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Abstract—In this work, a new security vulnerability in 

electricity market operations is identified. It involves certain 

parameters in the network model database whose errors, by 

nature, are difficult to detect and identify. These errors can either 

occur due to unintentional reasons or be maliciously introduced 

by cyber adversaries. It is shown that by impacting the injection 

shift factors (ISFs) and transmission line congestion patterns, 

these errors may exert biases on locational marginal prices 

(LMPs), and thus impact the revenues received by the holders of 

financial transmission rights (FTRs). A method is then developed 

for identifying the network parameters whose errors are difficult 

to detect and may have severe impacts on the LMPs and FTR 

revenues. Simulation results in the IEEE 57-bus system are 

presented to illustrate and verify the analysis and the proposed 

method. The proposed framework can be used to conduct cyber 

vulnerability assessment for power system model databases. 

 
Index Terms—cyber security, electricity market, financial 

transmission right, locational marginal price, parameter 

estimation, state estimation, anomaly detection  

I.  INTRODUCTION 

ONGESTION management is one of the most important 

objectives in the electricity market design and operation. A 

transmission line or a transformer is said to be congested if it 

operates at the limits imposed by security requirements. In the 

case of congestions, generators have to be re-dispatched in 

order to alleviate congestion at higher generation costs. In 

deregulated electricity markets, price signals are used to reflect 

the economic costs induced by congestions, and drive the 

operating point away from congested situations. In the U.S., the 

Federal Energy Regulatory Commission (FERC) has put forth 

standard market design (SMD) based on the concept of 

locational marginal price (LMP) [1]. In a bilateral transaction, 

for instance, if the transaction is contributing to the existing 

congestion, the portion of additional cost induced by this 

transaction will be reflected by the difference between the LMP 

at the point of delivery and the one at the point of receipt. This 

difference is usually referred to as the congestion charge 

associated with this transaction.  

 In day-ahead or real-time markets, the LMP at each node is 

computed by solving the economic dispatch (ED) problem. 

Before the market is cleared, the LMPs cannot be accurately 

 
This work was supported in part by the ERC Program of the National Science 
Foundation under NSF Award EEC-1041877, and in part by the NSF Award 

No. 1947617.  

projected by individual market participants, since they depend 

on global information of the network and bidding strategies of 

all parties. Therefore, market participants are always subject to 

the risk of high congestion charges raised by occurrence of 

unpredictable and severe congestions in the power grid. In order 

to hedge this risk, the independent system operator (ISO) or 

regional transmission organization (RTO) offers financial tools 

referred to as financial transmission rights (FTRs) [2] – [5]. 

They can be purchased in long-term, annual, or monthly 

auctions, with a specified amount of power and its path of 

transfer. At actual market clearing, the holders of FTRs will 

receive revenues if there is a difference of LMPs along the 

predetermined transfer path. Supposedly, they can be used to 

offer reimbursements for congestion charges that may occur. 

 In recent years, there is an increasing concern about cyber 

security issues in power system operations, and a growing trend 

of studying power systems as cyber-physical systems [6]. 

Along this line, a large volume of research has been dedicated 

to the so-called false data injection (FDI) attacks. The basic idea 

of FDI attacks is that if measurement data are accessed by cyber 

adversaries, and manipulated in such a way that the falsified 

values are conforming, the bad data detection function 

associated with state estimation (SE) may not be able to detect 

them. Typical methods for FDI attacks include the sparse attack 

model aiming to identify the minimum number of 

measurements to modify [7], the critical measurement attack 

model targeting the measurements whose errors are inherently 

undetectable [8], and the local attack model where the network 

information is only partially available [9]. In addition, a number 

of studies have been presented on analyzing the impacts of FDI 

attacks on the operation of electricity markets. Ref. [10] 

initiates the investigation along this line, while a 

countermeasure is proposed in [11], and the behaviors of cyber 

adversaries with partial information are studied in [12].  In 

general, successful FDI attacks require real-time and 

coordinated manipulation of a large number of measurements, 

thus its practicality in the real world is still an open question 

that requires further justification. 

 In this work, a new security vulnerability which may impact 

the operation of electricity markets is identified and 

investigated. It involves parameter errors in the network model 
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database. It is known that the operation of electricity markets is 

heavily dependent on models. Errors in network model 

parameters can bias the congestion pattern and the relationship 

between the congestion and power injections, thus can 

significantly affect the evaluation of LMPs. Generally, 

parameter errors can be detected, identified, and corrected with 

methods developed based on SE. Classical methods for 

parameter error detection include residual-sensitivity-based 

methods [13] and augmented-state-estimation methods [14]. 

Recently developed Lagrange-multiplier-based methods 

significantly enhance the detection capability compared to the 

classical methods [15] – [16]. However, it has been shown more 

recently that even for the Lagrange-multiplier-based methods, 

there are vulnerable parameters in power network models 

whose errors are difficult to detect in a reliable manner [17] – 

[18]. The reasons leading to these weakly detectable errors may 

include weak network topology and measurement 

configuration, etc. If weakly detectable errors occur, they are 

likely to stay undetected and remain in the model database 

permanently, and will yield long-lasting negative impacts on 

the electricity markets as well as other applications. Compared 

to the extensively discussed FDI attacks which target 

measurement data, it may be more difficult to access model 

parameter dataset since it is stored at control centers. However, 

the following features regarding the cyber threat to model 

dataset make it worth special attention. 

 1. It does not require coordinated manipulation of a large 

volume of data. Weakly detectable errors are, by nature, 

difficult to detect, and thus do not have to be coordinated. The 

adversaries need to falsify only one or a small subset of 

parameters, which makes the attacks easier to implement. 

2. It does not require intrusion and manipulation of data in 

real time. The change of a parameter can be done at any time, 

in an offline manner, and needs to be done only once. That 

makes it more practical and implementable compared to 

manipulating measurement data continuously in real time. 

3. It can be implemented when cyber adversaries acquire 

database access privileges from internal personnel. Note that 

model parameters can be legitimately modified when logging 

into the database as internal personnel, while there is no normal 

means to modify measurement data. Therefore, for model 

parameters, it is very difficult to differentiate a malicious 

manipulation from a normal modification. 

4. It exerts wider impacts on power system operations, 

including electricity markets. While typical FDI attacks can 

only affect online applications, network parameter errors can 

affect both online and offline applications. In terms of 

electricity markets, it can affect both the day-ahead market and 

the real-time market. Note that the vast majority of energy are 

traded in the day-ahead market. 

Considering the factors mentioned above, the security 

vulnerabilities posed by weakly detectable model parameter 

errors cannot be neglected. However, existing work addressing 

the information security problem associated with power system 

model database is rather rare, presenting a significant research 

gap to fill. In this paper, the linkage between weakly detectable 

parameter errors and the operation of electricity markets will be 

explicitly studied. It follows our previous publication [19], 

where this topic was discussed for the first time in literature. 

While Ref. [19] only illustrates the concept that weakly 

detectable parameter errors can distort LMPs by simulating an 

error on a single transmission line, no systematic approach was 

developed for system-wide analysis. This paper, in contrast, 

provides a systematic approach for comprehensive 

vulnerability assessment of market operations in a large-scale 

system. The contributions of this paper are summarized as 

follows. 

1. It draws attention to the information security problem 

associated with weakly detectable model parameter errors, and 

clarifies the linkage between weakly detectable parameter 

errors and secure operation of electricity markets. 

2. It develops a framework for identifying the vulnerabilities 

of model database in electricity market operation. Specifically, 

the network parameters which may have weakly detectable 

errors that yield drastic biases of LMPs are identified, which 

paves the way for the development of effective defense 

measures. 

3. Case study results explicitly demonstrate, for the first 

time, that maliciously injected model parameter errors can 

severely bias congestion patterns, LMPs, and FTR revenues in 

electricity markets.  

II.  ECONOMIC DISPATCH, LOCATIONAL MARGINAL PRICE, 

AND FINANCIAL TRANSMISSION RIGHTS 

It is known that the electricity market is cleared by solving 

the ED problem. In studying the impacts of network parameter 

errors on the congestion patterns and FTR revenues, and power 

losses in the transmission network do not play an important 

role. Therefore, without significantly affecting the analysis in 

this paper, one can consider a simplified lossless ED model: 
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where L is the number of branches, N is the number of buses, sj 

is the power generation at bus j, dj is the power consumption at 

bus j, cj is the marginal generation cost at bus j, sj
min is the lower 

limit of power generation at bus j, sj
max is the upper limit of 

power generation at bus j, fl
min is the lower limit of power flow 

along branch l, fl
max is the upper limit of power flow along 

branch l, and Ψlj is the injection shift factor (ISF) from bus j to 

branch l. It represents the incremental change of the power flow 

along branch l induced by per unit change of the power injection 

at bus j. With the DC power flow model, which is consistent 

with the ED problem, the ISF matrix can be evaluated as: 

 1−=
f

Ψ B AB   (2) 

where Bf is the imaginary part of the primitive admittance 
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matrix, A is the branch-bus incidence matrix, and B is the 

imaginary part of the admittance matrix. Ψlj is the entry at the 

lth row and jth column of Ψ. 

 At the solution point of (1), if a branch is found to be 

operating at its power limit, then this branch is defined as a 

congested branch. 

 The Lagrange multipliers associated with each inequality 

constraint can be obtained from the solution to (1), and the 

LMPs can be computed as follows [20] – [21]: 

 
* min* max*

1 1

L L

j l lj l lj

l l

LMP   
= =

= +  −     (3) 

where LMPj is the LMP at the jth node, ξ* is the Lagrange 

multiplier associated with the power balance equation, μl
min* 

and μl
max* are the Lagrange multipliers associated with the 

inequality constraints regarding the lower and upper power 

flow limits of branch l, respectively. They are commonly 

known as the shadow prices associated with the congestion of 

branch l, which represent the incremental changes of generation 

costs with the change of the power flow limits fl
min and fl

max, 

respectively. Apparently, μl
min* and μl

max* are nonzero only 

when the corresponding inequality constraints are binding, i.e., 

the branch is congested at fl
min or fl

max. Therefore, if there is no 

congestion in the system and the power losses are ignored, 

every node in the system will have the same LMP as ξ*. In the 

presence of congestions, the corresponding μl
min* and μl

max* will 

be nonzero, which leads to different LMPs at different nodes. 

 Congestions can sometimes make LMPs at certain nodes 

unexpectedly high, which can result in undesirable congestion 

charges for market participants. The FTRs are financial tools 

designed to hedge this risk. Consider a bilateral transaction 

defined as below: 

 w = i, j,q{ }  (4) 

where i and j are the bus indices of the point of receipt (where 

the power is injected) and the point of delivery (where the 

power is withdrawn), respectively, and q is the amount of power 

to be transferred. Apparently, the congestion charge associated 

with transaction ω is given by 

 tw = LMP
j
- LMP

i( )q   (5) 

If the difference of LMPs between the point of delivery and the 

point of receipt is a large positive value, then the congestion 

charge is high. To avoid this risk, the FTR defined as below can 

be introduced: 

  , , ,i j  =   (6) 

where i and j are the bus indices of the point of receipt and point 

of delivery, respectively, γ is amount of power, and ρ is the per 

unit premium that the market participant pays for purchasing 

the FTR. When the market is actually cleared, if congestions 

actually occur, the holder of FTR φ will receive the revenue: 

 ( )j iLMP LMP = −   (7) 

and the profit of holding FTR φ will be the difference between 

revenue and the premium: 

 ( )j iLMP LMP  = − −   (8) 

It should be noted that although FTRs are designed such that 

their revenues can offset congestion charges, the holders will 

receive the revenues irrespective of whether they actually 

conduct any power transactions or not. The revenues of FTRs 

are exclusively determined by the difference between the 

clearing LMPs of the two nodes which are pre-decided as the 

“point of delivery” and “point of receipt” when the FTR is 

purchased. 

 Clearly, the network model plays a vital role in the 

aforementioned market applications. If the parameters of the 

network model contain errors, they will impact the ISFs which 

appear in (1) and (3), and hence the evaluation of LMPs and 

FTR revenues. Needless to say, it is important to keep an error 

free model parameter database. Yet, this is not trivial in 

practice. In the next section, methods developed for the 

detection and identification of network parameter errors will be 

reviewed.  

III.  STATE ESTIMATION AND PARAMETER ERROR DETECTION 

State estimation is a powerful tool, which can not only 

provide reliable estimate of the operating state of power 

systems, but can also be used to calibrate meters and network 

models. The most straightforward idea is to augment the state 

vector and estimate the parameter of concern simultaneously 

with the state variables [14]. However, a major practical issue 

is the selection of parameters to be estimated. In a large-scale 

real-world system whose model contains thousands or even 

more parameters, it is generally difficult to obtain the set of 

suspect parameters to be estimated without loss of network 

observability. Therefore, methods are developed to first detect 

and identify erroneous parameters, and then include the 

identified ones in the augmented state vector for estimation. For 

the detection and identification of erroneous parameters, the 

largest normalized Lagrange multiplier (LNLM) test can be 

used [15] – [18]. For deriving this test, the WLS SE problem 

can be written as 

 
( )( ) ( )( )1

,

1
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2
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T

J −= − −

=

x p

0

z h x p R z h x p

p p
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where z is the measurement vector that has m variables, x is the 

state vector that has n variables, h is the nonlinear function 

linking the state vector to the measurement vector, R is the 

covariance matrix of measurement errors, p is the network 

parameter vector, p0 is the stored parameter vector in the model 

database, and J is the objective function. After problem (9) is 

solved, the Lagrange multiplier vector associated with the 

equality constraints can be recovered by [18]: 

 
1T −= −

p
λ H R r   (10) 

where Hp is the Jacobian matrix ∂h/∂p, and r is the residual 

vector defined by 

 ( )*,= −
0

r z h x p   (11) 

It is well-known that in the absence of parameter errors, the 

residual vector is linked to the measurement error vector by 

[22]: 

 =r Se   (12) 

where the sensitivity matrix 
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 ( )
1

1 1T T
−

− −= −S I H H R H H R   (13) 

where H is the Jacobian matrix ∂h/∂x. With (10) and (12), it 

can be shown that if measurement errors follow Gaussian 

distributions with zero means and covariance matrix R, then the 

Lagrange multipliers will have Gaussian distributions with zero 

means and the following covariance matrix: 

 ( ) 1cov T −= =
p p

Λ λ H R SH   (14) 

 Thereby, the normalized Lagrange multiplier (NLM) for the 

kth parameter can be defined as [15], [18]: 

 N k
k

kk


 =


  (15) 

In the absence of parameter errors, the NLM will have a 

standard normal distribution. With a specified probability of 

false alarm, the absolute value of the NLM can be checked 

against a threshold t, which satisfies 

 ( ) 1 / 2t  = −   (16) 

For any k, if one has |λk
N| > t, a parameter error can be inferred. 

In this case, the parameter which corresponds to the largest 

NLM will be identified as an erroneous parameter. The detailed 

proof of this identification criterion can be found in [18]. 

 Subsequently, augmented state estimation approaches can be 

used to effectively estimate the identified erroneous parameter. 

After its value is corrected, the SE and LNLM test can be 

performed again to identify the next erroneous parameter. 

IV.  WEAKLY DETECTABLE ERRORS AND THEIR IMPACT ON 

FTR REVENUES 

Despite the general effectiveness of the parameter error 

detection and identification methods, their capabilities are 

limited by many factors regarding the local characteristics of 

the system. It is recently shown in [18] that errors in certain 

parameters are inherently difficult to detect, even if their 

magnitudes are substantial. A brief quantitative analysis of this 

phenomenon is given below. 

The relationship between the Lagrange multipliers and 

parameter errors are given as below [18]: 

 
1T −= −

e p
λ Λp H R Se   (17) 

where pe is the parameter error vector. Based on (17), it can be 

derived that in the absence and presence of a parameter error, 

the probability distribution of the NLM corresponding to the kth 

parameter in the network model will be given by 

 ( )0 : ~ 0,1N

kH N   (18) 

 ( )1 ,: ~ ,1N

k kk e kH N p    (19) 

They are the null and alternative hypotheses of the LNLM test, 

respectively. Hence, in the presence of a parameter error pe,k, 

the probability of missing this error can be evaluated by 

 ( ) ( ) ( ), ,Pr N

e k k kk e kp t t p =    −    (20) 

With a given probability 0 < β ≪ 1, a model parameter error pe,k
 

is refer to as β weakly detectable the probability of detecting 

this error is less than β. The condition for a model parameter 

error pe,k  to be β weakly detectable is given as follows: 

 
( )1

2

,

kk

e k

t

p

−− 
    (21) 

Obviously, Λkk has a small value, an error in the kth parameter 

of the network model is likely to be weakly detectable. Typical 

reasons for a small value of Λkk include weak network topology, 

sparse measurement configuration, low measurement accuracy 

class, and small value of the parameter [17] – [18]. 

If the error is introduced into the model database without 

being detected, electricity market operations can be affected. 

The errors of parameters will propagate into the ISFs as per (2), 

and impact the LMPs in the following three ways. 

1. Congestion pattern. It can be observed from the inequality 

constraints associated with branch flow limits in (1) that when 

ISFs are changed, phantom congestions can be created on 

branches that are actually not congested, and vice versa. 

congestion pattern changes may cause abrupt changes of the 

dual variables μl
min* or μl

max* between zeros and finite numbers. 

As per (3), discontinuous changes of LMPs can be observed 

when parameter errors cause congestion pattern changes. 

2. Congestion shadow price. Besides changes in the 

congestion patterns (i.e. the set of binding inequality 

constraints), the change of ISFs will also lead to continuous 

changes in the shape of the binding constraints, which will lead 

to continuous changes of the dual variables (shadow prices) 

μl
min* or μl

max* that are associated with the congested branches, 

thus leading to continuous changes of the LMPs. 

3. Relationship between a branch congestion and a power 

injection. It can be noted from (3) that the additional terms 

induced by congestions are the products of the shadow prices 

(μl
min* or μl

max*) and the ISFs. It implies that the LMP of a node 

is determined partly by the sensitivity of the power injection at 

this node to the power flows along the congested branches. 

Clearly, if the ISFs are biased, the contributions of the power 

injection at a node to the existing congestions will be distorted, 

which will affect the LMPs. 

From the above analysis, it can be shown that the LMPs are 

nonlinear, discontinuous, and non-convex functions of network 

parameter errors. For a given weakly detectable parameter error 

pe,k, the profit of FTR φ can be written as 

 ( ) ( ) ( )( ), , ,e k j e k i e kp LMP p LMP p  = − −   (22) 

Therefore, the illegal profit made by the FTR holder will be 

given by 

Dd j p
e,k( ) = d j p

e,k( )-d j 0( )

= LMP
j
p
e,k( )- LMPj 0( )( )g - LMP

i
p
e,k( )- LMPi 0( )( )g

  (23) 

The greatest impact of errors in a given parameter can be 

evaluated by maximizing the product of the illegal profit and 

the probability of detection failure, which can also be referred 

to as the security risk imposed by this vulnerable parameter: 

 ( ) ( )
,

, ,max
e k

e k e k
p

p p     (24) 

The solution to problem (24) corresponds to the worst case 

faced by the system operators or defenders, or the optimal 

attack strategy of the cyber adversaries. This case may not be 
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actually encountered by the defenders or achieved by the 

attackers (since the attackers may not have complete 

information for the entire system), but it can be used to quantify 

the impacts an erroneous parameter can have on market 

operations. 

Next, a systematic for identifying the security vulnerabilities 

studied above will be presented. The assumption is that cyber 

adversaries may seek to maximize their economic benefits by 

injecting weakly detectable parameter errors. From the system 

operators’ point of view, as the impact of parameters on LMPs 

vary widely, only those which may have significant impact will 

be of concern. Since a closed form relationship between LMPs 

and network parameters isdifficult to derive, it is obtained by a 

numerical method instead. The procedure for vulnerability 

assessment is summarized below. 

1) For a given system, denote the set of bus numbers as N. 
Obtain the LMPs in the error-free case by doing the following. 

1.1) Set all the parameters at the original values stored in the 

model database, p0, and form ISF matrix Ψ using (2). 

1.2) Solve the ED problem (1). 

1.3) Compute the LMPs for each node of the system using 

(3). Denote the LMP of bus j as LMPj. 

2) Form matrix Λ (i.e. the covariance matrix of Lagrange 

multipliers associated with parameter errors) using (14). 

3) With specified tolerance of error pe,crt > 0, and probability 

of missing errors, βcrt, identify all the vulnerable parameters by 

substituting pe,k = pe,crt into (20), and search for parameters with 

β > βcrt. Denote the vulnerable parameter set as Υ: 

 ( ) k kk crt crtp t p  =  −     (25) 

4) For each vulnerable parameter, determine its plausible 

interval using a priori knowledge (a simple example being, line 

reactance cannot be negative). Denote the plausible interval of 

parameter pk as Pk = [pk
min, pk

max]. 

5) For each vulnerable parameter pk, do the following: 

5.1) Select an increment Δpk, such that pk
max – pk

min = cΔpk (c 

∈ℕ). Set d = 0. 

5.1) Set pk = pk
min + dΔpk, and form ISF matrix Ψ using (2).  

5.2) Solve the ED problem (1). 

5.3) Compute the LMPs for each bus of the system using (3). 

Denote the LMP of bus j as LMPj
(k,d). 

5.4) Compute the deviation of the LMPs due to the parameter 

error: ∆LMPj
(k,d) = LMPj

(k,d) – LMPj. 

5.5) Find the largest difference of LMP deviations between 

different nodes when pk = pk
min + dΔpi: 

 
( ) ( )  ( ) , , ,

NN
max min

k d k d k d

j j
jj

LMP LMP


 =  −    (26) 

and the transfer path (i.e. point of receipt and point of delivery) 

that yields the largest difference of LMP deviations: 
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j j
j j

a b

LMP LMP



 

=

 
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 

  (27) 

5.6) Compute the probability of failure of parameter error 

detection, β(k,d), using (20). 

5.7) Compute the expected value of the illegal profit that can 

be made by purchasing FTR along the transfer path ς(k,d) at pk: 

 
( ) ( ) ( ), , ,k d k d k d

  =    (28) 

5.6) If d < c, set d ← d+1, and go to Step 5.2; otherwise, find 

the largest possible illegal profit that can be made by injecting 

errors into vulnerable parameter pk: 

 
( )

 

( ) ,

max
0,

max
k k d

d c
 


=   (29) 

Find the magnitude of parameter error that yields the largest 

possible illegal profit as follows: 

 
 

( ) ,

0,

arg max
k dopt

k
d c

d 


=   (30) 

 
min

, 0,

opt opt

e k k k k kp p d p p= +  −   (31) 

5.7) Proceed to the next vulnerable parameter in Υ. 

6) Rank the all the vulnerable parameters in Υ according to 

ϕmax
(k), and the parameters corresponding to greater values are 

those with higher impacts on the security of electricity market 

operation. 

The flow chart of the proposed algorithm is shown in Figure 

1. The whole procedure can be automated to search for the 

vulnerabilities of any given power system model database. 

Finally, several remarks will be made for the above analysis. 

1. Although the computational burden of the above procedure 

can be substantial for large-scale systems, it is not considered 

as a major limiting factor for its implementation. The reasons 

are two folds. (1) The search of high-impact critical parameters 

is not a time-sensitive task. The proposed approach is not 

performed to detect cyber attacks in real time. Instead, it is 

performed in the planning stage, aiming to identify those model 

parameters which, once modified, are difficult to detect and bias 

LMPs seriously. These parameters will form a list of 

vulnerabilities for market operation, and ranked according to 

their impacts. This information will hopefully guide system 

operators to efficiently allocate their resources to develop 

protection measures for these parameters against potential 

cyber attacks.  (2) The evaluations of the impacts of each 

individual parameters are completely independent from each 

other, thus fully parallel or distributed computing architecture 

can be used if needed. In practice, the identification algorithm 

can be conveniently performed every few weeks or months 

using the parallel or distributed computing resources in control 

centers. 

 

Figure 1. Flow Chart of the Proposed Algorithm for Searching Power 

System Model Database Vulnerabilities 
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2. Although the presented vulnerability assessment 

framework only handles one loading and topology scenario, it 

is readily extendable to incorporate multiple loading and 

topology scenarios. Since the total profit gained by the cyber 

adversaries is the sum of profits gained in each intervals, step 1 

– 5 can be run for the typical loading and topology scenarios in 

each intervals of a day, then step 6 is carried out based on the 

sum of the maximum profits for all the intervals. 

3. In the existing studies, the motivations of cyber attacks can 

be broadly classified into two categories: inflicting heavy 

damages to power systems [23] – [24], and gaining economic 

benefits without being detected [10] – [12]. The analysis 

presented in this paper focuses on the security threats with the 

second type of motivations. Discussions on security threats with 

the first type of motivations are out of the scope of this work. 

4. While this paper focuses on the weakly detectable 

parameter errors, it is not the only information security 

vulnerability associated with power system model parameter 

databases. In a recent work [25], information security issues 

regarding another type of parameter errors, namely critical 

parameter errors, are revealed. A critical parameter error is an 

error that always remains undetectable irrespective of the 

magnitude of the error, i.e. the probability of error detection is 

identically zero; whereas a weakly detectable parameter error is 

an error that can be detected with a low but nonzero probability, 

and such probability is a function of the magnitude of the error. 

Obviously, the former is a more extreme case compared to the 

latter. In power system models, these two types of errors pertain 

to two different sets of parameters. In other words, the errors in 

some parameters are critical, and the errors in some parameters 

are weakly detectable. The vulnerability assessments for these 

two types of errors follow different paths, in that for critical 

parameter errors, the profit for cyber adversaries is 

deterministic (the probability of not being detected being 

100%).  

5. While the simplified lossless ED model (1) is presented in 

this paper, more realistic analysis can be readily conducted by 

replacing (1) with a more detailed market model with various 

economic and operational constraints incorporated. This does 

not affect the procedure and effectiveness of the proposed 

vulnerability analysis discussed in this section. 

V.   CASE STUDIES 

In this section, simulation results in the IEEE 57-bus test 

system will be presented to verify the proposed analysis and 

method. Dispatchable generators are assumed at buses 1, 2, 3, 

6, 8, 9, 12, 23, and 37, and 6 branches set to be congested under 

the correct network model: branches 4-3, 2-1, 3-15, 45-44, 15-

 

Figure 4. LMP deviations of buses with respect to error in x19-20     

(colored solid lines indicating different buses, and red dashed lines 

indicating the envelops) 

 

Figure 5. Largest difference between LMP deviations, probability of 

detection failure, and the security risk induced by error in x19-20 
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Figure 2. LMP deviations of buses with respect to error in x24-25   
(colored solid lines indicating different buses, and red dashed lines 

indicating the envelops) 

 

Figure 3. Largest difference between LMP deviations, probability of 

detection failure, and the security risk induced by error in x24-25 
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1, and 38-37. There are 46 pairs of power injection 

measurements, 66 pairs of power flow measurements, and 21 

voltage measurements, resulting in a measurement redundancy 

rate of 2.15. The standard deviations of measurement noise are 

uniformly set at 0.01 p.u. Using the method presented in section 

IV, the vulnerable parameters whose errors may not be reliably 

detected are identified, and their impacts on the LMPs and FTR 

revenues are investigated. Four types of scenarios will be 

presented and studied, followed by the presentation of results 

of the whole system. It should be noted that since there is no 

rival approach in the literature which is capable of addressing 

the issue discussed in this paper, no “baseline” approach can be 

provided for a comparative study.  

A.  Presence of Security Vulnerability: Weakly Detectable 

Errors and Biased Congestion Patterns 

In the IEEE 57-bus system simulation case, the deviations of 

LMPs of all the buses from their true values with respect to the 

error in the reactance of branch 24-25 is plotted in Figure 2. 

Different thin colored lines represent the deviations of LMPs at 

different buses from their true values, and the thick red dashed 

lines show their envelopes. Obviously, when the parameter 

error is zero, the LMPs are identical to the true values, i.e. the 

deviations are zero. When the parameter error grows in the 

negative direction, the deviations remain almost zero. However, 

when it grows in the positive direction, two major jumps can be 

observed for the LMPs of many buses.  They occur due to the 

fact that the parameter error changes the congestion pattern of 

the system. As has been discussed in section IV, parameter 

errors, when growing to a certain extent, can lead to phantom 

congestions for actually non-congested branches, and vice 

versa, and they will lead to discontinuous changes of LMPs. 

From Figure 2, it can be observed that for the same congestion 

pattern change, some LMPs change positively, and others 

change negatively. With a given magnitude of parameter error, 

if the buses corresponding to upper and lower envelops are 

defined as the point of delivery and point of receipt, 

respectively, then the FTR will make the greatest biased/illegal 

revenue. Therefore, the difference between the value of the 

upper envelop and that of the lower envelop (i.e. the largest 

difference between LMP deviations) can be used as an indicator 

for vulnerability assessment, as is exactly done in (26).  

In order to effectively assess the risk induced by a parameter 

error, the probability that the error remains undetected also 

needs to be accounted for. In Figure 3, the largest difference 

between LMPs and the probability of detection failure are both 

 

Figure 6. LMP deviations of buses with respect to error in x52-53   
(colored solid lines indicating different buses, and red dashed lines 

indicating the envelops) 

 

Figure 7. Largest difference between LMP deviations, probability of 

detection failure, and the security risk induced by error in x52-53 
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Figure 8. LMP deviations of buses with respect to error in x15-13   

(colored solid lines indicating different buses, and red dashed lines 

indicating the envelops) 

 

Figure 9. Largest difference between LMP deviations, probability of 

detection failure, and the security risk induced by error in x15-13 
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plotted. It can be found that when the magnitude of the error 

increases, the illegal revenue will increase, but the probability 

that the error is not detected will decrease. The product of these 

two variables will indicate the security risk, as is computed by 

(28), and shown by the thick blue line in Figure 3. The greatest 

risk is created at the first jump of the LMPs, which corresponds 

to a 27% error with respect to its true value. If the error is 

introduced by a malicious attack, this magnitude of error will 

correspond to the optimal strategy which yields the maximum 

expected value of illegal profit. 

B.  Presence of Security Vulnerability: Weakly Detectable 

Errors and Biased Shadow Prices and ISFs 

The deviations of LMPs caused by the error in the reactance 

of branch 19-20 are plotted in Figure 4. Different from the first 

scenario, the changes of LMPs are continuous with respect to 

the parameter error. Clearly, the congestion pattern remains 

unchanged in the entire range of error plotted in Figure 4. 

Otherwise, jumping of LMPs would have been observed. The 

continuous changes of LMPs result from the impact of the 

parameter error on the Lagrange multipliers (shadow prices) 

associated with the actually congested branches, and the ISFs 

that they are multiplied by. In Figure 5, it can be found that 

when the error is 180% of the true value, the risk is maximized. 

It can be concluded from this example that even if parameter 

errors do not change the congestion pattern, they may still 

induce substantial biases in LMPs and FTR revenues by 

impacting the shadow prices and ISFs associated with 

congested branches. 

C.  Absence of Security Vulnerabilities: Weakly Detectable 

Errors with Negligible Impact on LMPs 

Weakly detectable errors do not present security 

vulnerabilities for electricity markets, unless they have 

significant impacts on the LMPs. Figure 6 and 7 illustrate a 

scenario where the parameter error has a negligible impact on 

the LMPs. It involves the reactance of branch 52-53, whose 

variations neither changes the congestion pattern, nor affects 

the shadow prices or ISFs associated with the congested 

branches. It can be seen from Figure 7 that although within a 

wide range of magnitude there exists a substantial probability 

of detection failure, the risk it imposed on the market is rather 

small since the LMP deviations that the error induces are 

modest. This example verifies the argument that the errors 

which may significantly bias the LMPs need to be selectively 

identified and addressed. 

D.  Absence of Security Vulnerability: Reliably Detectable 

Errors 

As a reference, the case of the reactance of branch 15-13 

whose errors can be reliably detected, is presented. In Figure 8 

and 9, it can be seen that erroneous values of this parameter can 

also lead to substantial biases of LMPs. However, from Figure 

9, it can be found that the probability of detection failure drops 

drastically to almost zero as the magnitude of the error 

increases. The red dashed line in Figure 9 has a much thinner 

shape than those of Figure 3, 5, and 7. As a matter of fact, there 

is no overlapping area between the red dashed line (probability 

of detection failure) and the thin blue line (FTR revenue bias). 

Noting that the risk is the product of these two, it remains 

almost zero across the entire range of error magnitude.  

E.  Vulnerability Assessment Results for the System 

Finally, the 15 parameters which present the greatest 

security vulnerabilities are listed in Table I. They are ranked 

according to the maximized risks, which are listed in column 2. 

Column 3 lists the magnitudes of errors that lead to the 

maximum risks, column 4 lists the corresponding FTR revenue 

biases, and column 5 lists the probabilities of detection failure. 

To mention once again, column 2 is evaluated as the product of 

column 4 and 5. The most remarkable fact observed in Table 1 

is that the risks that errors in different parameters impose on the 

market vary widely. The risk presented by the first parameter, 

x24-25, is 40 times greater than that presented by the last 

parameter, x19-20. Again, this shows the significance of 

conducting a systematic vulnerability assessment. Although 

both x24-25 and x19-20 may contain errors that are weakly 

detectable, the possible consequences for electricity market 

operations are completely different. For per MWh of energy, 

error in x24-25 can lead to the risk of $73.13 revenue bias, which 

can completely overwhelm normal revenues under the error-

free condition; whereas error in x19-20 can lead to the risk of 

$1.797 revenue bias only, which does not significantly disrupt 

normal market operations. With the information provided in 

TABLE I, it becomes obvious that more resources should be 

allocated to address the vulnerability associated with x24-25. It 

provides useful guidance on systematic management of 

information security of power system model database. 

VI.  CONCLUSION 

In this paper, security vulnerabilities of electricity markets 

created by weakly detectable errors of network model 

parameters are identified and investigated. Three paths along 

which weakly detectable parameter errors may bias LMPs and 

FTR revenues are explicitly discussed, and a numerical 

approach for quantitatively assessing the security risks imposed 

by weakly detectable parameter errors is developed. In the 

TABLE I 
SECURITY VULNERABILITY IDENTIFICATION RESULTS 

 

Param. 
Maximized 

Risk ($) 

Param. 

Relative 

Error 

FTR 

Revenue 

Bias ($) 

Prob. of 

Detection 

Failure  

x24-25 73.13 27% 74.82 0.9774 

x36-37 72.4 -62% 73.22 0.9889 

x40-56 69.93 -9% 71.14 0.9830 

x34-32 69.82 -18% 71.48 0.9768 

x31-32 68.7 -43% 69.75 0.9848 

x38-37 50.42 28% 58.07 0.8621 

x45-44 36.31 -30% 74.47 0.4875 

x15-45 31.66 -37% 70.03 0.4521 

x39-57 24.67 37% 71.74 0.3439 

x44-38 18.09 69% 19.53 0.9262 

x41-43 12.07 124% 75.97 0.1588 

x49-50 5.667 -54% 30.86 0.1836 

x21-20 3.003 -90% 3.331 0.9015 

x22-38 2.339 200% 2.501 0.9350 

x19-20 1.797 180% 2.247 0.7998 
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simulation section, it is verified in the IEEE 57-bus test system 

that certain weakly detectable errors can induce drastic changes 

of LMPs, leading to potential benefits for cyber adversaries. 

Furthermore, four scenarios demonstrating various conditions 

which result in the presence or absence of security 

vulnerabilities are presented. It is observed that the errors which 

are difficult to detect may not necessarily induce significant 

biases of LMPs, and the errors which induce significant biases 

of LMPs may not necessarily be difficult to detect. Such 

observations demonstrate the need for developing a systematic 

approach for vulnerability assessment which quantitatively 

takes both factors into account, which is exactly the main goal 

and achievement of this paper. As the mechanisms of parameter 

errors inducing biases in congestion patterns, shadow prices, 

and ISFs are general, the phenomena observed in the IEEE 57-

bus test system are representative for what may occur in other 

test systems and real-world utility systems, and the proposed 

vulnerability identification method will remain effective. The 

development of protection measures is being worked on and 

will be reported in a future publication. 
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