced
robotic hands with manual dexterity.

II. METHODS

A. Subjects

Three neurologically intact subjects were recruited in this
study. All subjects gave informed consent with protocols
approved by the Institutional Review Board of the University
of North Carolina at Chapel Hill.

B. Experimental Setup

During the experiment, the forearm of the subjects was
supported with a foam in a neutral position and the wrist was
restrained from movements using two stiff foam pads. The
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index, middle, ring and pinky fingers were secured to four
load cells (SM-200N, Interface), respectively to measure the
finger flexion and extension force with a sampling rate of
1000 Hz (Figure 1). The real-time force data was displayed on
a monitor with the target force level.

Two 8x16 HD-EMG electrode arrays covered the
posterior and anterior sides of the forearm to measure EMG
activities from the EDC and FDS, respectively (Figure 1). The
individual electrodes have a 3-mm diameter with a 10-mm
inter-electrode distance. Using the EMG-USB2+ system (OT
Bioelettronica), monopolar EMG signals were amplified and
sampled at 2048 Hz with the reference placed at the wrist. The
amplifier was set to have a gain of 1000 and a pass band of 10—
900 Hz.
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Experimental setup. Two 8x16 HD-EMG electrode arrays
measuring the EMG activities from the extensor digitorum communis and the
flexor digitorum superficialis, respectively, and four load cells measuring
individual finger flexion and extension forces.

Figure 1:

C. Experimental Procedures

Since two motion types (finger flexion and finger
extension) were involved in this study, the maximum
voluntary contraction (MVC) forces of isometric flexion and
extension were first measured separately for individual
fingers. Due to the enslaving effect between the ring and pinky
fingers, the subjects were requested to extend or flex the two
fingers concurrently, and their forces were summed up.
Predefined force traces required subjects to follow a repeated
trapezoidal pattern that had a maximum flexion and extension
force of 50% of their finger-specific flexion and extension
MVC, respectively. Two different types of trials were
performed. In the first type, the subjects were asked to flex or
extend one specific finger (index, middle, or ring-pinky) in a
trial, while avoiding co-contractions of other fingers
(single-finger trial). For each finger, four trials for flexion and
extension were performed resulting in a total of eight
single-finger trials. In the second type, two or three fingers
flexed and extended in sequence within a trial (multi-finger
trial), and co-contraction of other fingers was allowed. The
order of fingers in the multi-finger trials was random, and 16
multi-finger trials were performed in total.

D. Data Analysis

EMG signals were first filtered using a high-pass filter at
10 Hz and the motion artifacts were removed using an
independent component analysis-based algorithm [17].

1) Force prediction using the neural-drive method

The neural-drive method to predict finger force includes
four steps, i.e., EMG decomposition, MU pool refinement,
neural drive estimation, and force prediction.

EMG decomposition. The separation vector w of
individual MUs was first obtained by decomposing the EMG
signals from the single-finger trials using the Fast-ICA

algorithm [18] that has been used in our previous studies [14,
15]. If the task of a single-finger trial was finger
flexion/extension, then only the EMG from the corresponding
muscle was used to extract the MU information. The source
signal s can be obtained by multiplying the separation vector
with the extended and whitened EMG signal Z :

S=wZ (1)

The MU discharge activity i.e., spike train T, was obtained by
classifying the peaks of the source signal using the Kmeans++
algorithm.

Figure 2A illustrates the force data of a representative trial
with middle finger extension. The spike trains of the MUs
obtained from the same trial are illustrated in Figure 2B. Based
on the finger (index, middle, or ring-pinky) and the motion
type (flexion or extension), the MUs decomposed from
individual trials were initially pooled into 6 MU groups for the
extension and flexion of individual fingers, respectively.
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Figure 2: The force data of a representative single-finger trial with middle
finger extension (A). The spike trains of individual MUs decomposed using
the EMG signal from finger extensors of the trial (B). The MUs with red spike
trains were excluded from the MU pool of the middle finger extension after
the refinement procedure. The EMG amplitude (root mean square)
distribution from finger extensors of the trial (C). The dashed lines encircled
the channels used in the EMG-amp method.

MU pool refinement. A refinement procedure was used to
remove the MUs that were falsely identified into a specific
group. The MUs obtained from a single-finger trial of a
specific finger might be associated with the muscle of other
fingers because muscle contraction of other fingers still
existed to some degree. Multi-finger trials were used to refine
the MU pool. Since the multi-finger trials were also used to
evaluate the force prediction performance (see below), the
multi-finger trials were randomly divided into four groups,
and a four-fold cross evaluation was performed to avoid
in-sample optimization, which has been used previously [19,
20]. The MU pool refinement was performed using the
training set while the prediction performance was evaluated
using the testing set.

Specifically, for a given multi-finger trial, the separation
vector of a MU from a specific finger (for example, middle
finger) and motion type (for example, extension) was applied
to the corresponding EMG signal using Equation (1), resulting
in a source signal and a spike train [14]. Then, the firing rate
was calculated from the spike train using a 0.5-second-long
sliding window with a step of 0.1 second (all sliding windows
are the same in the subsequent text unless otherwise noted). A
linear regression analysis was performed between the firing
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rate and the force signals of individual fingers, obtaining three
coefficient of determination values (R?) corresponding to
three fingers. This procedure was repeated for all multi-finger
trials in the training set, and the three R? values were averaged
across all trials. If the R? of the specific finger (middle) was
larger than that of other fingers (index and ring-pinky), the
MU was kept in the MU pool. Otherwise, the MU was
excluded. The rational was that the firing rate of the MUs was
associated with the force level. The red spike trains illustrated
in Figure 2B were removed from the MU pool for the middle
finger extension and the blue ones were retained. To this end,
the MUs in a pool were considered to solely reflect the flexion
or extension of a specific finger.

Neural drive estimation. For a given multi-finger trial, the
separation vectors of individual MU pools were applied to the
EMG signals using Equation (1) to obtain the spike trains of
individual MUs. The firing rate of individual MUs was
calculated using the sliding window and summed up across all
MUs for individual MU pools. The firing rate summation
represented the neural drive signal for individual MU pools.

Force prediction. After obtaining the neural drive signal of
individual MU pools, a two-variable linear regression analysis
between the force data and the two (extension and flexion)
neural drive signals was performed for individual fingers:

F =a- D + b : Dﬂexur (2)

extensor

and D

drive of extension and flexion, respectively. The resultant R?
value and root mean square error (RMSE) between the actual
force and predicted force were averaged across all trials from
the testing set to evaluate the force prediction performance.

where I’ was the force, D were the neural

extensor Slexor

2) Force prediction using the EMG-amp method

The performance of the neural-drive method was
compared with the conventional EMG-amp method. The
EMG channels used for individual fingers were also selected
via a two-step procedure. The first step used the single-finger
trials to select the top 60 channels that had the maximum EMG
amplitude when individual fingers moved. When the motion
type of a single-finger trial was finger flexion or extension,
only the corresponding EMG signals were considered. After
the first step, the EMG channels were divided into 6 groups
with each representing a specific finger and a motion type.
This preliminary EMG channel classification procedure can
lead to substantial overlap of channels between fingers.
Therefore, the second step was performed to refine the EMG
channel groups for individual fingers and motion types using
the multi-finger trials in the training set. For a given
multi-finger trial, the EMG amplitude of individual channels
of all groups was calculated using the sliding window and a
linear regression analysis was performed between the EMG
amplitude and the force of individual fingers, resulting in three
R? values for each EMG channel. For a given EMG channel
group of a specific finger, if a channel had a larger R? value
with the specific finger compared with the other two fingers,
then the channel was kept. Otherwise, the channel was
removed. Figure 2C shows the EMG amplitude distribution
from finger extensors of a single-finger trial with the middle
finger extension and the dashed lines encircled the channels
for the middle finger extension after the EMG channel
refinement procedure. The procedure was repeated across all

groups until all groups were refined. The force prediction
procedure of the EMG-amp method was similar with the
neural-drive method. Instead of calculating the neural drive
signal of individual pools, the EMG amplitude was averaged
across all retained channels for individual groups.

III. RESULTS

Figures 3A and B illustrate the spike trains of individual
MU s for the index extensor and the flexor, respectively, from
a representative multi-finger trial in the testing set. The thick
curves in Figure 3A and B represent the normalized neural
drive signal calculated as the firing rate summation across all
MUs in the pool. Figure 3C illustrates the force prediction
results of individual fingers using both the neural-drive
method and the EMG-amp method from the same trial. The
neural-drive method can predict the force accurately in most
cases. On the contrary, the force predicted using the
EMG-amp method had both overestimation and
underestimation issues, especially for the index finger. In
some cases, the EMG-amp method can even predict the force
to the opposite direction, such as the force of the middle and
ring-pinky fingers at around 3 second with the extension force
falsely estimated as the flexion force.
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Figure 3: The spike trains and neural drive signals of the index extension (A)

and flexion (B), respectively of a representative multi-finger trial. Only

odd-numbered MUs are illustrated to save space for the extension. The

corresponding force prediction results of the trial (C).

0 5 10

The average R? values and RMSE across the four-fold
cross-evaluation are shown in Table I for individual subjects.
The results showed that for all subjects, the R? value using the
neural-drive method was larger than that of the EMG-amp
method. In addition, the RMSE using the neural-drive method
was smaller than that of the EMG-amp method for all subjects.

TABLE L FORCE PREDICTION PERFORMANCE
Sub R? RMSE (%MVC)
ub.
Neural-drive | EMG-amp | Neural-drive | EMG-amp
1 0.765 0.666 8.657 10.471
2 0.821 0.752 5.953 7.811
3 0.666 0.561 8.063 10.108

IV. DISCUSSION

In this study, a novel method was developed to predict
isometric finger flexion and extension forces based on the
discharge information of MUs. Our preliminary results
demonstrated that by extracting the MU discharge information
from the finger flexors and extensors separately, the
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neural-drive method can predict the isometric finger force
accurately when the fingers performed dexterous flexion and
extension. In addition, the neural-drive method had a better
force prediction compared with the conventional EMG-amp
method when a linear regression model was used, manifested
as a higher correlation and a lower estimation error.

Compared with the EMG-amp method, the neural-drive
method had less overestimation and underestimation
problems. For the EMG-amp method, the overestimation and
underestimation issue was mainly from the cross-talk of EMG
activities between different fingers due to proximity of finger
muscle compartments [21]. Even though an EMG channel
refinement procedure was performed to exclude the overlap of
channels between different fingers, it is still possible for an
electrode to capture the EMG activities of different fingers. On
the contrary, the neural-drive method was less affected by the
crosstalk activities, which demonstrated the potential of the
neural-drive method to distinguish the muscle activation
between anatomically close muscles. The overestimation and
underestimation in the neural-drive method mainly came from
the false positive or negative firing events because the
separation matrix used to extract firing events was obtained
using different EMG data. Some other factors might also
influence the performance of the EMG-amp method, but may
had less influence on the estimation of the neural drive signal,
such as background noise and motion artifacts [17].

The MU number identified from the extensors was larger
than that from the flexors (Figure 3A and B). The possible
reason was that the position of the FDS muscle is deeper than
that of the EDC muscle. The proximity to the skin surface
leads to a larger amplitude and a narrower width of the MUAP
and therefore more identified MUs.

One limitation of the current study was that only a simple
two-variate linear regression model was used to establish the
relation between the force and the information (neural drive or
EMG amplitude) of extensors and flexors. However, since the
force output can be affected by the contraction of both
extensors and flexors. The linear regression model might be
insufficient to explain the complex condition when
antagonists contract concurrently. In our future study, more
complex models will be tested to evaluate whether the force
prediction performance can be further improved. In addition,
more subjects will be recruited and more metrics such as the
time delay will be used to verify the performance of the neural
drive method in predicting dexterous finger flexion and
extension forces.
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