Bayesian Accuracy Analysis of Stochastic Circuits

Timothy J. Baker and John P. Hayes
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, 48109
{bakertim, jhayes}@umich.edu

ABSTRACT

Understanding accuracy and the tradeoffs it entails is key to
evaluating the growing list of stochastic computing (SC) circuit
designs. Due to shortcomings of current SC error theory,
simulation has become the standard way to estimate a circuit’s
accuracy. However, simulation can demand large
computational resources and lead to uncertain, misleading, or
unexplainable results. A soundly based analytic approach is
therefore preferable to simulation. In this work, we first show
the input value distribution’s large influence on circuit
accuracy. Then we develop a Bayesian error analysis
methodology which uses the input value distribution as a prior
to inform better accuracy estimates. This error formulation
introduces concepts new to SC such as estimator dominance
and points to ways of improving simulation-based accuracy
estimates. Orthogonal to the Bayesian ideas, we also show how
to use bias-variance decomposition to simplify and aggregate
the effects of SC’s many error sources. We present techniques
that use the beta distribution to model the stochastic number
value distribution. Finally, we demonstrate the use of these
ideas to improve the accuracy and analysis of an SC-based
neural network.

KEYWORDS

Stochastic computing, Bayesian analysis, beta distribution, bias-
variance decomposition, error analysis, neural networks

1 Introduction

Stochastic computing (SC) is a form of approximate computing that
employs Dbit-streams known as stochastic numbers (SNs) to
represent data [2][9]. The key parameter of an N-bit SN X =
X1X, ..., Xy 1S Dy, the probability that an arbitrary bit in X is 1. X’s
value X is determined by p, and by the chosen SN format. The
basic (unipolar) format defines X = p,, and allows for very simple
arithmetic computing elements. Consider an AND gate with two
uncorrelated N-bit inputs, X and Y and output Z. The AND gate’s
functionality implies that p, = p,p, which makes Z = XY, so the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

ICCAD 20, November 2-5, 2020, Virtual Event, USA © 2020 Association for
computing Machinery. ACM ISBN 978-1-4503-8026-3/20/11...$15.00
https://doi.org/10.1145/3400302.3415703

0.0040 { ¢ 45
. = Error /"‘\
. LA 4.0
000354 : == PDFl [\ :
H AN |
PP PDF2 Y lss
_ 000307 : K \ -
o .
£ . 1 \ 30 S
@ 0.0025{ * / 1 1 =3
5 H ,’ \ 25 Z
= 00020{ ° / K \ 5
© . =<
L % I A 20 o
8000151 / 1 \ . 2
= . ! 1 s 3
2 ¥4 ! \ i
= 0.0010 . ! \ : <
el ' v Sore
0.0005 { / ------ e Loert
\
/ 7 \ 0.5
0.0000 1 _’ \
T T T T T T 0.0
0.0 02 0.4 0.6 0.8 1.0

Input value Y

Figure 1: Simulated error Z — Z* (solid black line) for an AND-gate
multiplier with inputs X, Y and SN length N = 64. X is set to 0.7 and Y is
randomly sampled with the indicated PDFs (dashed lines). MSE = 0.00382
with PDF1 (red); MSE = 0.00228 with PDF2 (blue).

AND gate serves as a SN multiplier. An important caveat is that Z
is not available directly, but instead must be estimated by observing
the AND gate’s output bit-stream Z = z,z, ... zy. The usual and
most straightforward estimator Z of Z is defined as the number of
1s in Z divided by Z’s length, i.e., Z = %Z?’ﬂ z;.

In general, SN error is associated with some difference between the
estimator Z and Z*, the exact or target output value. Errors arise
from a variety sources including random fluctuations of the SN bits
and unwanted correlations between them [1][6]. Most error sources
can be mitigated by increasing SN length N or by using higher
quality SN generation. However, such simple approaches tend to
increase latency exponentially or require large amounts of extra
hardware. Thus, for cost-effective error mitigation, it is essential to
better understand accuracy-latency and accuracy-area tradeoffs.
Key to this understanding is the biggest, but somewhat subtle,
influencer of error—the value distribution of the input SNs. This
influence is evident in the variance of an N-bit SN X which, for a
binomial distribution of Os and 1s, is X(1 — X)/N and varies from
0.0 when X =0 or 1, to 0.25/N when X = 0.5. This implies that,
assuming Z is binomially distributed, an AND multiplier’s output
error is a maximum when Z = XY is near 0.5, and a minimum when
XY is near 0.0 and 1.0, as is readily verified experimentally.
Example 1: Consider an AND gate multiplier with two
uncorrelated N-bit input bit-streams X, Y and output bit-stream Z.
To gain a better sense of the influence of the input value distribution
(IVD) on the multiplier’s average error, we simulated it for N = 64
with one input value X held fixed and the other input Y assigned

mailto:Permissions@acm.org

various possible probability density functions (PDFs). Fig. 1 shows
a typical set of results. For each simulation run, X was set to 0.70
and Y was chosen randomly from the unit interval [0.0, 1.0]
according to two different PDFs, which are shown by dashed lines
in Fig. 1. PDF1 (red) is a peaked IVD centered at 0.70 while PDF2
(blue) is a U-shaped IVD with most of its density concentrated near
0.0 and 1.0. If R is the number of simulation runs (50,000 in the
case of Fig. 1) and Z; is Z’s estimated value during run i, the mean
squared simulation error defined by

MSE =¥, (2, - 2)° (1)

is 3.82 x 10~3when using PDF1 to choose values for Y. However,
it is 2.28 x 1073 (40% lower) when using PDF2 to choose values
forY.

This large difference in error is due to PDF2’s more favorable IVD
for Y. PDF2 is higher for Y values that result in very low
multiplication error while PDF1 has more density for Y values that
result in high error. Thus, the circuit is more accurate on average
when Y is drawn from PDF2. Evidently, Y’s PDF exerts a large
influence on the average output error. This leads to an important
conclusion: having knowledge of the IVD enables a better
understanding of average accuracy which can lead to a more
informed choice about SN length and thus circuit latency. For
instance, in this particular example, SN length could be set as low
as 39 bits if Y is known to be distributed as in PDF2 and the average
error would still be less than the average error when Y is distributed
according to PDFI1.

Several studies have derived error as a function of input values
[31[4][6][15][16]. For example, Ex. 1’s multiplication MSE for N-
bit binomially distributed input SNs can be shown to be XY (1 —
XY)/N. However, the impact of the SN IVD on average error has
not been rigorously considered in previous SC error analyses, but
it has very significant design implications. As Ex. 1 shows, when
the input SNs’ PDFs are favorable, bit-streams can be shortened
and still meet a given accuracy threshold. Another place where the
IVD is important is in constructing simulation experiments and
interpreting simulation results.

Due to shortcomings in SC error theory, simulation has become the
dominant method, and in many cases the only method, to determine
and compare the accuracy of different stochastic designs. To
simulate a circuit, SN values must be chosen, and this choice
implicitly defines the IVD. Simulation accuracy is tied to this
distribution choice, and the conclusions drawn may or may not
remain valid when a different IVD is used.

To illustrate, it seems natural (and inconsequential) when
performing simulation experiments to choose random SN values
that are uniformly distributed, i.e., each SN value has the same
probability of being selected. However, many real-world
applications of SC, such as image processing, involve data that is
far from uniform. A case in point is the MNIST database of
handwritten characters which consists of thousands of images in the
form of 28 x 28 arrays of grayscale pixels, and is widely used as a
benchmark for image classification by neural networks (NNs) [14].
In SC-based image classifiers [8][17], the input SNs have grayscale
values denoting pixel intensity that range from 0.0 (black) to 1.0

(white). The vast majority of these values are close to zero (similar
to PDF2 in Fig. 1) because the corresponding images have a small
pale foreground and large black background. A circuit’s
simulation-based accuracy performance on uniformly random data
may not be representative of how the circuit will perform on
unevenly distributed data such as MNIST. MNIST and SC-based
NN are further explored in Sec. 5.

To develop a quantitative understanding of how knowledge of the
IVD impacts accuracy, we introduce a new Bayesian formulation
of SC accuracy (which should not be confused with recent,
unrelated work on the use of SC-based hardware to implement
Bayesian inference [7]). A central idea in Bayesian probability
theory is the use of prior knowledge, as in Bayes’ theorem [10]

P(H|D) = P(D|H)P(H)/P (D) @

where, for instance, H might be an error hypothesis and D might be
some data influencing belief in the hypothesis H. Eq. (2) indicates
how the prior probability or belief P(H) in H directly affects the
posterior belief P(H|D) in the hypothesis given the data. Our
analysis is Bayesian in the sense that it uses the IVD as informative
prior data to better estimate overall error in a stochastic circuit.

Orthogonal to its application of Bayesian ideas, this paper aims to

improve the analytic approach to SC error measurement when input
values are known. It does so by grouping errors into systematic and
random types and using bias-variance decomposition of mean
squared error. The result is a consistent methodology to compute
the error of a stochastic circuit. This loosens dependence on
simulation to measure accuracy and enables a better understanding
of accuracy trade-offs.

The main contributions of this work are:

1. A general Bayesian formulation of stochastic circuit accuracy
that identifies limitations of current simulation approaches and
suggests ways to improve them.

2. Introduction of bias-variance decomposition and the beta
distribution to SC error analysis and their use to simplify SC
and improve accuracy measurement.

3. Application of the forgoing ideas to accuracy analysis of SC-
based NNs.

This paper is organized as follows. Sec. 2 reviews relevant

background related to SC and probability theory, while Sec. 3

details a new Bayesian formulation of stochastic circuit accuracy.

Sec. 4 then introduces techniques to model input value distribution.

Finally, Sec. 5 gives a case study demonstrating the usefulness of

these ideas.

2 Background

Here we review relevant concepts in SC, including basic
component types and error analysis from an accuracy perspective.

2.1 SC Components

A compelling feature of SC is the simplicity of its basic arithmetic
components [2][9]. For example, AND gates function as unipolar
multipliers. (Henceforth, we will assume that only unipolar format
is used, but all this paper’s results can easily be modified to apply
to bipolar SNs.) Fig. 2 shows two other basic components which

Z=05X+Y)

(a) 05 (b)

Pseudo-random number R

Base-2 _1
number B

Stochastic
bit-stream X

[}
Comparator

(c) (d)

Figure 2: SC adders and data conversion: (a) OR gate computing the sum
X+ Y- XY; (b) mux computing the sum 0.5(X + Y); (c) stochastic number
generator (SNG); (d) counter serving as a stochastic-to-binary converter.

function as SC adders; note their different ways of confining the
sum Z to the unit interval. The OR gate is a biased adder computing
Z = X +Y — XY, while the multiplexer (mux) serves as a scaled
adder that computes Z = 0.5(X + Y).

Fig. 2 also shows two basic circuits used for data conversion in SC.
The SN generator (SNG) converts an n-bit binary number B to an
N-bit stochastic bit-stream X of value B/2"; the counter estimates
X’s value. The SNG contains a pseudo-random number source
(RNS), which typically consists of an n-bit linear feedback shift
register (LFSR) that outputs an integer in the interval (0,2""1]
each clock cycle as it traverses its 2" — 1 states. Since an LFSR lacks
the all-0 state, it never outputs the integer zero, which imposes a
small bias on X’s value.

2.2 SC Errors

Errors in stochastic circuits come from many sources. Due to the
discrete nature of digital computers, stochastic circuits incur errors
from function approximation and quantization in a similar manner
to traditional binary computing. Two other error sources unique to
stochastic computing are correlation and random fluctuation errors.

1.2 P
— E[Z]x=1[X,0.20]] e
e
——. Z'=X40.20 ~~ bias
1.0
0.8
0.6 1

standard deviation

0.4

0.2 4

0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 3: Visualization of bias-variance decomposition for an OR-gate
adder with inputs X, Y, output Z and SN length N =32.Y is set to 0.2 and
plotted quantities are in terms of X. Standard deviation is the square root of
variance.

Approximation error is the difference between the target function
and the function implemented by the circuit. Approximating a
target function can help simplify hardware if the approximating
function is simpler than the target function or it can enable
reconfigurable architectures where target functions must be
approximated by a given functional form, such as a Bernstein
polynomial [18]. Quantization error is due to the limited precision

of SNGs. For example, a 4-bit SNG can only generate SNs with
values {O,i,i,) 1} and so an input SN with target value Z
16’16 64
2
E .
Another error source is unwanted correlations. Most SC circuits are
designed assuming that all input SNs are independent. In practice
though, the input SNs may be correlated thus changing the circuit’s
expected output and introducing error [1][6]. Sometimes
correlation is helpful. For example, in [3] it is shown that, contrary
to expectation, suitably correlating the input SNs to a mux adder
can improve accuracy.
To summarize, approximation, correlation, and quantization all
affect the accuracy of a circuit; in other words, they change the
circuit’s expected output value. These errors are systematic and can
be controlled or eliminated by careful design. They can also be
grouped together under the single concept of circuit bias. In
addition to systematic errors, there are errors due to the stochastic
or probabilistic nature of the input signals. These are independent
of the circuit itself and may be termed random errors. They are
characterized by properties like expected value and variance and

are addressed by statistical analysis and simulation.

. . 1
must be quantized to either g or

3 Stochastic Circuit Accuracy

Stochastic circuits can be viewed as estimators of a target value.
Through this lens, results and insights from statistical estimation
theory can be used to improve the circuit design process. In many
estimation problems, the random data source is fixed, and the goal
is to derive an optimal estimation function that maps data to an
estimate of the target value. In stochastic circuit design, we have
the reverse situation. The estimation function is fixed (e.g., for
unipolar output, it is the frequency of ones in the output) and the
goal is instead to optimize the statistical properties of the output bit-
stream which serves as the random data source.

In general, estimation error is defined as

e=2-27" 3)

where Z is the circuit’s estimate for the designer’s target value Z*.
A cost or loss function L(€) can be used to determine the severity
of estimation error. No standard cost function exists for SC, but
L(e) = €? (quadratic error) and L(€) = |e| (absolute error) are
common. We focus on quadratic cost due to its useful bias-variance
decomposition, but the following formulation, especially (4) and
(8), can readily be framed in terms of other cost functions.

For consistency with Bayesian theory, from here on we will treat
the unipolar value X; = p,, of an SN X as a random variable. The
vector of input values to an M-input circuit is denoted by X =
[X1, X, ..., Xy] and is treated as a random vector. X and X should
not be confused: the SN X is a random vector of bits, while X is a
random vector of SN values. An outcome of X is denoted as «x.

3.1 General Error Formulation

Consider an M-input stochastic circuit C with random target input
values X = [Xq, X, ..., Xy] and target function Z* that maps X to
a real number. C produces an N-bit output SN Z = z, 7, ... zy from
which an estimator Z for Z* is derived. The mean squared error
(MSE) of Z given the input values, X, is defined as

MSE(Z,z*

X)=E [(Z - Z*(x))2 |x] 4)

In standard statistical analysis [12], the MSE of an estimator such
as Z can be decomposed into a combination of the estimator’s
variance and bias:

MSE(2,2°|X) = Var(Z|X) + Bias(2, 2*|x)* (5
where
var(2|x) = E (2 - E[2|x])* |x] 6)

Bias(Z,Z2*|X) = E[Z

X| = z*(X). 0

Example 2: The foregoing bias-variance decomposition is
illustrated in Fig. 3 which considers the use of an OR gate as an
adder to approximate Z* = X + Y, as in Fig. 2a. Here, Z’s expected
value E[Z|X] =X+Y —XY and Z* are plotted against X when
Y = 0.20. Z’s variation is also shown. The difference between
E[Z|X] and Z* is Z’s bias (7) which, in this case, is XY = —0.2X.
Bias measures Z’s systematic error with respect to approximating
Z*. The amount that Z fluctuates around its expected value is Z’s
variance (6), which measures Z’s random error and is completely
independent of Z*. Note that the bias and variance depend on the
input values. Sometimes bias is larger than standard deviation (the
square root of variance) and sometimes the reverse is true. This is
visualized in Fig. 3.

In the standard estimation theory embodied in (4), the target
parameter Z* is treated as a deterministic but unknown constant.
But, as we now show, it can be very useful to view it as a random
variable whose realization we must estimate. To handle this
situation, a Bayesian approach is employed where Z*’s distribution
(or a related one) serves as a prior and the error conditioned on Z*
(or arelated variable) is computed.

As Ex. 1 suggests, in SC X is generally a random vector whose
distribution is application dependent. The target value Z* is also
random due to its dependence on X, making a Bayesian approach
to error analysis appropriate. Instead of using Z*'s distribution as a
prior, X ’s distribution will be used since error is normally
expressed in terms of input values. If our goal is to compute average
error, then Bayes mean square error (BMSE) [12] denoted
BMSE(Z,Z*) = E[MSE(Z, 2*|x)] ®)
can be used where the expectation is taken with respect to X.
Intuitively, BMSE is a weighted sum where the summands are
MSE values given X = x (for all valid x) and the weights are X s
probability mass or density function evaluated at x. The advantage
of BMSE is that it measures the expected estimation error of a
circuit before the input values are known. Combining Egs. (5) and
(8), BMSE can also be written as a bias-variance decomposition

BMSE(Z,2") = E[Var(2|X)] + E [Bias(Z, 2"

x)z]. ©9)

BMSE is well-known in estimation theory [12] and, as we show in
this paper, it is a natural choice of error metric for SC. In fact,
although not mentioned by name, it is what many simulation
studies in SC already measure [4][11][18]. These studies begin by
defining a rule for sampling circuit input values (e.g., the inputs are
set to some fixed values like 0.0, 0.1, 0.2, 0.3, ..., 1.0, or else they
are randomly chosen from some fixed range). This step implicitly
defines the distribution of X. Then for each set of input values, x,
the circuit is simulated and the resulting error is measured many
times thus producing estimates for MSE(Z V2 X = x) . The
estimated MSE values for the x's are then averaged to produce a
metric that represents the circuit’s inherent accuracy. This metric is
precisely an estimate for the circuit’s BMSE. If another cost
function is used in place of MSE, such as mean absolute error, this
simulation approach is said to compute a Bayesian risk, a term that
is more general than BMSE [12].

3.2 Comparing Circuit Accuracy

One way to compare two circuits’ accuracy is by comparing their
BMSEs, e.g., by computing the difference or ratio of the BMSEs.
A somewhat limiting factor, though, is that BMSE depends on the
IVD so one circuit may have a lower BMSE than another circuit for
some IVDs, but not for others. This points to a major potential
problem with current simulation approaches in SC. In many cases,
only one method of choosing input values is used and thus only one
input distribution is implicitly chosen. Thus, one BMSE per design
is calculated and compared, but the comparison may not generalize
well to other input distributions.

In some cases, however, it may be that one circuit is never less
accurate (in terms of BMSE) than another circuit. This leads to the
notion of estimator dominance. Formally, we say an estimator Z;
dominates another estimator Z, with respect to estimating Z* if
MSE(Z,,Z*|X = x) < MSE(Z,, Z*|X = x) for at least one valid
value x, and MSE(Z,, Z*|X = x) < MSE(Z,, Z*|X = x) for all
other values of x. In other words, Z; dominates Z, when Z;is more
accurate for at least one input combination x and no less accurate

than Z, for all other input combinations, where accuracy is
measured by MSE. (Dominance can also be phrased in terms of
other cost functions.) The following result considers the case where
two distinct estimators Z; and Z, are derived from circuits with
input X and the same target function Z*.

Theorem: If Z; dominates Z, then Z; never has a greater BMSE
than Z, for any distribution of X.

The theorem follows from the fact that BMSE is computed as a
weighted sum of MSEs where all weights are positive and, in
addition, the fact that Z;’s MSE never exceeds Z, for any set of
input values due to the definition of dominance. It implies the
usefulness of proving dominance between estimators of two SC
circuits. When a circuit’s estimator dominates another circuit’s
estimator, then the former circuit is always at least as accurate as
the latter circuit for any IVD.

3.3 Implications for Simulation Error Analysis

The foregoing formulation for SC errors points to two important
considerations for error analysis. The first is that multiple IVDs
should be considered when accessing the accuracy of a circuit
design. These IVDs should be representative of data in the
application domain of the circuit, or, in the case of general designs,
should represent a variety of different distributions. The beta
distribution presented in Sec. 4 and visualized in Figs. 1 and 5 can
be useful for constructing and fitting input distributions with a
variety of shapes. Alternatively, multiple datasets can be used to
assess a circuit’s accuracy (each dataset represents an IVD). In Sec.
5, we show an example where an SC-based neural network (NN) is
evaluated using two datasets. We will see that their differences lead
to strikingly different BMSEs.

The second consideration is that there are various ways to compute
BMSE for a given IVD fy depending whether the expected circuit
output value]E[Z |JC] and variance Var(Z | X) are known. There are
several possibilities. For example, if both]E[Z |X] and Var(Z |X)
are known, then bias can be found from (7) and BMSE from (9). If
both are unknown, simulation and sampling can be used to
estimate BMSE.

Example 3: Consider again the OR-gate adder of Fig. 2a and Ex. 2
that uses 32-bit SNs and fixes Y to 0.2. The MSE of this circuit
assuming that X’s value is uniformly sampled from the unit interval
[0,1] can be found via simulation. Each simulation run, X is
sampled randomly from [0,1] and the OR gate adder is simulated
with X and Y = 0.2. The squared output error is recorded and then
averaged across all 10,000 simulation runs to estimate MSE as in
(1). In our experiment, we measured MSE = 0.0190.

According to analysis presented in Sec. 3.1, this MSE found using
simulation is a Bayesian MSE and it can be found analytically using
(9). To do this, the circuit’s bias, variance and IVD must be
determined as functions of X. Then integration can be used to
calculate BMSE. The bias of the OR gate adder with Y = 0.2 is
—XY = —0.2X. While the variance is

Var(2|X) _ (X+Y—XY)(1N—(X+Y—XY)) (10)

where N is the SN length [16]. This simplifies to (—0.64X? +
0.48X + 0.16)/32 since Y = 0.2 and N = 32 for this example.
Finally, since X is sampled uniformly from [0,1], X’s probability
density is fy(x) = 1 for 0 < x < 1 and fx(x) = 0 otherwise.
Eq. (9) can be re-expressed as
BMSE(Z,2*) = [fx(x)Var(Z|X = x)dx

+f fx(x)Bias(Z, 2*| X = x)’dx (11)
by using the definition of the expectation operator. In this example,
(11) becomes

BMSE(Z,2") = - [, (—0.64x2 + 0.48x + 0.16)dx

— J;/(0.2x)%dx (12)
which evaluates to 0.0192 and is in close agreement to the
simulation results.

Both the simulation approach and analytic approach based on (9)
arrived at the same conclusion. The advantage of the analytic
approach is that it is computationally more efficient which is
important for large circuits that have many inputs and thus many

parameters. Furthermore, the analytic approach can grant further
insights. For example, the bias in Ex. 3 is —0.2X and so we would
expect the circuit to be more accurate when X is likely to take small
values and less accurate when X is likely to take large values. These
likelihoods are expressed mathematically as the distribution fy of
X. In the following section, we introduce ways to model fy.

3.4 Application of Error Analysis

One key application of error analysis is determining the minimum
latency (or equivalently, the SN length) required to achieve a user-
specified level of accuracy. Since error varies with the circuit’s
input values, latency can be determined in terms of the worst-case
error across any set of input values [16] or in terms of the expected
error by considering the IVD. As we will see, these two approaches
can give significantly different latencies.

The minimum latency required to meet a specified accuracy level
depends on many factors that influence error such as SNG precision
and correlation. For our next example, we assume that there is no
correlation error and SN length is set to 2", where n is the SNG
precision as is typical in SC experiments. Constraining the SN
length to a power-of-two implies that a costly division circuit is not
needed in addition to a counter for output SN value estimation.
Example 4: Consider an AND gate that multiplies two inputs X
and Y which are generated with an n-bit SNG and whose target
values X* and Y* are drawn from two independent PDFs and are
rounded to m-bit precision by truncation. Therefore, X (Y) is
generated with expected value X = |X*2"]/2™ (Y = |[Y*2™]|/2™)
and the bias of the multiplier is XY — X*Y™*. The variance of the
multiplier is XY (1 — XY) /N assuming X and Y are streams of N =
2" independent bits.

Under these assumptions, we derived the BMSE when X* and Y~
are both independently drawn from either PDF1 or from PDF2 of
Fig. 1 and plotted the results in Fig. 4a. Also shown in Fig. 4a is the
predicted BMSE assuming the worst-case target input values occur
with probability 1 or assuming a uniform distribution of target input
values. The error curve is lowest for the PDF2 case because target
SN values that result in low error occur with high probability. The
opposite situation occurs for PDF1 where the error curve is high
(nearly the worst case) because target SN values that result in high
error occur with high probability. Finally, the average case error
curve falls between PDF1’s and PDF2’s error curve, which
highlights the fact that average case analysis is not representative
of these (and many other) IVDs.

The relationship between error and latency can be used to derive
minimum latency for a given accuracy. For instance, if the target
MSE is 3 x 1073, then Fig. 4a shows that 32 bit SNs are needed
when X* and Y™ are drawn from PDF2 whereas 128 bit SNs are
needed in the worst case or when X* and Y* are drawn from PDF1.
This factor of 4 difference in required latency demonstrates the
influence that the IVD can have on the error.

A major advantage of an analytic approach over a simulation-based
approach to error analysis is that analysis can provide results that
have better explanations, insights, and confidence levels. For
example, Fig. 4b shows the bias-variance decomposition of MSE
for both the PDF1 and PDF2 case of Ex. 4. It can be seen in both

—e— PDF1 MSE
—+— PDF2 MSE
1072 —a— Average case MSE
Wi —a— Worst case MSE
g - Target MSE
M 3e-03 f—f——m——Smge = g o
-]
Q
(@ ¢
@ 1073
o
2 pE 20 27 20 2
SN length (N)
--e:- PDF1 bias
0.0150 —e- PDF1 variance
—e— PDF1 MSE
w 001251 -4+ PDF2 bias
g -+~ PDF2 variance
o 0.01001 PDF2 MSE
(b) 2
o 0.0075
e
£ 0.0050 1
0.0025 +
0.0000

2 S 2° 2
SN length (N)
Figure 4: BMSE of an AND multiplier with target input values drawn from
either PDF1 or from PDF2. (a) BMSE vs SN length for various IVDs; (b)
Bias-variance decomposition of MSE for two IVDs. Note the log scales.

cases that bias due to quantization error is a small contributor to
MSE compared to variance due to random fluctuations. This
supports the common intuition that quantization error is negligible
for multiplication with long bit-streams.

4 Flexible Input Value Distribution Model

Modeling the input SN value distribution for fy requires some
knowledge about X in the form of data or in the form of prior
belief. As usual, we assume the unipolar format so that X = p,.. We
begin by discussing how to use the beta distribution to model the
value of a single input SN X that has a value X. We then generalize
to modeling a vector of input values X. Note that all SN values are
treated as random variables.

4.1 Modeling a Single SN Value

The beta distribution has two shape parameters @ > 0 and § > 0,
and its PDF is defined as
x%1(1—x)F-1

foeta (K1t B) = F (13)
where B is the beta function used to normalize the distribution
[10][19]. B can be written in terms of the gamma function, I', the
complex-valued generalization of the factorial function:

_ M@r)
B(a, §) = T2 (14)

The beta distribution is defined on the (0,1) interval if a, 8 < 1, or
on the [0,1] interval otherwise. It is thus a suitable distribution for
modeling probabilities or, in this case, SN values.

3.5

3.0 1

2.5

2.0

Probability density fx(x)

0.0 02 0.4 0.6 058 10

Figure 5: Beta PDFs for various alpha and beta values. If alpha and beta
are swapped, the corresponding PDF is reflected around x = 0.5.

Fig. 5 shows the versatility of the beta distribution as a and 8 vary.
The PDFs in Fig. 1 are also beta distributions where PDF1 has a =
16,3 = 8 and PDF2 has @ = 0.5, 8 = 0.8. The expected value and
variance of the beta distribution are

E[X] = é 15)
_ ap
Var(X) = @D (16)

Some intuition can be gained from these equations. For example,
multiplying both @ and f by a scalar s will not affect the mean, but
will decrease the variance if s > 1. Therefore, if the beta
distribution represents our belief about an SN’s value, higher values
of @ and B imply more certainty about the value of the SN.
A limitation of the beta distribution is that it, if it is bimodal, the
peaks must be at 0 and 1. In other words, the beta distribution
cannot represent a bimodal PDF with a peaks at, say, 0.3 and 0.8.
However, this limitation can be side-stepped by using a mixture
model [19]. Rather than assume X is distributed as a single beta
distribution, suppose it is distributed as a mixture of two beta
distributions with parameters (a4, 8;) and (@3, ;). X’s PDF can
then be defined as
fx(xlay, @z, B, Bay) = (1 — 1) foeta (X1 B1)

+7 foeta (X122, B2) (17)
where 0 < m < 1 can be thought of as the probability or proportion
of time that x is sampled from the second beta distribution with
parameters a5, 8,, rather than the first beta distribution with
parameters ¢4, ;. This beta mixture model (17) has 2 components,
but it can be extended to an arbitrary number of component beta
distributions, where each has a coefficient r; that determines its
influence on X’s overall distribution and the sum of m;’s is 1.
Increasing the number of components increases the expressive
power of the model. Parameter estimation for beta mixture models
can be done using a modified expectation maximization algorithm
presented in [19].

4.2 Modeling a Set of SN Values

One way to go from a modeling a single input value X to a set of
input values X = [Xy,X5,, ..., Xy] is to assume all X; in X are
independent thus implying the joint distribution of the elements of
X is simply the product of the marginal distributions.

fx(x) = fxl(x1)fxz(xz) ---fXM(xM) (18)
where & = [x1,%;, ..., xy]. Then, each fy, can be modeled
separately using techniques for modeling a single SN value.
However, in some settings, the values to the circuit may be
correlated. For example, values of adjacent pixels in an image tend
to be highly correlated. It is important to note that two SNs having
correlated values is not the same as the bits of two SNs being
correlated. Two SNs can have correlated values but have
independent bits. Likewise, two SNs can have correlated bits but
independent values. In situations like these, modeling the input
distribution becomes a domain-specific task. Sec. 5 gives an
examples of modeling image data with a beta mixture model.

The IVD fy is of interest because of its use to compute BMSE.
Given a dataset, it is not necessary to construct an accurate model
of the data’s distribution to estimate BMSE but doing so provides
a useful low-dimensional characterization of the dataset. Further,
in cases where data cannot be made accessible, a parameterized
model can instead be published to give other researchers the ability
to understand the data used to test circuit accuracy.

The beta distribution is just one useful way to model an IVD. An
advantage of this modeling approach is that statistics of the data,
such as the expected value and variance, are used to fit the
distribution to the data [19]. In some ways, it is like fitting data to
a Gaussian except that beta distributions are defined on the bounded
interval [0,1] rather than over all real numbers like Gaussians (thus
Beta distributions are useful for modeling uncertain probabilities or
proportions [10]). Other IVD models such as a piecewise
polynomial, may require fitting directly to the PDF or to the
cumulative density function of the data rather than statistics of the
data.

5 Case Study: Neural Networks

Next, we apply the foregoing methodology to an SC-based
convolutional neural network (CNN) designed for image
classification. This is a large-scale application of SC that usually
demands high levels of classification accuracy [5][13][17].
Artificial neural networks have long been seen as a promising
application for SC because of the huge number of multiplications
they require to implement inner-product operations of the form
YN W;X;, where the W; are constant weights and the X; are variable
inputs. The full use of SC in all layers of an CNN has been avoided
mainly due to the fact that errors that tend to accumulate from layer
to layer [17]. Identifying and measuring such errors is difficult and
their mitigation is costly, requiring, for example, excessively long
bit-streams, or hybrid designs that combine stochastic and
deterministic features [8].

A basic part of a high-performing SC-based CNN design is shown
in Fig. 6 [8]. To reduce errors and latency, the convolution layer is
largely implemented in the SC domain where LFSRs (not shown)
are used to generate the SNs. In this design style, positive and
negative weights are separated into two groups and multiplication
is performed using the unipolar format (absolute value of negative
weights are used for SN generation). Both groups of products are

Xo —]

Whoso—

Addpony-i]

X —]
Woosk—
Xice1
Whego—

Activation
function

Subtract [

Addregyi]

Xq —

slsels

Whegq

Stochastic domain { Binary domain

Figure 6: Convolution layer of a CNN based on the design in [8].

TABLE I
MEAN SQUARED ERROR (MSE) FOR MULTIPLICATIONS IN THE MNIST AND
CIFAR10 CNNS OBTAINED BY SIMULATION AND ANALYSIS.

CNN Simulated MSE Analyzed BMSE
MNIST 1.18 x 1075 1.083 x 1075
CIFARI10 5.61x 10758 5.55x 107°

then summed and the difference is taken between the positive
weight group’s sum and negative weight group’s sum to compute
the overall inner product between weights and inputs, as shown in
Fig. 6. Our goal is to characterize the multiplication accuracy of the
CNN using simulation and the formalism presented in this paper.

5.1 Simulation

We trained two CNNs with structures similar to the classic LeNet-
5 in [14]: one for the grayscale MNIST handwritten digit dataset
[14] and one for the colored CIFAR10 natural image dataset [13].
These are popular 10-class benchmarks used in machine learning.
For each CNN we simulated the first convolution layer in the SC-
domain using the corresponding test dataset as input. SNs of length
256 and generated with 8-bit LFSRs were used as circuit inputs,
and we recorded the squared error of all multiplication operations.
The multiplication mean squared error for the MNIST and
CIFAR10 CNNs are reported in Table 1. Despite both CNNs being
very similar, the MSE is four times higher for multiplication in the
CIFAR10 CNN. This difference, as we will explain next, is almost
entirely due to the distinct IVDs of MNIST and CIFAR10.

5.2 Error Analysis

To better understand the simulation results, the error formalism
from Sec. 3, and the SN value modeling techniques from Sec. 4 will
be used.

The variance of an AND multiplier with LFSR-generated inputs X
and W and output Z was derived in [3] using the technique in [15].

XA-X)w(@-w)

Var(Z|x, W) = =——— (19)

The AND gate multiplier has no approximation error and there is
no correlation present. Since the SC-based NNs use 8-bit LFSRs
for SN generation, there is also very little quantization error. Thus,
bias is approximately 0. The BMSE (9) can then be expressed as

BMSE = [,/ [fw (x, w)Var(Z|X = x,W = w)dwdx (20

14

—— Fitted beta distribution
12 Distribution 4

10

4
1‘
2

Density

— Fitted beta distribution
Distribution

1.6
14
1.2

10

£0.8

[

D06
0.4

0.2

—— Fitted beta distribution
Distribution

0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4
Pixel value

(@) (b)

CNN weight absolute value

0.0
0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Pixel value

(c)

Figure 7: Distributions and their beta distribution fit: (a) MNIST pixel values; (b) MNIST CNN weights (absolute values); (c) CIFAR10 pixel values.

Parameters for the beta distributions appear in Table II.

We will assume that the weight values and pixel values are
approximately independent so that fy, (x, w) = fx (x) fiy (W). This
simplification and (19) can then be used to re-express (20).

= J fxCx(1 = X)dx [fy WIw(1 —w)dw (21)

In this case, due to the form of (19), BMSE can be written as the
product of two integrals of the same form as (21). The distributions
fx and fyy will be modeled as mixtures of ky and ky, beta
distributions, respectively. Each integral in (21) can then be re-
expressed using the beta distribution PDF (13) and the &-
component version of (1 7) For example

BMSE =

x“ ; (1 - x)ﬁ
)x(1—x)dx = X]f —————dx 22
ffx Z B g) 22)
where ni[], a; Vand ﬁi are the coefficient and parameters of the

i-th component of the X's beta mixture model. Eq. (22) can be

further simplified by computing the definite integral.
kx
[x]

a.X 'B.[X]
f fx()x(1 —x)dx = z i[X] ﬁ

(X1 [x
i=1 B
And finally, (23) can be used to re-express the two integrals in (21).
XJB[X] [W]ﬂ[W]

(23)

[x1_[w]
BMSE =
S Z T[; (04 5i

and ﬁj[W] are the coefficient and parameters for

)(wi] ,B[W] 1)(4)

where 1'[1[], a][]
the j-th component of W’s beta mixture model. Eq. (24) is the
closed-form solution for the BMSE of an AND gate multiplier with
LFSR-generated inputs whose values are modeled as independent
beta mixture models. The possibility of such closed-form solutions
is another advantage of using the beta distribution.

Next, we fit beta mixture models to fy and f, for both the MNIST
and CIFAR10 distributions using training data and the algorithm in
[19]. We considered beta mixture models of 1, 2 and 3 components
and selected the best-fitting model of the three. The computed
parameters are reported in Table II, while the distributions and fits
are shown in Fig. 7. The CIFARI10 pixel distribution was fit with a
two-component mixture model whereas all other distributions were
fit with a single component mixture model (i.e., a single beta
distribution). The CIFAR10 CNN weight distribution is similar to
the MNIST case and is not shown in Fig. 7. The beta mixture model
fits are representative of the target distribution in all cases.

BMSE can now be derived analytically using the fitted model
parameters found in Table II with (24). The BMSE derived from
this analysis is reported in Table I. There is close agreement
between the MSE measured during simulation (also shown in Table
I) and BMSE derived analytically with the foregoing analysis.

Some insights can be gained from the derivation. For example, Eq.
(19) implies that multiplication variance (and thus error) is highest
with X = W = 0.5 and lowest when X = 0,1 or W = 0, 1. As Fig.
7 shows, pixel values, X, in the MNIST dataset almost always take
value 0 or 1 and very rarely take values in between, implying the
multiplication will be very accurate. In the CIFARIO case,
however, pixel values vary across the whole interval [0,1], but the
weights are concentrated towards 0, implying that multiplication
will be fairly accurate, but not as accurate as the MNIST case.

TABLE II
FITTED BETA DISTRIBUTION PARAMETERS FOR THE MNIST AND CIFAR
PIXEL DISTRIBUTIONS.

Distribution ; a; Bi
MNIST pixels 1 0.0362 0.1817

. 0.6653 2.2919 3.2944
CIFAR pixels 03347 0.9236 0.8315
MNIST weights 1 1.2800 7.5486
CIFAR weights 1 1.6704 17.782

6 Conclusion

We introduced a methodology for Bayesian error analysis in SC
that overcomes some limitations of simulation-based accuracy de-
termination, e.g., measuring the influence of [IVD. We showed how
the Bayesian methodology treats input values as probabilistic and
estimates average output error. We also introduced the use of beta
distributions to model IVD. Orthogonal to these ideas, we used
bias-variance decomposition to group SC errors into two distinct
classes, systematic and random, thus providing a deeper
understanding of circuit error sources and their effects. Finally, we
validated all the above with a case study which clearly shows that
IVD can have a major impact on the accuracy of SC-based CNNs.

Acknowledgement. This research was supported by the U.S.
National Science Foundation under Grant CCF-2006704.

REFERENCES

Alaghi, A. and J.P. Hayes, “Exploiting correlation in stochastic circuit
design.” Proc. Intl. Conf. Computer Design, 39-46, 2013.

Alaghi, A., W. Qian and J.P. Hayes. “The promise and challenge of
stochastic computing.” [EEE Trans. CAD, 37, 1515-1531, 2018.
Baker T.J. and J.P. Hayes. “The hypergeometric distribution as a more
accurate model for stochastic computing.” Proc. Design Autom. and
Test in Europe Conf., 592-597, 2020.

Braendler, J. D., T. Hendtlass and P. O’Donoghue, “Deterministic bit-
stream digital neurons,” I[EEE Trans. Neural Nets., 13, 1514-1525,
2002.

Brown, B.D. and H.C. Card. “Stochastic neural computation. L.
computational elements.” [EEE Trans. Computers, 50, 891-905,
2001.

Chen, T-H. and J.P. Hayes. “Analyzing and controlling accuracy in
stochastic circuits.” Proc. Intl Conf. Comp. Design, 367-373, 2014.
Faix, M. et al. “Design of stochastic machines dedicated to
approximate Bayesian inferences,” I[EEE Trans. Emerging Topics in
Comp, 7, 60-66, 2019.

Faraji, S.R. et al. “Energy-efficient convolutional neural networks
with deterministic bit-stream processing.” Proc. Design Autom. and
Test in Europe, 1757-1762, 2019.

Gaines, B.R. “Stochastic computing systems.”
Information Systems Science, 2, 37-172, 1969.

Advances in

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

Grinstead, C.M. and L.J. Snell. Grinstead and Snell’s Introduction to
Probability, version of 4 July 2006, American Math. Soc., 2006.
Ichihara, H. et al. "Compact and accurate digital filters based on
stochastic computing." IEEE Trans. Emerging Topics in Comp.,7,31-
43,2019.

Kay, S.M. Fundamentals of Statistical Signal Processing: Estimation
Theory, Prentice Hall, Upper Saddle River, NJ, 1993.

Krizhevsky, A. “Learning multiple layers of features from tiny
images.” Master’s Thesis, Dept. of Comp. Sci., Univ. of Toronto,
2009.

LeCun, Y. et al. “Gradient-based learning applied to document
recognition, Proc. IEEE, 86, 2278-2324, 1998.

Ma, C., S. Zhong and H. Dang. “Understanding variance propagation
in stochastic computing systems,” Proc. Intl. Conf. Computer Design,
213-218,2012.

Neugebauer, F., . Polian and J.P. Hayes. “Framework for quantifying
and managing accuracy in stochastic circuit design.” ACM Jour.
Emerging Technologies in Comp. Sys.. 14, article 31, 2018.
Neugebauer, F., I. Polian and J.P. Hayes. “On the limits of stochastic
computing,” Proc. Intl. Conf. Rebooting Computing, 98-106, 2019.
Qian, W. et al. “An architecture for fault-tolerant computation with
stochastic logic.” IEEE Trans. Computers, 60, 93-105, 2011.
Schroder, C. and S. Rahmann. “A hybrid parameter estimation
algorithm for beta mixtures and applications to methylation state
classification.” Algorithms Mol. Biol. 12 article 21, 2017.

