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Abstract

The study of perfect numbers (numbers which equal the sum of their
proper divisors) goes back to antiquity, and is responsible for some of the
oldest and most popular conjectures in number theory. We investigate a
generalization introduced by Pollack and Shevelev: k-near-perfect num-
bers. These are examples to the well-known pseudoperfect numbers first
defined by Sierpinski, and are numbers such that the sum of all but at most
k of its proper divisors equals the number. We establish their asymptotic
order for all integers k£ > 4, as well as some properties of related quantities.

1 Introduction

Let o(n) be the sum of all positive divisors of n. A natural number n is perfect
if o(n) = 2n. Perfect numbers have played a prominent role in classical number
theory for millennia. A well-known conjecture claims that there are infinitely
many even, but no odd, perfect numbers. Despite the fact that these conjectures
remain unproven, there has been significant progress on studying the distribution
of perfect numbers [Vo, HoWi, Ka, Erl], as well as generalizations. One are
the pseudoperfect numbers, which were introduced by Sierpinski [Si]. A natural
number is pseudoperfect if it is a sum of some subset of its proper divisors. Erdos
and Benkoski [Er2, BeEr]| proved that the asymptotic density for pseudoperfect
numbers, as well as that of abundant numbers that are not pseudoperfect (also
called weird numbers), exist and are positive.

Pollack and Shevelev [PoSh] initiated the study of a subclass of pseudoperfect
numbers called near-perfect numbers. A natural number is k-near-perfect if it is
a sum of all of its proper divisors with at most k exceptions. Restriction on the
number of exceptional divisors leads to asymptotic density 0. The number of 1-

3/4+0(1) "and in general for k& > 1 the

near-perfect numbers up to z is ! at most
number of k-near-perfect numbers up to x is at most x(log log )*~*/log x.

Our first result improves the count of k-near-perfect numbers.

Theorem 1.1. For any non-negative integer k and real number © > 1, denote by
N(k; x) the set of k-near-perfect numbers up to .

2010 Mathematics Subject Classification: Primary 11A25; Secondary 11N25, 11B83.
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Arithmetic functions, Sum of divisors function.
! This is a result stated in [AnPoPo]. In the original paper of Pollack and Shevelev [PoSh],
the upper bound was given by z:5/6+0(1),
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For any k > 4, there exists a constant xo(k) > 0 such that for x > xo(k), we
have

(1.1) #N (k;x) =i

x log(k-+4) | _

(loglog z) [ s

log z

Our argument is based on a partition of the set N (k; z) different from that of
[PoSh] and this is described in Section 3. This allows us to carry out an inductive
argument and reduces the count of # N (k; x) for large integers & to the determi-
nation of all k-near-perfect numbers for small integers k& with a fixed number of
positive divisors (see Lemma 2.10). When 4 < k < 11, this even allows precise
asymptotic formulae.

Theorem 1.2. For 4 < k < 11, there exists a constant c¢;, > 0 such that

(1.2) #N(kx) ~ e

T

ogx
as r — oQ.

Indeed, the computation of the constant ¢, follows from Lemma 2.10 and

¢y = 5 ~ 0.1667, ¢ ~ 0.2024,
C7r = Cg =~ 03913, Cog ~ 04968, Cilgp ~ 05709, c1 ~ 0.6274.

Our last result is motivated by an open question raised in [BeEr]: can o(n)/n
be arbitrarily large when n is a weird number? > We replace ‘weirdness’ by
‘exact-perfectness’, where a natural number is k-exact-perfect if it is a sum of
all of its proper divisors with exactly k exceptions. Note the result below is con-
ditional on there being no odd perfect numbers.

Theorem 1.3. Let ¢ € (0,2/5). Denote by E(k) the set of all k-exact-perfect
numbers, E(k;z) := E(k)N[1,z] and E(k;z) :={n <z :n € E(k), o(n) >
2n + n}. Let M be the set of all natural numbers of the form 2q, where q is a

Mersenne prime’. If there are no odd perfect number, then for k sufficiently large
and k & M, we have

- HE(ksx)

1.1 Outline

In Section 2 we introduce the necessary definitions and lemmata for our theo-
rems. In Section 3, we set the stage for proving Theorem 1.1 and 1.2. In Section
4,5 and 6, we prove Theorem 1.2, 1.1 and 1.3 and respectively.

2A number is weird if the sum of its proper divisors is greater than itself, but no subset of
these divisors sums to the original number.
3 Mersenne primes are primes of the form 2P — 1 for some prime p.
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1.2 Notations

We use the following notations and definitions.

e We write f(z) < g(z) if there exist positive constants ¢, ¢y such that
c1g9(z) < f(z) < cog(x) for all sufficiently large .

e We write f(z) ~ g(x) if lim,_, f(x)/g(x) =

e We write f(z) = O(g(x)) or f(z) < g(x) if there exists a positive con-
stant C' such that f(x) < Cg(x) for all sufficiently large .

e We write f(z) = o(g(x)) if lim, o f(2)/g(z) =

e In all cases, subscripts indicate dependence of implied constants on other
parameters.

e Letx >y > 2. Denote by ®(x, y) the set of all y-smooth numbers up to x
and ®;(z,y) == {(n<z:n=p---pmj, PT(m;) <y<p <<
p1}.

e We use p and p; to denote primes, and P (n) to denote the largest prime
factor of n.

e Denote by 7(n) the number of positive divisors of n.
e Denote by {2(n) the number of prime divisors of n counting multiplicities.

e Denote by N (k) the set of all k-near-perfect numbers and N (k;z) :=
N(k)N[L,z].

e Denote by E(k) the set of all k-exact-perfect numbers and E(k;x) :=

E(k) N1, 4].

2 Preparations

In this section, we collect the necessary lemmata for our theorems. We begin
with a well-known result of Landau regarding the arithmetic function 2(n), the
number of prime factors of n counting multiplicities, i.e., if n = p{* - - - p%", then
Qn) =a; + -+ a,. We let

(2.1) Q(s;z) == {n <z :Q(n) = s}.
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Lemma 2.1. Fix an integer s > 1. As x — 0o, we have
(2.2)

#Q(s;x) ~ #{n<z:n=p - -psp1 > >ps} ~ (

1 x
s —1)!logx

(loglog ).

Proof. See [HaWr] Theorem 437 (Section 22.18). L]

Next, we state an elementary estimate of the number of y-smooth numbers
up to . *

Lemma 2.2. Let

1
2.3) o= 28
logy
and ®(x,y) be the set of y-smooth numbers up to x. Then uniformly for x > y >
2, we have
(2.4) #(z,y) < wexp(—u/2),

Proof. See Theorem 9.5 of [DeKLu].

Our next lemma is a standard result from sieve theory.

Lemma 2.3. Suppose A is a finite set of natural numbers, P is a set of primes,
z > 0 and P(z) is the product of primes in P not greater than z. Let

S(A,P,z) == {neA:(n,P(z)) =1}

and
Ay = {aeA:d|a}.

Assume the following conditions.

1. Suppose g is a multiplicative function satisfying

0 < glp) <1 forpe P and g(p) =0 for p & P,

and there exists constants B > 0 and xk > 0 such that

IT a=g@)™ < <logw>neXp< & )

ot log y log y

for2 <y <w.

* Lety > 2. A natural number n is said to be y-smooth if all of its prime factors are at most
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2. Let X > 0. For any square-free number d with all of its prime factors in
P, define
rq = #Ad — Xg(d)

Assume that r4 satisfies the inequality

S Jral < O

d|P(z) (log )"
d<x?
for some 0 > 0.
Then for 2 < z < X, we have
(2.5) #S(A, P, 2) <upo5 XV(2),
where
(2.6) V(z) = [ = gp)).
p<z
peP
Proof. For example, see [FoHa]. I

In the proof of Theorem 1.1, an estimate is needed for the size of the set
Q27 ®i(z,y) == {n<ax:n=p--pm;, P (m;) <y<p; <--<m},

where j > 1,2 > y > 2 and P*(m;) denotes the largest prime factor of m;. It
follows from Lemmas 2.2 and 2.3.

Lemma 2.4. Suppose j > 1,z >y >e,andy < x4<j+1)}og logz  Then

xlo
2.8) #d(z,y) <; —BY

log log )7L
Tog ¢ (loglog )

Proof. Introduce the following sets:

(2.9)

QV(x,y) == {n<a:n=p---pmy PT(m)) <y<p <---<p < :L"J%}
(2.10)

QU(z,y) = {n<win=pi-pmy, PT(my) <y <ait <p; < <p},
andfor1 <:i<j—1,

Q(i)(flj,y) = {n <z:n=p---pmj,

(2.11) Pt(mj) <y<p;<--<p < G < pi << pL}.
Clearly, we have

(2.12) #i(z,y) = Y QU (x,y).

0<i<j
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1. By (2.4) of Lemma 2.2, we estimate #Q % (x, ) as follows:

#Q (w,y) = > S

71 Pr(my)<y
<pj<--<pr<wzitl 7=
ysbs m;j<z/(p1-p;)

x log(z/py - - ~pj))
< ex —

y<p;<--<p1<zitl

Z v p( 1 logx)
Ry logx
p1--pj 2(j +1)logy

1
y<p;<-<p1<zitl

1 logx 1
< zrex B —
B p( 2(J+1)10gy) Z p

1
p<zitl

, 1 logx
2.13 ; log 1 J —
( ) < z(loglog x)’ exp ( G0 logy)

We have to make sure that (2.13) is of acceptable size. Indeed, since

IN

J

y < riGIiEmEr

it follows that
log x
logy

loglogz = exp(loglogz + logloglog x — loglogy)

4(5 4+ 1)(log y)(loglog x)
—eXp( 2(j + 1)(log ) )

< exp (2(j Jrl()ﬁflogy))

and

(loglog )7~

1 logx) - xlogy

log'1 J —
z(loglog ) exp( 2(74+ 1) logy log x

2. In order to estimate #QV)(x,y), we apply Lemma 2.3 with A being the
set of all natural numbers up to , P being the set of primes in (y, 2*/0+V],
z = oYUt X := 7 and g(d) := 1/d. Then S(A, P, 2) is the set of all
natural numbers up to x whose prime factors are at most y or at least 2.
(Note that there are at most 7 prime factors can be larger than P 2

By Mertens’ estimates, we can see that all of the assumptions of Lemma
2.3 are satisfied with k = B = C' = 1 and 6 = 1/2. Hence, we have

(2.14) 4Q9(x) < #S(AP.z) < “l8Y,
log x
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3. For1 <i < j— 1, we estimate #Q (z, y) also by using Lemma 2.3. For
1
any choices of primes p;y1,...pj suchthaty < p; < --- < piyq < xitt,

we choose
T

Piv1 D
A being the set of all natural numbers up to X, P being the set of primes
in (y’x1/(j+1)], 5 = 1/U+1) and g(d) := 1/d. Hence,

#Q(w,y) = > 3 1

1 Pt(m;)<
Y<p;<-<piy1<zItl ( J)*yl

X =

p1>->pi>a It
p1--pim;<z/(piy1--Dj)

x logy
<
Z piy1---pjloga

1
Y<pj<--<pip1<xItl

j—i
xlogy 1 xlogy i
2.15 < - ; log1 I
(2.15) ~ logx Zl P < log x (log log z)”™,
p<zitl
The result now follows from (2.12), (2.13), (2.14) and (2.15). L]

Remark 2.5. Since

216) {n<z:n=p---pmj, m; <y<p;<---<pi} C Pj(x,y),

it follows from Lemma 2.1 that

#O;(x,y) Z Z 1

m;<y n;< ZJ
nj=pi--pj
for some p1>---p; >y

-1
E log log —
> 1()g x/my (Og o8 )

mj

J—
T i
> log log = —
~ logx (Og Ogy) Z

m<y

1 =t
2.17) > 1O8Y (log log f) .
y

log x

Below we state some elementary observations about near-perfect numbers.

Lemma 2.6. Prime powers cannot be k-near-perfect for any integer k > 0.

Proof. This follows directly from the definition of near-perfect numbers and the

uniqueness of g-ary representation. L
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Lemma 2.7 (Euclid-Euler). All even perfect numbers are of the form 2P~1(2P —
1), where p is a Mersenne prime, i.e., a prime p such that 2P — 1 is also a prime.
Lemma 2.8. An odd perfect number has at least 4 distinct prime factors.

In fact, it is now known that an odd perfect number must have at least 10
distinct prime factors. This is due to Nielsen [Niel]. The proof of an odd perfect
has at least 4 distinct prime factors is completely elementary.

The following lemma resembles the aforementioned theorem of Euclid-Euler
and it serves as a complete classification of 1-near-perfect numbers with two
distinct prime factors. This is helpful in reducing the number of cases to be con-
sidered in Lemma 2.10.

Lemma 2.9. A 1-near-perfect number which is not perfect and has two distinct
prime factors is of the form

1. 207128 — 2% — 1), where 2¢ — 2% — 1 is prime,
2. 2%=1(27 — 1), where p is a Mersenne prime.
3. 2P7Y(2P — 1)?, where p is a Mersenne prime.
4. 40.
Proof. See [ReCh]. L

Upon carrying out the recursive process as described in Section 3 and 3, it
boils down to prove the following lemma which can be done by explicit compu-
tation.

Lemma 2.10. Let 7(m) be the number of positive divisors of the positive integer
m.

1. If T(m) is prime, then m cannot be k-near-perfect for any integer k > 0.
2. Suppose T(m) = 10. Then

(a) if m is perfect, then m = 496.
(b) if m is 1-near-perfect, then m € {496, 368, 464}.

3. Suppose T(m) = 9. Then

(a) m cannot be perfect.

(b) if m is 1-near-perfect, then m = 196.
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(c) if m is 2-near-perfect, then m € {196, 36}.
4. Suppose T(m) = 8. Then

(a) m cannot be perfect.

(b) if m is 1-near-perfect, then m € {24, 40, 56, 88,104 }.

(c) if m is 2-near-perfect, then m € {24,40, 56, 83,104, 30, 54, 66 }.

(d) if m is 3-near-perfect, then m € {24, 40, 56, 83, 104, 30, 54, 66, 42}.

5. Suppose T(m) = 6. Then if m is k-near-perfect for some k > 0, then
m € {28,12,18,20}.

6. Suppose T(m) = 4. Then if m is k-near-perfect for some k > 0, then
m = 6.

Proof.
1. Follows immediately from Lemma 2.6.

2. Suppose m is a 1-near-perfect and 7(m) = 10. Since 7(m) = 10, m is
of the form ¢° or ¢*r, where ¢, r are distinct primes. The first case cannot
happen by Lemma 2.6.

Now suppose the second case. If m is perfect, by Lemma 2.8, it must be
even. Then by Lemma 2.7, m = ¢%r = 2P71(2P — 1) for some Mersenne
prime p. It follows that

qg=2,p—1=4and r = 2/ -1,
i.e., (¢,7) = (2,31) and p = 5. Note that ¢, r are distinct primes and p is a

Mersenne prime. Thus, we have m = 24.31 = 496.

If m is 1-near-perfect but not perfect, we use Lemma 2.9 instead and sim-
ilarly, we have m = 2% . 23 = 368, 2* - 29 = 464.

Thus, all the possible m’s are 368, 464, 496.

3. Suppose m is a 2-near-perfect and 7(m) = 9. Since 7(m) = 9, m is of
the form ¢® or ¢?r%, where ¢, r are distinct primes. The first case cannot
happen by Lemma 2.6. If m = ¢%r? is 1-near-perfect, as before by Lemma
2.7,2.8 and 2.9, the only possibility is m = 2%.7% = 196.
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Now suppose m = ¢*r? is 2-near-perfect but not 1-near-perfect. It suffices
to consider the following 16 equations by observing the symmetry of ¢ and

rin ¢%r%:

1+q+¢) A +r+17) —2¢*7
=1+q, 1+¢, 1+qr, 1+¢r, g+ qg+r, ¢+, q+qr, ¢+q°r

(2.18)
r+q’r, ¢ + 1% ¢ +ar, ¢, @+ gt qr + @, ¢+ gt

Given any ¢,r > 2, it is clear that 1 + ¢ is the smallest among the 16
expressions on the right side of (2.18) . We claim that if ¢ > 7 and » > 2,
then
(L+ag+a)(L+r+7r") —2¢°r" < 1+q¢,
1.e.,
fr) = (@ —q—1r*—(1+q+¢)r—q¢ > 0.

This is simply a quadratic polynomial inequality in 7. Note that ¢>—¢—1 >
0 and

Alg) = 1+q+¢*)*+4*(@—q—1) = 5¢" —2¢° — > +2¢+1

> 0.
Thus, if
1 2 A
(2.19) . (+QEQ)+V (q)
2(q*> —q—1)
then
fq(r) > 0.

The inequality (2.19) is satisfied with ¢ > 7 and r > 2 since for ¢ > 7, we

2>(1+q+f%+vA@)

2(¢>—q—1)

have

The claim follows.

Thus by this claim, the left side of (2.18) is strictly less than each of the
16 possibilities of the right side of (2.18) when ¢ > 7 and r > 2. Now, it
suffices to solve the 16 equations in r with ¢ = 2, 3, 5. The only solution
is (¢,r) = (3,2) (i.e., m = 36), which comes from the equation

(1—|—q+q2)(1—|—7’+r2) = 2q2r2—|—1+q2r.
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4. Suppose m is 3-near-perfect and 7(m) = 8. Since 7(m) = 8, m is of
the form ¢°, ¢ or qrs, where ¢, r, s are distinct primes. Once again by
Lemma 2.6, the first case is impossible.

(a) Suppose m = ¢>r. As we have done in (2) and (3), if m is 1-near-
perfect, then

m =2.7 = 56, 211 = 88, 2°.13 = 104,
2.3 = 24, 2°.5 = 40,

by Lemma 2.7, 2.8 and 2.9.

Suppose m = ¢3r is 3-near-perfect but not 1-near-perfect. Then it
suffices to consider the (}) + ({) = 56 equations formed by all of the
possible pairs or triples distinct proper divisors. Following the steps
in (3), out of the sums of these pairs or triples, the smallest ones are
14+qgorl+r.

When ¢ > 5 and r > 2, we have

3 2 2 1
¢ +4a andr22>7q—i_qjL

r>2 > .
P —q¢*—q—1 ¢>—q—1

These imply that
(2.20) A+q+P+¢HA+r)—2¢° < 14¢q 1+

The same inequality is valid by replacing the right side of (2.20) by
the sum of any of the 56 possible pairs or triples of proper divisors of
m = ¢*r, whenq > 5and r > 2.
It remains to solve the 56 equations in r with ¢ = 2, 3. Only the
following equations are solvable:

L (l+q+@+@)A+7r)—2¢ =1+7r;(q,r) = (2,7) (ie.,

m = 50),

i (1+g+¢+¢)1+7)—2¢°r =q+¢%(q,7) = (3,2) (e,
m = 54),

. (1+q+@+¢)1+7r)—2¢ =q+¢ (q,r) = (2,5) (e,
m = 40),

iv. 1+qg+@+A)0+7r)—=2¢r=¢+¢%(¢,r) = (2,3) (e,
m = 24),
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(b)

V. 4+ ¢+ +@)A+7r)—2¢°r =1+¢+7;(¢,7r) = (2,5)
(i.e., m = 40), (¢,7) = (3,2) (i.e., m = 54),
Vii(1+q+@P+A+7r)—2¢r =1+ +7r;(¢,r) = (2,3)
(i.e.,m = 24),
viil. (14+q+@+A)1+7r)—-2¢3r=q+¢ +rq (¢,7) = (2,3)
(i.e.,m = 24)
Suppose m = grs. It cannot be perfect. We shall use a similar strat-
egy as above. By symmetry, it suffices to solve the following 19 equa-

tions one-by-one:

(14+q)(1+7)(1+s)—2qrs
=1,q,qr, 1+q, 1 +qr, q+r, q+qr, g+rs, qr +gs,
l4+qg+r, 1+qg+qr, 1+qg+rs, 14+qr+gqs, q+r+s,

(2.21)
q+r+qr,q+qr+s,q+qr+rs, g+qr+gqgs, gr+rs+gs.

We claim that
(14+q)(1+7)(1+s)—2qrs < 1

forqg > 11,r > 5and s > 2.

This can be verified as follows. Since s > 2, we have
12s 4+ 11 _
10s — 2

Then by » > 5, we have

- 12s + 11
10s —2°

This implies that
1(rs=r—s—1) > rs+r+s.
Byrs—r—s—1>0andq > 11, we have
qirs—r—s—1) > rs+r+s.

Now, the claim follows.

Thus, it suffices to solve the equations with ¢ = 2,3,5, 7or r = 2, 3.
This reduces the 19 three-variable equations in (2.21) to two-variable

ones.

Out of these equations, only the following equations are solvable:
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i (14+q)(14r)(14+s)—2qrs = 1+q; (¢, 1, s) = (11,2, 3), (11, 3,2)

(m = 66),

. (1+q@)(1+7r)(1+s)—2qrs = q+qr; (¢g,r,8) = (2,5,3)
(m = 30)

il (14+¢)(14r)(1+4s)—2qrs = 1+q+rs; (¢, 7, 5) = (5,2,3),(5,3,2)
(m = 30)

iv. 1+q)(1+7r)(1+s)—2qrs=q+r+s;(q,rs)=(2,37),
(2,7,3),(3,2,7),(3,7,2),(7,2,3), (7,3,2) (ie., m = 42)

5. Suppose m is a k-near-perfect number for some k£ > 0 and 7(m) = 6.
Then k& € {0,1,2,3,4,5} and Lemma 2.6 implies that m is of the form
¢*r with ¢, r being distinct primes.

When £ = 0, m = 28. When £ = 1, by Lemma 2.9 we have m €
{12,18,20}. For 2 < k < 5, consider the following Diophantine equa-
tions:

o(m) —2m = (1+q+¢")(1+7) —2¢°r
e{l4q 1+ 1+, 14+qr, g+ q+7, q+qr, @+, ¢ +qr,
r+qr, (k=2)
l+q+q 1+qg+nr L+qg+agr, 1+ +7r, 1+ +qr, 1+7+qgr,
g+ +r g+ ar, q+r+ar, G +r4qr, (k=3)
ltg+@+r 1+q+@+aqr, 1+qtrr+qr, 1L+¢*+r+qr
q+@+r+qr, (k=4)
l+qg+¢ +r+qr (k=5)}.

We may express 7 in terms of ¢ easily:

+1 2 1 1 +1
T:1+ 2q ) 9 1 >1+ a]-_l_ » o ) _q2 )
¢—q—1 ¢—q—1 qg—1 qg—1 ¢=—q—1 q-+1

2 qg+1 1 1+4+g¢
1 1 k=2
+q2_17q2_q7q_17 + q2 ( )?

1 1 1 q 1 1 1 1 g+1
0,1+ — 1 1+ = 14+ =
SR +q2 1"q¢—1" ¢-1 +q’ P?—q -1 +q2’ ¢
(k=3),

1 1
0707 17 Ty T o k:47

i ( )

0 (k=5).
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The solvabilities of the equations are now apparent as only for small ¢’s
the expressions are possibly integral. Also recall the restriction that ¢, r
have to be distinct primes. Thus, only

A4+q+AA+7r)—2¢* = 1+7r
has solutions and (¢, r) = (2, 3), (3, 2), which correspond to m = 12, 18.

6. Suppose m is a k-near-perfect number for some £ > 0 and 7(m) = 4.
Then k& € {0,1,2,3} and Lemma 2.6 implies that m is of the form ¢r,
where ¢, r are distinct primes. By also noting the symmetry of ¢ and r, it
suffices to consider the following Diophantine equations:

o(m)—2m = (14+q)(1+r)—2qr
€ {0,1,¢,1+q,q+r,1+q+r}

Simply expand the above equations, we have
l+qg+r =qr,r =q(r—1),1 =r(qg—1),r = 2qr, 1 = qr, qr = 0

respectively. Each of these equations are now straight-forward to solve and
the only possible solution is m = 6.

O

The proof of Theorem 1.3 rests on the study of the equation o(n) = fn + k
which is carried out by a number of authors in the past decades; for more detail,
see [AnPoPo, Pol, Po2, Po3, PoPo, PoSh, PoPoTh]. In this article, we only need
the case of ¢ = 2 and adopt following definitions from the aforementioned
literature.

Definition 2.11 (Regular / Sporadic Solutions). The solutions of o(n) = 2n+k
of the form

(2.22) n =pm/, where ptm’, o(m') = 2m’, o(m') = k,
are called regular. All other solutions are called sporadic.

Lemma 2.12. Let x > 3 and k be an integer. The number of sporadic solutions

3/5+0(1)

n < xtoo(n)=2n+k is at most x as © — oo, uniformly in k.

Proof. See [PoPoTh] Theorem 4.4. L
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3 Outline of Theorem 1.1 and 1.2

Let us first recall the settings in [PoSh]. In order to estimate the size of the set
N(k; x), one may partition it into the following three subsets and estimate each
respectively:

Ni(k;x) == {n € N(k;z): P*(n) <y},
Ny(k;z) == {n € N(k;z): P*(n) >y and P"(n)*n},
3.1) Ns(k;x) == {n € N(k;z): Pt(n) >yand P"(n) || n},

where we shall remark on the choice of y = y(x) at the end of this section.
In [PoSh] they further partitioned N3(k;x) according to whether 7(m) is
at most &k or not. They bounded the contribution from 7(m) < k simply by

T
log x

log 7(n), which is (log2)loglogn, one obtains the bound

(log log a:)k‘l, 1.e., Lemma 2.1. Instead, if one considers the normal order of
22k

(loglog x)!1os2

T
log x

for N (k; z). More work is needed, though, as this is still not the correct order for
#N (k; x); we thus have to partition N3(k; ) more carefully. This is explained
as follows.

Definition 3.1. Suppose n = pm with p > P*(m). For k-near-perfect number
n, there exists a set of proper divisors D,, of n with #D,, < k such that

(3.2) o(n) = 2n+ > d

deDn,

We define the following associated sets:

[

DY = {de D, :ptd},
(3.3) D@ .= {d/p:de D,, p|d}.

n

It is clear that DS and DS consists of positive divisors and proper divisors
of m respectively.

Proposition 3.2. With the same settings in Definition 3.1, n is k-near-perfect
and the set DS consists of all positive divisors of m if and only if T(m) < k and
m € N(k—7(m)).

Proof. (=): Immediately from the assumptions,

(1+p)o(m) = o(pm) = 2pm + Z d+p Z d

(3.4) = 2pm+o(m)+p Z d.
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This implies

(3.5) o(m) = 2m + Z d.

deDf?

Since #D4 = 7(m) and #D" + #D = #D, < k, we have 7(m) < k,
4D < k— 7(m)and m € N(k — 7(m)).

(<=): There exists a set of proper divisors D,, of m with #D,, < k — 7(m)
such that

o(m) = 2m+ Z d.
deDy,
Then
(3.6)
o(n) = (1+p)o(m) = Zd—irp <2m+ Z d) = 2n+Zd+p Z d.
dlm d€Dm, dlm d€Dm,
Now,

{d| m}U{pd:de D,}

is a set of proper divisors of n with at most 7(m) + (k — 7(m)) = k elements.
Thus, n is a k-near-perfect number. Also, DY = {d | m} and DY = D,
L

To facilitate discussion that follows, we introduce the following notations:

Definition 3.3.
Nél)(k;x) = {n<xz:n=pm, p>max{y, PT(m)},7(m) <k
3.7) and m € N(k—7(m))}
(3.8) NP(k:z) := Ni(k;z)\ NSV (k;2)
(3.9) M(k) = {n € N(k) :n=pm, p> P (m), DV ¢ {d|m}}

(3.10)  M(k;z) == M(k)N[1,2]

We carry out the above partition into Ny, No, N?El), N§2) recursively in Section

5. At each step, we show that the contributions from Ny, N,, Néz)

)

are of accept-
able sizes, > whereas the description for N?El allows us to move onto the next
step in the recursive process. After this is done, we only have to apply Lemma

2.10, i.e., the determination of k-near-perfect numbers for small integers k& with

3 We say that the size of a quantity is acceptable if it is not greater than that of the main term,
log(k+4
e.g., ——(loglog a:)L 2 /=3 in Theorem 1.1 and 2/ log x in Theorem 1.2.
logz
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a fixed number of positive divisors. In this way, we improve upon the bound
log k
T

log x
5.1. As a by-product, we are able to deduce the precise asymptotic formulae for

4 < k <11 in Theorem 1.2.
The proof of Theorem 1.2 is simpler than that of Theorem 1.1. It follows

(loglog x)LlMJ and establish Theorem 1.1. For more detail, see Section

quite directly from the partition as in Theorem 1.1 without encountering compli-
cations of the recursive process. We shall start with its proof and briefly recall
the essential estimates done in [PoSh] in the next section (Section 4).

Finally, we would also like to make a remark on the choice of the parameter
y. In [PoSh], they chose y = o Toeer for their applications. However, this is
not admissible in the proof of Theorem 1.1. Firstly, it is clear that the choice of
[PoSh] does not satisfy the conditions in Lemma 2.4 (5 will be chosen in terms
of k£ in Section 5.5 and j grows with k). Secondly, in order to make sure the
estimate in Lemma 2.4 is of acceptable sizes with respect to Theorem 1.1, i.e.,

log(k+4) J _3

(log log z) !~ os2

T
log x

some « > (. Thirdly, o needs to be large enough so that the contribution of Nf

smaller than

, it is essential to choose y = (log z)* for
)

is acceptable, see Section 5.4. We shall see « = 3k + 10 is good enough. We
shall stick with this choice of y in Section 4.2 and 5. For Section 4.3, however,
we must choose a different y there for better estimates.

4 Proof of Theorem 1.2

4.1

We shall review the argument of [PoSh] in this subsection for the convenience of
readers.

The estimations for Ny (k; x) and Ny (k; x) are straight-forward. Indeed,

4.1) #Ni(k;x) < #P(z,y)
and
(42) #Ny(k;z) < #{n<z:P(n)>y, PT(n)*|n} < ZZ% < g

P>y

Suppose n = pm € N?Ez)(k; x). For the counting argument below, we shall

also assume that
(4.3) 7(m) < (logx)®.
This is acceptable because

(4.4) #{n < z:7(n) > 2ogz)’} < ﬁ
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This follows from 27(m) = 7(n) and the crude estimate

2(logz)? - #{n <z : 7(n) > 2(log r)*} < ZT(TL) < zlogx.

n<x

In the following, we count the number of possible p’s such that pm € N?Ez) (k;x)
for each m < z/y . Since n = pm is k-near-perfect,

(4.5) (L+po(m) = 2pm+ Y d+p »_ d,

depWV dep®

where the sets D' and D'?) are defined in Definition 3.1. Reducing both sides
(mod p) yields

(4.6) P ' o(m) — Z d

Moreover,

o(m) — Z d < o(m) < mloglogm < xzloglogzx.

Thus, the number of prime factors of (a(m) - > d) is

deDtV
4.7) O(log z).
Since DY {d | m} and #D{" < k, the number of possible values for
<U(m) — > d]is
deDV
(4.8) < (1+7(m))" < (logx)®
by (4.3).

As aresult, from (4.6), (4.7) and (4.8), the number of possible p’s is
4.9) < (log )3,

From this, we conclude that

X
(log z)?”

(4.10) ANP (k;z) < g(logx)3k+1+
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4.2

Throughout this subsection, we take y := (log z)3*+10,

By (2.4) of Lemma 2.2, there exists a constant x;(k) > 0 such that for any
x> x1(k),

1 1
4.11) #N;(k;x) < xexp <— o8 ) < !

2(3k +10)loglogxz ) — (logx)?

Immediately from (4.2) and (4.10),

4.12) #Ma(ks 7). N5 (ki) < o

Thus, the contributions from N; (k; z), No(k; z) and N§2) (k; x) are acceptable.

It remains to consider n € Ngfl)(k; x),ie,n=pm < z,p>max{y, PT(m)}
andm € N(k —7(m)). When 4 < k < 11, there are only finitely many such m
and they have been completely determined in Lemma 2.10. Thus, by the Prime
Number Theorem, we have

PO~ Y Y e~ [3Y ol b

r=4 T(m =r r=4 T(m
meN (k—r) meN (k—r)

as x — oo. Explicitly, the constant

k
1
(4.13) Cp = Z -
r=4  7t(m)=r
meN (k—r)
is equal to
1 17 1
= = - = — = —+ — 0.2024
=6=5%= 35 =53

e s L L 0013
T % T 1960 6 12 18 T20 28 = U
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S SRR U S N NS SRS S SRS N
9T T 12718 T20 28 " 24 " 40 56 ' 88 ' 104
179017
= ~ 0.4
360360 = 4908,
S S S S TR NS NS SRS SN B
G0 5T 1218 20 "28 T24 T 40 T 56 T 88 | 104
PRI S N
30 54 66 ' 196 ' 496
267857123

= 169183720 = V070%:
S S S S NS NS NS S SO SO
T T 1218 20 "8 T 24 40 56 88 ' 104
PRI S L SIS I SR A
30 ' 51 ' 66 ' 196 ' 496 42 ' 36 ' 368 @ 464
106329752441
9632975 ~ 0.6274.

~ 312948876240

This completes the proof of Theorem 1.2.

4.3

Before we end this section, we would like to follow-up on a remark of [PoSh]
(pp. 3044) where they claimed the result

(4.14) #N (k; z) < xexp(—(cx + o(1))/log zloglog x),

for k = 2,3, where ¢y = \/6/6 ~ 0.4082 and ¢35 = \/5/4 ~ 0.3535. In view of
the discussion in Section 3, the reason for a much smaller estimates for k£ = 2,3
lies in the the nonexistence of near perfect numbers of the form p or p? where p
is a prime (see Lemma 2.6). This implies Nél) (3;x) (see 3.7) is an empty set .

Since a complete argument for (4.14) was not given in [PoSh], we supply
more detail here and hope it will be helpful for the interested readers. The argu-
ment below actually shows that one can take ¢; and ¢3 to be 1/ V2 ~ 0.7071, but
this improvement is not substantial.

Here, it is essential to apply a more precise count of #®(x,y) than the one
given in Lemma 2.2. From Theorem 9.15 and Corollary 9.18 of [DeKLu], we
have

(4.15) #®D(z,y) = vexp(—ulogu+ O(uloglogu))
and this is uniform for

(4.16) (logz)® <y < =z,
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where
1
(4.17) w = 2L
logy
In this subsection, we shall choose a different y = y(x) from the one taken in the
rest of this article (i.e., y = (log z)3¢19).

We modify the estimations for Néz) (k; x) sketched in Section 4.1 slightly:
#NS (k; )

SZ# p§%:p' a(m)—Zd anda(m)—Zd>0

msy deD()) deDf)

<k Z (log )7 (m)"

mS%
(4.18)
i ok

For a proof of the last estimate, see [MV] eq. (2.31), pp. 61. Also, compare this
with (4.10). We shall see shortly it is a better estimate in the case of £k = 2,3
with a new choice of y.

Therefore for k = 2,3, by (4.15), (4.1), (4.2), (4.18) and the fact that N\* (k; z) =
(), we have

#N(k;x) = #Ni(k;x) + #N (ki z) + #N;7 (ks o)
(4.19) < rexp (—ulogu+ O(uloglogu)) + g(log x)zk.
We optimize the last estimate by setting
(4.20) ulogu = logy — 2% loglog x.

A good approximation for u satisfying (4.20) is

@.21) W2 = 9 1087
log log x
1.e.,
1
(4.22) v/log x loglog x.

logy = —

gY NG
It is to see it satisfies the requirement (4.16). Plugging this into (4.19), we have
(4.23)

#N(k;x) < xexp (—L {1 +0 (W)} \/logxloglogx)

V2 log log =
for k = 2, 3.
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5 Proof of Theorem 1.1

5.1 Outline

Throughout this section, we fix i := (log x)**1% and denote by T, (z) the set
of natural numbers in [1,z] of the form p; ---p,m, with p; > --- > p. >
max{y, P*(m,)}.

The estimates required in Step 0 are sketched in Section 4.1:

) ) (2) /7. -
(51) #Nl(k7l’),#N2<k7l’>,#N3 (k?,ﬂ?) <k W?
which are of acceptable sizes. Therefore, by (3.7), it now suffices to consider the
set
(5.2) {n eTi(x):7(my) <k, m €N (k: —7(my); g) } :

In Step 1, we estimate the size of the set 5.2 by repeating the partition to my,
1.e., consider

(5.3) {n € Ni(z) s 7(m) <k, mi € R (k ~ i), g)}

for R = Ny, No, NV, NP,

e When R = Ny, Ny, Néz), the sets (5.3) will be shown to be of acceptable

sizes O (15, loglog z).

e When R = N?El), recall from (3.7) that the condition m; € Nél)(k -

T(my); x/y) refers to

T
my = pams < =, py > max{y, PT(my)},

<

(5.4) T(mo) <k —71(my), mg € N(k—7(my —7(my))).

Thus, the set (5.3) is indeed equal to

(5.5) {n € Ty(z) : 7(ms) < g my € N (k — 37(ma); %) }

In Step 2, we estimate the size of (5.5) by repeating the partition to ms, so on
and so forth. More generally at Step 7 — 1, we arrive at the tasks of showing the
sizes of the sets

(5.6)

{n € Tia(@) s m(myn) € gy — Y

e (k- @7 - Drtm)i )|
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being O; (@(bg log x)j_l) for R = Ny, Ny, N{”. This will be done in Sec-

tions 5.2, 5.3 and 5.4.

The recursion ends once we hit an k-admissible integer 7.

Definition 5.1. An integer jo > 1 is said to be k-admissible if

5.7

k .
I < # {mjo €N: T(mjo) < ma mj, € N(k - (2jO - I)T(mjo))} < 0.
Remark 5.2. In view of Lemma 2.10 (1)(6), (5.7) is equivalent to
(5.8)

k .
# {mjo eN:4 <7(my,) < 20— 1 Mo € N(k — (27 — 1)T(Tﬂj0))} < 0.

It follows from Lemma 2.1 that
k
#{” € Tjp-1(2) : T(Mjo—1) < S

- T
mj,—1 € N?El) (k - (2j0 b I)T(mjo—l); —_) }
< #ineT(x):m(mj) < R m;, € N(k — (27 — 1)7(m;,))
— Jo . Jo/) — 2]0 o 1’ J0 J0
(5.9
x o
<o @(bg log z)”™~!
for an k-admissible integer jy. By showing that

(5.10) Jo = jolk) = LMJ 2

log 2
is k-admissible in Section 5.5, and together with the estimates (5.13), (5.14),
(5.18) and (5.9), we have the upper bound in Theorem 1.1.

The lower bound simply follows from the observation

6p1- - ps = p1--"Ps+2p1-ps+3p1- s,

where p; > --- > ps, > 3 are primes. Thus, 6p; - - - p, is a kg-near-perfect num-
bers with
ke = 7(6py---ps) —1—-3 = 2572 4,

Fix any integer £ > 4. Take the largest integer s > 1 such that k5 < £, i.e.,

. Llog(k+4)J Ly
log 2

Then by Lemma 2.1 one has
#N(k;x) > #{6p1--ps<x:p > - >ps>3}
(5.11) >>k l X log(k+4)J_3

(loglog z) Ras:
ogx
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5.2 Estimation for R = NV,

In view of our claim that

. log(k + 4
log 2

is an k-admissible integer, we apply Lemma 2.4 for
2 <7 < J

In order to meet the assumptions of Lemma 2.4, we restrict to = > xo(k), where
xo(k) > 0 is a large constant such that for x > xy(k),

(5.12) (log x)*F+10 < ¢ T TogTogs

Hence for x > xy(k) and 2 < j < jy, we have

#{n € Tj1(x) : 7(mj-1) < 21 _1°

m;_1 € Ny (k — (2P = D)7 (mys); i) }

being bounded by

X

(5.13)  #D; 4(z,y) < 1 (loglogz)' ™' <, lozx(loglogm)jo_l.

ogx

5.3 Estimation for R = N,

From our previous analysis, for 2 < j < jy we have

i {n € Tja(w) :mj1 € Ny (k - (27 = Drlmsa); %)}
< Y >, 1

P> 5 1>Ym, 1oy
p1pj_1<w Pt(mj_1)?m,_1
Pt (mj_1)>y

P1>->pi-1>Y YpimorpPi-1
P11 Pj 15T

(5.14)

7j—1
xr 1 X . x .
< - Z— < =(loglogz)’ " « ——z—(loglogx)"~".
y <p<x p) y (log 2)+10
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5.4 Estimation of R = N?E?)

Recall the notations M (k) and M (k; x) introduced in Section 3. From the argu-
ment sketched in Section 4.1, we have

(5.15) #{n<az:neMk),P(n) >y} <p —(loga)¥+.
y
Then

#M(k;z) = #{n<z:ne MKk),Pt(n)<yl+#{n<wz:neMk),PT(n) >y}
(5.16)

T
d g 3k+1 )

It follows from partial summation that

(5.17) Z 1.«

neM (k)

Therefore for 2 < j < jgy, by applying (5.16), (5.17) and Lemma 2.1, we
have

4 {n € Ty a(x) :mj1 € Ny? (k — (27" = D)7(my0); y—)}

S SN S D SEED SR

P1>>pj-1>Y m;_1 <x/p1-pj_1 mj_1<y/T  P1>>Pj-12>Y

p1pj—15VT mj_1 €M (k) mj,leM(k)pl"'ijlS’U/mjfl
T T 7j—2
pP1-Pj—1 mj—1 X
— log 1
DD D ey DD log.L(Og Ogmj_l)
p1>>pji—1> pP1pPj—-1 mj_1<yz mj—1
pl"'pjflg\/E mjfleM(k)
x 1 x ' 1
< Z + (loglog x)7 2 Z
2 Y )
(]-ng> P1>--->ij1>yp1 p']_l logx mj,lg\/f mj—l
p1Pj—15VT mj_1EM(k)
j—1
x 1 x .
c T T 4 (leglogay?
1 2 1
(logx)? \ —=p ogx
(5.18)
< (loglog x)70~2,
log

5.5 Analyzing R = N."

We consider the following cases:
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(5.19) 4-(2-1) <k < 8-(2°—1)

for some s > 1,

(5.20) k =8-2°—/

with either

(a) s >3and/ € {5,6,7,8}; 0or
(b) s=2and ¢ € {6,7,8},

(5.21) k = 27
(i.e.,s = 2and ¢ = 51in (5.20)).

It is clear that the above covers all integers k£ > 12. % In any case, we have

log (¥ 41 1 4
log 2 log 2
Indeed for Case (1),
log(£ + 1) s log (£ +1)
log 2 - log 2
and
0 log(g—i-l)_log(%le)
log 2 log 2
Hence,
log (5 +1) log(k +4)
(5.23) § = |—=x T/ e 7
log 2 log 2
For Cases (2) and (3), we have
g2 < et g
log 2
and
1 4
(5.24) s — {MJ )
log 2

27

Thus, the upper bound in Theorem 1.1 would follow if we establish the claim

that s is an k-admissible integer in each case.

6 Note that the cases 4 < k < 11 have been settled in Theorem 1.2.
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1. Suppose
(5.25) 4-(2°—-1) <k < 8-(2°-1)
for some s > 1. From Lemma 2.10(5)(6), the facts that

4 < 1(mg) < < 8

25 —1
and m, being near-perfect, we have m € {6, 12,28, 20, 28}. Thus, s is an
k-admissible integer.

2. Suppose
(5.26) k=8-2°—/

with either

(a) s >3and/ € {5,6,7,8}; 0or
(b) s=2and ¢ € {6,7,8}.

In both cases, we have

If 4 < 7(my) < 8, then m,; € {6,12,28, 20,28} as in the previous case.
Now suppose 7(ms) = 8. Then
ms € N(k—(2°—1)7(my))
= N((2° =1)(8 = 7(my)) + (8 = 1))
= N(8—=1¥) C N(3).
By Lemma 2.10 (4), m, € {24, 40, 56, 88, 104, 30, 54, 66, 42}. As a result,
s is an k-admissible integer.

3. Suppose k = 27. Then
4 S T(mg) S 9.

If4 < 7(mg) < 8,thenmsy € {6,12,28,20,28}U{24, 40, 56, 88,104, 30, 54, 66, 42}
as in the previous cases. When 7(mg) = 9, mo € N(0) and there is no such
mso by Lemma 2.10 (3). Hence, 2 is 27-admissible.

This completes the proof of
(5.27) N(k;x) < ]

T

log(k+4)J _3

(loglog z) [

ogx

for any £ > 4 and hence the proof of Theorem 1.1.
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6 Proof of Theorem 1.3

Lete € (0,2/5). By Lemma 2.12,

#(E(k;2) \ Ec(k;2)) < #{n <z :n € Ek),n=pm' ,ptm’ o(m’) =2m'}
(61) + O(‘,L,S/S-i-e—i-o(l)).

Forn € E(k) withn = pm/, pt m’ and o(m’) = 2m’, we have

(6.2) pm' = > ditp Y dy,

di1eD do€Do

where D; is a subset of positive divisors of m’, D, is a subset of proper divisors
of m' with #Dy + #Dy = 7(pm/) — 1 — k =27(m/) — 1 — k.

Suppose that D; # (). Then

(6.3) 1< Y d <o(m) =2m

Reducing (6.2) modulo p, we have

> di.

d1€Dy

(6.4) P

The number of possible values for p is O(log2m’) = O(logz). Thus the
number of possible values for such n is O(x°™" log ) by the Hornfeck-Wirsing
Theorem ([HoWi]), which is acceptable.

Now suppose that Dy = (). Then #Dy = 27(m’) — 1 — k and

(6.5) m = > ds

d2€D2
Since o(m’) = 2m/, we have #Dy = 7(m') — 1. Therefore, 7(m’) — 1 =
2r(m') — 1 =k, ie., 7(m') = k.

By the hypothesis of non-existence of odd perfect number and the Euclid-
Euler Theorem, we have m’ = 271(27 — 1) for some Mersenne prime ¢'. So
k=71(m') =2¢" € M. Hence if k ¢ M, then we have a contradiction and
(6.6)

#(E(k;z)\ E.k;z)) = O(x°Mlogz) + O(z*PTetoll))y = O(g3/5Fetel)y,

It was shown in [PoSh], by using a form of the Prime Number Theorem of
Drmota, Mauduit and Rivat, that for all large & the number of k-exactly-perfect
numbers up to z is > x/ log x. Therefore

#(E(k;2) \ Ec(k;2)) log x
#E(k; ) b p2/ime=o(D)

6.7)
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and

. #E(k;x)
6.8 lim ————— = 1.
5 % FE (k)
Remark 6.1. Suppose k € M. Then k = 2q for some Mersenne prime q. Let
m = 297129 — 1). Then ¢ = q and so m' = m in the above argument. By the

Prime Number Theorem,

(6.9) lim sup #(E(k; 2) \ Eclk; z)) < i
2300 x/logx m

On the other hand, since m is perfect, the number of proper divisors of m is
T(m) — 1 = 2q — 1. Hence pm is a sum of 2q — 1 of its proper divisors. The
number of proper divisors of pm is T(pm) — 1 = 4q — 1. So, pm is a sum of
all of its proper divisors with exactly (4q — 1) — (2q¢ — 1) = 2q exceptions, i.e.,
pm € E(k). Clearly o(pm) — 2pm < (pm) if p > (2m'=)Y< and p t m. It
follows that

#(E(k;2) \ Ec(k; 7)) 5 1

(6.10) lim inf —.
T—00 le’/ lOgl’ m
As a result,
6.11) i FER )\ E(kiz) 1
’ T z/logx m’
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