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Abstract—In this work, a new security vulnerability in
electricity market operations is identified. It involves certain
parameters in the network model database whose errors, by
nature, are difficult to detect and identify. These errors can either
occur due to unintentional reasons or be maliciously introduced
by cyber adversaries. It is shown that by impacting the injection
shift factors (ISFs) and transmission line congestion patterns,
these errors may exert biases on locational marginal prices
(LMPs), and thus impact the revenues received by the holders of
financial transmission rights (FTRs). A method is then developed
for identifying the network parameters whose errors are difficult
to detect and may have severe impacts on the LMPs and FTR
revenues. Simulation results in the IEEE 57-bus system are
presented to illustrate and verify the analysis and the proposed
method. The proposed framework can be used to conduct cyber
vulnerability assessment for power system model databases.

Index Terms—cyber security, electricity market, financial
transmission right, locational marginal price, parameter
estimation, state estimation, anomaly detection

1. INTRODUCTION

ONGESTION management is one of the most important
objectives in the electricity market design and operation. A
transmission line or a transformer is said to be congested if it
operates at the limits imposed by security requirements. In the
case of congestions, generators have to be re-dispatched in
order to alleviate congestion at higher generation costs. In
deregulated electricity markets, price signals are used to reflect
the economic costs induced by congestions, and drive the
operating point away from congested situations. In the U.S., the
Federal Energy Regulatory Commission (FERC) has put forth
standard market design (SMD) based on the concept of
locational marginal price (LMP) [1]. In a bilateral transaction,
for instance, if the transaction is contributing to the existing
congestion, the portion of additional cost induced by this
transaction will be reflected by the difference between the LMP
at the point of delivery and the one at the point of receipt. This
difference is usually referred to as the congestion charge
associated with this transaction.
In day-ahead or real-time markets, the LMP at each node is
computed by solving the economic dispatch (ED) problem.
Before the market is cleared, the LMPs cannot be accurately
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projected by individual market participants, since they depend
on global information of the network and bidding strategies of
all parties. Therefore, market participants are always subject to
the risk of high congestion charges raised by occurrence of
unpredictable and severe congestions in the power grid. In order
to hedge this risk, the independent system operator (ISO) or
regional transmission organization (RTO) offers financial tools
referred to as financial transmission rights (FTRs) [2] — [5].
They can be purchased in long-term, annual, or monthly
auctions, with a specified amount of power and its path of
transfer. At actual market clearing, the holders of FTRs will
receive revenues if there is a difference of LMPs along the
predetermined transfer path. Supposedly, they can be used to
offer reimbursements for congestion charges that may occur.

In recent years, there is an increasing concern about cyber
security issues in power system operations, and a growing trend
of studying power systems as cyber-physical systems [6].
Along this line, a large volume of research has been dedicated
to the so-called false data injection (FDI) attacks. The basic idea
of FDI attacks is that if measurement data are accessed by cyber
adversaries, and manipulated in such a way that the falsified
values are conforming, the bad data detection function
associated with state estimation (SE) may not be able to detect
them. Typical methods for FDI attacks include the sparse attack
model aiming to identify the minimum number of
measurements to modify [7], the critical measurement attack
model targeting the measurements whose errors are inherently
undetectable [8], and the local attack model where the network
information is only partially available [9]. In addition, a number
of studies have been presented on analyzing the impacts of FDI
attacks on the operation of electricity markets. Ref. [10]
initiates the investigation along this line, while a
countermeasure is proposed in [11], and the behaviors of cyber
adversaries with partial information are studied in [12]. In
general, successful FDI attacks require real-time and
coordinated manipulation of a large number of measurements,
thus its practicality in the real world is still an open question
that requires further justification.

In this work, a new security vulnerability which may impact
the operation of electricity markets is identified and
investigated. It involves parameter errors in the network model



database. It is known that the operation of electricity markets is
heavily dependent on models. Errors in network model
parameters can bias the congestion pattern and the relationship
between the congestion and power injections, thus can
significantly affect the evaluation of LMPs. Generally,
parameter errors can be detected, identified, and corrected with
methods developed based on SE. Classical methods for
parameter error detection include residual-sensitivity-based
methods [13] and augmented-state-estimation methods [14].
Recently developed Lagrange-multiplier-based methods
significantly enhance the detection capability compared to the
classical methods [15] — [16]. However, it has been shown more
recently that even for the Lagrange-multiplier-based methods,
there are vulnerable parameters in power network models
whose errors are difficult to detect in a reliable manner [17] —
[18]. The reasons leading to these weakly detectable errors may
include weak network topology and measurement
configuration, etc. If weakly detectable errors occur, they are
likely to stay undetected and remain in the model database
permanently, and will yield long-lasting negative impacts on
the electricity markets as well as other applications. Compared
to the extensively discussed FDI attacks which target
measurement data, it may be more difficult to access model
parameter dataset since it is stored at control centers. However,
the following features regarding the cyber threat to model
dataset make it worth special attention.

1. It does not require coordinated manipulation of a large
volume of data. Weakly detectable errors are, by nature,
difficult to detect, and thus do not have to be coordinated. The
adversaries need to falsify only one or a small subset of
parameters, which makes the attacks easier to implement.

2. It does not require intrusion and manipulation of data in
real time. The change of a parameter can be done at any time,
in an offline manner, and needs to be done only once. That
makes it more practical and implementable compared to
manipulating measurement data continuously in real time.

3. It can be implemented when cyber adversaries acquire
database access privileges from internal personnel. Note that
model parameters can be legitimately modified when logging
into the database as internal personnel, while there is no normal
means to modify measurement data. Therefore, for model
parameters, it is very difficult to differentiate a malicious
manipulation from a normal modification.

4. It exerts wider impacts on power system operations,
including electricity markets. While typical FDI attacks can
only affect online applications, network parameter errors can
affect both online and offline applications. In terms of
electricity markets, it can affect both the day-ahead market and
the real-time market. Note that the vast majority of energy are
traded in the day-ahead market.

Considering the factors mentioned above, the security
vulnerabilities posed by weakly detectable model parameter
errors cannot be neglected. However, existing work addressing
the information security problem associated with power system
model database is rather rare, presenting a significant research
gap to fill. In this paper, the linkage between weakly detectable
parameter errors and the operation of electricity markets will be

explicitly studied. It follows our previous publication [19],
where this topic was discussed for the first time in literature.
While Ref. [19] only illustrates the concept that weakly
detectable parameter errors can distort LMPs by simulating an
error on a single transmission line, no systematic approach was
developed for system-wide analysis. This paper, in contrast,
provides a systematic approach for comprehensive
vulnerability assessment of market operations in a large-scale
system. The contributions of this paper are summarized as
follows.

1. It draws attention to the information security problem
associated with weakly detectable model parameter errors, and
clarifies the linkage between weakly detectable parameter
errors and secure operation of electricity markets.

2. It develops a framework for identifying the vulnerabilities
of model database in electricity market operation. Specifically,
the network parameters which may have weakly detectable
errors that yield drastic biases of LMPs are identified, which
paves the way for the development of effective defense
measures.

3. Case study results explicitly demonstrate, for the first
time, that maliciously injected model parameter errors can
severely bias congestion patterns, LMPs, and FTR revenues in
electricity markets.

II. EcoNOoMIC DISPATCH, LOCATIONAL MARGINAL PRICE,
AND FINANCIAL TRANSMISSION RIGHTS

It is known that the electricity market is cleared by solving
the ED problem. In studying the impacts of network parameter
errors on the congestion patterns and FTR revenues, and power
losses in the transmission network do not play an important
role. Therefore, without significantly affecting the analysis in
this paper, one can consider a simplified lossless ED model:
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where L is the number of branches, N is the number of buses, s;
is the power generation at bus j, d; is the power consumption at
bus j, ¢; is the marginal generation cost at bus j, s/ is the lower
limit of power generation at bus j, s/"* is the upper limit of
power generation at bus j, /" is the lower limit of power flow
along branch [, f/"* is the upper limit of power flow along
branch /, and ¥} is the injection shift factor (ISF) from bus j to
branch /. It represents the incremental change of the power flow
along branch / induced by per unit change of the power injection
at bus j. With the DC power flow model, which is consistent
with the ED problem, the ISF matrix can be evaluated as:

¥ =B,AB"' ()
where Br is the imaginary part of the primitive admittance



matrix, A is the branch-bus incidence matrix, and B is the
imaginary part of the admittance matrix. ¥ is the entry at the
Ith row and jth column of V.

At the solution point of (1), if a branch is found to be
operating at its power limit, then this branch is defined as a
congested branch.

The Lagrange multipliers associated with each inequality
constraint can be obtained from the solution to (1), and the
LMPs can be computed as follows [20] — [21]:
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where LMP; is the LMP at the jth node, & is the Lagrange
multiplier associated with the power balance equation, u/™""
and p/™" are the Lagrange multipliers associated with the
inequality constraints regarding the lower and upper power
flow limits of branch [, respectively. They are commonly
known as the shadow prices associated with the congestion of
branch /, which represent the incremental changes of generation
costs with the change of the power flow limits £/ and f"~,
respectively. Apparently, x/™* and /™" are nonzero only
when the corresponding inequality constraints are binding, i.e.,
the branch is congested at /7" or f"*. Therefore, if there is no
congestion in the system and the power losses are ignored,
every node in the system will have the same LMP as &*. In the
presence of congestions, the corresponding z/™™ and g™ will
be nonzero, which leads to different LMPs at different nodes.

Congestions can sometimes make LMPs at certain nodes
unexpectedly high, which can result in undesirable congestion
charges for market participants. The FTRs are financial tools
designed to hedge this risk. Consider a bilateral transaction
defined as below:

o ={i.j.q| 4
where 7 and j are the bus indices of the point of receipt (where
the power is injected) and the point of delivery (where the
power is withdrawn), respectively, and ¢ is the amount of power

to be transferred. Apparently, the congestion charge associated
with transaction w is given by

o =(LMP — LMP)gq (5)
If the difference of LMPs between the point of delivery and the
point of receipt is a large positive value, then the congestion

charge is high. To avoid this risk, the FTR defined as below can
be introduced:

(OZ{i,j,}/,p} (6)
where i andj are the bus indices of the point of receipt and point
of delivery, respectively, y is amount of power, and p is the per
unit premium that the market participant pays for purchasing
the FTR. When the market is actually cleared, if congestions
actually occur, the holder of FTR ¢ will receive the revenue:

v® =(LMP, — LMP)y (7
and the profit of holding FTR ¢ will be the difference between
revenue and the premium:

5% =(LMP,—LMP, - p)y (8)

It should be noted that although FTRs are designed such that
their revenues can offset congestion charges, the holders will
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receive the revenues irrespective of whether they actually
conduct any power transactions or not. The revenues of FTRs
are exclusively determined by the difference between the
clearing LMPs of the two nodes which are pre-decided as the
“point of delivery” and “point of receipt” when the FTR is
purchased.

Clearly, the network model plays a vital role in the
aforementioned market applications. If the parameters of the
network model contain errors, they will impact the ISFs which
appear in (1) and (3), and hence the evaluation of LMPs and
FTR revenues. Needless to say, it is important to keep an error
free model parameter database. Yet, this is not trivial in
practice. In the next section, methods developed for the
detection and identification of network parameter errors will be
reviewed.

III. STATE ESTIMATION AND PARAMETER ERROR DETECTION

State estimation is a powerful tool, which can not only
provide reliable estimate of the operating state of power
systems, but can also be used to calibrate meters and network
models. The most straightforward idea is to augment the state
vector and estimate the parameter of concern simultaneously
with the state variables [14]. However, a major practical issue
is the selection of parameters to be estimated. In a large-scale
real-world system whose model contains thousands or even
more parameters, it is generally difficult to obtain the set of
suspect parameters to be estimated without loss of network
observability. Therefore, methods are developed to first detect
and identify erroneous parameters, and then include the
identified ones in the augmented state vector for estimation. For
the detection and identification of erroneous parameters, the
largest normalized Lagrange multiplier (LNLM) test can be
used [15] — [18]. For deriving this test, the WLS SE problem
can be written as

. 1 T

min J Z(Z h(x,p)) R (z h(x,p)) ©)

s.t. P=P,
where z is the measurement vector that has m variables, x is the
state vector that has n variables, h is the nonlinear function
linking the state vector to the measurement vector, R is the
covariance matrix of measurement errors, p is the network
parameter vector, po is the stored parameter vector in the model
database, and J is the objective function. After problem (9) is
solved, the Lagrange multiplier vector associated with the
equality constraints can be recovered by [18]:

A= —HgR’lr (10)
where Hp is the Jacobian matrix dh/dp, and r is the residual
vector defined by

l‘=Z—h(X*,p0) (11)
It is well-known that in the absence of parameter errors, the
residual vector is linked to the measurement error vector by
[22]:
r =Se
where the sensitivity matrix

(12)



S=I-H(H'R'H) H'R" (13)
where H is the Jacobian matrix dh/dx. With (10) and (12), it
can be shown that if measurement errors follow Gaussian
distributions with zero means and covariance matrix R, then the
Lagrange multipliers will have Gaussian distributions with zero
means and the following covariance matrix:

A=cov(r)=H;R'SH, (14)
Thereby, the normalized Lagrange multiplier (NLM) for the
kth parameter can be defined as [15], [18]:

o
JA
In the absence of parameter errors, the NLM will have a
standard normal distribution. With a specified probability of
false alarm, the absolute value of the NLM can be checked
against a threshold ¢, which satisfies

O(t)=1-a/2 (16)

For any k, if one has || > ¢, a parameter error can be inferred.
In this case, the parameter which corresponds to the largest
NLM will be identified as an erroneous parameter. The detailed
proof of this identification criterion can be found in [18].
Subsequently, augmented state estimation approaches can be
used to effectively estimate the identified erroneous parameter.
After its value is corrected, the SE and LNLM test can be
performed again to identify the next erroneous parameter.

(15

IV. WEAKLY DETECTABLE ERRORS AND THEIR IMPACT ON
FTR REVENUES

Despite the general effectiveness of the parameter error
detection and identification methods, their capabilities are
limited by many factors regarding the local characteristics of
the system. It is recently shown in [18] that errors in certain
parameters are inherently difficult to detect, even if their
magnitudes are substantial. A brief quantitative analysis of this
phenomenon is given below.

The relationship between the Lagrange multipliers and
parameter errors are given as below [18]:

A=Ap —H R 'Se (17)

where pe is the parameter error vector. Based on (17), it can be
derived that in the absence and presence of a parameter error,
the probability distribution of the NLM corresponding to the kth
parameter in the network model will be given by

Hy,: A'~N(0,1) (18)

Hy: 45 ~N(Aupol) (19)

They are the null and alternative hypotheses of the LNLM test,
respectively. Hence, in the presence of a parameter error pe,
the probability of missing this error can be evaluated by

ﬁ(pe,k):Pr(|2’kN|SZ)zq)<t_\m|pe,k|)

With a given probability 0 < < 1, a model parameter error pex
is refer to as S weakly detectable the probability of detecting
this error is less than f. The condition for a model parameter
eITOr pey to be f weakly detectable is given as follows:

(20)

=07 (p)
Pez,k
Obviously, Ak has a small value, an error in the kth parameter
of the network model is likely to be weakly detectable. Typical
reasons for a small value of Ay include weak network topology,
sparse measurement configuration, low measurement accuracy

class, and small value of the parameter [17] — [18].

If the error is introduced into the model database without
being detected, electricity market operations can be affected.
The errors of parameters will propagate into the ISFs as per (2),
and impact the LMPs in the following three ways.

1. Congestion pattern. It can be observed from the inequality
constraints associated with branch flow limits in (1) that when
ISFs are changed, phantom congestions can be created on
branches that are actually not congested, and vice versa.
congestion pattern changes may cause abrupt changes of the
dual variables z/™" or /™" between zeros and finite numbers.
As per (3), discontinuous changes of LMPs can be observed
when parameter errors cause congestion pattern changes.

2. Congestion shadow price. Besides changes in the
congestion patterns (i.e. the set of binding inequality
constraints), the change of ISFs will also lead to continuous
changes in the shape of the binding constraints, which will lead
to continuous changes of the dual variables (shadow prices)
4™ or 1/"™* that are associated with the congested branches,
thus leading to continuous changes of the LMPs.

3. Relationship between a branch congestion and a power
injection. It can be noted from (3) that the additional terms
induced by congestions are the products of the shadow prices
(/™" or u/*") and the ISFs. It implies that the LMP of a node
is determined partly by the sensitivity of the power injection at
this node to the power flows along the congested branches.
Clearly, if the ISFs are biased, the contributions of the power
injection at a node to the existing congestions will be distorted,
which will affect the LMPs.

From the above analysis, it can be shown that the LMPs are
nonlinear, discontinuous, and non-convex functions of network
parameter errors. For a given weakly detectable parameter error
De the profit of FTR ¢ can be written as

o’ (pe,k ) = (LMPJ (pe,k ) —LMFE, (pe,k ) —,0)7 (22)

Therefore, the illegal profit made by the FTR holder will be
given by

857(p.i)=0"(p.s)-5"(0)

= (108 () 5, (0)) ~ (LM ) - L12R (0))
The greatest impact of errors in a given parameter can be
evaluated by maximizing the product of the illegal profit and
the probability of detection failure, which can also be referred
to as the security risk imposed by this vulnerable parameter:

H,}iX AS* (pe,k ) ) ﬂ(pe,k) (24)

The solution to problem (24) corresponds to the worst case
faced by the system operators or defenders, or the optimal
attack strategy of the cyber adversaries. This case may not be

A Q1)

kkS

(23)



actually encountered by the defenders or achieved by the
attackers (since the attackers may not have complete
information for the entire system), but it can be used to quantify
the impacts an erroneous parameter can have on market
operations.

Next, a systematic for identifying the security vulnerabilities
studied above will be presented. The assumption is that cyber
adversaries may seek to maximize their economic benefits by
injecting weakly detectable parameter errors. From the system
operators’ point of view, as the impact of parameters on LMPs
vary widely, only those which may have significant impact will
be of concern. Since a closed form relationship between LMPs
and network parameters isdifficult to derive, it is obtained by a
numerical method instead. The procedure for vulnerability
assessment is summarized below.

1) For a given system, denote the set of bus numbers as N.
Obtain the LMPs in the error-free case by doing the following.

1.1) Set all the parameters at the original values stored in the
model database, po, and form ISF matrix W using (2).

1.2) Solve the ED problem (1).

1.3) Compute the LMPs for each node of the system using
(3). Denote the LMP of bus j as LMP;.

2) Form matrix A (i.e. the covariance matrix of Lagrange
multipliers associated with parameter errors) using (14).

3) With specified tolerance of error p.. > 0, and probability
of missing errors, S, identify all the vulnerable parameters by
substituting pe x = pe,c into (20), and search for parameters with
B> [Ber. Denote the vulnerable parameter set as Y:

Y= {pk|(D(t_ Akkpm) > crt}

4) For each vulnerable parameter, determine its plausible
interval using a priori knowledge (a simple example being, line
reactance cannot be negative). Denote the plausible interval of
parameter py as P = [pi™", pi™™].

5) For each vulnerable parameter py, do the following:

5.1) Select an increment Apy, such that p,™* —p™ = cApy (¢
€N). Set d = 0.

5.1) Set pr = pi™™ + dApy, and form ISF matrix ¥ using (2).

5.2) Solve the ED problem (1).

5.3) Compute the LMPs for each bus of the system using (3).
Denote the LMP of bus j as LMP*®,

5.4) Compute the deviation of the LMPs due to the parameter
error: ALMP*® = LMP*) — LMP;.

5.5) Find the largest difference of LMP deviations between
different nodes when p; = pi™" + dAp;:

AS* ) = max {ALMP/.(k‘d) }— min {ALMP].("”’]) }

JjeN JjeN

(25)

(26)

and the transfer path (i.e. point of receipt and point of delivery)

that yields the largest difference of LMP deviations:
g“d>:(a““2b“ﬂg

27)

= (arg min {ALMP/.(/‘“’) }, arg max {ALMP/.(” ) }]

JEN JeN
5.6) Compute the probability of failure of parameter error
detection, £, using (20).
5.7) Compute the expected value of the illegal profit that can
be made by purchasing FTR along the transfer path c%9 at py:

End
:

Solve ED and find
LMPs under normal
condition Yy T

N All
parameters in
studied?

Find maximum risk
regarding selected
parameter, ¢
T

Vulnerability ranking

Find vulnerable
parameter set Y

I

Select an unstudied
parameter and its [«
plausible interval, P

Select a value in the
plausible interval;
solve ED find largest
LMP deviation AS

Find probability of
» missing parameter
error B

Figure 1. Flow Chart of the Proposed Algorithm for Searching Power
System Model Database Vulnerabilities

¢(k,d) _ g(k,d) _ﬂ(k,d) (28)
5.6) If d <c, set d < d+1, and go to Step 5.2; otherwise, find
the largest possible illegal profit that can be made by injecting

errors into vulnerable parameter py:
4%\ = max (¢}

d E[O,c]

(29)

Find the magnitude of parameter error that yields the largest
possible illegal profit as follows:

d' =argmax {¢(k’d) } (30)
def0,c]
Pl =p" +d! A, — py, (31)

5.7) Proceed to the next vulnerable parameter in Y.

6) Rank the all the vulnerable parameters in Y according to
#max'®, and the parameters corresponding to greater values are
those with higher impacts on the security of electricity market
operation.

The flow chart of the proposed algorithm is shown in Figure
1. The whole procedure can be automated to search for the
vulnerabilities of any given power system model database.

Finally, several remarks will be made for the above analysis.

1. Although the computational burden of the above procedure
can be substantial for large-scale systems, it is not considered
as a major limiting factor for its implementation. The reasons
are two folds. (1) The search of high-impact critical parameters
is not a time-sensitive task. The proposed approach is not
performed to detect cyber attacks in real time. Instead, it is
performed in the planning stage, aiming to identify those model
parameters which, once modified, are difficult to detect and bias
LMPs seriously. These parameters will form a list of
vulnerabilities for market operation, and ranked according to
their impacts. This information will hopefully guide system
operators to efficiently allocate their resources to develop
protection measures for these parameters against potential
cyber attacks. (2) The evaluations of the impacts of each
individual parameters are completely independent from each
other, thus fully parallel or distributed computing architecture
can be used if needed. In practice, the identification algorithm
can be conveniently performed every few weeks or months
using the parallel or distributed computing resources in control
centers.
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2. Although the presented vulnerability assessment
framework only handles one loading and topology scenario, it
is readily extendable to incorporate multiple loading and
topology scenarios. Since the total profit gained by the cyber
adversaries is the sum of profits gained in each intervals, step 1
— 5 can be run for the typical loading and topology scenarios in
each intervals of a day, then step 6 is carried out based on the
sum of the maximum profits for all the intervals.

3. In the existing studies, the motivations of cyber attacks can
be broadly classified into two categories: inflicting heavy
damages to power systems [23] — [24], and gaining economic
benefits without being detected [10] — [12]. The analysis
presented in this paper focuses on the security threats with the
second type of motivations. Discussions on security threats with
the first type of motivations are out of the scope of this work.

4. While this paper focuses on the weakly detectable
parameter errors, it is not the only information security
vulnerability associated with power system model parameter
databases. In a recent work [25], information security issues
regarding another type of parameter errors, namely critical
parameter errors, are revealed. A critical parameter error is an
error that always remains undetectable irrespective of the
magnitude of the error, i.e. the probability of error detection is
identically zero; whereas a weakly detectable parameter error is
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Figure 4. LMP deviations of buses with respect to error in x9.59
(colored solid lines indicating different buses, and red dashed lines
indicating the envelops)
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Figure 5. Largest difference between LMP deviations, probability of
detection failure, and the security risk induced by error in x19.59

an error that can be detected with a low but nonzero probability,
and such probability is a function of the magnitude of the error.
Obviously, the former is a more extreme case compared to the
latter. In power system models, these two types of errors pertain
to two different sets of parameters. In other words, the errors in
some parameters are critical, and the errors in some parameters
are weakly detectable. The vulnerability assessments for these
two types of errors follow different paths, in that for critical
parameter errors, the profit for cyber adversaries is
deterministic (the probability of not being detected being
100%).

5. While the simplified lossless ED model (1) is presented in
this paper, more realistic analysis can be readily conducted by
replacing (1) with a more detailed market model with various
economic and operational constraints incorporated. This does
not affect the procedure and effectiveness of the proposed
vulnerability analysis discussed in this section.

V. CASE STUDIES

In this section, simulation results in the IEEE 57-bus test
system will be presented to verify the proposed analysis and
method. Dispatchable generators are assumed at buses 1, 2, 3,
6,8,9,12,23, and 37, and 6 branches set to be congested under
the correct network model: branches 4-3, 2-1, 3-15, 45-44, 15-
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detection failure, and the security risk induced by error in xs,.s3

1, and 38-37. There are 46 pairs of power injection
measurements, 66 pairs of power flow measurements, and 21
voltage measurements, resulting in a measurement redundancy
rate of 2.15. The standard deviations of measurement noise are
uniformly set at 0.01 p.u. Using the method presented in section
IV, the vulnerable parameters whose errors may not be reliably
detected are identified, and their impacts on the LMPs and FTR
revenues are investigated. Four types of scenarios will be
presented and studied, followed by the presentation of results
of the whole system. It should be noted that since there is no
rival approach in the literature which is capable of addressing
the issue discussed in this paper, no “baseline” approach can be
provided for a comparative study.

A. Presence of Security Vulnerability: Weakly Detectable
Errors and Biased Congestion Patterns

In the IEEE 57-bus system simulation case, the deviations of
LMPs of all the buses from their true values with respect to the
error in the reactance of branch 24-25 is plotted in Figure 2.
Different thin colored lines represent the deviations of LMPs at
different buses from their true values, and the thick red dashed
lines show their envelopes. Obviously, when the parameter
error is zero, the LMPs are identical to the true values, i.e. the
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Figure 8. LMP deviations of buses with respect to error in x;s5.3
(colored solid lines indicating different buses, and red dashed lines
indicating the envelops)
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Figure 9. Largest difference between LMP deviations, probability of
detection failure, and the security risk induced by error in x;s.13

deviations are zero. When the parameter error grows in the
negative direction, the deviations remain almost zero. However,
when it grows in the positive direction, two major jumps can be
observed for the LMPs of many buses. They occur due to the
fact that the parameter error changes the congestion pattern of
the system. As has been discussed in section IV, parameter
errors, when growing to a certain extent, can lead to phantom
congestions for actually non-congested branches, and vice
versa, and they will lead to discontinuous changes of LMPs.
From Figure 2, it can be observed that for the same congestion
pattern change, some LMPs change positively, and others
change negatively. With a given magnitude of parameter error,
if the buses corresponding to upper and lower envelops are
defined as the point of delivery and point of receipt,
respectively, then the FTR will make the greatest biased/illegal
revenue. Therefore, the difference between the value of the
upper envelop and that of the lower envelop (i.e. the largest
difference between LMP deviations) can be used as an indicator
for vulnerability assessment, as is exactly done in (26).

In order to effectively assess the risk induced by a parameter
error, the probability that the error remains undetected also
needs to be accounted for. In Figure 3, the largest difference
between LMPs and the probability of detection failure are both



plotted. It can be found that when the magnitude of the error
increases, the illegal revenue will increase, but the probability
that the error is not detected will decrease. The product of these
two variables will indicate the security risk, as is computed by
(28), and shown by the thick blue line in Figure 3. The greatest
risk is created at the first jump of the LMPs, which corresponds
to a 27% error with respect to its true value. If the error is
introduced by a malicious attack, this magnitude of error will
correspond to the optimal strategy which yields the maximum
expected value of illegal profit.

B. Presence of Security Vulnerability: Weakly Detectable
Errors and Biased Shadow Prices and ISFs

The deviations of LMPs caused by the error in the reactance
of branch 19-20 are plotted in Figure 4. Different from the first
scenario, the changes of LMPs are continuous with respect to
the parameter error. Clearly, the congestion pattern remains
unchanged in the entire range of error plotted in Figure 4.
Otherwise, jumping of LMPs would have been observed. The
continuous changes of LMPs result from the impact of the
parameter error on the Lagrange multipliers (shadow prices)
associated with the actually congested branches, and the ISFs
that they are multiplied by. In Figure 5, it can be found that
when the error is 180% of the true value, the risk is maximized.
It can be concluded from this example that even if parameter
errors do not change the congestion pattern, they may still
induce substantial biases in LMPs and FTR revenues by
impacting the shadow prices and ISFs associated with
congested branches.

C. Absence of Security Vulnerabilities: Weakly Detectable
Errors with Negligible Impact on LMPs

Weakly detectable errors do not present security
vulnerabilities for electricity markets, unless they have
significant impacts on the LMPs. Figure 6 and 7 illustrate a
scenario where the parameter error has a negligible impact on
the LMPs. It involves the reactance of branch 52-53, whose
variations neither changes the congestion pattern, nor affects
the shadow prices or ISFs associated with the congested
branches. It can be seen from Figure 7 that although within a
wide range of magnitude there exists a substantial probability
of detection failure, the risk it imposed on the market is rather
small since the LMP deviations that the error induces are
modest. This example verifies the argument that the errors
which may significantly bias the LMPs need to be selectively
identified and addressed.

D. Absence of Security Vulnerability: Reliably Detectable
Errors

As a reference, the case of the reactance of branch 15-13
whose errors can be reliably detected, is presented. In Figure 8
and 9, it can be seen that erroneous values of this parameter can
also lead to substantial biases of LMPs. However, from Figure
9, it can be found that the probability of detection failure drops
drastically to almost zero as the magnitude of the error
increases. The red dashed line in Figure 9 has a much thinner
shape than those of Figure 3, 5, and 7. As a matter of fact, there
is no overlapping area between the red dashed line (probability
of detection failure) and the thin blue line (FTR revenue bias).
Noting that the risk is the product of these two, it remains

almost zero across the entire range of error magnitude.

E. Vulnerability Assessment Results for the System

Finally, the 15 parameters which present the greatest
security vulnerabilities are listed in Table I. They are ranked
according to the maximized risks, which are listed in column 2.
Column 3 lists the magnitudes of errors that lead to the
maximum risks, column 4 lists the corresponding FTR revenue
biases, and column 5 lists the probabilities of detection failure.
To mention once again, column 2 is evaluated as the product of
column 4 and 5. The most remarkable fact observed in Table 1
is that the risks that errors in different parameters impose on the
market vary widely. The risk presented by the first parameter,
X245, 1S 40 times greater than that presented by the last
parameter, xi9-0. Again, this shows the significance of
conducting a systematic vulnerability assessment. Although
both x2425 and x1920 may contain errors that are weakly
detectable, the possible consequences for electricity market
operations are completely different. For per MWh of energy,
error in x»4.25 can lead to the risk of $73.13 revenue bias, which
can completely overwhelm normal revenues under the error-
free condition; whereas error in x19.20 can lead to the risk of
$1.797 revenue bias only, which does not significantly disrupt
normal market operations. With the information provided in
TABLE 1, it becomes obvious that more resources should be
allocated to address the vulnerability associated with x24.5. It
provides useful guidance on systematic management of
information security of power system model database.

VI. CONCLUSION

In this paper, security vulnerabilities of electricity markets
created by weakly detectable errors of network model
parameters are identified and investigated. Three paths along
which weakly detectable parameter errors may bias LMPs and
FTR revenues are explicitly discussed, and a numerical
approach for quantitatively assessing the security risks imposed
by weakly detectable parameter errors is developed. In the

TABLEI
SECURITY VULNERABILITY IDENTIFICATION RESULTS

Maximized Paral'n. FTR Prob. 'of

Param. Risk (5) Relative Re.evenue Dete.ectmn
Error Bias ($) Failure
X24-25 73.13 27% 74.82 0.9774
X36.37 72.4 -62% 73.22 0.9889
X40-56 69.93 -9% 71.14 0.9830
X34-32 69.82 -18% 71.48 0.9768
X31:32 68.7 -43% 69.75 0.9848
X38:37 50.42 28% 58.07 0.8621
X45.44 36.31 -30% 74.47 0.4875
X15-45 31.66 -37% 70.03 0.4521
X39.57 24.67 37% 71.74 0.3439
X44-38 18.09 69% 19.53 0.9262
X41-43 12.07 124% 75.97 0.1588
X49-50 5.667 -54% 30.86 0.1836
X21220 3.003 -90% 3.331 0.9015
X22.38 2.339 200% 2.501 0.9350
X19-20 1.797 180% 2.247 0.7998




simulation section, it is verified in the IEEE 57-bus test system
that certain weakly detectable errors can induce drastic changes
of LMPs, leading to potential benefits for cyber adversaries.
Furthermore, four scenarios demonstrating various conditions
which result in the presence or absence of security
vulnerabilities are presented. It is observed that the errors which
are difficult to detect may not necessarily induce significant
biases of LMPs, and the errors which induce significant biases
of LMPs may not necessarily be difficult to detect. Such
observations demonstrate the need for developing a systematic
approach for vulnerability assessment which quantitatively
takes both factors into account, which is exactly the main goal
and achievement of this paper. As the mechanisms of parameter
errors inducing biases in congestion patterns, shadow prices,
and ISFs are general, the phenomena observed in the IEEE 57-
bus test system are representative for what may occur in other
test systems and real-world utility systems, and the proposed
vulnerability identification method will remain effective. The
development of protection measures is being worked on and
will be reported in a future publication.

REFERENCES

[1] Remedying Undue Discrimination through Open Access Transmission
Service and Standard Electricity Market Design. Federal Energy
Regulatory Commission. [Online]. Available: http://www.ferc.gov/

[2] PIM Manual 06: Financial Transmission Rights. PJM Interconnection.
[Online]. http://www.pjm.com/-/media/documents/manuals/m06.ashx

[3] V. Sarkar and S. A. Khaparde, “A comprehensive assessment of the
evolution of financial transmission rights”, IEEE Transaction on Power
Systems, vol. 23, no. 4, pp. 1783-1795, Nov 2008.

[4] Tao Li, M. Shahidehpour, “Risk-constrained FTR bidding strategy in
transmission markets”, IEEE Transaction on Power Systems, vol. 20, no.
2, pp. 1014-1021, May 2005.

[5] H. Ye, Y. Ge, M. Shahidehpour, and Z. Li, “Uncertainty marginal price,
transmission reserve, and day-ahead market clearing with robust unit
commitment”, [EEE Transaction on Power Systems, vol 32, no. 3, 1782-
1795, May 2017.

[6] S. Sridhar, A. Hahn and M. Govindarasu, “Cyber—physical system
security for the electric power grid”, Proceedings of the IEEE, vol. 100,
no. 1, pp. 210-224, Jan 2012.

[71 M. Ozay, I. Esnaola, F. T. Yarman Vural, S. R. Kulkarni, and H. V. Poor,
“Sparse attack construction and state estimation in the smart grid:
Centralized and distributed models,” IEEE Journal on Selected Areas in
Communications, vol. 31, no. 7, pp. 1306-1318, 2013.

[8] M. Gol and A. Abur, "Identifying vulnerabilities of state estimators
against cyber-attacks," 2013 IEEE Grenoble Conference, Grenoble, 2013,
pp. 1-4.

[9] X. Liu, Z. Bao, D. Lu, and Z. Li, "Modeling of local false data injection
attacks with reduced network information," /IEEE Transactions on Smart
Grid, vol. 6, n0.4, pp. 1686-1696, Jul. 2015.

[10] L. Xie, Y. Mo, and B. Sinopoli, “Integrity data attacks in power market

operations”, [EEE Transactions on Smart Grid, vol. 2, no. 4, pp. 659-666,

Dec. 2011.

J. Giraldo, A. Crdenas, N. Quijano, “Integrity attacks on real-time pricing

in smart grids: impact and countermeasures,” IEEE Transactions on

Smart Grid, vol. 8, no. 5, pp. 2249-2257, Sep. 2017.

[12] M. R. Mengis and A. Tajer, “Data injection attacks on electricity markets
by limited adversaries: worst-case robustness,” /EEE Transactions on
Smart Grid, vol. 9, no. 9, pp. 5710-5720, Nov. 2018.

[13] W. Liu and S. Lim, "Parameter error identification and estimation in

power system state estimation," /EEE Trans. Power Systems, vol. 10, no.

1, pp. 200-209, Feb. 1995.

O. Alsac, N. Vempati, B. Stott, and A. Monticelli, "Generalized state

estimation," /EEE Trans. Power Systems, vol. 13, no. 3, pp. 1069-1075.

Aug. 1998.

J. Zhu and A. Abur, “Identification of network parameter errors”, IEEE

Transactions on Power Systems, vol. 21, no. 2, pp. 586-592, May 2006.

[11

—

[14

finar)

[15

—_

[16] Y. Lin and A. Abur, “Highly efficient implementation for parameter error
identification method exploiting sparsity,” IEEE Transactions on Power
Systems, vol.32, no.1, pp. 734-742, Jan 2017.

[17] Y. Lin and A. Abur, “Enhancing network parameter error detection and
correction via multiple measurement scans,” [EEE Transactions on
Power Systems, vol. 32, no. 3, pp. 2417-2425, May 2017.

[18] Y. Lin and A. Abur, “A new framework for detection and identification
of network parameter errors,” [EEE Transactions on Smart Grid, vol. 9,
no. 3, pp. 1698-1706, May 2018.

[19] Y. Lin and A. Abur, “Identifying security vulnerabilities of weakly
detectable network parameter errors in congestion revenue right markets”,
Allerton Conference on Communication, Control and Computing,
University of Illinois at Urbana-Champaign, IL, USA, 2017.

[20] A. L. Ott, “Experience with PJM market operation, system design, and
implementation,” /IEEE Transactions on Power Systems, vol. 18, no. 2,
pp. 528-534, May 2003.

[21] F. Li, “Continuous locational marginal pricing (CLMP),” [EEE
Transactions on Power Systems, vol. 22, no. 4, pp. 1638-1646, Nov.
2007.

[22] A. Abur and A. Gomez-Exposito, Power System State Estimation: Theory
and Implementation, New York, NY: Marcel Dekker, 2004.

[23] S. Sridhar and M. Govindarasu, “Model-based attack detection and
mitigation for automatic generation control,” I[EEE Transactions on Smart
Grid, vol. 5, no. 2, pp. 580-591, Mar. 2014.

[24] A. Farraj, E. Hammad, A. A. Daoud, and D. Kundur, “Game-theoretic
analysis of cyber switching attacks and mitigation in smart grid systems,”
IEEE Transactions on Smart Grid, vol. 7,no. 4, pp. 1846-1855, Jul. 2016.

[25] H. Xu, Y. Lin, X. Zhang and F. Wang, “Power System Parameter Attack
for Financial Profits in Electricity Markets,” IEEE Transactions on Smart
Grid, DOI: 10.1109/TSG.2020.2977088. (early access)

Yuzhang Lin (Member, IEEE) received the B.S. and M.S. degrees from
Tsinghua University, Beijing, China, respectively, and the Ph.D. degree from
Northeastern University, Boston, MA, USA. He is currently an Assistant
Professor with the Department of Electrical Computer Engineering, University
of Massachusetts, Lowell, MA, USA. His research interests include modeling,
monitoring, cyber-physical security, and data analysis of smart grids.

Ali Abur (F’03) received his B.S. in EE from Orta Dogu Teknik Universitesi,
Turkey and his M.S. and Ph.D. from The Ohio State University. He is currently
a Professor at the Electrical and Computer Engineering Department at
Northeastern University, Boston, MA, USA.

Hanchen Xu received the B.Eng. and M.S. degrees in electrical engineering
from Tsinghua University, Beijing, China, in 2012 and 2014, respectively, and
the M.S. degree in applied mathematics and the Ph.D. degree in electrical
engineering from the University of Illinois at Urbana—Champaign, Urbana, IL,
USA, in 2017 and 2019, respectively. His current research interests include
optimization, reinforcement learning, with applications to power systems and
electricity market.


http://www.ferc.gov/
http://www.pjm.com/-/media/documents/manuals/m06.ashx

