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ABSTRACT 

Understanding accuracy and the tradeoffs it entails is key to 

evaluating the growing list of stochastic computing (SC) circuit 

designs. Due to shortcomings of current SC error theory, 

simulation has become the standard way to estimate a circuit’s 

accuracy. However, simulation can demand large 

computational resources and lead to uncertain, misleading, or 

unexplainable results. A soundly based analytic approach is 

therefore preferable to simulation. In this work, we first show 

the input value distribution’s large influence on circuit 

accuracy. Then we develop a Bayesian error analysis 

methodology which uses the input value distribution as a prior 

to inform better accuracy estimates. This error formulation 

introduces concepts new to SC such as estimator dominance 

and points to ways of improving simulation-based accuracy 

estimates. Orthogonal to the Bayesian ideas, we also show how 

to use bias-variance decomposition to simplify and aggregate 

the effects of SC’s many error sources. We present techniques 

that use the beta distribution to model the stochastic number 

value distribution. Finally, we demonstrate the use of these 

ideas to improve the accuracy and analysis of an SC-based 

neural network. 
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1 Introduction  

Stochastic computing (SC) is a form of approximate computing that 

employs bit-streams known as stochastic numbers (SNs) to 

represent data [2][9]. The key parameter of an N-bit SN 𝐗 =

𝑥1𝑥2 … , 𝑥𝑁 is 𝑝𝑥, the probability that an arbitrary bit in X is 1. X’s 

value 𝑋 is determined by 𝑝𝑥  and by the chosen SN format. The 

basic (unipolar) format defines 𝑋 = 𝑝𝑥 and allows for very simple 

arithmetic computing elements. Consider an AND gate with two 

uncorrelated N-bit inputs, X and Y and output Z. The AND gate’s 

functionality implies that 𝑝𝑧 = 𝑝𝑥𝑝𝑦 which makes 𝑍 = 𝑋𝑌, so the  

 
Figure 1: Simulated error 𝑍̂ − 𝑍∗  (solid black line)   for an AND-gate 

multiplier with inputs X, Y and SN length N = 64. 𝑋 is set to 0.7 and Y is 

randomly sampled with the indicated PDFs (dashed lines). MSE = 0.00382 

with PDF1 (red); MSE = 0.00228 with PDF2 (blue).  
 

AND gate serves as a SN multiplier. An important caveat is that 𝑍 

is not available directly, but instead must be estimated by observing 

the AND gate’s output bit-stream 𝐙 = 𝑧1𝑧2 … 𝑧𝑁 . The usual and 

most straightforward estimator 𝑍̂ of Z is defined as the number of 

1s in Z divided by Z’s length, i.e., 𝑍̂ =
1

𝑁
∑ 𝑧𝑖

𝑁
𝑖=1 . 

In general, SN error is associated with some difference between the 

estimator 𝑍̂  and 𝑍∗   the exact or target output value. Errors arise 

from a variety sources including random fluctuations of the SN bits 

and unwanted correlations between them [1][6]. Most error sources 

can be mitigated by increasing SN length N or by using higher 

quality SN generation. However, such simple approaches tend to 

increase latency exponentially or require large amounts of extra 

hardware. Thus, for cost-effective error mitigation, it is essential to 

better understand accuracy-latency and accuracy-area tradeoffs. 

Key to this understanding is the biggest, but somewhat subtle, 

influencer of error⎯the value distribution of the input SNs. This 

influence is evident in the variance of an N-bit SN X which, for a 

binomial distribution of 0s and 1s, is X(1 − X)/N and varies from 

0.0 when X = 0 or 1, to 0.25/N when X = 0.5. This implies that, 

assuming Z is binomially distributed, an AND multiplier’s output 

error is a maximum when Z = XY is near 0.5, and a minimum when 

XY is near 0.0 and 1.0, as is readily verified experimentally. 

Example 1: Consider an AND gate multiplier with two 

uncorrelated N-bit input bit-streams X, Y and output bit-stream Z. 

To gain a better sense of the influence of the input value distribution 

(IVD) on the multiplier’s average error, we simulated it for N = 64 

with one input value X held fixed and the other input Y assigned 
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various possible probability density functions (PDFs). Fig. 1 shows 

a typical set of results. For each simulation run, 𝑋 was set to 0.70 

and 𝑌  was chosen randomly from the unit interval [0.0, 1.0] 

according to two different PDFs, which are shown by dashed lines 

in Fig. 1. PDF1 (red) is a peaked IVD centered at 0.70 while PDF2 

(blue) is a U-shaped IVD with most of its density concentrated near 

0.0 and 1.0. If R is the number of simulation runs (50,000 in the 

case of Fig. 1) and 𝑍̂𝑖 is Z’s estimated value during run i, the mean 

squared simulation error defined by 

 MSE =
1

𝑅
∑ (𝑍̂𝑖 − 𝑍)

2𝑅
𝑖=1   (1) 

is 3.82 × 10−3when using PDF1 to choose values for 𝑌. However, 

it is 2.28 × 10−3 (40% lower) when using PDF2 to choose values 

for 𝑌. 

This large difference in error is due to PDF2’s more favorable IVD 

for 𝑌.  PDF2 is higher for Y values that result in very low 

multiplication error while PDF1 has more density for 𝑌 values that 

result in high error. Thus, the circuit is more accurate on average 

when 𝑌  is drawn from PDF2. Evidently, 𝑌 ’s PDF exerts a large 

influence on the average output error. This leads to an important 

conclusion: having knowledge of the IVD enables a better 

understanding of average accuracy which can lead to a more 

informed choice about SN length and thus circuit latency. For 

instance, in this particular example, SN length could be set as low 

as 39 bits if 𝑌 is known to be distributed as in PDF2 and the average 

error would still be less than the average error when 𝑌 is distributed 

according to PDF1. 

Several studies have derived error as a function of input values 

[3][4][6][15][16]. For example, Ex. 1’s multiplication MSE for N-

bit binomially distributed input SNs can be shown to be 𝑋𝑌(1 −

𝑋𝑌)/𝑁. However, the impact of the SN IVD on average error has 

not been rigorously considered in previous SC error analyses, but 

it has very significant design implications. As Ex. 1 shows, when 

the input SNs’ PDFs are favorable, bit-streams can be shortened 

and still meet a given accuracy threshold. Another place where the 

IVD is important is in constructing simulation experiments and 

interpreting simulation results.  

Due to shortcomings in SC error theory, simulation has become the 

dominant method, and in many cases the only method, to determine 

and compare the accuracy of different stochastic designs. To 

simulate a circuit, SN values must be chosen, and this choice 

implicitly defines the IVD. Simulation accuracy is tied to this 

distribution choice, and the conclusions drawn may or may not 

remain valid when a different IVD is used. 

To illustrate, it seems natural (and inconsequential) when 

performing simulation experiments to choose random SN values 

that are uniformly distributed, i.e., each SN value has the same 

probability of being selected. However, many real-world 

applications of SC, such as image processing, involve data that is 

far from uniform. A case in point is the MNIST database of 

handwritten characters which consists of thousands of images in the 

form of 28 × 28 arrays of grayscale pixels, and is widely used as a 

benchmark for image classification by neural networks (NNs) [14]. 

In SC-based image classifiers [8][17], the input SNs have grayscale 

values denoting pixel intensity that range from 0.0 (black) to 1.0 

(white). The vast majority of these values are close to zero (similar 

to PDF2 in Fig. 1) because the corresponding images have a small 

pale foreground and large black background. A circuit’s 

simulation-based accuracy performance on uniformly random data 

may not be representative of how the circuit will perform on 

unevenly distributed data such as MNIST. MNIST and SC-based 

NNs are further explored in Sec. 5. 

To develop a quantitative understanding of how knowledge of the 

IVD impacts accuracy, we introduce a new Bayesian formulation 

of SC accuracy (which should not be confused with recent, 

unrelated work on the use of SC-based hardware to implement 

Bayesian inference [7]). A central idea in Bayesian probability 

theory is the use of prior knowledge, as in Bayes’ theorem [10] 

 𝑃(𝐻|𝐷) = 𝑃(𝐷|𝐻)𝑃(𝐻) 𝑃(𝐷)⁄   (2) 

where, for instance, 𝐻 might be an error hypothesis and 𝐷 might be 

some data influencing belief in the hypothesis H. Eq. (2) indicates 

how the prior probability or belief 𝑃(𝐻) in H directly affects the 

posterior belief 𝑃(𝐻|𝐷)  in the hypothesis given the data. Our 

analysis is Bayesian in the sense that it uses the IVD as informative 

prior data to better estimate overall error in a stochastic circuit. 

 Orthogonal to its application of Bayesian ideas, this paper aims to 

improve the analytic approach to SC error measurement when input 

values are known. It does so by grouping errors into systematic and 

random types and using bias-variance decomposition of mean 

squared error. The result is a consistent methodology to compute 

the error of a stochastic circuit. This loosens dependence on 

simulation to measure accuracy and enables a better understanding 

of accuracy trade-offs.  

The main contributions of this work are: 

1. A general Bayesian formulation of stochastic circuit accuracy 

that identifies limitations of current simulation approaches and 

suggests ways to improve them. 

2. Introduction of bias-variance decomposition and the beta 

distribution to SC error analysis and their use to simplify SC 

and improve accuracy measurement. 

3. Application of the forgoing ideas to accuracy analysis of SC-

based NNs. 

This paper is organized as follows. Sec. 2 reviews relevant 

background related to SC and probability theory, while Sec. 3 

details a new Bayesian formulation of stochastic circuit accuracy. 

Sec. 4 then introduces techniques to model input value distribution. 

Finally, Sec. 5 gives a case study demonstrating the usefulness of 

these ideas. 

2 Background  

Here we review relevant concepts in SC, including basic 

component types and error analysis from an accuracy perspective.  

2.1 SC Components 

A compelling feature of SC is the simplicity of its basic arithmetic 

components [2][9]. For example, AND gates function as unipolar 

multipliers. (Henceforth, we will assume that only unipolar format 

is used, but all this paper’s results can easily be modified to apply 

to bipolar SNs.) Fig. 2 shows two other basic components which  
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Figure 2: SC adders and data conversion: (a) OR gate computing the sum 

X + Y − XY; (b) mux computing the sum 0.5(X + Y); (c) stochastic number 

generator (SNG); (d) counter serving as a stochastic-to-binary converter. 
 

function as SC adders; note their different ways of confining the 

sum Z to the unit interval. The OR gate is a biased adder computing 

𝑍 = 𝑋 + 𝑌 − 𝑋𝑌, while the multiplexer (mux) serves as a scaled 

adder that computes 𝑍 = 0.5(𝑋 + 𝑌). 

Fig. 2 also shows two basic circuits used for data conversion in SC. 

The SN generator (SNG) converts an n-bit binary number B to an 

N-bit stochastic bit-stream X of value B/2n; the counter estimates 

X’s value. The SNG contains a pseudo-random number source 

(RNS), which typically consists of an n-bit linear feedback shift 

register (LFSR) that outputs an integer in the interval (0, 2𝑛−1] 

each clock cycle as it traverses its 2n – 1 states. Since an LFSR lacks 

the all-0 state, it never outputs the integer zero, which imposes a 

small bias on X’s value.  

2.2 SC Errors 

Errors in stochastic circuits come from many sources. Due to the 

discrete nature of digital computers, stochastic circuits incur errors 

from function approximation and quantization in a similar manner 

to traditional binary computing. Two other error sources unique to 

stochastic computing are correlation and random fluctuation errors. 

 
Figure 3: Visualization of bias-variance decomposition   for an OR-gate 

adder with inputs X, Y, output Z and SN length N = 32. 𝑌 is set to 0.2 and 

plotted quantities are in terms of X. Standard deviation is the square root of 

variance. 

Approximation error is the difference between the target function 

and the function implemented by the circuit. Approximating a 

target function can help simplify hardware if the approximating 

function is simpler than the target function or it can enable 

reconfigurable architectures where target functions must be 

approximated by a given functional form, such as a Bernstein 

polynomial [18]. Quantization error is due to the limited precision 

of SNGs. For example, a 4-bit SNG can only generate SNs with 

values {0,
1

16
,

2

16
, … , 1}  and so an input SN with target value 

7

64
 

must be quantized to either 
1

16
 or 

2

16
 . 

Another error source is unwanted correlations. Most SC circuits are 

designed assuming that all input SNs are independent. In practice 

though, the input SNs may be correlated thus changing the circuit’s 

expected output and introducing error [1][6]. Sometimes 

correlation is helpful. For example, in [3] it is shown that, contrary 

to expectation, suitably correlating the input SNs to a mux adder 

can improve accuracy.  

To summarize, approximation, correlation, and quantization all 

affect the accuracy of a circuit; in other words, they change the 

circuit’s expected output value. These errors are systematic and can 

be controlled or eliminated by careful design. They can also be 

grouped together under the single concept of circuit bias. In 

addition to systematic errors, there are errors due to the stochastic 

or probabilistic nature of the input signals. These are independent 

of the circuit itself and may be termed random errors. They are 

characterized by properties like expected value and variance and 

are addressed by statistical analysis and simulation. 

3 Stochastic Circuit Accuracy  

Stochastic circuits can be viewed as estimators of a target value. 

Through this lens, results and insights from statistical estimation 

theory can be used to improve the circuit design process. In many 

estimation problems, the random data source is fixed, and the goal 

is to derive an optimal estimation function that maps data to an 

estimate of the target value. In stochastic circuit design, we have 

the reverse situation. The estimation function is fixed (e.g., for 

unipolar output, it is the frequency of ones in the output) and the 

goal is instead to optimize the statistical properties of the output bit-

stream which serves as the random data source. 

In general, estimation error is defined as  

 ϵ = 𝑍̂ − 𝑍∗ (3) 

where 𝑍̂ is the circuit’s estimate for the designer’s target value 𝑍∗. 

A cost or loss function 𝐿(𝜖) can be used to determine the severity 

of estimation error. No standard cost function exists for SC, but 

𝐿(𝜖) = 𝜖2 (quadratic error) and 𝐿(𝜖) = |𝜖|  (absolute error) are 

common. We focus on quadratic cost due to its useful bias-variance 

decomposition, but the following formulation, especially (4) and 

(8), can readily be framed in terms of other cost functions. 

For consistency with Bayesian theory, from here on we will treat 

the unipolar value 𝑋1 = 𝑝𝑥, of an SN X1 as a random variable. The 

vector of input values to an 𝑀-input circuit is denoted by 𝓧 =
[𝑋1, 𝑋2, … , 𝑋𝑀] and is treated as a random vector. X and 𝓧 should 

not be confused: the SN X is a random vector of bits, while 𝓧 is a 

random vector of SN values. An outcome of 𝓧 is denoted as 𝔁. 
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3.1 General Error Formulation 

Consider an M-input stochastic circuit 𝐶 with random target input 

values 𝓧 = [𝑋1, 𝑋2, … , 𝑋𝑀] and target function 𝑍∗ that maps 𝓧 to 

a real number. 𝐶 produces an N-bit output SN 𝐙 = 𝑧1𝑧2 … 𝑧𝑁 from 

which an estimator 𝑍̂  for 𝑍∗  is derived. The mean squared error 

(MSE) of 𝑍̂ given the input values, 𝓧, is defined as 

 MSE(𝑍̂, 𝑍∗|𝓧) = 𝔼 [(𝑍̂ − 𝑍∗(𝓧))
2

|𝓧]. (4) 

In standard statistical analysis [12], the MSE of an estimator such 

as 𝑍̂  can be decomposed into a combination of the estimator’s 

variance and bias: 

 MSE(𝑍̂, 𝑍∗|𝓧) = Var(𝑍̂|𝓧) + Bias(𝑍̂, 𝑍∗|𝓧)
2
 (5) 

where 

 Var(𝑍̂|𝓧) = 𝔼 [(𝑍̂ − 𝔼[𝑍̂|𝓧])
2

|𝓧] (6) 

 Bias(𝑍̂, 𝑍∗|𝓧) = 𝔼[𝑍̂|𝓧] − 𝑍∗(𝓧). (7) 

Example 2: The foregoing bias-variance decomposition is 

illustrated in Fig. 3 which considers the use of an OR gate as an 

adder to approximate 𝑍∗ = 𝑋 + 𝑌, as in Fig. 2a. Here, 𝑍̂’s expected 

value 𝔼[𝑍̂|𝓧] = 𝑋 + 𝑌 − 𝑋𝑌  and 𝑍∗  are plotted against 𝑋  when 

𝑌 = 0.20 . 𝑍̂ ’s variation is also shown. The difference between 

𝔼[𝑍̂|𝓧] and 𝑍∗ is 𝑍̂’s bias (7) which, in this case, is 𝑋𝑌 = −0.2𝑋. 

Bias measures 𝑍̂’s systematic error with respect to approximating 

𝑍∗. The amount that 𝑍̂ fluctuates around its expected value is 𝑍̂’s 

variance (6), which measures 𝑍̂’s random error and is completely 

independent of 𝑍∗. Note that the bias and variance depend on the 

input values. Sometimes bias is larger than standard deviation (the 

square root of variance) and sometimes the reverse is true. This is 

visualized in Fig. 3. 

In the standard estimation theory embodied in (4), the target 

parameter 𝑍∗  is treated as a deterministic but unknown constant. 

But, as we now show, it can be very useful to view it as a random 

variable whose realization we must estimate. To handle this 

situation, a Bayesian approach is employed where 𝑍∗’s distribution 

(or a related one) serves as a prior and the error conditioned on 𝑍∗ 

(or a related variable) is computed. 

As Ex. 1 suggests, in SC 𝓧 is generally a random vector whose 

distribution is application dependent. The target value 𝑍∗  is also 

random due to its dependence on 𝓧, making a Bayesian approach 

to error analysis appropriate. Instead of using 𝑍∗′𝑠 distribution as a 

prior, 𝓧 ’s distribution will be used since error is normally 

expressed in terms of input values. If our goal is to compute average 

error, then Bayes mean square error (BMSE) [12] denoted 

 BMSE(𝑍̂, 𝑍∗) = 𝔼[MSE(𝑍̂, 𝑍∗|𝓧)] (8) 

can be used where the expectation is taken with respect to 𝓧 . 

Intuitively, BMSE is a weighted sum where the summands are 

MSE values given 𝓧 = 𝔁 (for all valid 𝔁) and the weights are 𝓧’s 

probability mass or density function evaluated at 𝔁. The advantage 

of BMSE is that it measures the expected estimation error of a 

circuit before the input values are known. Combining Eqs. (5) and 

(8), BMSE can also be written as a bias-variance decomposition 

 BMSE(𝑍̂, 𝑍∗) = 𝔼[Var(𝑍̂|𝓧)] + 𝔼 [Bias(𝑍̂, 𝑍∗|𝓧)
2

]. (9) 

BMSE is well-known in estimation theory [12] and, as we show in 

this paper, it is a natural choice of error metric for SC. In fact, 

although not mentioned by name, it is what many simulation 

studies in SC already measure [4][11][18]. These studies begin by 

defining a rule for sampling circuit input values (e.g., the inputs are 

set to some fixed values like 0.0, 0.1, 0.2, 0.3, …, 1.0, or else they 

are randomly chosen from some fixed range). This step implicitly 

defines the distribution of 𝓧. Then for each set of input values, 𝔁, 

the circuit is simulated and the resulting error is measured many 

times thus producing estimates for MSE(𝑍̂, 𝑍∗|𝓧 = 𝔁) . The 

estimated MSE values for the 𝔁′s are then averaged to produce a 

metric that represents the circuit’s inherent accuracy. This metric is 

precisely an estimate for the circuit’s BMSE. If another cost 

function is used in place of MSE, such as mean absolute error, this 

simulation approach is said to compute a Bayesian risk, a term that 

is more general than BMSE [12]. 

3.2 Comparing Circuit Accuracy 

One way to compare two circuits’ accuracy is by comparing their 

BMSEs, e.g., by computing the difference or ratio of the BMSEs. 

A somewhat limiting factor, though, is that BMSE depends on the 

IVD so one circuit may have a lower BMSE than another circuit for 

some IVDs, but not for others. This points to a major potential 

problem with current simulation approaches in SC. In many cases, 

only one method of choosing input values is used and thus only one 

input distribution is implicitly chosen. Thus, one BMSE per design 

is calculated and compared, but the comparison may not generalize 

well to other input distributions. 

In some cases, however, it may be that one circuit is never less 

accurate (in terms of BMSE) than another circuit. This leads to the 

notion of estimator dominance. Formally, we say an estimator 𝑍̂1 

dominates another estimator 𝑍̂2  with respect to estimating 𝑍∗  if 

MSE(𝑍̂1, 𝑍∗|𝓧 = 𝔁) < MSE(𝑍̂2, 𝑍∗|𝓧 = 𝔁) for at least one valid 

value 𝔁 , and MSE(𝑍̂1, 𝑍∗|𝓧 = 𝔁) ≤ MSE(𝑍̂2, 𝑍∗|𝓧 = 𝔁) for all 

other values of 𝔁. In other words, 𝑍̂1 dominates 𝑍̂2 when 𝑍̂1is more 

accurate for at least one input combination 𝔁 and no less accurate 

than 𝑍̂2  for all other input combinations, where accuracy is 

measured by MSE. (Dominance can also be phrased in terms of 

other cost functions.) The following result considers the case where 

two distinct estimators 𝑍̂1  and 𝑍̂2  are derived from circuits with 

input 𝓧 and the same target function 𝑍∗. 

Theorem: If 𝑍̂1  dominates 𝑍̂2  then 𝑍̂1  never has a greater BMSE 

than 𝑍̂2 for any distribution of 𝓧. 

The theorem follows from the fact that BMSE is computed as a 

weighted sum of MSEs where all weights are positive and, in 

addition, the fact that 𝑍̂1 ’s MSE never exceeds 𝑍̂2  for any set of 

input values due to the definition of dominance. It implies the 

usefulness of proving dominance between estimators of two SC 

circuits. When a circuit’s estimator dominates another circuit’s 

estimator, then the former circuit is always at least as accurate as 

the latter circuit for any IVD.  
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3.3 Implications for Simulation Error Analysis 

The foregoing formulation for SC errors points to two important 

considerations for error analysis. The first is that multiple IVDs 

should be considered when accessing the accuracy of a circuit 

design. These IVDs should be representative of data in the 

application domain of the circuit, or, in the case of general designs, 

should represent a variety of different distributions. The beta 

distribution presented in Sec. 4 and visualized in Figs. 1 and 5 can 

be useful for constructing and fitting input distributions with a 

variety of shapes. Alternatively, multiple datasets can be used to 

assess a circuit’s accuracy (each dataset represents an IVD). In Sec. 

5, we show an example where an SC-based neural network (NN) is 

evaluated using two datasets. We will see that their differences lead 

to strikingly different BMSEs. 

The second consideration is that there are various ways to compute 

BMSE for a given IVD 𝑓𝓧 depending whether the expected circuit 

output value 𝔼[𝑍̂|𝓧] and variance Var(𝑍̂|𝓧) are known. There are 

several possibilities. For example, if both 𝔼[𝑍̂|𝓧] and Var(𝑍̂|𝓧) 

are known, then bias can be found from (7) and BMSE from (9). If 

both are unknown,  simulation and sampling can be used to 

estimate BMSE. 

Example 3: Consider again the OR-gate adder of Fig. 2a and Ex. 2 

that uses 32-bit SNs and fixes 𝑌  to 0.2. The MSE of this circuit 

assuming that 𝑋’s value is uniformly sampled from the unit interval 

[0,1]  can be found via simulation. Each simulation run, 𝑋  is 

sampled randomly from [0,1] and the OR gate adder is simulated 

with 𝑋 and 𝑌 = 0.2. The squared output error is recorded and then 

averaged across all 10,000 simulation runs to estimate MSE as in 

(1). In our experiment, we measured MSE = 0.0190. 

According to analysis presented in Sec. 3.1, this MSE found using 

simulation is a Bayesian MSE and it can be found analytically using 

(9). To do this, the circuit’s bias, variance and IVD must be 

determined as functions of 𝑋 . Then integration can be used to 

calculate BMSE. The bias of the OR gate adder with 𝑌 = 0.2  is 

−𝑋𝑌 = −0.2𝑋. While the variance is 

 Var(Ẑ|𝓧) =
(𝑋+𝑌−𝑋𝑌)(1−(𝑋+𝑌−𝑋𝑌))

𝑁
 (10) 

where 𝑁  is the SN length [16]. This simplifies to (−0.64𝑋2 +

0.48𝑋 + 0.16)/32  since 𝑌 = 0.2  and 𝑁 = 32  for this example. 

Finally, since 𝑋 is sampled uniformly from [0,1], 𝑋’s probability 

density is 𝑓𝑋(𝑥) = 1 for 0 ≤ 𝑥 ≤ 1 and 𝑓𝑋(𝑥) = 0 otherwise. 

Eq. (9) can be re-expressed as 

 BMSE(𝑍̂, 𝑍∗) = ∫ 𝑓𝓧(𝔁)Var(𝑍̂|𝓧 = 𝔁)𝑑𝔁 

 +∫ 𝑓𝓧(𝔁)Bias(𝑍̂, 𝑍∗|𝓧 = 𝔁)
2

𝑑𝔁 (11) 

by using the definition of the expectation operator. In this example, 

(11) becomes 

 BMSE(𝑍̂, 𝑍∗) =
1

32
∫ (−0.64𝑥2 + 0.48𝑥 + 0.16)𝑑𝑥

1

0
 

 − ∫ (0.2𝑥)2𝑑𝑥
1

0
 (12) 

which evaluates to 0.0192 and is in close agreement to the 

simulation results. 

Both the simulation approach and analytic approach based on (9) 

arrived at the same conclusion. The advantage of the analytic 

approach is that it is computationally more efficient which is 

important for large circuits that have many inputs and thus many 

parameters. Furthermore, the analytic approach can grant further 

insights. For example, the bias in Ex. 3 is −0.2𝑋 and so we would 

expect the circuit to be more accurate when 𝑋 is likely to take small 

values and less accurate when 𝑋 is likely to take large values. These 

likelihoods are expressed mathematically as the distribution  𝑓𝑋 of 

𝑋. In the following section, we introduce ways to model 𝑓𝑋. 

3.4 Application of Error Analysis 

One key application of error analysis is determining the minimum 

latency (or equivalently, the SN length) required to achieve a user-

specified level of accuracy. Since error varies with the circuit’s 

input values, latency can be determined in terms of the worst-case 

error across any set of input values [16] or in terms of the expected 

error by considering the IVD. As we will see, these two approaches 

can give significantly different latencies. 

The minimum latency required to meet a specified accuracy level 

depends on many factors that influence error such as SNG precision 

and correlation. For our next example, we assume that there is no 

correlation error and SN length is set to 2𝑛, where 𝑛 is the SNG 

precision as is typical in SC experiments. Constraining the SN 

length to a power-of-two implies that a costly division circuit is not 

needed in addition to a counter for output SN value estimation. 

Example 4: Consider an AND gate that multiplies two inputs X 

and Y which are generated with an n-bit SNG and whose target 

values 𝑋∗ and 𝑌∗ are drawn from two independent PDFs and are 

rounded to 𝑛 -bit precision by truncation. Therefore, X (Y) is 

generated with expected value 𝑋 = ⌊𝑋∗2𝑛⌋/2𝑛  (𝑌 = ⌊𝑌∗2𝑛⌋/2𝑛 ) 

and the bias of the multiplier is 𝑋𝑌 − 𝑋∗𝑌∗. The variance of the 

multiplier is 𝑋𝑌(1 − 𝑋𝑌)/𝑁 assuming X and Y are streams of N = 

2n independent bits. 

Under these assumptions, we derived the BMSE when 𝑋∗ and 𝑌∗ 

are both independently drawn from either PDF1 or from PDF2 of 

Fig. 1 and plotted the results in Fig. 4a. Also shown in Fig. 4a is the 

predicted BMSE assuming the worst-case target input values occur 

with probability 1 or assuming a uniform distribution of target input 

values. The error curve is lowest for the PDF2 case because target 

SN values that result in low error occur with high probability. The 

opposite situation occurs for PDF1 where the error curve is high 

(nearly the worst case) because target SN values that result in high 

error occur with high probability. Finally, the average case error 

curve falls between PDF1’s and PDF2’s error curve, which 

highlights the fact that average case analysis is not representative 

of these (and many other) IVDs. 

The relationship between error and latency can be used to derive 

minimum latency for a given accuracy. For instance, if the target 

MSE is 3 × 10−3, then Fig. 4a shows that 32 bit SNs are needed 

when 𝑋∗  and 𝑌∗  are drawn from PDF2 whereas 128 bit SNs are 

needed in the worst case or when 𝑋∗ and 𝑌∗ are drawn from PDF1.  

This factor of 4 difference in required latency demonstrates the 

influence that the IVD can have on the error. 

A major advantage of an analytic approach over a simulation-based 

approach to error analysis is that analysis can provide results that 

have better explanations, insights, and confidence levels. For 

example, Fig. 4b shows the bias-variance decomposition of MSE 

for both the PDF1 and PDF2 case of Ex. 4. It can be seen in both  
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(a)   

 

(b)   

 
Figure 4: BMSE of an AND multiplier with target input values drawn from 

either PDF1 or from PDF2. (a) BMSE vs SN length for various IVDs; (b) 

Bias-variance decomposition of MSE for two IVDs. Note the log scales. 
 

cases that bias due to quantization error is a small contributor to 

MSE compared to variance due to random fluctuations. This 

supports the common intuition that quantization error is negligible 

for multiplication with long bit-streams. 

4 Flexible Input Value Distribution Model 

Modeling the input SN value distribution for 𝑓𝓧  requires some 

knowledge about 𝓧  in the form of data or in the form of prior 

belief. As usual, we assume the unipolar format so that 𝑋 = 𝑝𝑥. We 

begin by discussing how to use the beta distribution to model the 

value of a single input SN X that has a value 𝑋. We then generalize 

to modeling a vector of input values 𝓧. Note that all SN values are 

treated as random variables. 

4.1 Modeling a Single SN Value  

The beta distribution has two shape parameters 𝛼 > 0 and 𝛽 > 0, 

and its PDF is defined as 

 𝑓𝑏𝑒𝑡𝑎(𝑥|𝛼, 𝛽) =
𝑥𝛼−1(1−𝑥)𝛽−1

B(𝛼,𝛽)
 (13) 

where B  is the beta function used to normalize the distribution 

[10][19]. B can be written in terms of the gamma function, Γ, the 

complex-valued generalization of the factorial function: 

 B(𝛼, 𝛽) =
Γ(𝛼)Γ(𝛽)

Γ(𝛼+𝛽)
 (14) 

The beta distribution is defined on the (0,1) interval if 𝛼, 𝛽 < 1, or 

on the [0,1] interval otherwise. It is thus a suitable distribution for 

modeling probabilities or, in this case, SN values. 

 

 
Figure 5: Beta PDFs for various alpha and beta values. If alpha and beta 

are swapped, the corresponding PDF is reflected around x = 0.5. 
 

Fig. 5 shows the versatility of the beta distribution as 𝛼 and 𝛽 vary. 

The PDFs in Fig. 1 are also beta distributions where PDF1 has 𝛼 =

16, 𝛽 = 8 and PDF2 has 𝛼 = 0.5, 𝛽 = 0.8. The expected value and 

variance of the beta distribution are  

 𝔼[𝑋] =
𝛼

𝛼+𝛽
 (15) 

 Var(𝑋) =
𝛼𝛽

(𝛼+𝛽)2(𝛼+𝛽+1)
. (16) 

Some intuition can be gained from these equations. For example, 

multiplying both 𝛼 and 𝛽 by a scalar 𝑠 will not affect the mean, but 

will decrease the variance if 𝑠 > 1 . Therefore, if the beta 

distribution represents our belief about an SN’s value, higher values 

of 𝛼 and 𝛽 imply more certainty about the value of the SN. 

A limitation of the beta distribution is that it, if it is bimodal, the 

peaks must be at 0 and 1. In other words, the beta distribution 

cannot represent a bimodal PDF with a peaks at, say, 0.3 and 0.8. 

However, this limitation can be side-stepped by using a mixture 

model [19]. Rather than assume 𝑋  is distributed as a single beta 

distribution, suppose it is distributed as a mixture of two beta 

distributions with parameters (𝛼1, 𝛽1)  and (𝛼2, 𝛽2) . 𝑋 ’s PDF can 

then be defined as 

 𝑓𝑋(𝑥|𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝜋) = (1 − 𝜋)𝑓beta(𝑥|𝛼1𝛽1)  

 +𝜋𝑓beta(𝑥|𝛼2, 𝛽2)  (17) 
where 0 ≤ 𝜋 ≤ 1 can be thought of as the probability or proportion 

of time that 𝑥  is sampled from the second beta distribution with 

parameters 𝛼2, 𝛽2,  rather than the first beta distribution with 

parameters 𝛼1, 𝛽1. This beta mixture model (17) has 2 components, 

but it can be extended to an arbitrary number of component beta 

distributions, where each has a coefficient 𝜋𝑖  that determines its 

influence on 𝑋 ’s overall distribution and the sum of 𝜋𝑖 ’s is 1. 

Increasing the number of components increases the expressive 

power of the model. Parameter estimation for beta mixture models 

can be done using a modified expectation maximization algorithm 

presented in [19]. 

4.2 Modeling a Set of SN Values 

One way to go from a modeling a single input value 𝑋 to a set of 

input values 𝓧 = [𝑋1, 𝑋2, , … , 𝑋𝑀]  is to assume all 𝑋𝑖  in 𝓧  are 

independent thus implying the joint distribution of the elements of 

𝓧 is simply the product of the marginal distributions. 
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 𝑓𝓧(𝔁) = 𝑓𝑋1
(𝑥1)𝑓𝑋2

(𝑥2) … 𝑓𝑋𝑀
(𝑥𝑀) (18) 

where 𝔁 = [x1 , 𝑥2, … , 𝑥𝑀]. Then, each 𝑓𝑋𝑖
  can be modeled 

separately using techniques for modeling a single SN value. 

However, in some settings, the values to the circuit may be 

correlated. For example, values of adjacent pixels in an image tend 

to be highly correlated. It is important to note that two SNs having 

correlated values is not the same as the bits of two SNs being 

correlated. Two SNs can have correlated values but have 

independent bits. Likewise, two SNs can have correlated bits but 

independent values. In situations like these, modeling the input 

distribution becomes a domain-specific task. Sec. 5 gives an 

examples of modeling image data with a beta mixture model. 

The IVD 𝑓𝓧  is of interest because of its use to compute BMSE. 

Given a dataset, it is not necessary to construct an accurate model 

of the data’s distribution to estimate BMSE but doing so provides 

a useful low-dimensional characterization of the dataset. Further, 

in cases where data cannot be made accessible, a parameterized 

model can instead be published to give other researchers the ability 

to understand the data used to test circuit accuracy. 

The beta distribution is just one useful way to model an IVD. An 

advantage of this modeling approach is that statistics of the data, 

such as the expected value and variance, are used to fit the 

distribution to the data [19]. In some ways, it is like fitting data to 

a Gaussian except that beta distributions are defined on the bounded 

interval [0,1] rather than over all real numbers like Gaussians (thus 

Beta distributions are useful for modeling uncertain probabilities or 

proportions [10]). Other IVD models such as a piecewise 

polynomial, may require fitting directly to the PDF or to the 

cumulative density function of the data rather than statistics of the 

data. 

5 Case Study: Neural Networks 

Next, we apply the foregoing methodology to an SC-based 

convolutional neural network (CNN) designed for image 

classification. This is a large-scale application of SC that usually 

demands high levels of classification accuracy [5][13][17]. 

Artificial neural networks have long been seen as a promising 

application for SC because of the huge number of multiplications 

they require to implement inner-product operations of the form 

∑ 𝑊𝑖𝑋𝑖
𝑁
1 , where the 𝑊𝑖 are constant weights and the 𝑋𝑖 are variable 

inputs. The full use of SC in all layers of an CNN has been avoided 

mainly due to the fact that errors that tend to accumulate from layer 

to layer [17]. Identifying and measuring such errors is difficult and 

their mitigation is costly, requiring, for example, excessively long 

bit-streams, or hybrid designs that combine stochastic and 

deterministic features [8]. 

A basic part of a high-performing SC-based CNN design is shown 

in Fig. 6 [8]. To reduce errors and latency, the convolution layer is 

largely implemented in the SC domain where LFSRs (not shown) 

are used to generate the SNs. In this design style, positive and 

negative weights are separated into two groups and multiplication 

is performed using the unipolar format (absolute value of negative 

weights are used for SN generation). Both groups of products are 

X0

Wpos0

Xk

Wposk

. . . Addpos

Subtract
Xk+1

Wneg0

Xq

Wnegq

. . . Addneg

Activation

function

Stochastic domain Binary domain  
Figure 6: Convolution layer of a CNN based on the design in [8]. 

 

TABLE I 

MEAN SQUARED ERROR (MSE) FOR MULTIPLICATIONS IN THE MNIST AND 

CIFAR10 CNNS OBTAINED BY SIMULATION AND ANALYSIS. 

CNN Simulated MSE Analyzed BMSE 

MNIST 1.18 × 10−5 1.083 × 10−5 

CIFAR10 5.61 × 10−5 5.55 × 10−5 

 

then summed and the difference is taken between the positive 

weight group’s sum and negative weight group’s sum to compute 

the overall inner product between weights and inputs, as shown in 

Fig. 6. Our goal is to characterize the multiplication accuracy of the 

CNN using simulation and the formalism presented in this paper. 

5.1 Simulation 

We trained two CNNs with structures similar to the classic LeNet-

5 in [14]: one for the grayscale MNIST handwritten digit dataset 

[14] and one for the colored CIFAR10 natural image dataset [13]. 

These are popular 10-class benchmarks used in machine learning. 

For each CNN we simulated the first convolution layer in the SC-

domain using the corresponding test dataset as input. SNs of length 

256 and generated with 8-bit LFSRs were used as circuit inputs, 

and we recorded the squared error of all multiplication operations. 

The multiplication mean squared error for the MNIST and 

CIFAR10 CNNs are reported in Table I. Despite both CNNs being 

very similar, the MSE is four times higher for multiplication in the 

CIFAR10 CNN. This difference, as we will explain next, is almost 

entirely due to the distinct IVDs of MNIST and CIFAR10. 

 

5.2 Error Analysis 

To better understand the simulation results, the error formalism 

from Sec. 3, and the SN value modeling techniques from Sec. 4 will 

be used. 

The variance of an AND multiplier with LFSR-generated inputs X 

and W and output Z was derived in [3] using the technique in [15]. 
 

 Var(Ẑ|𝑋, 𝑊) =
𝑋(1−𝑋)𝑊(1−𝑊)

𝑁−1
 (19) 

 

The AND gate multiplier has no approximation error and there is 

no correlation present. Since the SC-based NNs use 8-bit LFSRs 

for SN generation, there is also very little quantization error. Thus, 

bias is approximately 0. The BMSE (9) can then be expressed as 

 BMSE = ∫ ∫ 𝑓𝑋𝑊(𝑥, 𝑤)Var(𝑍̂|𝑋 = 𝓍, 𝑊 = 𝑤)𝑑𝑤𝑑𝑥
1

0

1

0
 (20) 
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 (a) (b) (c) 

Figure 7: Distributions and their beta distribution fit: (a) MNIST pixel values; (b) MNIST CNN weights (absolute values); (c) CIFAR10 pixel values. 

Parameters for the beta distributions appear in Table II. 
 

We will assume that the weight values and pixel values are 

approximately independent so that 𝑓𝑋𝑊(𝑥, 𝑤) = 𝑓𝑋(𝑥)𝑓𝑊(𝑤). This 

simplification and (19) can then be used to re-express (20). 

 BMSE =
1

N−1
∫ 𝑓𝑋(𝑥)𝑥(1 − 𝑥)𝑑𝑥

1

0 ∫ 𝑓𝑊(𝑤)𝑤(1 − 𝑤)𝑑𝑤
1

0
 (21) 

In this case, due to the form of (19), BMSE can be written as the 

product of two integrals of the same form as (21). The distributions 

𝑓𝑋  and 𝑓𝑊  will be modeled as mixtures of 𝑘𝑋  and 𝑘𝑊  beta 

distributions, respectively. Each integral in (21) can then be re-

expressed using the beta distribution PDF (13) and the k-

component version of (17). For example 

          ∫ 𝑓𝑋(𝑥)𝑥(1 − 𝑥)𝑑𝑥
1

0

= ∑ 𝜋𝑖
[𝑋]

∫
𝑥𝛼𝑖

[𝑋]
(1 − 𝑥)𝛽𝑖

[𝑋]

B(𝛼𝑖
[𝑋]

, 𝛽𝑖
[𝑋]

 )

1

0

𝑑𝑥

𝑘𝑋

𝑖=1

                (22) 

where 𝜋𝑖
[𝑋]

, 𝛼𝑖
[𝑋]

 and 𝛽𝑖
[𝑋]

 are the coefficient and parameters of the 

i-th component of the 𝑋′𝑠  beta mixture model. Eq. (22) can be 

further simplified by computing the definite integral. 

           ∫ 𝑓𝑋(𝑥)𝑥(1 − 𝑥)𝑑𝑥
1

0

= ∑ 𝜋𝑖
[𝑋] 𝛼𝑖

[𝑋]
𝛽𝑖

[𝑋]

𝛼𝑖
[𝑋]

+ 𝛽𝑖
[𝑋]

+ 1
 

𝑘𝑋

𝑖=1

           (23) 

And finally, (23) can be used to re-express the two integrals in (21). 

 BMSE =
1

𝑁−1
∑ ∑ 𝜋𝑖

[𝑋]
𝜋𝑗

[𝑊] 𝛼𝑖
[𝑋]

𝛽𝑖
[𝑋]

𝛼𝑗
[𝑊]

𝛽𝑗
[𝑊]

(𝛼
𝑖
[𝑋]

+𝛽
𝑖
[𝑋]

+1)(𝛼
𝑗
[𝑊]

+𝛽
𝑗
[𝑊]

+1)

𝑘𝑊
𝑗

𝑘𝑋
𝑖=1  (24) 

where 𝜋𝑗
[𝑊]

, 𝛼𝑗
[𝑊]

 and 𝛽𝑗
[𝑊]

 are the coefficient and parameters for 

the j-th component of 𝑊 ’s beta mixture model. Eq. (24) is the 

closed-form solution for the BMSE of an AND gate multiplier with 

LFSR-generated inputs whose values are modeled as independent 

beta mixture models. The possibility of such closed-form solutions 

is another advantage of using the beta distribution.  

Next, we fit beta mixture models to 𝑓𝑋 and 𝑓𝑊 for both the MNIST 

and CIFAR10 distributions using training data and the algorithm in 

[19]. We considered beta mixture models of 1, 2 and 3 components 

and selected the best-fitting model of the three. The computed 

parameters are reported in Table II, while the distributions and fits 

are shown in Fig. 7. The CIFAR10 pixel distribution was fit with a 

two-component mixture model whereas all other distributions were 

fit with a single component mixture model (i.e., a single beta 

distribution). The CIFAR10 CNN weight distribution is similar to 

the MNIST case and is not shown in Fig. 7. The beta mixture model 

fits are representative of the target distribution in all cases. 

BMSE can now be derived analytically using the fitted model 

parameters found in Table II with (24). The BMSE derived from 

this analysis is reported in Table I. There is close agreement 

between the MSE measured during simulation (also shown in Table 

I) and BMSE derived analytically with the foregoing analysis.  

Some insights can be gained from the derivation. For example, Eq. 

(19) implies that multiplication variance (and thus error) is highest 

with 𝑋 = 𝑊 = 0.5 and lowest when 𝑋 = 0, 1 or 𝑊 = 0, 1. As Fig. 

7 shows, pixel values, 𝑋, in the MNIST dataset almost always take 

value 0 or 1 and very rarely take values in between, implying the 

multiplication will be very accurate. In the CIFAR10 case, 

however, pixel values vary across the whole interval [0,1], but the 

weights are concentrated towards 0, implying that multiplication 

will be fairly accurate, but not as accurate as the MNIST case. 

 

TABLE II 

FITTED BETA DISTRIBUTION PARAMETERS FOR THE MNIST AND CIFAR 

PIXEL DISTRIBUTIONS. 

Distribution 𝜋𝑖 𝛼𝑖 𝛽𝑖 

MNIST pixels 1 0.0362 0.1817 

CIFAR pixels 
0.6653 2.2919 3.2944 

0.3347 0.9236 0.8315 

MNIST weights 1 1.2800 7.5486 

CIFAR weights  1 1.6704 17.782 

6 Conclusion 

We introduced a methodology for Bayesian error analysis in SC 

that overcomes some limitations of simulation-based accuracy de-

termination, e.g., measuring the influence of IVD. We showed how 

the Bayesian methodology treats input values as probabilistic and 

estimates average output error. We also introduced the use of beta 

distributions to model IVD. Orthogonal to these ideas, we used 

bias-variance decomposition to group SC errors into two distinct 

classes, systematic and random, thus providing a deeper 

understanding of circuit error sources and their effects. Finally, we 

validated all the above with a case study which clearly shows that 

IVD can have a major impact on the accuracy of SC-based CNNs. 
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