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Abstract— Cyber-physically resilient power system operation
requires rapid recovery of situational awareness after disastrous
scenarios such as massive cyber attacks. In this paper, the
concept of optimal sequential restoration of Phasor Measurement
Units is introduced, aiming at rapid recovery of power system
observability in post-attack scenarios. The observability recovery
problem is formulated as a Mixed Integer Linear Programming
problem to maximize the cumulative observability level gained
over time during the restoration process. Three alternative
objective functions—maximizing the number of observable
buses, the number of observable branches, and the total amount
of observable power flow—are considered. The effectiveness of
the proposed optimal strategy is verified by comparing it with
heuristic approaches on the IEEE 57-bus system.

Index Terms—Cyber-physical system, observability, phasor
measurement unit, power system restoration, resilience

1. INTRODUCTION

he ability to restore power systems quickly after a partial
or complete blackout is crucial for a resilient supply of
electricity. Large-scale blackout events occurring around the
world [1, 2] definitively show the need for a proper restoration
plan to effectively mitigate the negative impact of a blackout
[3]. The main objective of power system restoration is to bring
the system back to normal operating conditions as quickly as
possible so as to minimize the power supply losses and
restoration time. The procedure of power system restoration
includes determining the state of the system, preparing the
equipment for restoration, reintegrating the system, and
balancing generation and load in a controlled manner [4].
Over the years, researchers have attempted to solve power
system restoration problems with the help of various
algorithms such as case-based reasoning, genetic algorithms,
artificial neural networks, fuzzy logic, Petri nets, and multi-
agent technologies (see [3] for a detailed review).
With the rapid development and deployment of
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communication and information technologies, the concept of
cyber-physical systems has been introduced into power system
research [5]. A cyber-physical system can be defined as an
integration of physical elements in the real world and the
sensing, communication, and computing elements in the cyber
space [6]. As cyber infrastructures are increasingly interacting
with physical power systems, cyber security becomes a major
factor to be considered in power system operations [7-9]. In
order to fully address the operational challenges arising from
the cyber domain, the cyber and physical components of
power systems should be modeled and analyzed coordinately.
Recently, an increasing amount of research has been dedicated
to the cyber-physical resilience of power systems [10-13].
This research has explored enhancement of the ability to
absorb disturbances, as well as to recover from the
disturbances with full consideration of both the cyber and
physical domains of a power system. Obviously, the concept
of power system restoration should no longer be limited to the
restoration of physical electricity delivery infrastructures, but
should be extended to the restoration of cyber infrastructures
on which system operation depends.

In power system operation, state estimation is the core
function for developing situational awareness [14]. In order to
effectively estimate system state variables, observability has to
be secured by integrating a sufficient number of reliable
measurements from various locations. In recent years,
synchronized Phasor Measurement Units (PMUs) have
emerged as highly accurate sensing devices for delivering
system observability. For planning purposes, the problem of
optimal PMU placement for ensuring system observability has
been extensively studied (see [15] for a detailed review).

Although a large volume of research has been conducted on
PMU placement, a vast majority of the proposed strategies
only aim at maintaining full observability after the loss of a
small number of PMUs (in most studies, only the loss of a
single PMU is considered). Nevertheless, under disastrous
scenarios such as a massive cyber attack, a large number of
PMUs can be compromised simultaneously, and none of the
existing PMU placement strategies may provide effective
solutions in such circumstances. In fact, there is no way to
ensure that full observability can be maintained under
disastrous scenarios, even if resilient PMU configurations
have been implemented ahead of time. Rather, optimal
restoration strategies for the compromised PMUs should be
considered in order to re-establish system observability as
quickly as possible after the disasters. So far, no systematic
solution has been provided to address this challenge.
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In parallel with the conventionally discussed optimal
restoration of physical components of power systems for rapid
recovery of electricity delivery, this paper conceptually
proposes the optimal restoration of cyber components of
power systems, especially PMUs, for rapid recovery of system
observability after disastrous scenarios. We formulate the
PMU restoration problem as a sequential decision-making
problem, whose goal is to maximize cumulative observability
levels over time with the optimal order of PMU restoration
actions under limited-resource scenarios. Instances of both full
blackout and partial blackout are taken into consideration for
the observability recovery problem. The problem is
formulated as a Mixed Integer Linear Programming (MILP)
problem, which can be readily processed by well-developed
MILP solvers. The contributions of this paper can be
summarized as follows:

1) For the first time in the literature, we formally establish
the concept of observability recovery of power systems
by means of restoration of cyber components of the
power systems, specifically PMUs.

2)We formulate the observability recovery (PMU
restoration) problem as a MILP problem. The solution to
the problem provides the optimal strategy for PMU
restoration, which facilitates situational awareness for
system operators after disastrous scenarios such as
massive cyber attacks.

3) Through comparative simulation results, we demonstrate
the need for systematic development of optimal PMU
restoration strategies for rapid observability recovery of
power systems, which cannot be achieved by naive
heuristic methods such as the greedy strategy.

The rest of this paper is structured as follows. Section II
reviews basic concepts of observability analysis for power
systems measured by PMUSs. Section III describes the
mathematical formulations of optimal observability recovery
(PMU restoration) problems with various objectives, and
indicates the solution algorithms. In Section IV, detailed
simulation results are presented to compare the optimal
solution with heuristic solutions such as greedy and random
assignments. Concluding remarks are given in Section V.

II. OBSERVABILITY OF POWER SYSTEMS MEASURED BY PMUS

In order to operate power systems securely, constant
monitoring of system operating conditions is necessary. It is
essential to gain observability of the system, which means that
bus voltage phasors can be uniquely estimated with the
available measurements. Full observability implies that
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Fig. 1. Observability of systems measured by PMUs
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voltage phasors at all buses can be uniquely estimated, and
partial observability implies that voltage phasors at certain
subsets of buses can be uniquely estimated.

Monitoring power systems with recently deployed PMUs
has some advantages over traditional SCADA measurements:
higher sampling rate, measurement synchronization,
availability of phase angles, and linear state estimation
formulations. As a PMU installed at a given bus can measure
the voltage phasor at the bus as well as the current phasors
along all the branches incident to that bus, there is no need to
place PMUs on each bus to make the system fully observable
[16]. Before discussing the observability recovery problem,
the basic concepts of observability analysis in the presence of
PMUs will be briefly reviewed in this section.

If the voltage phasor at a bus can be estimated with the
available measurements, then the bus is referred to as an
observable bus. Similarly, if the current flowing through a
branch can be estimated, then the branch is considered as an
observable branch. This concept can be understood by
considering a two-bus local area of a system, as shown in Fig.
1. If a PMU is installed at bus M, then the voltage phasor at
bus M (V,,£6,,) can be measured directly by the PMU.

Hence, bus M will become observable. The PMU at bus M can
also measure the branch current incident to bus M
(L Loy )- If we know the line impedance (Z,, ), using

Kirchhoff’s Voltage Law:

. . Y. - .
Vu =(IMN_% Wt Vy, (1
from which the voltage phasor at bus N can be obtained:
. Yo Z. . .
Vi=@+ %)VM —ZynTun (2)

In the same way, if the voltage phasors of two adjacent
buses are known, then the branch current can be calculated,
and thus the branch will become observable. For example, if
the voltage phasors at buses M and N are both known, we can
rearrange (1) to calculate the current phasor along the line
between bus M and bus N as follows:

. 1 Yo Zo . .
Ly = Zon [(1+ MN2 — YV — Wil
From the above example, it is shown that if a PMU is
placed at a bus, then all the neighboring buses, as well as all
the incident branches, will become observable. Hence, the
condition for a bus being observable becomes that either the
bus has a PMU, or it is connected to a bus that has a PMU.
Similarly, the general condition for a branch being observable
becomes that both terminal buses of the branch are observable.
On the basis of observability analysis, the optimal PMU
placement problem has been formulated by many researchers
in the past [16-20]. Suppose there are n buses in a power
system: the optimization problem can then be formulated as
follows:

3

minimize w'x
subjectto Cx2>1
where x=[x,x,,...... ,x,]"is a binary decision variable

“

vector, whose entries can be defined as
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Fig. 2. Observability recovery process
1, ifaPMU is installed at bus i
% = . (5)
0, otherwise

w is the cost vector of PMU installation at different buses; 1 is
a vector of ones; and the connectivity matrix C is defined as

L, if k=m
C,, =<1, if  busk and bus m are connected 6)
0, if otherwise

The constraint in (4) ensures that each entry of the vector Cx
is equal to or greater than 1 to make sure that all the buses are
observable with the resulting PMU configuration.

III. OPTIMAL OBSERVABILITY RECOVERY PROBLEM

A. Conceptualization

In contrast with the optimal PMU placement problem for
planning purposes, in this paper, we will formulate the optimal
PMU restoration (observability recovery) problem for
operational purposes. It is assumed that the power system has
already experienced a disastrous scenario such as a massive
cyber attack, and most of the PMUs are not functioning
properly. As we cannot obtain or trust measurements from the
non-functioning or malfunctioning PMUs, the system
inevitably loses its observability. At this point, observability
can only be recovered by bringing the compromised PMUs
back to the normal status. Since the operators have limited
resources (for example, a limited number of cyber security
rescue teams), the PMU restoration tasks have to be
prioritized. In other words, we will need to develop an optimal
sequence for restoring the compromised PMUs in order to
expedite the recovery of system observability.

In order to formulate the optimal observability recovery
(PMU restoration) problem, the following assumptions are
made:

1) Cyber rescue teams have to be sent to the substations to
repair the compromised PMUs, and each team can restore
only one PMU at a time.

2) Restoration of each PMU takes the same amount of time.

Owing to limited resources, it is typically not possible to
restore all PMUs at a single time step, and sequential decision-
making needs to be performed.

In Fig. 2, we illustrate the objective of the observability
recovery problem. The observability level of the system is
plotted against the time of restoration for a specific restoration
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Fig. 3. Comparison between the performances of two restoration
processes

process. Our objective is to maximize the area under the
curve. This can be interpreted as follows.

1) For a given time instant, we would like to maximize the

level of observability.

2)For a given observability level, we would like to

minimize the time taken to reach this level.

Consider point E in Fig. 2, for example. The consumed
restoration time is b and the achieved observability level is a.
If the restoration time b is given, then we would like to
maximize the observability level a by pushing this point
upward. On the other hand, if the observability level a is
given, then we would like to minimize the restoration time b
by pushing this point to the left. If we push every point on the
curve upward and to the left, this is equivalent to maximizing
the area enclosed below the curve.

We further illustrate the idea by considering two sequential
PMU restoration processes »1 and 72, shown in Fig. 3. The area
enclosed by restoration process 7 is @, and the area enclosed
by restoration process 2 is . Obviously, area o is larger than
area 3, and restoration strategy r| is more beneficial to system
operators than restoration strategy r», since it reaches higher
observability levels with shorter restoration times.

From the above observations, it can be concluded that the
performance of the restoration process can be evaluated by the
area enclosed below the curve.

Assume that a power system has n buses and m branches,
and we need & steps to restore the compromised PMUs. Define

a set of binary vectors x" x?, to record the
locations of PMUs that have been restored up to each step. For

example, x" =[x, x{",...... XD ,x’1"is a binary

(k)
....... ,X

decision vector for the j* step, which is defined as follows:
if the PMU at bus i is restored
x) = at step j or prior to step j (7
0, otherwise
Next, we will develop all the constraints that will be used by
various formulations of observability recovery problems.
B. Formulating Constraints

1) Constraints on observable buses. For a given step j, the
constraint for determining observable buses can be formulated
as



where C is the connectivity matrix, whose entry satisfies the
following:

1, i =i,
G, =1L bus i, and bus i, are connected ©)
0, otherwise
and y =y .., yP ...,y is a binary vector

for the ;™ step. Its i™ entry, y!”, can take the value of 1 only if

there is at least one PMU at bus i or its neighboring buses, i.e.,
only if bus i has become observable at step ;.

2) Constraints on observable branches. In order for a
branch to be observable, both terminal buses of the branch
have to be observable. The constraint can be formulated as

(10)

where A is a branch-bus incidence matrix that relates branches
with their terminal buses. For this matrix, each row represents
one bus, and each column represents one branch. The entries
of this matrix satisfy the following:
4 {l, if branch / is connected with bus i
i 0,

where z =[z,z",...... ,z0,

1 . .
—ZA ) Zz(])’
5 y

an

otherwise
...... ,z77"is a binary vector
for the j™ step. Its " entry, z’, can take the value of 1 only if

both of its terminal buses are observable.

3) Constraints on the amount of observable power
injections. Observable power injections can be defined as the
power injections at a bus that can be effectively estimated. It
should be noted that when a bus becomes observable (voltage
phasor being known), it does not automatically follow that the
net injection at this bus will become observable. Instead, the
constraint on observable power injections can be formulated
as

Dz(j) > u(j) , (12)
where D shows how each bus is related to all of its incident
branches, and can be formulated as follows:

D=NA" (13)
Here, N is a diagonal matrix, whose diagonal entries consist of
the reciprocal of the number of incident branches at a
particular bus, satisfying the following condition:
1

N, = Zbranch incident at bus i

fi = (14)
0 ifi#j

u?” = ul”,.....u?,.....u" ] is a binary vector for the

j™ step, which represents the buses where the net injections are

observable. Its i™ entry, u”, can take the value of 1 only if
the power along all the incident branches is observable.

4) Constraints on the number of PMUs that can be restored
at each step (i.e., number of cyber rescue teams). The number
of PMUs that can be restored at each step is constrained by the
number of rescue teams, which can be formulated as follows:

IT(X(I) _X(jfl))sd(j)’ (15)

where d') is a scalar representing the number of PMUs that
can be restored at step ;.

5) Constraints on maintaining the normal status of already-
restored PMUs. 1t is assumed that the PMUs which are not
affected by the disaster or have been restored via the previous
steps will remain in the normal status during the following
steps, i.e., the restoration process does not reverse:

x? — x>0 |
where 0 is a null vector.

With all the constraints available, we will now formulate
the observability recovery (PMU restoration) problems with
various objectives in Section III.C through Section IILE.
Three possible objectives are considered: (1) maximizing the
number of observable buses; (2) maximizing the number of
observable branches; and (3) maximizing the total amount of
observable power. As the restoration process is carried out in
steps, the area enclosed below the restoration curve (as
discussed in Section III.A) is evaluated as a summation of
discrete functions, instead of using an integration of
continuous functions.

(16)

C. Formulating Optimization Problem for Maximizing the
Number of Observable Buses

In this subsection, we will formulate the PMU restoration
problem for maximizing the number of observable buses. The
number of observable buses is used as the metric for the
“observability level” shown as the vertical axis of Fig. 2. For

maximizing the area enclosed below the curve, the
optimization problem can be formulated as follows:
k
maximize » p’y"
j=1
subjectto Cx') >y (17)

lT (X(./) _ X(./’*I)) < d(/)
x = X(./’*l) >0

In (17), p=[p;,Pyse----- s Diseenens 0,1
In order to maximizing the area enclosed below the
observability recovery curve in Fig. 2, this vector should be
assigned as a vector full of 1s. However, system operators can
readily assign its values as per the importance of each bus
empirically, such that the observability for more important
buses can be prioritized. In (17), the value of k can be
determined using the number of steps required by a heuristic
method, as the number of steps needed by a heuristic method
is typically greater than or equal to the number of steps needed
by the optimization method. More details on examples of
heuristic methods can be found later in Section IV. The

is a weight vector.

solution vectors x'/) (G=1,2, ..., k) of optimization problem
(17) will provide the optimized sequential PMU restoration
strategy for improving observability of the system as quickly
as possible, and vectors y’(j = 1, 2, ..., k) will indicate the

specific buses that become observable after each step of
restoration.

D. Formulating Optimization Problem for Maximizing the
Number of Observable Branches

Using the number of observable branches as the
observability metric, the optimization problem can be
formulated as follows:



k
maximize Y q'z"
=1

subject to Cx") >y

lAy(j) >z (18)
12T x —xU My < g

X _xU D >0

In (18), q=[q,.49,,------ N7 [T .4,

which represents the importance of each branch, which can be

is a weight vector,

set similarly as in (17). Solutions to vectors x\/) G=1,2,...,
k) here will provide the optimized sequential PMU restoration
strategy, and vectors z’ (j = 1, 2, ..., k) will indicate the
specific branches that become observable after each step of
restoration.

E. Maximizing the Amount of Observable Power
In this subsection, we consider the total amount of
observable power as the observability metric. It is the
summation of all the net power injections and branch power
flows that can be estimated:
k
maximize Y (f'z" +g'u")
J=1
subjectto Cx"’ >y
lAy (f)z Z(/) (19)
2
Dz > u”
17 (x —xU)y < g
X —xU >0
In (19), £=[f, frreeeee- By AT , .17 is a weight vector,

which represents the branch power flow associated with each
branch. For example, for branch /, which connects bus i; to
bus i, the corresponding entry can be evaluated as follows:

1
f :\/E(PII2 +Q, +P+Q,7%) ,

where P and Q denote real and reactive power, respectively,
and subscripts /; and /, denote the flows measured at bus i; and
bus i, respectively; fi represents the root mean square of the
apparent powers at the two terminals of the branch.

Similarly, g=[g,,g,,...... s Zireennnn ,g,]" is a weight vector,

(20)

which represents the net power injections associated with each
bus. For example, for bus i, the corresponding entry can be

evaluated as follows:

gi:\/(PGI_PDI)2+(QGi_QDi)2 5 (2D
where subscripts G and D denote generation and load,
respectively.

By solving the optimization problem (19), the optimal
sequence of PMU restoration, which makes the largest amount
of power observable as quickly as possible, can be obtained.

It should be noted that after the system loses observability,
it becomes impossible to accurately estimate the net injections
and branch power flows so as to set the weight vectors
exactly. However, the power flow data from before the

disaster takes place or from historically similar days can be
used for approximating these values.

F. Maximizing the Amount of Observable Power for Multi-
area Power Systems

Finally, we consider the situation where a large-scale power
system needs to be partitioned into smaller areas, and each
individual area has a specific amount of resources to be
allocated within itself. This problem formulation becomes
practical when the traveling distances of rescue teams
becomes a concern, or when the power system is owned by
multiple entities and the restoration resources cannot be
allocated across different entities. Assuming that the power
system is divided into ¢ areas, the binary decision vector

xY for the jM step can be divided into subvectors as:
x =[xV x{,. X ,x'1", where each subvector
corresponds to an area. For an area v, the constraints on the
number of cyber rescue teams can be reformulated as follows:
Tie O G- o)
' (x,” —-xY")<d, (22)

where dv('/ ) is a scaler representing the number of cyber rescue

teams available in area v at step j.
Using total amount of power as observability metric, the
optimization problem can be formulated as follows:

k

maximize Z(sz(” +g"u’)
=1

subjectto Cx"’ >y

1 . .
—A (1)2 Z(/)
5 y

Dz > u(/')

lT(xl(j) _xl(j-l)) < dl(j) (23)

Tix O _yx G 0
1'(x,” —x,"")<d,

Tie () _y GD o
' (x,” —x,""7)<dY
X —xUD >
By solving optimization problem (23), the solution vectors

x) (G=1,2, ...,k , which provides the optimized sequential
PMU restoration strategy, can be obtained.

There are two criteria that can guide system partitioning in
practice:

(1) Ownership and maintenance responsibility of PMU
assets: Typically, a large-scale power grid can be divided into
multiple areas, each of which is owned by a utility company or
managed by an area control room. It is reasonable for each
utility company or control room personnel to have its own
cyber crews, and in case of a cyber attack, these crews will be
responsible for restoring the PMUs in their respective service
areas.

(2) Geographical feasibility for PMU restoration activities:
The area should be divided reasonably for cyber crews to
travel. To this end, the choice should be left to the users of the
proposed algorithm (e.g., grid operators), who can divide the
areas based on their specific transportation conditions and



available resources. The choice of system partitioning by the
users does not affect the general effectiveness and
applicability of the proposed approach.

It is noteworthy that the system is partitioned only to limit
the use of restoration resources within each area, and not to
split the power system into smaller subsystems for
observability analysis. As a result, the produced strategy still
ensures that the entire system will become observable. In this
case, it is possible to run multi-area state estimation for each
partitioned area [21, 22], but it is not required.

Problems (17) — (19) and (23) formulated above can be
readily solved by well-developed MILP algorithms [23-26],
which will not be elaborated here.

Finally, before moving forward to the simulation section, it
should made clear that this paper only addresses scenarios
where PMUs are compromised, and does not address scenarios
where there is a physical system blackout induced by
compromised PMUs. It should be noted that cyber attacks on
PMUs do not necessarily or inevitably lead to physical system
blackouts, for two obvious reasons. (1) Many types of PMU
attacks do not aim to inflict massive physical system blackout.
Denial of service attacks and false data injection attacks may
aim to interrupt system monitoring or create inefficient system
dispatch [27-31]. (2) PMU signals are not directly fed to relay
protection systems. Relay protections have separate sensing
and communication infrastructures which are not likely to be
impacted by PMU data problems. It is certainly possible that
cyber attacks on PMUs may lead to physical system blackouts,
but such scenarios are not covered by this single paper.

IV. SIMULATION RESULTS

In this section, we will illustrate the proposed observability
recovery problems and solution strategies on the IEEE 57-bus
system, and compare the performance of the proposed
optimization approach with two heuristic approaches: random
assignment and the greedy algorithm. These two heuristic
approaches are developed to mimic the possible behaviors of
system operators after cyber attacks on PMUs, as there is no
existing optimization tool for the restoration of the PMUs to
recover the system observability. For random assignment,
random PMUs are selected to be restored at each step. For the
greedy algorithm, the PMUs which provide the greatest
immediate boosts of system observability are selected to be
restored at each step.

A one-line diagram of the IEEE 57-bus system is shown in
Fig. 4; it has 57 buses, 80 branches, 7 generators, and 42
loads. 37 PMUs are installed to make the whole system
observable, with some redundancy. The locations of the
installed PMUs are marked by red circles in Fig. 4.

In order to evaluate the performances of different
approaches, we introduce the concept of observability loss,
which can be defined as the cumulative difference between the
observability levels and the full observability condition over
all time steps before the restoration process is completed. It is
calculated from the area enclosed between the observability
curve and the full-observability line for a specific restoration
process. Specifically, we define three indices, R, S, and T, to
represent observability losses.
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Fig. 4. IEEE 57-bus test system

For the restoration strategy that maximizes the number of
observable buses, i.e., the solution to problem (17), the
observability loss can be calculated by subtracting the number
of observable buses at each step from the total number of
buses 7 and then taking the summation:

k
R=) (n-p'y").
Jj=1

In the same way, for the restoration strategy that maximizes
the number of observable branches, i.e., the solution to
problem (18), and the restoration strategy that maximizes the
amount of observable power, i.e., the solution to problem (19),
the observability loss indices can be calculated as

k
S =Z(m—qrz”))

J=1

(24)

(25)
and

k
T=Y(s—f"z" -gu), (26)
Jj=1
respectively, where m is the number of branches and s is the
total amount of apparent power.

In addition, we define two more indices, F, and H, to
evaluate the performance of different restoration strategies,
which represent the number of steps required to reach half
observability level and the number of steps required to reach
full observability level, respectively.

In order to solve the MILP problems (17) - (19) and (23),
MATLAB 2019b is used to conduct the following simulation
cases. Besides MATLAB, any other commercial software with
an MILP solver can be used to solve the problems.

A. Maximization of the Number of Observable Buses

Using the system topology and PMU configuration shown
in Fig. 4, we simulate the restoration process after all the
available PMUs are compromised. Fig. 5 shows the
comparison between the observability restoration curves of the
optimized strategy, the greedy strategy, and the random
strategy when the resources are limited to restoring 1 PMU per
step. For the simulation cases, the weight vectors are
considered as vectors with all 1s, which yields the factor that
all the PMUs are of equal importance. As the random
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Fig. 5. Observability recovery processes (maximizing number of observable
buses, 1 PMU/step)

Fig. 6. Observability recovery processes (maximizing number of observable
buses, 5 PMUs/step)

assignment and the greedy algorithm both involve random

procedures (for the greedy algorithm, when there are multiple
PMUs that provide the same immediate boost of observability,
they will be selected randomly), more than one possible PMU
restoration sequence can be obtained. For that reason, the
results for random assignment and greedy algorithm are
generated 10 times, and averages of the results are taken to
compare with the proposed optimized strategy. From Fig. 5, it
can be seen that both the random strategy and the greedy
strategy take 37 steps to make all the buses observable,
whereas the optimized strategy takes only 20 steps to make all
the buses observable. Although the random strategy takes the
same number of steps as the greedy algorithm to complete the
restoration, during the restoration process, the random strategy
makes fewer buses observable than the greedy strategy in each
step; this can be seen from the fact that the random-strategy
curve is lower than the greedy- strategy curve throughout the
entire restoration process. The optimized strategy outperforms
all samples of the heuristic strategies. In particular, the curves
of the optimized strategy and greedy strategy remain close at
the beginning, but they gradually deviate from each other,
with the curve of the optimized strategy being higher. This
owes to the fact that the optimized strategy is obtained by
treating the multi-step process as a global problem, whereas
the greedy algorithm seeks a local optimum step by step,

Fig. 7. Observability recovery processes (maximizing number of observable
branches, 1 PMU/step)

Number of Steps

Fig. 8. Observability recovery processes (maximizing number of observable
branches, 5 PMUs/step)

yielding an overall solution for the entire
restoration process.

We also examine the case where there are sufficient
resources to restore 5 PMUs per step, and compare the results
of the three algorithms, as shown in Fig. 6. In this case, we can
see that both the random assignment and the greedy algorithm
take more steps than the optimization algorithm to make all
the buses observable. If we compare the curves of the greedy
strategy for this case and for the previous case, it can be found
that the greedy strategy falls behind the optimized strategy
even from the first step. The reason is that as the number of
PMUs to be restored at each step increases, the number of
combinations of candidate PMUs increases drastically. As a
result, it is not feasible to check the exact observability boosts
for all the combinations, but instead, it is only practical to
evaluate the summation of observability boosts brought about
by each member of a combination. Since there might be
overlapping buses that multiple candidate PMUs make
observable simultaneously, this selection algorithm cannot
exactly find the candidate combination that gives the greatest
boost of observability as a whole for the given step. The
optimized strategy, on the other hand, is always able to select
the combination that is most beneficial for improving system
observability.

For a quantitative comparison between different strategies,
the observability loss indexes, R, for the cases of 1 PMU per

suboptimal



Number of Steps

Fig. 11.  Observability recovery processes (maximizing amount of

observable power, 5 PMUs/step)

Number of Seps

Fig. 12.  Observability recovery processes (maximizing amount of
observable power, 5 PMUs/step, 25% PMUS initially intact)

step and 5 PMUs per step are shown in Table 1. The
“random,” “greedy,” and ‘“optimized” columns present the
values of the observability loss index for those respective
strategies. We also evaluate the percent reduction of
observability loss index R brought about by the optimized
strategy with respect to the random strategy (the “random vs.
optimized” column), and with respect to the greedy strategy
(the “greedy vs. optimized” column). For example, for the
case of 5 PMUs per step, the optimization algorithm reduces
observability losses by 36.89% and 15.89% relative to the
random and greedy strategies, respectively.

TABLE I
OBSERVABILITY LOSS COMPARISON FOR BUS AND
BRANCH INDICES
. Optimized Optimized
Rand. | Greedy | Optimized vs. Rand. vs. Greedy
Observable Loss Index R
! gzgj/ 7022 | 4835 | 4445 -36.70% -8.01%
> I;IEES/ 1434 107.6 90.5 -36.89% -15.89%
Observable Loss Index S
! gzgj/ 12229 | 894 678 44.56% | -24.16%
> I;IEES/ 245.5 186.1 137 -44.2% -26.38%

Fig. 9. Observability recovery processes (maximizing amount of observable
power, 1 PMU/step)

Fig. 10.  Observability recovery processes (maximizing amount of
observable power, 3 PMUs/step)

B. Maximization of the Number of Observable Branches

We also consider the case where the number of observable
branches is taken as the metric for observability. Fig. 7 and
Fig. 8 illustrate the simulation results for the three different
algorithms, considering 1 PMU and 5 PMUs to be restored per
step, respectively. All the curves of the random and greedy
strategies are below the curves of the optimized strategy. For a
better comparison, observability loss indexes, S, for the three
algorithms are listed in Table 1. It can be seen that the
optimized strategy performs far better than the heuristics.

C. Maximization of the Observable Amount of Power

For the case of maximizing the amount of observable
power, we simulated 4 cases: restoring 1 PMU, 3 PMUs and
5 PMUs per step after a full observability blackout, and
restoring 5 PMUs per step after a partial (75%) observability
blackout.

Figs. 9, 10, and 11 illustrate the cases of restoring 1 PMU,
3 PMUs and 5 PMUs per step, respectively, after a full
observability blackout. The results for the case of 1 PMU per
step are particularly interesting: compared with the optimized
strategy, the greedy strategy brings slightly higher
observability to the system during the first 3 steps, but starts
to fall behind after the 4th step. Finally, the optimized
algorithm achieves a much better performance over the entire
restoration process compared to the greedy algorithm. Again,
this owes to the fact that the greedy algorithm is only able to



plan one step ahead instead of handling the problem in a
global fashion. For the cases of 3 and 5 PMUs per step, the
advantage of the proposed optimized strategy is even greater.

D. Maximization of the Amount of Observable Power

Comparing the results of maximizing observable power
with the results of maximizing observable buses or branches,
it can be found that curves for power are initially steeper; then,
after several steps, they become “saturated.” In contrast, the
curves for the observable bus and the observable branch cases
have relatively more stable slopes throughout the restoration
processes. The reason is that each bus is typically connected to
a limited number of buses and branches, and restoring one
PMU cannot make a very large number of buses or branches
observable. On the other hand, certain buses may have a very
large amount of power flowing through them. As a result, with
recovery of the observability of a bus handling a large amount
of power, the curve will rise very quickly. After buses of this
type are exhausted, the rate of recovery in terms of observable
power will become slower.

We consider a case of partial blackout where 25% of the
PMUs remain intact after the disaster, and 5 PMUs can be
restored per step. As a result, 716.9 kVA of power is initially
observable, and the observability of the remaining 3161.1

kVA of power needs to be recovered. As is apparent in Fig.
12, the optimized strategy completes observability recovery
after 3 restoration steps, whereas the greedy and random
strategies take 6 and 7 steps, respectively.

The observability loss indices 7 for the random, greedy, and
optimized strategies are listed in Table II. Again, remarkable
reductions of observability losses can be achieved by using the
optimized strategy.

The half observability level indices F and the full
observability level indices H for the random, greedy, and
optimized methods are shown in Table III for comparing the
different methods quantitively. It can be concluded from the
comparisons that the proposed optimized algorithm recovers
the full observability of the power system more rapidly than
the heuristic methods.

E. Maximization of the Amount of Observable Power in
Multiple-area Power Systems

We consider a case where the power system is partitioned
into four areas, and the observability metric is the amount of
observable power. For each area, the number of resources that
can be used per restoration step are limited such that three
areas can restore 1 PMU per restoration step, and the
remaining one can restore 2 PMUs per restoration step. The

TABLE II simulation results of the the three strategies without
OBSERVABILITY LOSS COMPARISON FgR,P Q“;ER H\(])DE,X, - partitioning and with partitioning are shown in Fig. 13. As can
Rand. | Greedy | Optimized | OPUMize ptimize be seen from the figure, all strategies perform better without
vs. Rand. vs. Greedy
Full Blackout
—F P S g s % * < *
! g\é{:/ 54437 24757 19177 -64.77% -22.54% r s - - b
L o T ’ﬂ’/" 4
3/12:255 20682 | 93596 | 6546.9 -68.35% -30.05% L/ s |
> f;\gg“ 12415 | 6781.1 | 4101.9 -66.96% | -39.51% | y/ |
Partial Blackout (75%) | 4 J
> 12:255/ 6848.4 2944.5 1360.5 -80.13% -53.80% [ v,l'!‘,r"’ /’/ 7
TABLE III N/ ]
TIME TO REACH HALF OBSERVABILITY AND FULL [’rl V/
OBSERVABILITY K /‘
- Optimized Optimized 7/
Rand. Greedy | Optimized vs. Rand. vs. Greedy 1
Half Ob. bility Index F for 1 PMU/St
alf Observability Index £ for UlStep Fig. 13. Observability recovery processes (maximizing amount of
Bus 10 7.2 7 -30% -2.78% observable power, 5 PMUs/Step, system partitioned into 4 areas)
Branch 14 10.5 7.8 -44.29% -25.71%
Power 12 33 32 -73.33% -3.03% i ]
Full Observability Index H for 1 PMU/Step r
Bus 37 37 20 -45.95% -45.95% F
Branch 37 37 20 -45.95% -45.95% i
Power 37 32 20 -45.95% -37.5% i
Half Observability Index F for 5 PMUs/Step i
Bus 2.2 1.65 1.5 -31.82% -9.09% r
Branch 2.8 2.2 1.6 -42.86% -27.27% F
Power 2.8 0.9 0.7 -75% -22.22% L
Full Observability Index H for 5 PMUs/Step N
Bus 8 7 4 -50% -42.86%
Branch | 8 8 4 -50% -50%
rane ? ° Fig. 14. Observability recovery processes (maximizing number of
Power 3 8 4 -50% -50% observable buses, 5 PMUs/step, 20 essential PMUs for heuristic methods)




partitioning compared to the respective curves with
partitioning, which indicates that a slower restoration process
will result after partitioning the system. This is because the
algorithms are now forbidden to move restoration resources
between different areas, which results in a local optimum
within each area instead of a global optimum for the entire
power systems. Under such condition, the optimized strategy
is still able to improve the system observability upon the
random and the greedy strategies.

F. Maximization of the Number of Observable Buses with
Minimal Number of Candidate PMUs

The previous cases show the situation where the heuristic
approaches do not have a priori knowledge about global
system observability. Finally, we will examine the case where
the greedy and random strategies have the a priori information
of a minimum set of PMUs which can maintain system
observability. With such knowledge in advance, the
restoration process would be faster, in that all resources will
be allocated to restore the PMUs belonging to this minimum
set. The simulation results of this situation are shown in Fig.
14. In this case, it is assumed that 5 restoration resources can
be used in each step, and a minimum set of PMUs which can
recover full system observability, which obtains 20 PMUs s, is
found prior to the performing the greedy and random
algorithms. From the observability curves shown in the figure,
it is evident that although the number of steps required for all
three strategies are the same (4 steps), the optimized strategy
is still performing better than the heuristics strategies by
optimal decision on the sequence of PMU restoration
activities, which gains the highest level of observability during
the restoration process.

V. CONCLUSION

In this paper, we develop the concept of observability
recovery for power systems measured by PMUs after
disastrous scenarios such as massive cyber attacks. We
formally formulate the observability recovery (PMU
restoration) problem as a MILP problem, and consider
different objective functions for quantifying system
observability level. The solution to the optimization problems
will provide the locations of PMUs to be restored in a
sequential manner, which will make the system reach a high
observability level within a short period of time.

Through simulation results on the IEEE 57-bus system, we
demonstrate that solving the formulated MILP problem
provides the optimal strategy for the restoration process,
which outperforms two heuristic methods, i.e., the greedy
algorithm and random assignment methods.

The proposed algorithm can help recover the observability
of the power system after cyber infrastructures of power
systems are severely compromised, eventually helping to
improve grid-wide situational awareness and the cyber-
physical resilience of power systems.

Based on this work, one of the future research directions is
the coordinated modeling of power networks and
transportation networks, such that detailed models for the
traveling of rescue teams between PMU locations can be
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accurately developed. Other important research topics for the
future are to address both the cyber and physical power system
restorations coordinately and to consider the detailed cost of
PMU restoration.
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