

1

Bayesian Accuracy Analysis of Stochastic Circuits

Timothy J. Baker and John P. Hayes
Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, 48109

{bakertim, jhayes}@umich.edu

ABSTRACT

Understanding accuracy and the tradeoffs it entails is key to

evaluating the growing list of stochastic computing (SC) circuit

designs. Due to shortcomings of current SC error theory,

simulation has become the standard way to estimate a circuit’s

accuracy. However, simulation can demand large

computational resources and lead to uncertain, misleading, or

unexplainable results. A soundly based analytic approach is

therefore preferable to simulation. In this work, we first show

the input value distribution’s large influence on circuit

accuracy. Then we develop a Bayesian error analysis

methodology which uses the input value distribution as a prior

to inform better accuracy estimates. This error formulation

introduces concepts new to SC such as estimator dominance

and points to ways of improving simulation-based accuracy

estimates. Orthogonal to the Bayesian ideas, we also show how

to use bias-variance decomposition to simplify and aggregate

the effects of SC’s many error sources. We present techniques

that use the beta distribution to model the stochastic number

value distribution. Finally, we demonstrate the use of these

ideas to improve the accuracy and analysis of an SC-based

neural network.

KEYWORDS

Stochastic computing, Bayesian analysis, beta distribution, bias-

variance decomposition, error analysis, neural networks

1 Introduction

Stochastic computing (SC) is a form of approximate computing that

employs bit-streams known as stochastic numbers (SNs) to

represent data [2][9]. The key parameter of an N-bit SN 𝐗 =

𝑥1𝑥2 … , 𝑥𝑁 is 𝑝𝑥, the probability that an arbitrary bit in X is 1. X’s

value 𝑋 is determined by 𝑝𝑥 and by the chosen SN format. The

basic (unipolar) format defines 𝑋 = 𝑝𝑥 and allows for very simple

arithmetic computing elements. Consider an AND gate with two

uncorrelated N-bit inputs, X and Y and output Z. The AND gate’s

functionality implies that 𝑝𝑧 = 𝑝𝑥𝑝𝑦 which makes 𝑍 = 𝑋𝑌, so the

Figure 1: Simulated error 𝑍̂ − 𝑍∗ (solid black line) for an AND-gate

multiplier with inputs X, Y and SN length N = 64. 𝑋 is set to 0.7 and Y is

randomly sampled with the indicated PDFs (dashed lines). MSE = 0.00382

with PDF1 (red); MSE = 0.00228 with PDF2 (blue).

AND gate serves as a SN multiplier. An important caveat is that 𝑍

is not available directly, but instead must be estimated by observing

the AND gate’s output bit-stream 𝐙 = 𝑧1𝑧2 … 𝑧𝑁 . The usual and

most straightforward estimator 𝑍̂ of Z is defined as the number of

1s in Z divided by Z’s length, i.e., 𝑍̂ =
1

𝑁
∑ 𝑧𝑖

𝑁
𝑖=1 .

In general, SN error is associated with some difference between the

estimator 𝑍̂ and 𝑍∗ the exact or target output value. Errors arise

from a variety sources including random fluctuations of the SN bits

and unwanted correlations between them [1][6]. Most error sources

can be mitigated by increasing SN length N or by using higher

quality SN generation. However, such simple approaches tend to

increase latency exponentially or require large amounts of extra

hardware. Thus, for cost-effective error mitigation, it is essential to

better understand accuracy-latency and accuracy-area tradeoffs.

Key to this understanding is the biggest, but somewhat subtle,

influencer of error⎯the value distribution of the input SNs. This

influence is evident in the variance of an N-bit SN X which, for a

binomial distribution of 0s and 1s, is X(1 − X)/N and varies from

0.0 when X = 0 or 1, to 0.25/N when X = 0.5. This implies that,

assuming Z is binomially distributed, an AND multiplier’s output

error is a maximum when Z = XY is near 0.5, and a minimum when

XY is near 0.0 and 1.0, as is readily verified experimentally.

Example 1: Consider an AND gate multiplier with two

uncorrelated N-bit input bit-streams X, Y and output bit-stream Z.

To gain a better sense of the influence of the input value distribution

(IVD) on the multiplier’s average error, we simulated it for N = 64

with one input value X held fixed and the other input Y assigned

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

ICCAD ’20, November 2–5, 2020, Virtual Event, USA © 2020 Association for

computing Machinery. ACM ISBN 978-1-4503-8026-3/20/11…$15.00

https://doi.org/10.1145/3400302.3415703

mailto:Permissions@acm.org

2

various possible probability density functions (PDFs). Fig. 1 shows

a typical set of results. For each simulation run, 𝑋 was set to 0.70

and 𝑌 was chosen randomly from the unit interval [0.0, 1.0]

according to two different PDFs, which are shown by dashed lines

in Fig. 1. PDF1 (red) is a peaked IVD centered at 0.70 while PDF2

(blue) is a U-shaped IVD with most of its density concentrated near

0.0 and 1.0. If R is the number of simulation runs (50,000 in the

case of Fig. 1) and 𝑍̂𝑖 is Z’s estimated value during run i, the mean

squared simulation error defined by

 MSE =
1

𝑅
∑ (𝑍̂𝑖 − 𝑍)

2𝑅
𝑖=1 (1)

is 3.82 × 10−3when using PDF1 to choose values for 𝑌. However,

it is 2.28 × 10−3 (40% lower) when using PDF2 to choose values

for 𝑌.

This large difference in error is due to PDF2’s more favorable IVD

for 𝑌. PDF2 is higher for Y values that result in very low

multiplication error while PDF1 has more density for 𝑌 values that

result in high error. Thus, the circuit is more accurate on average

when 𝑌 is drawn from PDF2. Evidently, 𝑌 ’s PDF exerts a large

influence on the average output error. This leads to an important

conclusion: having knowledge of the IVD enables a better

understanding of average accuracy which can lead to a more

informed choice about SN length and thus circuit latency. For

instance, in this particular example, SN length could be set as low

as 39 bits if 𝑌 is known to be distributed as in PDF2 and the average

error would still be less than the average error when 𝑌 is distributed

according to PDF1.

Several studies have derived error as a function of input values

[3][4][6][15][16]. For example, Ex. 1’s multiplication MSE for N-

bit binomially distributed input SNs can be shown to be 𝑋𝑌(1 −

𝑋𝑌)/𝑁. However, the impact of the SN IVD on average error has

not been rigorously considered in previous SC error analyses, but

it has very significant design implications. As Ex. 1 shows, when

the input SNs’ PDFs are favorable, bit-streams can be shortened

and still meet a given accuracy threshold. Another place where the

IVD is important is in constructing simulation experiments and

interpreting simulation results.

Due to shortcomings in SC error theory, simulation has become the

dominant method, and in many cases the only method, to determine

and compare the accuracy of different stochastic designs. To

simulate a circuit, SN values must be chosen, and this choice

implicitly defines the IVD. Simulation accuracy is tied to this

distribution choice, and the conclusions drawn may or may not

remain valid when a different IVD is used.

To illustrate, it seems natural (and inconsequential) when

performing simulation experiments to choose random SN values

that are uniformly distributed, i.e., each SN value has the same

probability of being selected. However, many real-world

applications of SC, such as image processing, involve data that is

far from uniform. A case in point is the MNIST database of

handwritten characters which consists of thousands of images in the

form of 28 × 28 arrays of grayscale pixels, and is widely used as a

benchmark for image classification by neural networks (NNs) [14].

In SC-based image classifiers [8][17], the input SNs have grayscale

values denoting pixel intensity that range from 0.0 (black) to 1.0

(white). The vast majority of these values are close to zero (similar

to PDF2 in Fig. 1) because the corresponding images have a small

pale foreground and large black background. A circuit’s

simulation-based accuracy performance on uniformly random data

may not be representative of how the circuit will perform on

unevenly distributed data such as MNIST. MNIST and SC-based

NNs are further explored in Sec. 5.

To develop a quantitative understanding of how knowledge of the

IVD impacts accuracy, we introduce a new Bayesian formulation

of SC accuracy (which should not be confused with recent,

unrelated work on the use of SC-based hardware to implement

Bayesian inference [7]). A central idea in Bayesian probability

theory is the use of prior knowledge, as in Bayes’ theorem [10]

 𝑃(𝐻|𝐷) = 𝑃(𝐷|𝐻)𝑃(𝐻) 𝑃(𝐷)⁄ (2)

where, for instance, 𝐻 might be an error hypothesis and 𝐷 might be

some data influencing belief in the hypothesis H. Eq. (2) indicates

how the prior probability or belief 𝑃(𝐻) in H directly affects the

posterior belief 𝑃(𝐻|𝐷) in the hypothesis given the data. Our

analysis is Bayesian in the sense that it uses the IVD as informative

prior data to better estimate overall error in a stochastic circuit.

 Orthogonal to its application of Bayesian ideas, this paper aims to

improve the analytic approach to SC error measurement when input

values are known. It does so by grouping errors into systematic and

random types and using bias-variance decomposition of mean

squared error. The result is a consistent methodology to compute

the error of a stochastic circuit. This loosens dependence on

simulation to measure accuracy and enables a better understanding

of accuracy trade-offs.

The main contributions of this work are:

1. A general Bayesian formulation of stochastic circuit accuracy

that identifies limitations of current simulation approaches and

suggests ways to improve them.

2. Introduction of bias-variance decomposition and the beta

distribution to SC error analysis and their use to simplify SC

and improve accuracy measurement.

3. Application of the forgoing ideas to accuracy analysis of SC-

based NNs.

This paper is organized as follows. Sec. 2 reviews relevant

background related to SC and probability theory, while Sec. 3

details a new Bayesian formulation of stochastic circuit accuracy.

Sec. 4 then introduces techniques to model input value distribution.

Finally, Sec. 5 gives a case study demonstrating the usefulness of

these ideas.

2 Background

Here we review relevant concepts in SC, including basic

component types and error analysis from an accuracy perspective.

2.1 SC Components

A compelling feature of SC is the simplicity of its basic arithmetic

components [2][9]. For example, AND gates function as unipolar

multipliers. (Henceforth, we will assume that only unipolar format

is used, but all this paper’s results can easily be modified to apply

to bipolar SNs.) Fig. 2 shows two other basic components which

3

 Z = X + Y - XY
X

Y

X

Y

 Z = 0.5(X + Y) Mux

0.5 (b)(a)

R

B

LFSR

Base-2

number B

Stochastic

bit-stream Xn

n

Comparator

R< B

Pseudo-random number R

Counter B
n

X

(d)(c)

Figure 2: SC adders and data conversion: (a) OR gate computing the sum

X + Y − XY; (b) mux computing the sum 0.5(X + Y); (c) stochastic number

generator (SNG); (d) counter serving as a stochastic-to-binary converter.

function as SC adders; note their different ways of confining the

sum Z to the unit interval. The OR gate is a biased adder computing

𝑍 = 𝑋 + 𝑌 − 𝑋𝑌, while the multiplexer (mux) serves as a scaled

adder that computes 𝑍 = 0.5(𝑋 + 𝑌).

Fig. 2 also shows two basic circuits used for data conversion in SC.

The SN generator (SNG) converts an n-bit binary number B to an

N-bit stochastic bit-stream X of value B/2n; the counter estimates

X’s value. The SNG contains a pseudo-random number source

(RNS), which typically consists of an n-bit linear feedback shift

register (LFSR) that outputs an integer in the interval (0, 2𝑛−1]

each clock cycle as it traverses its 2n – 1 states. Since an LFSR lacks

the all-0 state, it never outputs the integer zero, which imposes a

small bias on X’s value.

2.2 SC Errors

Errors in stochastic circuits come from many sources. Due to the

discrete nature of digital computers, stochastic circuits incur errors

from function approximation and quantization in a similar manner

to traditional binary computing. Two other error sources unique to

stochastic computing are correlation and random fluctuation errors.

Figure 3: Visualization of bias-variance decomposition for an OR-gate

adder with inputs X, Y, output Z and SN length N = 32. 𝑌 is set to 0.2 and

plotted quantities are in terms of X. Standard deviation is the square root of

variance.

Approximation error is the difference between the target function

and the function implemented by the circuit. Approximating a

target function can help simplify hardware if the approximating

function is simpler than the target function or it can enable

reconfigurable architectures where target functions must be

approximated by a given functional form, such as a Bernstein

polynomial [18]. Quantization error is due to the limited precision

of SNGs. For example, a 4-bit SNG can only generate SNs with

values {0,
1

16
,

2

16
, … , 1} and so an input SN with target value

7

64

must be quantized to either
1

16
 or

2

16
 .

Another error source is unwanted correlations. Most SC circuits are

designed assuming that all input SNs are independent. In practice

though, the input SNs may be correlated thus changing the circuit’s

expected output and introducing error [1][6]. Sometimes

correlation is helpful. For example, in [3] it is shown that, contrary

to expectation, suitably correlating the input SNs to a mux adder

can improve accuracy.

To summarize, approximation, correlation, and quantization all

affect the accuracy of a circuit; in other words, they change the

circuit’s expected output value. These errors are systematic and can

be controlled or eliminated by careful design. They can also be

grouped together under the single concept of circuit bias. In

addition to systematic errors, there are errors due to the stochastic

or probabilistic nature of the input signals. These are independent

of the circuit itself and may be termed random errors. They are

characterized by properties like expected value and variance and

are addressed by statistical analysis and simulation.

3 Stochastic Circuit Accuracy

Stochastic circuits can be viewed as estimators of a target value.

Through this lens, results and insights from statistical estimation

theory can be used to improve the circuit design process. In many

estimation problems, the random data source is fixed, and the goal

is to derive an optimal estimation function that maps data to an

estimate of the target value. In stochastic circuit design, we have

the reverse situation. The estimation function is fixed (e.g., for

unipolar output, it is the frequency of ones in the output) and the

goal is instead to optimize the statistical properties of the output bit-

stream which serves as the random data source.

In general, estimation error is defined as

 ϵ = 𝑍̂ − 𝑍∗ (3)

where 𝑍̂ is the circuit’s estimate for the designer’s target value 𝑍∗.

A cost or loss function 𝐿(𝜖) can be used to determine the severity

of estimation error. No standard cost function exists for SC, but

𝐿(𝜖) = 𝜖2 (quadratic error) and 𝐿(𝜖) = |𝜖| (absolute error) are

common. We focus on quadratic cost due to its useful bias-variance

decomposition, but the following formulation, especially (4) and

(8), can readily be framed in terms of other cost functions.

For consistency with Bayesian theory, from here on we will treat

the unipolar value 𝑋1 = 𝑝𝑥, of an SN X1 as a random variable. The

vector of input values to an 𝑀-input circuit is denoted by 𝓧 =
[𝑋1, 𝑋2, … , 𝑋𝑀] and is treated as a random vector. X and 𝓧 should

not be confused: the SN X is a random vector of bits, while 𝓧 is a

random vector of SN values. An outcome of 𝓧 is denoted as 𝔁.

4

3.1 General Error Formulation

Consider an M-input stochastic circuit 𝐶 with random target input

values 𝓧 = [𝑋1, 𝑋2, … , 𝑋𝑀] and target function 𝑍∗ that maps 𝓧 to

a real number. 𝐶 produces an N-bit output SN 𝐙 = 𝑧1𝑧2 … 𝑧𝑁 from

which an estimator 𝑍̂ for 𝑍∗ is derived. The mean squared error

(MSE) of 𝑍̂ given the input values, 𝓧, is defined as

 MSE(𝑍̂, 𝑍∗|𝓧) = 𝔼 [(𝑍̂ − 𝑍∗(𝓧))
2

|𝓧]. (4)

In standard statistical analysis [12], the MSE of an estimator such

as 𝑍̂ can be decomposed into a combination of the estimator’s

variance and bias:

 MSE(𝑍̂, 𝑍∗|𝓧) = Var(𝑍̂|𝓧) + Bias(𝑍̂, 𝑍∗|𝓧)
2
 (5)

where

 Var(𝑍̂|𝓧) = 𝔼 [(𝑍̂ − 𝔼[𝑍̂|𝓧])
2

|𝓧] (6)

 Bias(𝑍̂, 𝑍∗|𝓧) = 𝔼[𝑍̂|𝓧] − 𝑍∗(𝓧). (7)

Example 2: The foregoing bias-variance decomposition is

illustrated in Fig. 3 which considers the use of an OR gate as an

adder to approximate 𝑍∗ = 𝑋 + 𝑌, as in Fig. 2a. Here, 𝑍̂’s expected

value 𝔼[𝑍̂|𝓧] = 𝑋 + 𝑌 − 𝑋𝑌 and 𝑍∗ are plotted against 𝑋 when

𝑌 = 0.20 . 𝑍̂ ’s variation is also shown. The difference between

𝔼[𝑍̂|𝓧] and 𝑍∗ is 𝑍̂’s bias (7) which, in this case, is 𝑋𝑌 = −0.2𝑋.

Bias measures 𝑍̂’s systematic error with respect to approximating

𝑍∗. The amount that 𝑍̂ fluctuates around its expected value is 𝑍̂’s

variance (6), which measures 𝑍̂’s random error and is completely

independent of 𝑍∗. Note that the bias and variance depend on the

input values. Sometimes bias is larger than standard deviation (the

square root of variance) and sometimes the reverse is true. This is

visualized in Fig. 3.

In the standard estimation theory embodied in (4), the target

parameter 𝑍∗ is treated as a deterministic but unknown constant.

But, as we now show, it can be very useful to view it as a random

variable whose realization we must estimate. To handle this

situation, a Bayesian approach is employed where 𝑍∗’s distribution

(or a related one) serves as a prior and the error conditioned on 𝑍∗

(or a related variable) is computed.

As Ex. 1 suggests, in SC 𝓧 is generally a random vector whose

distribution is application dependent. The target value 𝑍∗ is also

random due to its dependence on 𝓧, making a Bayesian approach

to error analysis appropriate. Instead of using 𝑍∗′𝑠 distribution as a

prior, 𝓧 ’s distribution will be used since error is normally

expressed in terms of input values. If our goal is to compute average

error, then Bayes mean square error (BMSE) [12] denoted

 BMSE(𝑍̂, 𝑍∗) = 𝔼[MSE(𝑍̂, 𝑍∗|𝓧)] (8)

can be used where the expectation is taken with respect to 𝓧 .

Intuitively, BMSE is a weighted sum where the summands are

MSE values given 𝓧 = 𝔁 (for all valid 𝔁) and the weights are 𝓧’s

probability mass or density function evaluated at 𝔁. The advantage

of BMSE is that it measures the expected estimation error of a

circuit before the input values are known. Combining Eqs. (5) and

(8), BMSE can also be written as a bias-variance decomposition

 BMSE(𝑍̂, 𝑍∗) = 𝔼[Var(𝑍̂|𝓧)] + 𝔼 [Bias(𝑍̂, 𝑍∗|𝓧)
2

]. (9)

BMSE is well-known in estimation theory [12] and, as we show in

this paper, it is a natural choice of error metric for SC. In fact,

although not mentioned by name, it is what many simulation

studies in SC already measure [4][11][18]. These studies begin by

defining a rule for sampling circuit input values (e.g., the inputs are

set to some fixed values like 0.0, 0.1, 0.2, 0.3, …, 1.0, or else they

are randomly chosen from some fixed range). This step implicitly

defines the distribution of 𝓧. Then for each set of input values, 𝔁,

the circuit is simulated and the resulting error is measured many

times thus producing estimates for MSE(𝑍̂, 𝑍∗|𝓧 = 𝔁) . The

estimated MSE values for the 𝔁′s are then averaged to produce a

metric that represents the circuit’s inherent accuracy. This metric is

precisely an estimate for the circuit’s BMSE. If another cost

function is used in place of MSE, such as mean absolute error, this

simulation approach is said to compute a Bayesian risk, a term that

is more general than BMSE [12].

3.2 Comparing Circuit Accuracy

One way to compare two circuits’ accuracy is by comparing their

BMSEs, e.g., by computing the difference or ratio of the BMSEs.

A somewhat limiting factor, though, is that BMSE depends on the

IVD so one circuit may have a lower BMSE than another circuit for

some IVDs, but not for others. This points to a major potential

problem with current simulation approaches in SC. In many cases,

only one method of choosing input values is used and thus only one

input distribution is implicitly chosen. Thus, one BMSE per design

is calculated and compared, but the comparison may not generalize

well to other input distributions.

In some cases, however, it may be that one circuit is never less

accurate (in terms of BMSE) than another circuit. This leads to the

notion of estimator dominance. Formally, we say an estimator 𝑍̂1

dominates another estimator 𝑍̂2 with respect to estimating 𝑍∗ if

MSE(𝑍̂1, 𝑍∗|𝓧 = 𝔁) < MSE(𝑍̂2, 𝑍∗|𝓧 = 𝔁) for at least one valid

value 𝔁 , and MSE(𝑍̂1, 𝑍∗|𝓧 = 𝔁) ≤ MSE(𝑍̂2, 𝑍∗|𝓧 = 𝔁) for all

other values of 𝔁. In other words, 𝑍̂1 dominates 𝑍̂2 when 𝑍̂1is more

accurate for at least one input combination 𝔁 and no less accurate

than 𝑍̂2 for all other input combinations, where accuracy is

measured by MSE. (Dominance can also be phrased in terms of

other cost functions.) The following result considers the case where

two distinct estimators 𝑍̂1 and 𝑍̂2 are derived from circuits with

input 𝓧 and the same target function 𝑍∗.

Theorem: If 𝑍̂1 dominates 𝑍̂2 then 𝑍̂1 never has a greater BMSE

than 𝑍̂2 for any distribution of 𝓧.

The theorem follows from the fact that BMSE is computed as a

weighted sum of MSEs where all weights are positive and, in

addition, the fact that 𝑍̂1 ’s MSE never exceeds 𝑍̂2 for any set of

input values due to the definition of dominance. It implies the

usefulness of proving dominance between estimators of two SC

circuits. When a circuit’s estimator dominates another circuit’s

estimator, then the former circuit is always at least as accurate as

the latter circuit for any IVD.

5

3.3 Implications for Simulation Error Analysis

The foregoing formulation for SC errors points to two important

considerations for error analysis. The first is that multiple IVDs

should be considered when accessing the accuracy of a circuit

design. These IVDs should be representative of data in the

application domain of the circuit, or, in the case of general designs,

should represent a variety of different distributions. The beta

distribution presented in Sec. 4 and visualized in Figs. 1 and 5 can

be useful for constructing and fitting input distributions with a

variety of shapes. Alternatively, multiple datasets can be used to

assess a circuit’s accuracy (each dataset represents an IVD). In Sec.

5, we show an example where an SC-based neural network (NN) is

evaluated using two datasets. We will see that their differences lead

to strikingly different BMSEs.

The second consideration is that there are various ways to compute

BMSE for a given IVD 𝑓𝓧 depending whether the expected circuit

output value 𝔼[𝑍̂|𝓧] and variance Var(𝑍̂|𝓧) are known. There are

several possibilities. For example, if both 𝔼[𝑍̂|𝓧] and Var(𝑍̂|𝓧)

are known, then bias can be found from (7) and BMSE from (9). If

both are unknown, simulation and sampling can be used to

estimate BMSE.

Example 3: Consider again the OR-gate adder of Fig. 2a and Ex. 2

that uses 32-bit SNs and fixes 𝑌 to 0.2. The MSE of this circuit

assuming that 𝑋’s value is uniformly sampled from the unit interval

[0,1] can be found via simulation. Each simulation run, 𝑋 is

sampled randomly from [0,1] and the OR gate adder is simulated

with 𝑋 and 𝑌 = 0.2. The squared output error is recorded and then

averaged across all 10,000 simulation runs to estimate MSE as in

(1). In our experiment, we measured MSE = 0.0190.

According to analysis presented in Sec. 3.1, this MSE found using

simulation is a Bayesian MSE and it can be found analytically using

(9). To do this, the circuit’s bias, variance and IVD must be

determined as functions of 𝑋 . Then integration can be used to

calculate BMSE. The bias of the OR gate adder with 𝑌 = 0.2 is

−𝑋𝑌 = −0.2𝑋. While the variance is

 Var(Ẑ|𝓧) =
(𝑋+𝑌−𝑋𝑌)(1−(𝑋+𝑌−𝑋𝑌))

𝑁
 (10)

where 𝑁 is the SN length [16]. This simplifies to (−0.64𝑋2 +

0.48𝑋 + 0.16)/32 since 𝑌 = 0.2 and 𝑁 = 32 for this example.

Finally, since 𝑋 is sampled uniformly from [0,1], 𝑋’s probability

density is 𝑓𝑋(𝑥) = 1 for 0 ≤ 𝑥 ≤ 1 and 𝑓𝑋(𝑥) = 0 otherwise.

Eq. (9) can be re-expressed as

 BMSE(𝑍̂, 𝑍∗) = ∫ 𝑓𝓧(𝔁)Var(𝑍̂|𝓧 = 𝔁)𝑑𝔁

 +∫ 𝑓𝓧(𝔁)Bias(𝑍̂, 𝑍∗|𝓧 = 𝔁)
2

𝑑𝔁 (11)

by using the definition of the expectation operator. In this example,

(11) becomes

 BMSE(𝑍̂, 𝑍∗) =
1

32
∫ (−0.64𝑥2 + 0.48𝑥 + 0.16)𝑑𝑥

1

0

 − ∫ (0.2𝑥)2𝑑𝑥
1

0
 (12)

which evaluates to 0.0192 and is in close agreement to the

simulation results.

Both the simulation approach and analytic approach based on (9)

arrived at the same conclusion. The advantage of the analytic

approach is that it is computationally more efficient which is

important for large circuits that have many inputs and thus many

parameters. Furthermore, the analytic approach can grant further

insights. For example, the bias in Ex. 3 is −0.2𝑋 and so we would

expect the circuit to be more accurate when 𝑋 is likely to take small

values and less accurate when 𝑋 is likely to take large values. These

likelihoods are expressed mathematically as the distribution 𝑓𝑋 of

𝑋. In the following section, we introduce ways to model 𝑓𝑋.

3.4 Application of Error Analysis

One key application of error analysis is determining the minimum

latency (or equivalently, the SN length) required to achieve a user-

specified level of accuracy. Since error varies with the circuit’s

input values, latency can be determined in terms of the worst-case

error across any set of input values [16] or in terms of the expected

error by considering the IVD. As we will see, these two approaches

can give significantly different latencies.

The minimum latency required to meet a specified accuracy level

depends on many factors that influence error such as SNG precision

and correlation. For our next example, we assume that there is no

correlation error and SN length is set to 2𝑛, where 𝑛 is the SNG

precision as is typical in SC experiments. Constraining the SN

length to a power-of-two implies that a costly division circuit is not

needed in addition to a counter for output SN value estimation.

Example 4: Consider an AND gate that multiplies two inputs X

and Y which are generated with an n-bit SNG and whose target

values 𝑋∗ and 𝑌∗ are drawn from two independent PDFs and are

rounded to 𝑛 -bit precision by truncation. Therefore, X (Y) is

generated with expected value 𝑋 = ⌊𝑋∗2𝑛⌋/2𝑛 (𝑌 = ⌊𝑌∗2𝑛⌋/2𝑛)

and the bias of the multiplier is 𝑋𝑌 − 𝑋∗𝑌∗. The variance of the

multiplier is 𝑋𝑌(1 − 𝑋𝑌)/𝑁 assuming X and Y are streams of N =

2n independent bits.

Under these assumptions, we derived the BMSE when 𝑋∗ and 𝑌∗

are both independently drawn from either PDF1 or from PDF2 of

Fig. 1 and plotted the results in Fig. 4a. Also shown in Fig. 4a is the

predicted BMSE assuming the worst-case target input values occur

with probability 1 or assuming a uniform distribution of target input

values. The error curve is lowest for the PDF2 case because target

SN values that result in low error occur with high probability. The

opposite situation occurs for PDF1 where the error curve is high

(nearly the worst case) because target SN values that result in high

error occur with high probability. Finally, the average case error

curve falls between PDF1’s and PDF2’s error curve, which

highlights the fact that average case analysis is not representative

of these (and many other) IVDs.

The relationship between error and latency can be used to derive

minimum latency for a given accuracy. For instance, if the target

MSE is 3 × 10−3, then Fig. 4a shows that 32 bit SNs are needed

when 𝑋∗ and 𝑌∗ are drawn from PDF2 whereas 128 bit SNs are

needed in the worst case or when 𝑋∗ and 𝑌∗ are drawn from PDF1.

This factor of 4 difference in required latency demonstrates the

influence that the IVD can have on the error.

A major advantage of an analytic approach over a simulation-based

approach to error analysis is that analysis can provide results that

have better explanations, insights, and confidence levels. For

example, Fig. 4b shows the bias-variance decomposition of MSE

for both the PDF1 and PDF2 case of Ex. 4. It can be seen in both

6

(a)

(b)

Figure 4: BMSE of an AND multiplier with target input values drawn from

either PDF1 or from PDF2. (a) BMSE vs SN length for various IVDs; (b)

Bias-variance decomposition of MSE for two IVDs. Note the log scales.

cases that bias due to quantization error is a small contributor to

MSE compared to variance due to random fluctuations. This

supports the common intuition that quantization error is negligible

for multiplication with long bit-streams.

4 Flexible Input Value Distribution Model

Modeling the input SN value distribution for 𝑓𝓧 requires some

knowledge about 𝓧 in the form of data or in the form of prior

belief. As usual, we assume the unipolar format so that 𝑋 = 𝑝𝑥. We

begin by discussing how to use the beta distribution to model the

value of a single input SN X that has a value 𝑋. We then generalize

to modeling a vector of input values 𝓧. Note that all SN values are

treated as random variables.

4.1 Modeling a Single SN Value

The beta distribution has two shape parameters 𝛼 > 0 and 𝛽 > 0,

and its PDF is defined as

 𝑓𝑏𝑒𝑡𝑎(𝑥|𝛼, 𝛽) =
𝑥𝛼−1(1−𝑥)𝛽−1

B(𝛼,𝛽)
 (13)

where B is the beta function used to normalize the distribution

[10][19]. B can be written in terms of the gamma function, Γ, the

complex-valued generalization of the factorial function:

 B(𝛼, 𝛽) =
Γ(𝛼)Γ(𝛽)

Γ(𝛼+𝛽)
 (14)

The beta distribution is defined on the (0,1) interval if 𝛼, 𝛽 < 1, or

on the [0,1] interval otherwise. It is thus a suitable distribution for

modeling probabilities or, in this case, SN values.

Figure 5: Beta PDFs for various alpha and beta values. If alpha and beta

are swapped, the corresponding PDF is reflected around x = 0.5.

Fig. 5 shows the versatility of the beta distribution as 𝛼 and 𝛽 vary.

The PDFs in Fig. 1 are also beta distributions where PDF1 has 𝛼 =

16, 𝛽 = 8 and PDF2 has 𝛼 = 0.5, 𝛽 = 0.8. The expected value and

variance of the beta distribution are

 𝔼[𝑋] =
𝛼

𝛼+𝛽
 (15)

 Var(𝑋) =
𝛼𝛽

(𝛼+𝛽)2(𝛼+𝛽+1)
. (16)

Some intuition can be gained from these equations. For example,

multiplying both 𝛼 and 𝛽 by a scalar 𝑠 will not affect the mean, but

will decrease the variance if 𝑠 > 1 . Therefore, if the beta

distribution represents our belief about an SN’s value, higher values

of 𝛼 and 𝛽 imply more certainty about the value of the SN.

A limitation of the beta distribution is that it, if it is bimodal, the

peaks must be at 0 and 1. In other words, the beta distribution

cannot represent a bimodal PDF with a peaks at, say, 0.3 and 0.8.

However, this limitation can be side-stepped by using a mixture

model [19]. Rather than assume 𝑋 is distributed as a single beta

distribution, suppose it is distributed as a mixture of two beta

distributions with parameters (𝛼1, 𝛽1) and (𝛼2, 𝛽2) . 𝑋 ’s PDF can

then be defined as

 𝑓𝑋(𝑥|𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝜋) = (1 − 𝜋)𝑓beta(𝑥|𝛼1𝛽1)

 +𝜋𝑓beta(𝑥|𝛼2, 𝛽2) (17)
where 0 ≤ 𝜋 ≤ 1 can be thought of as the probability or proportion

of time that 𝑥 is sampled from the second beta distribution with

parameters 𝛼2, 𝛽2, rather than the first beta distribution with

parameters 𝛼1, 𝛽1. This beta mixture model (17) has 2 components,

but it can be extended to an arbitrary number of component beta

distributions, where each has a coefficient 𝜋𝑖 that determines its

influence on 𝑋 ’s overall distribution and the sum of 𝜋𝑖 ’s is 1.

Increasing the number of components increases the expressive

power of the model. Parameter estimation for beta mixture models

can be done using a modified expectation maximization algorithm

presented in [19].

4.2 Modeling a Set of SN Values

One way to go from a modeling a single input value 𝑋 to a set of

input values 𝓧 = [𝑋1, 𝑋2, , … , 𝑋𝑀] is to assume all 𝑋𝑖 in 𝓧 are

independent thus implying the joint distribution of the elements of

𝓧 is simply the product of the marginal distributions.

7

 𝑓𝓧(𝔁) = 𝑓𝑋1
(𝑥1)𝑓𝑋2

(𝑥2) … 𝑓𝑋𝑀
(𝑥𝑀) (18)

where 𝔁 = [x1 , 𝑥2, … , 𝑥𝑀]. Then, each 𝑓𝑋𝑖
 can be modeled

separately using techniques for modeling a single SN value.

However, in some settings, the values to the circuit may be

correlated. For example, values of adjacent pixels in an image tend

to be highly correlated. It is important to note that two SNs having

correlated values is not the same as the bits of two SNs being

correlated. Two SNs can have correlated values but have

independent bits. Likewise, two SNs can have correlated bits but

independent values. In situations like these, modeling the input

distribution becomes a domain-specific task. Sec. 5 gives an

examples of modeling image data with a beta mixture model.

The IVD 𝑓𝓧 is of interest because of its use to compute BMSE.

Given a dataset, it is not necessary to construct an accurate model

of the data’s distribution to estimate BMSE but doing so provides

a useful low-dimensional characterization of the dataset. Further,

in cases where data cannot be made accessible, a parameterized

model can instead be published to give other researchers the ability

to understand the data used to test circuit accuracy.

The beta distribution is just one useful way to model an IVD. An

advantage of this modeling approach is that statistics of the data,

such as the expected value and variance, are used to fit the

distribution to the data [19]. In some ways, it is like fitting data to

a Gaussian except that beta distributions are defined on the bounded

interval [0,1] rather than over all real numbers like Gaussians (thus

Beta distributions are useful for modeling uncertain probabilities or

proportions [10]). Other IVD models such as a piecewise

polynomial, may require fitting directly to the PDF or to the

cumulative density function of the data rather than statistics of the

data.

5 Case Study: Neural Networks

Next, we apply the foregoing methodology to an SC-based

convolutional neural network (CNN) designed for image

classification. This is a large-scale application of SC that usually

demands high levels of classification accuracy [5][13][17].

Artificial neural networks have long been seen as a promising

application for SC because of the huge number of multiplications

they require to implement inner-product operations of the form

∑ 𝑊𝑖𝑋𝑖
𝑁
1 , where the 𝑊𝑖 are constant weights and the 𝑋𝑖 are variable

inputs. The full use of SC in all layers of an CNN has been avoided

mainly due to the fact that errors that tend to accumulate from layer

to layer [17]. Identifying and measuring such errors is difficult and

their mitigation is costly, requiring, for example, excessively long

bit-streams, or hybrid designs that combine stochastic and

deterministic features [8].

A basic part of a high-performing SC-based CNN design is shown

in Fig. 6 [8]. To reduce errors and latency, the convolution layer is

largely implemented in the SC domain where LFSRs (not shown)

are used to generate the SNs. In this design style, positive and

negative weights are separated into two groups and multiplication

is performed using the unipolar format (absolute value of negative

weights are used for SN generation). Both groups of products are

X0

Wpos0

Xk

Wposk

. . . Addpos

Subtract
Xk+1

Wneg0

Xq

Wnegq

. . . Addneg

Activation

function

Stochastic domain Binary domain
Figure 6: Convolution layer of a CNN based on the design in [8].

TABLE I

MEAN SQUARED ERROR (MSE) FOR MULTIPLICATIONS IN THE MNIST AND

CIFAR10 CNNS OBTAINED BY SIMULATION AND ANALYSIS.

CNN Simulated MSE Analyzed BMSE

MNIST 1.18 × 10−5 1.083 × 10−5

CIFAR10 5.61 × 10−5 5.55 × 10−5

then summed and the difference is taken between the positive

weight group’s sum and negative weight group’s sum to compute

the overall inner product between weights and inputs, as shown in

Fig. 6. Our goal is to characterize the multiplication accuracy of the

CNN using simulation and the formalism presented in this paper.

5.1 Simulation

We trained two CNNs with structures similar to the classic LeNet-

5 in [14]: one for the grayscale MNIST handwritten digit dataset

[14] and one for the colored CIFAR10 natural image dataset [13].

These are popular 10-class benchmarks used in machine learning.

For each CNN we simulated the first convolution layer in the SC-

domain using the corresponding test dataset as input. SNs of length

256 and generated with 8-bit LFSRs were used as circuit inputs,

and we recorded the squared error of all multiplication operations.

The multiplication mean squared error for the MNIST and

CIFAR10 CNNs are reported in Table I. Despite both CNNs being

very similar, the MSE is four times higher for multiplication in the

CIFAR10 CNN. This difference, as we will explain next, is almost

entirely due to the distinct IVDs of MNIST and CIFAR10.

5.2 Error Analysis

To better understand the simulation results, the error formalism

from Sec. 3, and the SN value modeling techniques from Sec. 4 will

be used.

The variance of an AND multiplier with LFSR-generated inputs X

and W and output Z was derived in [3] using the technique in [15].

 Var(Ẑ|𝑋, 𝑊) =
𝑋(1−𝑋)𝑊(1−𝑊)

𝑁−1
 (19)

The AND gate multiplier has no approximation error and there is

no correlation present. Since the SC-based NNs use 8-bit LFSRs

for SN generation, there is also very little quantization error. Thus,

bias is approximately 0. The BMSE (9) can then be expressed as

 BMSE = ∫ ∫ 𝑓𝑋𝑊(𝑥, 𝑤)Var(𝑍̂|𝑋 = 𝓍, 𝑊 = 𝑤)𝑑𝑤𝑑𝑥
1

0

1

0
 (20)

8

 (a) (b) (c)

Figure 7: Distributions and their beta distribution fit: (a) MNIST pixel values; (b) MNIST CNN weights (absolute values); (c) CIFAR10 pixel values.

Parameters for the beta distributions appear in Table II.

We will assume that the weight values and pixel values are

approximately independent so that 𝑓𝑋𝑊(𝑥, 𝑤) = 𝑓𝑋(𝑥)𝑓𝑊(𝑤). This

simplification and (19) can then be used to re-express (20).

 BMSE =
1

N−1
∫ 𝑓𝑋(𝑥)𝑥(1 − 𝑥)𝑑𝑥

1

0 ∫ 𝑓𝑊(𝑤)𝑤(1 − 𝑤)𝑑𝑤
1

0
 (21)

In this case, due to the form of (19), BMSE can be written as the

product of two integrals of the same form as (21). The distributions

𝑓𝑋 and 𝑓𝑊 will be modeled as mixtures of 𝑘𝑋 and 𝑘𝑊 beta

distributions, respectively. Each integral in (21) can then be re-

expressed using the beta distribution PDF (13) and the k-

component version of (17). For example

 ∫ 𝑓𝑋(𝑥)𝑥(1 − 𝑥)𝑑𝑥
1

0

= ∑ 𝜋𝑖
[𝑋]

∫
𝑥𝛼𝑖

[𝑋]
(1 − 𝑥)𝛽𝑖

[𝑋]

B(𝛼𝑖
[𝑋]

, 𝛽𝑖
[𝑋]

)

1

0

𝑑𝑥

𝑘𝑋

𝑖=1

 (22)

where 𝜋𝑖
[𝑋]

, 𝛼𝑖
[𝑋]

 and 𝛽𝑖
[𝑋]

 are the coefficient and parameters of the

i-th component of the 𝑋′𝑠 beta mixture model. Eq. (22) can be

further simplified by computing the definite integral.

 ∫ 𝑓𝑋(𝑥)𝑥(1 − 𝑥)𝑑𝑥
1

0

= ∑ 𝜋𝑖
[𝑋] 𝛼𝑖

[𝑋]
𝛽𝑖

[𝑋]

𝛼𝑖
[𝑋]

+ 𝛽𝑖
[𝑋]

+ 1

𝑘𝑋

𝑖=1

 (23)

And finally, (23) can be used to re-express the two integrals in (21).

 BMSE =
1

𝑁−1
∑ ∑ 𝜋𝑖

[𝑋]
𝜋𝑗

[𝑊] 𝛼𝑖
[𝑋]

𝛽𝑖
[𝑋]

𝛼𝑗
[𝑊]

𝛽𝑗
[𝑊]

(𝛼
𝑖
[𝑋]

+𝛽
𝑖
[𝑋]

+1)(𝛼
𝑗
[𝑊]

+𝛽
𝑗
[𝑊]

+1)

𝑘𝑊
𝑗

𝑘𝑋
𝑖=1 (24)

where 𝜋𝑗
[𝑊]

, 𝛼𝑗
[𝑊]

 and 𝛽𝑗
[𝑊]

 are the coefficient and parameters for

the j-th component of 𝑊 ’s beta mixture model. Eq. (24) is the

closed-form solution for the BMSE of an AND gate multiplier with

LFSR-generated inputs whose values are modeled as independent

beta mixture models. The possibility of such closed-form solutions

is another advantage of using the beta distribution.

Next, we fit beta mixture models to 𝑓𝑋 and 𝑓𝑊 for both the MNIST

and CIFAR10 distributions using training data and the algorithm in

[19]. We considered beta mixture models of 1, 2 and 3 components

and selected the best-fitting model of the three. The computed

parameters are reported in Table II, while the distributions and fits

are shown in Fig. 7. The CIFAR10 pixel distribution was fit with a

two-component mixture model whereas all other distributions were

fit with a single component mixture model (i.e., a single beta

distribution). The CIFAR10 CNN weight distribution is similar to

the MNIST case and is not shown in Fig. 7. The beta mixture model

fits are representative of the target distribution in all cases.

BMSE can now be derived analytically using the fitted model

parameters found in Table II with (24). The BMSE derived from

this analysis is reported in Table I. There is close agreement

between the MSE measured during simulation (also shown in Table

I) and BMSE derived analytically with the foregoing analysis.

Some insights can be gained from the derivation. For example, Eq.

(19) implies that multiplication variance (and thus error) is highest

with 𝑋 = 𝑊 = 0.5 and lowest when 𝑋 = 0, 1 or 𝑊 = 0, 1. As Fig.

7 shows, pixel values, 𝑋, in the MNIST dataset almost always take

value 0 or 1 and very rarely take values in between, implying the

multiplication will be very accurate. In the CIFAR10 case,

however, pixel values vary across the whole interval [0,1], but the

weights are concentrated towards 0, implying that multiplication

will be fairly accurate, but not as accurate as the MNIST case.

TABLE II

FITTED BETA DISTRIBUTION PARAMETERS FOR THE MNIST AND CIFAR

PIXEL DISTRIBUTIONS.

Distribution 𝜋𝑖 𝛼𝑖 𝛽𝑖

MNIST pixels 1 0.0362 0.1817

CIFAR pixels
0.6653 2.2919 3.2944

0.3347 0.9236 0.8315

MNIST weights 1 1.2800 7.5486

CIFAR weights 1 1.6704 17.782

6 Conclusion

We introduced a methodology for Bayesian error analysis in SC

that overcomes some limitations of simulation-based accuracy de-

termination, e.g., measuring the influence of IVD. We showed how

the Bayesian methodology treats input values as probabilistic and

estimates average output error. We also introduced the use of beta

distributions to model IVD. Orthogonal to these ideas, we used

bias-variance decomposition to group SC errors into two distinct

classes, systematic and random, thus providing a deeper

understanding of circuit error sources and their effects. Finally, we

validated all the above with a case study which clearly shows that

IVD can have a major impact on the accuracy of SC-based CNNs.

Acknowledgement. This research was supported by the U.S.

National Science Foundation under Grant CCF-2006704.

9

REFERENCES

[1] Alaghi, A. and J.P. Hayes, “Exploiting correlation in stochastic circuit
design.” Proc. Intl. Conf. Computer Design, 39–46, 2013.

[2] Alaghi, A., W. Qian and J.P. Hayes. “The promise and challenge of

stochastic computing.” IEEE Trans. CAD, 37, 1515-1531, 2018.
[3] Baker T.J. and J.P. Hayes. “The hypergeometric distribution as a more

accurate model for stochastic computing.” Proc. Design Autom. and

Test in Europe Conf., 592-597, 2020.
[4] Braendler, J. D., T. Hendtlass and P. O’Donoghue, “Deterministic bit-

stream digital neurons,” IEEE Trans. Neural Nets., 13, 1514–1525,

2002.
[5] Brown, B.D. and H.C. Card. “Stochastic neural computation. I.

computational elements.” IEEE Trans. Computers, 50, 891-905,
2001.

[6] Chen, T-H. and J.P. Hayes. “Analyzing and controlling accuracy in

stochastic circuits.” Proc. Intl Conf. Comp. Design, 367–373, 2014.
[7] Faix, M. et al. “Design of stochastic machines dedicated to

approximate Bayesian inferences,” IEEE Trans. Emerging Topics in

Comp, 7, 60-66, 2019.
[8] Faraji, S.R. et al. “Energy-efficient convolutional neural networks

with deterministic bit-stream processing.” Proc. Design Autom. and

Test in Europe, 1757-1762, 2019.
[9] Gaines, B.R. “Stochastic computing systems.” Advances in

Information Systems Science, 2, 37-172, 1969.

[10] Grinstead, C.M. and L.J. Snell. Grinstead and Snell’s Introduction to
Probability, version of 4 July 2006, American Math. Soc., 2006.

[11] Ichihara, H. et al. "Compact and accurate digital filters based on

stochastic computing." IEEE Trans. Emerging Topics in Comp., 7, 31-
43, 2019.

[12] Kay, S.M. Fundamentals of Statistical Signal Processing: Estimation

Theory, Prentice Hall, Upper Saddle River, NJ, 1993.
[13] Krizhevsky, A. “Learning multiple layers of features from tiny

images.” Master’s Thesis, Dept. of Comp. Sci., Univ. of Toronto,

2009.
[14] LeCun, Y. et al. “Gradient-based learning applied to document

recognition, Proc. IEEE, 86, 2278-2324, 1998.

[15] Ma, C., S. Zhong and H. Dang. “Understanding variance propagation
in stochastic computing systems,” Proc. Intl. Conf. Computer Design,

213-218, 2012.

[16] Neugebauer, F., I. Polian and J.P. Hayes. “Framework for quantifying
and managing accuracy in stochastic circuit design.” ACM Jour.

Emerging Technologies in Comp. Sys.. 14, article 31, 2018.

[17] Neugebauer, F., I. Polian and J.P. Hayes. “On the limits of stochastic
computing,” Proc. Intl. Conf. Rebooting Computing, 98-106, 2019.

[18] Qian, W. et al. “An architecture for fault-tolerant computation with

stochastic logic.” IEEE Trans. Computers, 60, 93-105, 2011.
[19] Schröder, C. and S. Rahmann. “A hybrid parameter estimation

algorithm for beta mixtures and applications to methylation state

classification.” Algorithms Mol. Biol. 12 article 21, 2017.

