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Abstract— Cyber-physically resilient power system operation 

requires rapid recovery of situational awareness after disastrous 
scenarios such as massive cyber attacks. In this paper, the 
concept of optimal sequential restoration of Phasor Measurement 
Units is introduced, aiming at rapid recovery of power system 
observability in post-attack scenarios. The observability recovery 
problem is formulated as a Mixed Integer Linear Programming 
problem to maximize the cumulative observability level gained 
over time during the restoration process. Three alternative 
objective functions—maximizing the number of observable 
buses, the number of observable branches, and the total amount 
of observable power flow—are considered. The effectiveness of 
the proposed optimal strategy is verified by comparing it with 
heuristic approaches on the IEEE 57-bus system. 
 

Index Terms—Cyber-physical system, observability, phasor 
measurement unit, power system restoration, resilience 

I.  INTRODUCTION 
he ability to restore power systems quickly after a partial 
or complete blackout is crucial for a resilient supply of 

electricity. Large-scale blackout events occurring around the 
world [1, 2] definitively show the need for a proper restoration 
plan to effectively mitigate the negative impact of a blackout 
[3]. The main objective of power system restoration is to bring 
the system back to normal operating conditions as quickly as 
possible so as to minimize the power supply losses and 
restoration time. The procedure of power system restoration 
includes determining the state of the system, preparing the 
equipment for restoration, reintegrating the system, and 
balancing generation and load in a controlled manner [4]. 
Over the years, researchers have attempted to solve power 
system restoration problems with the help of various 
algorithms such as case-based reasoning, genetic algorithms, 
artificial neural networks, fuzzy logic, Petri nets, and multi-
agent technologies (see [3] for a detailed review). 

With the rapid development and deployment of 
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communication and information technologies, the concept of 
cyber-physical systems has been introduced into power system 
research [5]. A cyber-physical system can be defined as an 
integration of physical elements in the real world and the 
sensing, communication, and computing elements in the cyber 
space [6]. As cyber infrastructures are increasingly interacting 
with physical power systems, cyber security becomes a major 
factor to be considered in power system operations [7-9]. In 
order to fully address the operational challenges arising from 
the cyber domain, the cyber and physical components of 
power systems should be modeled and analyzed coordinately. 
Recently, an increasing amount of research has been dedicated 
to the cyber-physical resilience of power systems [10-13]. 
This research has explored enhancement of the ability to 
absorb disturbances, as well as to recover from the 
disturbances with full consideration of both the cyber and 
physical domains of a power system. Obviously, the concept 
of power system restoration should no longer be limited to the 
restoration of physical electricity delivery infrastructures, but 
should be extended to the restoration of cyber infrastructures 
on which system operation depends. 

In power system operation, state estimation is the core 
function for developing situational awareness [14]. In order to 
effectively estimate system state variables, observability has to 
be secured by integrating a sufficient number of reliable 
measurements from various locations. In recent years, 
synchronized Phasor Measurement Units (PMUs) have 
emerged as highly accurate sensing devices for delivering 
system observability. For planning purposes, the problem of 
optimal PMU placement for ensuring system observability has 
been extensively studied (see [15] for a detailed review).  

Although a large volume of research has been conducted on 
PMU placement, a vast majority of the proposed strategies 
only aim at maintaining full observability after the loss of a 
small number of PMUs (in most studies, only the loss of a 
single PMU is considered). Nevertheless, under disastrous 
scenarios such as a massive cyber attack, a large number of 
PMUs can be compromised simultaneously, and none of the 
existing PMU placement strategies may provide effective 
solutions in such circumstances. In fact, there is no way to 
ensure that full observability can be maintained under 
disastrous scenarios, even if resilient PMU configurations 
have been implemented ahead of time. Rather, optimal 
restoration strategies for the compromised PMUs should be 
considered in order to re-establish system observability as 
quickly as possible after the disasters. So far, no systematic 
solution has been provided to address this challenge.  
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In parallel with the conventionally discussed optimal 
restoration of physical components of power systems for rapid 
recovery of electricity delivery, this paper conceptually 
proposes the optimal restoration of cyber components of 
power systems, especially PMUs, for rapid recovery of system 
observability after disastrous scenarios. We formulate the 
PMU restoration problem as a sequential decision-making 
problem, whose goal is to maximize cumulative observability 
levels over time with the optimal order of PMU restoration 
actions under limited-resource scenarios. Instances of both full 
blackout and partial blackout are taken into consideration for 
the observability recovery problem. The problem is 
formulated as a Mixed Integer Linear Programming (MILP) 
problem, which can be readily processed by well-developed 
MILP solvers. The contributions of this paper can be 
summarized as follows: 

1) For the first time in the literature, we formally establish 
the concept of observability recovery of power systems 
by means of restoration of cyber components of the 
power systems, specifically PMUs.   

2) We formulate the observability recovery (PMU 
restoration) problem as a MILP problem. The solution to 
the problem provides the optimal strategy for PMU 
restoration, which facilitates situational awareness for 
system operators after disastrous scenarios such as 
massive cyber attacks.  

3) Through comparative simulation results, we demonstrate 
the need for systematic development of optimal PMU 
restoration strategies for rapid observability recovery of 
power systems, which cannot be achieved by naive 
heuristic methods such as the greedy strategy.  

The rest of this paper is structured as follows. Section II 
reviews basic concepts of observability analysis for power 
systems measured by PMUs. Section III describes the 
mathematical formulations of optimal observability recovery 
(PMU restoration) problems with various objectives, and 
indicates the solution algorithms. In Section IV, detailed 
simulation results are presented to compare the optimal 
solution with heuristic solutions such as greedy and random 
assignments. Concluding remarks are given in Section V. 

II.  OBSERVABILITY OF POWER SYSTEMS MEASURED BY PMUS 
In order to operate power systems securely, constant 

monitoring of system operating conditions is necessary. It is 
essential to gain observability of the system, which means that 
bus voltage phasors can be uniquely estimated with the 
available measurements. Full observability implies that 

voltage phasors at all buses can be uniquely estimated, and 
partial observability implies that voltage phasors at certain 
subsets of buses can be uniquely estimated. 

Monitoring power systems with recently deployed PMUs 
has some advantages over traditional SCADA measurements: 
higher sampling rate, measurement synchronization, 
availability of phase angles, and linear state estimation 
formulations. As a PMU installed at a given bus can measure 
the voltage phasor at the bus as well as the current phasors 
along all the branches incident to that bus, there is no need to 
place PMUs on each bus to make the system fully observable 
[16]. Before discussing the observability recovery problem, 
the basic concepts of observability analysis in the presence of 
PMUs will be briefly reviewed in this section. 

If the voltage phasor at a bus can be estimated with the 
available measurements, then the bus is referred to as an 
observable bus. Similarly, if the current flowing through a 
branch can be estimated, then the branch is considered as an 
observable branch. This concept can be understood by 
considering a two-bus local area of a system, as shown in Fig. 
1. If a PMU is installed at bus M, then the voltage phasor at 
bus M ( M MV θ∠ ) can be measured directly by the PMU. 
Hence, bus M will become observable. The PMU at bus M can 
also measure the branch current incident to bus M 
( MN MNI δ∠ ). If we know the line impedance ( MNZ ), using 
Kirchhoff’s Voltage Law:  

 MN
M MN M MN N     

2
Y Z−V = (I V ) + V    , (1) 

from which the voltage phasor at bus N can be obtained: 

 MN MN
N M MN MN(1 )

2
Y Z Z= + −V V I     (2) 

In the same way, if the voltage phasors of two adjacent 
buses are known, then the branch current can be calculated, 
and thus the branch will become observable. For example, if 
the voltage phasors at buses M and N are both known, we can 
rearrange (1) to calculate the current phasor along the line 
between bus M and bus N as follows: 

 MN MN
MN M N

MN

1 [(1 ) ]
2

Y Z
Z

= + −I V V    (3) 

From the above example, it is shown that if a PMU is 
placed at a bus, then all the neighboring buses, as well as all 
the incident branches, will become observable. Hence, the 
condition for a bus being observable becomes that either the 
bus has a PMU, or it is connected to a bus that has a PMU. 
Similarly, the general condition for a branch being observable 
becomes that both terminal buses of the branch are observable. 

On the basis of observability analysis, the optimal PMU 
placement problem has been formulated by many researchers 
in the past [16-20]. Suppose there are n buses in a power 
system: the optimization problem can then be formulated as 
follows: 

 
minimize
subject to   

T

≥
w x
Cx 1

 (4) 

where 1 2[ , , , ]T
nx x x=x 

is a binary decision variable 
vector, whose entries can be defined as 
  

Fig. 1.  Observability of systems measured by PMUs 
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1,     if a PMU is installed at bus 
0,                  otherwise                 i

i
x 

= 


                      (5)

w is the cost vector of PMU installation at different buses; 1 is 
a vector of ones; and the connectivity matrix C is defined as

 
1,      if                          =                      
1,       if       bus  and bus  are connected
0,      if                       otherwise                  

km

k m
C k m


= 


        (6) 

The constraint in (4) ensures that each entry of the vector Cx 
is equal to or greater than 1 to make sure that all the buses are 
observable with the resulting PMU configuration. 

III.  OPTIMAL OBSERVABILITY RECOVERY PROBLEM 

A.  Conceptualization 
In contrast with the optimal PMU placement problem for 

planning purposes, in this paper, we will formulate the optimal 
PMU restoration (observability recovery) problem for 
operational purposes. It is assumed that the power system has 
already experienced a disastrous scenario such as a massive 
cyber attack, and most of the PMUs are not functioning 
properly. As we cannot obtain or trust measurements from the 
non-functioning or malfunctioning PMUs, the system 
inevitably loses its observability. At this point, observability 
can only be recovered by bringing the compromised PMUs 
back to the normal status. Since the operators have limited 
resources (for example, a limited number of cyber security 
rescue teams), the PMU restoration tasks have to be 
prioritized. In other words, we will need to develop an optimal 
sequence for restoring the compromised PMUs in order to 
expedite the recovery of system observability.  

 In order to formulate the optimal observability recovery 
(PMU restoration) problem, the following assumptions are 
made:  

1) Cyber rescue teams have to be sent to the substations to 
repair the compromised PMUs, and each team can restore 
only one PMU at a time.  

2) Restoration of each PMU takes the same amount of time.  
Owing to limited resources, it is typically not possible to 

restore all PMUs at a single time step, and sequential decision-
making needs to be performed. 

In Fig. 2, we illustrate the objective of the observability 
recovery problem. The observability level of the system is 
plotted against the time of restoration for a specific restoration 

process. Our objective is to maximize the area under the 
curve. This can be interpreted as follows. 

1) For a given time instant, we would like to maximize the 
level of observability.  

2) For a given observability level, we would like to 
minimize the time taken to reach this level. 

Consider point E in Fig. 2, for example. The consumed 
restoration time is b and the achieved observability level is a. 
If the restoration time b is given, then we would like to 
maximize the observability level a by pushing this point 
upward. On the other hand, if the observability level a is 
given, then we would like to minimize the restoration time b 
by pushing this point to the left. If we push every point on the 
curve upward and to the left, this is equivalent to maximizing 
the area enclosed below the curve.  

We further illustrate the idea by considering two sequential 
PMU restoration processes r1 and r2, shown in Fig. 3. The area 
enclosed by restoration process r1 is α, and the area enclosed 
by restoration process r2 is β. Obviously, area α is larger than 
area β, and restoration strategy r1 is more beneficial to system 
operators than restoration strategy r2, since it reaches higher 
observability levels with shorter restoration times. 

From the above observations, it can be concluded that the 
performance of the restoration process can be evaluated by the 
area enclosed below the curve.  

Assume that a power system has n buses and m branches, 
and we need k steps to restore the compromised PMUs. Define 
a set of binary vectors (1) (2) ( ), ,. , kx x x  to record the 
locations of PMUs that have been restored up to each step. For 
example, ( ) ( ) ( ) ( ) ( )

1 2[ , , , , , ]j j j j j T
i nx x x x=x  

is a binary 
decision vector for the jth step, which is defined as follows:  

           ( )

if the PMU at bus  is restored 
1,

at step  or prior to step 
0, otherwise

j
i

i
x j j


= 


              (7) 

Next, we will develop all the constraints that will be used by 
various formulations of observability recovery problems. 

B.  Formulating Constraints 
    1)  Constraints on observable buses. For a given step j, the 
constraint for determining observable buses can be formulated 
as 
                                     ( ) ( )j j≥Cx y                      (8) 

 
Fig. 2.  Observability recovery process 

 

 
Fig. 3.  Comparison between the performances of two restoration 
processes 
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where C  is the connectivity matrix, whose entry satisfies the 
following: 

    
1 2

1 2

1 2

1,                           =                       
1,         bus  and bus  are connected
0,                        otherwise                 

i i

i i
C i i


= 



               (9) 

and ( ) ( ) ( ) ( ) ( )
1 2[ , , , , , ]j j j j j T

i ny y y y=y  
is a binary vector 

for the jth step. Its ith entry, ( )j
iy , can take the value of 1 only if 

there is at least one PMU at bus i or its neighboring buses, i.e., 
only if bus i has become observable at step j.  
    2)  Constraints on observable branches. In order for a 
branch to be observable, both terminal buses of the branch 
have to be observable. The constraint can be formulated as 
 

 ( ) ( )1
2

j j≥Ay z , (10) 

where A is a branch-bus incidence matrix that relates branches 
with their terminal buses. For this matrix, each row represents 
one bus, and each column represents one branch. The entries 
of this matrix satisfy the following: 

 
1,   if branch  is connected with bus 
0,                    otherwise                     li

l i
A 

= 


 (11) 

where ( ) ( ) ( ) ( ) ( )
1 2[ , , , , , ]j j j j j T

l mz z z z= …… ……z is a binary vector 
for the jth step. Its lth entry, ( )j

lz , can take the value of 1 only if 
both of its terminal buses are observable. 
    3)  Constraints on the amount of observable power 
injections. Observable power injections can be defined as the 
power injections at a bus that can be effectively estimated. It 
should be noted that when a bus becomes observable (voltage 
phasor being known), it does not automatically follow that the 
net injection at this bus will become observable. Instead, the 
constraint on observable power injections can be formulated 
as 

 ( ) ( )j j≥Dz u , (12) 
where D shows how each bus is related to all of its incident 
branches, and can be formulated as follows: 

 T=D NA  (13) 
Here, N is a diagonal matrix, whose diagonal entries consist of 
the reciprocal of the number of incident branches at a 
particular bus, satisfying the following condition: 

 
1         if   

branch incident at bus 
                     0                          if  

ij

i j
iN

i j

 == 
 ≠

∑  (14) 

( ) ( ) ( ) ( ) ( )
1 2[ , , , , ]j j j j j T

i nu u u u= …… ……u is a binary vector for the 
jth step, which represents the buses where the net injections are 
observable. Its ith entry, ( )j

iu , can take the value of 1 only if 
the power along all the incident branches is observable. 
    4)  Constraints on the number of PMUs that can be restored 
at each step (i.e., number of cyber rescue teams). The number 
of PMUs that can be restored at each step is constrained by the 
number of rescue teams, which can be formulated as follows: 

 ( ) ( 1) ( )( )T j j jd−− ≤1 x x , (15) 

where ( )jd  is a scalar representing the number of PMUs that 
can be restored at step j.  

    5)  Constraints on maintaining the normal status of already-
restored PMUs. It is assumed that the PMUs which are not 
affected by the disaster or have been restored via the previous 
steps will remain in the normal status during the following 
steps, i.e., the restoration process does not reverse:  

  ( ) ( 1)j j−− ≥x x 0  , (16) 
where 0  is a null vector. 

With all the constraints available, we will now formulate 
the observability recovery (PMU restoration) problems with 
various objectives in Section III.C through Section III.E. 
Three possible objectives are considered: (1) maximizing the 
number of observable buses; (2) maximizing the number of 
observable branches; and (3) maximizing the total amount of 
observable power. As the restoration process is carried out in 
steps, the area enclosed below the restoration curve (as 
discussed in Section III.A) is evaluated as a summation of 
discrete functions, instead of using an integration of 
continuous functions. 

C.  Formulating Optimization Problem for Maximizing the 
Number of Observable Buses 

In this subsection, we will formulate the PMU restoration 
problem for maximizing the number of observable buses. The 
number of observable buses is used as the metric for the 
“observability level” shown as the vertical axis of Fig. 2. For 
maximizing the area enclosed below the curve, the 
optimization problem can be formulated as follows:  

 

( )

1

( ) ( )

( ) ( 1) ( )

( ) ( 1)

maximize  

subject to   
                  ( )
                  

k
T j

j

j j

T j j j

j j

d

=

−

−

≥

− ≤

− ≥

∑p y

Cx y
1 x x
x x 0

 (17) 

In (17), 1 2[ , , , , , ]T
i np p p p=p    is a weight vector. 

In order to maximizing the area enclosed below the 
observability recovery curve in Fig. 2, this vector should be 
assigned as a vector full of 1s. However, system operators can 
readily assign its values as per the importance of each bus 
empirically, such that the observability for more important 
buses can be prioritized. In (17), the value of k can be 
determined using the number of steps required by a heuristic 
method, as the number of steps needed by a heuristic method 
is typically greater than or equal to the number of steps needed 
by the optimization method. More details on examples of 
heuristic methods can be found later in Section IV. The 
solution vectors ( )jx  (j = 1, 2, …, k) of optimization problem 
(17) will provide the optimized sequential PMU restoration 
strategy for improving observability of the system as quickly 
as possible, and vectors ( )jy (j = 1, 2, …, k) will indicate the 
specific buses that become observable after each step of 
restoration.   

D.  Formulating Optimization Problem for Maximizing the 
Number of Observable Branches 

Using the number of observable branches as the 
observability metric, the optimization problem can be 
formulated as follows: 
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( )

=1

( ) ( )

( ) ( )

( ) ( 1) ( )

( ) ( 1)

maximize   

subject to  
1                  
2

                  ( )
                  

k
T j

j

j j

j j

T j j j

j j

d−

−

≥

≥

− ≤

− ≥

∑q z

Cx y

Ay z

1 x x
x x 0

 (18) 

In (18), 1 2[ , , , , , ]T
l mq q q q=q    is a weight vector, 

which represents the importance of each branch, which can be 
set similarly as in (17). Solutions to vectors ( )jx (j = 1, 2, …, 
k) here will provide the optimized sequential PMU restoration 
strategy, and vectors ( )jz (j = 1, 2, …, k)  will indicate the 
specific branches that become observable after each step of 
restoration.    

E.  Maximizing the Amount of Observable Power 
In this subsection, we consider the total amount of 

observable power as the observability metric. It is the 
summation of all the net power injections and branch power 
flows that can be estimated: 

 

( ) ( )

1

( ) ( )

( ) ( )

( ) ( )

( ) ( -1) ( )

( ) ( -1)

maximize   ( )

subject to   
1                  
2

                   
                   ( )
                   

k
T j T j

j

j j

j j

j j

T j j j

j j

d

=

+

≥

≥

≥

− ≤

− ≥

∑ f z g u

Cx y

Ay z

Dz u
1 x x
x x 0

 (19) 

In (19), 1 2[ , , , , , ]T
l mf f f f=f    is a weight vector, 

which represents the branch power flow associated with each 
branch. For example, for branch l, which connects bus i1 to 
bus i2, the corresponding entry can be evaluated as follows: 

 
1 1 2 2

2 2 2 21 (P Q P Q )
2l l l l lf = + + +  , (20) 

where P and Q denote real and reactive power, respectively, 
and subscripts l1 and l2 denote the flows measured at bus i1 and 
bus i2, respectively; fl represents the root mean square of the 
apparent powers at the two terminals of the branch.  

Similarly, 1 2[ , , , , , ]T
i ng g g g=g  

is a weight vector, 
which represents the net power injections associated with each 
bus. For example, for bus i, the corresponding entry can be 
evaluated as follows:   

 ( )2 2
G D G DP P (Q Q )i i i i ig = − + − , (21) 

where subscripts G and D denote generation and load, 
respectively. 
 By solving the optimization problem (19), the optimal 
sequence of PMU restoration, which makes the largest amount 
of power observable as quickly as possible, can be obtained. 
 It should be noted that after the system loses observability, 
it becomes impossible to accurately estimate the net injections 
and branch power flows so as to set the weight vectors 
exactly. However, the power flow data from before the 

disaster takes place or from historically similar days can be 
used for approximating these values.  

F.  Maximizing the Amount of Observable Power for  Multi-
area Power Systems 

Finally, we consider the situation where a large-scale power 
system needs to be partitioned into smaller areas, and each 
individual area has a specific amount of resources to be 
allocated within itself. This problem formulation becomes 
practical when the traveling distances of rescue teams 
becomes a concern, or when the power system is owned by 
multiple entities and the restoration resources cannot be 
allocated across different entities. Assuming that the power 
system is divided into t areas, the binary decision vector 

( )jx for the jth step can be divided into subvectors as: 
( ) ( ) ( ) ( ) ( )

1 2[ , , , , , ]j j j j j T
v t=x x x x x 

, where each subvector 
corresponds to an area. For an area v, the constraints on the 
number of cyber rescue teams can be reformulated as follows: 

 ( ) ( 1) ( )( )T j j j
v v vd−− ≤1 x x  (22) 

where ( )j
vd is a scaler representing the number of cyber rescue 

teams available in area v at step j.  
Using total amount of power as observability metric, the 

optimization problem can be formulated as follows: 

 

( ) ( )

1

( ) ( )

( ) ( )

( ) ( )

( ) ( -1) ( )
1 1 1

maximize   ( )

subject to   
1                  
2

                   
                   ( )
                                
            

k
T j T j

j

j j

j j

j j

T j j jd

=

+

≥

≥

≥

− ≤

∑ f z g u

Cx y

Ay z

Dz u
1 x x



( ) ( -1) ( )

( ) ( -1) ( )

( ) ( -1)

       ( )
                               
                   ( )      

                   

T j j j
v v v

T j j j
t t t

j j

d

d

− ≤

− ≤

− ≥

1 x x

1 x x

x x 0



 (23) 

By solving optimization problem (23), the solution vectors 
( )jx  (j = 1, 2, …, k) , which provides the optimized sequential 

PMU restoration strategy, can be obtained. 
There are two criteria that can guide system partitioning in 

practice: 
(1) Ownership and maintenance responsibility of PMU 

assets: Typically, a large-scale power grid can be divided into 
multiple areas, each of which is owned by a utility company or 
managed by an area control room. It is reasonable for each 
utility company or control room personnel to have its own 
cyber crews, and in case of a cyber attack, these crews will be 
responsible for restoring the PMUs in their respective service 
areas. 

(2) Geographical feasibility for PMU restoration activities: 
The area should be divided reasonably for cyber crews to 
travel. To this end, the choice should be left to the users of the 
proposed algorithm (e.g., grid operators), who can divide the 
areas based on their specific transportation conditions and 
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available resources. The choice of system partitioning by the 
users does not affect the general effectiveness and 
applicability of the proposed approach. 

It is noteworthy that the system is partitioned only to limit 
the use of restoration resources within each area, and not to 
split the power system into smaller subsystems for 
observability analysis. As a result, the produced strategy still 
ensures that the entire system will become observable. In this 
case, it is possible to run multi-area state estimation for each 
partitioned area [21, 22], but it is not required.  
 Problems (17) ‒ (19) and (23) formulated above can be 
readily solved by well-developed MILP algorithms [23-26], 
which will not be elaborated here. 
 Finally, before moving forward to the simulation section, it 
should made clear that this paper only addresses scenarios 
where PMUs are compromised, and does not address scenarios 
where there is a physical system blackout induced by 
compromised PMUs. It should be noted that cyber attacks on 
PMUs do not necessarily or inevitably lead to physical system 
blackouts, for two obvious reasons. (1) Many types of PMU 
attacks do not aim to inflict massive physical system blackout. 
Denial of service attacks and false data injection attacks may 
aim to interrupt system monitoring or create inefficient system 
dispatch [27-31]. (2) PMU signals are not directly fed to relay 
protection systems. Relay protections have separate sensing 
and communication infrastructures which are not likely to be 
impacted by PMU data problems. It is certainly possible that 
cyber attacks on PMUs may lead to physical system blackouts, 
but such scenarios are not covered by this single paper.  

IV.  SIMULATION RESULTS 
In this section, we will illustrate the proposed observability 

recovery problems and solution strategies on the IEEE 57-bus 
system, and compare the performance of the proposed 
optimization approach with two heuristic approaches: random 
assignment and the greedy algorithm. These two heuristic 
approaches are developed to mimic the possible behaviors of 
system operators after cyber attacks on PMUs, as there is no 
existing optimization tool for the restoration of the PMUs to 
recover the system observability. For random assignment, 
random PMUs are selected to be restored at each step. For the 
greedy algorithm, the PMUs which provide the greatest 
immediate boosts of system observability are selected to be 
restored at each step.  

A one-line diagram of the IEEE 57-bus system is shown in 
Fig. 4; it has 57 buses, 80 branches, 7 generators, and 42 
loads. 37 PMUs are installed to make the whole system 
observable, with some redundancy. The locations of the 
installed PMUs are marked by red circles in Fig. 4. 

In order to evaluate the performances of different 
approaches, we introduce the concept of observability loss, 
which can be defined as the cumulative difference between the 
observability levels and the full observability condition over 
all time steps before the restoration process is completed. It is 
calculated from the area enclosed between the observability 
curve and the full-observability line for a specific restoration 
process. Specifically, we define three indices, R, S, and T, to 
represent observability losses.  

For the restoration strategy that maximizes the number of 
observable buses, i.e., the solution to problem (17), the 
observability loss can be calculated by subtracting the number 
of observable buses at each step from the total number of 
buses n and then taking the summation: 

 ( )

1
( )

k
T j

j
R n

=

= −∑ p y . (24) 

 In the same way, for the restoration strategy that maximizes 
the number of observable branches, i.e., the solution to 
problem (18), and the restoration strategy that maximizes the 
amount of observable power, i.e., the solution to problem (19), 
the observability loss indices can be calculated as 

 ( )

1
( )

k
T j

j
S m

=

= −∑ q z  (25) 

and 

  ( ) ( )

1
( )

k
T j T j

j
T s

=

= − −∑ f z g u , (26) 

respectively, where m is the number of branches and s is the 
total amount of apparent power.  
 In addition, we define two more indices, F, and H, to 
evaluate the performance of different restoration strategies, 
which represent the number of steps required to reach half 
observability level and the number of steps required to reach 
full observability level, respectively. 
 In order to solve the MILP problems (17) - (19) and (23), 
MATLAB 2019b is used to conduct the following simulation 
cases. Besides MATLAB, any other commercial software with 
an MILP solver can be used to solve the problems. 

A.  Maximization of the Number of Observable Buses 
Using the system topology and PMU configuration shown 

in Fig. 4, we simulate the restoration process after all the 
available PMUs are compromised. Fig. 5 shows the 
comparison between the observability restoration curves of the 
optimized strategy, the greedy strategy, and the random 
strategy when the resources are limited to restoring 1 PMU per 
step. For the simulation cases, the weight vectors are 
considered as vectors with all 1s, which yields the factor that 
all the PMUs are of equal importance. As the random 

 
Fig. 4.  IEEE 57-bus test system 
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assignment and the greedy algorithm both involve random 
procedures (for the greedy algorithm, when there are multiple 
PMUs that provide the same immediate boost of observability, 
they will be selected randomly), more than one possible PMU 
restoration sequence can be obtained. For that reason, the 
results for random assignment and greedy algorithm are 
generated 10 times, and averages of the results are taken to 
compare with the proposed optimized strategy. From Fig. 5, it 
can be seen that both the random strategy and the greedy 
strategy take 37 steps to make all the buses observable, 
whereas the optimized strategy takes only 20 steps to make all 
the buses observable. Although the random strategy takes the 
same number of steps as the greedy algorithm to complete the 
restoration, during the restoration process, the random strategy 
makes fewer buses observable than the greedy strategy in each 
step; this can be seen from the fact that the random-strategy 
curve is lower than the greedy- strategy curve throughout the 
entire restoration process. The optimized strategy outperforms 
all samples of the heuristic strategies. In particular, the curves 
of the optimized strategy and greedy strategy remain close at 
the beginning, but they gradually deviate from each other, 
with the curve of the optimized strategy being higher. This 
owes to the fact that the optimized strategy is obtained by 
treating the multi-step process as a global problem, whereas 
the greedy algorithm seeks a local optimum step by step, 

yielding an overall suboptimal solution for the entire 
restoration process.   

We also examine the case where there are sufficient 
resources to restore 5 PMUs per step, and compare the results 
of the three algorithms, as shown in Fig. 6. In this case, we can 
see that both the random assignment and the greedy algorithm 
take more steps than the optimization algorithm to make all 
the buses observable. If we compare the curves of the greedy 
strategy for this case and for the previous case, it can be found 
that the greedy strategy falls behind the optimized strategy 
even from the first step. The reason is that as the number of 
PMUs to be restored at each step increases, the number of 
combinations of candidate PMUs increases drastically. As a 
result, it is not feasible to check the exact observability boosts 
for all the combinations, but instead, it is only practical to 
evaluate the summation of observability boosts brought about 
by each member of a combination. Since there might be 
overlapping buses that multiple candidate PMUs make 
observable simultaneously, this selection algorithm cannot 
exactly find the candidate combination that gives the greatest 
boost of observability as a whole for the given step. The 
optimized strategy, on the other hand, is always able to select 
the combination that is most beneficial for improving system 
observability.   

For a quantitative comparison between different strategies, 
the observability loss indexes, R, for the cases of 1 PMU per 
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Fig. 5.  Observability recovery processes (maximizing number of observable 
buses, 1 PMU/step) 
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Fig. 6.  Observability recovery processes (maximizing number of observable 
buses, 5 PMUs/step) 
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Fig. 7.  Observability recovery processes (maximizing number of observable 
branches, 1 PMU/step) 
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Fig. 8.  Observability recovery processes (maximizing number of observable 
branches, 5 PMUs/step) 
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step and 5 PMUs per step are shown in Table I. The 
“random,” “greedy,” and “optimized” columns present the 
values of the observability loss index for those respective 
strategies. We also evaluate the percent reduction of 
observability loss index R brought about by the optimized 
strategy with respect to the random strategy (the “random vs. 
optimized” column), and with respect to the greedy strategy 
(the “greedy vs. optimized” column). For example, for the 
case of 5 PMUs per step, the optimization algorithm reduces 
observability losses by 36.89% and 15.89% relative to the 
random and greedy strategies, respectively. 

B.  Maximization of the Number of Observable Branches 
We also consider the case where the number of observable 

branches is taken as the metric for observability. Fig. 7 and 
Fig. 8 illustrate the simulation results for the three different 
algorithms, considering 1 PMU and 5 PMUs to be restored per 
step, respectively. All the curves of the random and greedy 
strategies are below the curves of the optimized strategy. For a 
better comparison, observability loss indexes, S, for the three 
algorithms are listed in Table I. It can be seen that the 
optimized strategy performs far better than the heuristics. 

C.  Maximization of the Observable Amount of Power 
For the case of maximizing the amount of observable 

power, we simulated 4 cases: restoring 1 PMU, 3 PMUs and 
5 PMUs per step after a full observability blackout, and 
restoring 5 PMUs per step after a partial (75%) observability 
blackout. 

Figs. 9, 10, and 11 illustrate the cases of restoring 1 PMU, 
3 PMUs and 5 PMUs per step, respectively, after a full 
observability blackout. The results for the case of 1 PMU per 
step are particularly interesting: compared with the optimized 
strategy, the greedy strategy brings slightly higher 
observability to the system during the first 3 steps, but starts 
to fall behind after the 4th step. Finally, the optimized 
algorithm achieves a much better performance over the entire 
restoration process compared to the greedy algorithm. Again, 
this owes to the fact that the greedy algorithm is only able to 
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Fig. 9.  Observability recovery processes (maximizing amount of observable 
power, 1 PMU/step) 
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Fig. 10.  Observability recovery processes (maximizing amount of 
observable power, 3 PMUs/step) 
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Fig. 11.  Observability recovery processes (maximizing amount of 
observable power, 5 PMUs/step) 
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Fig. 12.  Observability recovery processes (maximizing amount of 
observable power, 5 PMUs/step, 25% PMUs initially intact) 

 

TABLE I  
OBSERVABILITY LOSS COMPARISON FOR BUS AND 

BRANCH INDICES  

 Rand. Greedy Optimized Optimized 
vs. Rand.  

Optimized 
vs. Greedy  

Observable Loss Index R 
1 PMU/ 

Step 702.2 483.5 444.5 -36.70% -8.01% 

5 PMUs/ 
Step 143.4 107.6 90.5 -36.89% -15.89% 

Observable Loss Index S 
1 PMU/ 

Step 1222.9 894 678 -44.56% -24.16% 

5 PMUs/ 
Step 245.5 186.1 137 -44.2% -26.38% 
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plan one step ahead instead of handling the problem in a 
global fashion. For the cases of 3 and 5 PMUs per step, the 
advantage of the proposed optimized strategy is even greater. 

D.   Maximization of the Amount of Observable Power 
Comparing the results of maximizing observable power 

with the results of maximizing observable buses or branches, 
it can be found that curves for power are initially steeper; then, 
after several steps, they become “saturated.” In contrast, the 
curves for the observable bus and the observable branch cases 
have relatively more stable slopes throughout the restoration 
processes. The reason is that each bus is typically connected to 
a limited number of buses and branches, and restoring one 
PMU cannot make a very large number of buses or branches 
observable. On the other hand, certain buses may have a very 
large amount of power flowing through them. As a result, with 
recovery of the observability of a bus handling a large amount 
of power, the curve will rise very quickly. After buses of this 
type are exhausted, the rate of recovery in terms of observable 
power will become slower.  

We consider a case of partial blackout where 25% of the 
PMUs remain intact after the disaster, and 5 PMUs can be 
restored per step. As a result, 716.9 kVA of power is initially 
observable, and the observability of the remaining 3161.1 

kVA of power needs to be recovered. As is apparent in Fig. 
12, the optimized strategy completes observability recovery 
after 3 restoration steps, whereas the greedy and random 
strategies take 6 and 7 steps, respectively. 

The observability loss indices T for the random, greedy, and 
optimized strategies are listed in Table II. Again, remarkable 
reductions of observability losses can be achieved by using the 
optimized strategy.  

The half observability level indices F and the full 
observability level indices H for the random, greedy, and 
optimized methods are shown in Table III for comparing the 
different methods quantitively. It can be concluded from the 
comparisons that the proposed optimized algorithm recovers 
the full observability of the power system more rapidly than 
the heuristic methods. 

E.  Maximization of the Amount of Observable Power in 
Multiple-area Power Systems 
 We consider a case where the power system is partitioned 
into four areas, and the observability metric is the amount of 
observable power. For each area, the number of resources that 
can be used per restoration step are limited such that three 
areas can restore 1 PMU per restoration step, and the 
remaining one can restore 2 PMUs per restoration step. The 
simulation results of the the three strategies without 
partitioning and with partitioning are shown in Fig. 13. As can 
be seen from the figure, all strategies perform better without 
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Fig. 13.   Observability recovery processes (maximizing amount of 
observable power, 5 PMUs/Step, system partitioned into 4 areas) 
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Fig. 14. Observability recovery processes (maximizing number of 
observable buses, 5 PMUs/step, 20 essential PMUs for heuristic methods) 

TABLE III 
TIME TO REACH HALF OBSERVABILITY AND FULL 

OBSERVABILITY  

 Rand. Greedy Optimized Optimized 
vs. Rand.  

Optimized 
vs. Greedy  

Half Observability Index F for 1 PMU/Step 

Bus 10 7.2 7 -30% -2.78% 

Branch 14 10.5 7.8 -44.29% -25.71% 

Power 12 3.3 3.2 -73.33% -3.03% 

Full Observability Index H for 1 PMU/Step 

Bus 37 37 20 -45.95% -45.95% 

Branch 37 37 20 -45.95% -45.95% 

Power 37 32 20 -45.95% -37.5% 

Half Observability Index F for 5 PMUs/Step 

Bus 2.2 1.65 1.5 -31.82% -9.09% 

Branch 2.8 2.2 1.6 -42.86% -27.27% 

Power 2.8 0.9 0.7 -75% -22.22% 

Full Observability Index H for 5 PMUs/Step 

Bus 8 7 4 -50% -42.86% 

Branch 8 8 4 -50% -50% 

Power 8 8 4 -50% -50% 

 

TABLE II  
OBSERVABILITY LOSS COMPARISON FOR POWER INDEX  

 Rand. Greedy Optimized Optimized 
vs. Rand.  

Optimized 
vs. Greedy 

Full Blackout 
1 PMU/ 

Step 54437 24757 19177 -64.77% -22.54% 

3 PMUs 
/Step 20682 9359.6 6546.9 -68.35% -30.05% 

5 PMUs/ 
Step 12415 6781.1 4101.9 -66.96% -39.51% 

Partial Blackout (75%) 
5 PMUs/ 

Step 6848.4 2944.5 1360.5 -80.13% -53.80% 
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partitioning compared to the respective curves with 
partitioning, which indicates that a slower restoration process 
will result after partitioning the system. This is because the 
algorithms are now forbidden to move restoration resources 
between different areas, which results in a local optimum 
within each area instead of a global optimum for the entire 
power systems. Under such condition, the optimized strategy 
is still able to improve the system observability upon the 
random and the greedy strategies.  

F.  Maximization of the Number of Observable Buses with 
Minimal Number of Candidate PMUs 

The previous cases show the situation where the heuristic 
approaches do not have a priori knowledge about global 
system observability. Finally, we will examine the case where 
the greedy and random strategies have the a priori information 
of a minimum set of PMUs which can maintain system 
observability. With such knowledge in advance, the 
restoration process would be faster, in that all resources will 
be allocated to restore the PMUs belonging to this minimum 
set. The simulation results of this situation are shown in Fig. 
14. In this case, it is assumed that 5 restoration resources can 
be used in each step, and a minimum set of PMUs which can 
recover full system observability, which obtains 20 PMUs, is 
found prior to the performing the greedy and random 
algorithms. From the observability curves shown in the figure, 
it is evident that although the number of steps required for all 
three strategies are the same (4 steps), the optimized strategy 
is still performing better than the heuristics strategies by 
optimal decision on the sequence of PMU restoration 
activities, which gains the highest level of observability during 
the restoration process. 

V.  CONCLUSION 
In this paper, we develop the concept of observability 

recovery for power systems measured by PMUs after 
disastrous scenarios such as massive cyber attacks. We 
formally formulate the observability recovery (PMU 
restoration) problem as a MILP problem, and consider 
different objective functions for quantifying system 
observability level. The solution to the optimization problems 
will provide the locations of PMUs to be restored in a 
sequential manner, which will make the system reach a high 
observability level within a short period of time.   

Through simulation results on the IEEE 57-bus system, we 
demonstrate that solving the formulated MILP problem 
provides the optimal strategy for the restoration process, 
which outperforms two heuristic methods, i.e., the greedy 
algorithm and random assignment methods.  

The proposed algorithm can help recover the observability 
of the power system after cyber infrastructures of power 
systems are severely compromised, eventually helping to 
improve grid-wide situational awareness and the cyber-
physical resilience of power systems. 

Based on this work, one of the future research directions is 
the coordinated modeling of power networks and 
transportation networks, such that detailed models for the 
traveling of rescue teams between PMU locations can be 

accurately developed. Other important research topics for the 
future are to address both the cyber and physical power system 
restorations coordinately and to consider the detailed cost of 
PMU restoration.  
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