
A Novel Tampering Attack on AES Cores with
Hardware Trojans

Ayush Jain, and Ujjwal Guin
Dept. of Electrical and Computer Engineering, Auburn University

Emails: {ayush.jain, ujjwal.guin}@auburn.edu

Abstract—The implementation of cryptographic primitives in
integrated circuits (ICs) continues to increase over the years due
to the recent advancement of semiconductor manufacturing and
reduction of cost per transistors. The hardware implementation
makes cryptographic operations faster and more energy-efficient.
However, various hardware attacks have been proposed aiming to
extract the secret key in order to undermine the security of these
primitives. In this paper, we focus on the widely used advanced
encryption standard (AES) block cipher and demonstrate its
vulnerability against tampering attack. Our proposed attack
relies on implanting a hardware Trojan in the netlist by an
untrusted foundry, which can design and implement such a
Trojan as it has access to the design layout and mask information.
The hardware Trojan’s activation modifies a particular round’s
input data by preventing the effect of all previous rounds’ key-
dependent computation. We propose to use a sequential hardware
Trojan to deliver the payload at the input of an internal round
for achieving this modification of data. All the internal subkeys,
and finally, the secret key can be computed from the observed
ciphertext once the Trojan is activated. We implement our
proposed tampering attack with a sequential hardware Trojan
inserted into a 128-bit AES design from OpenCores benchmark
suite and report the area overhead to demonstrate the feasibility
of the proposed tampering attack.

Index Terms—Advanced Encryption Standard, Hardware Tro-
jan, Tampering.

I. INTRODUCTION

The advancement in semiconductor manufacturing and test-

ing has enabled the system-on-chip (SoC) design house to

incorporate more functionality in modern SoCs that consists

of millions of transistors. Consequently, the overall complexity

of designing and manufacturing such integrated chips (ICs)

has increased. As advanced technology nodes are adopted,

building and maintaining a foundry requires large capital

investment [1], resulting in a minimal number of foundries

across the globe. Currently, integration of third-party intel-

lectual properties (3PIP) with the original design and out-

sourcing to an offshore foundry for manufacturing and testing

is a typical current trend for design-houses. However, this

globalized and distributed supply chain model comes with

ample scope to tamper the design by implanting hardware

Trojans, malicious modifications into the IC, at the design

and fabrication phases [2], [3]. Hardware Trojans can pose a

severe security threat to the designs used for security-sensitive

applications, such as cryptographic modules.

Cryptographic algorithms have widely been adopted as

a critical means to provide the security of communication,

data, and other sensitive assets. The applications range from

commonly used smart cards to highly critical defense or gov-

ernment applications, which rely on these algorithms imple-

mented with dedicated hardware for confidentiality, end-point

authentication, integrity verification, and non-repudiation [4].

A secure hardware implementation of a cryptographic system

comprises of key dependant logic operations, where the secret

key is stored in a tamper-proof memory. The plaintext inputs

of a system go through a series of cryptographic computations

dependent on the secret key value to produce the final cipher-

text. Traditionally, such hardware implementations should be

secure even if all the design details, except the secret key, is

publicly available. Unfortunately, a hardware Trojan can leak

this secret key to an adversary once it is activated.

The research community has been extensively studying the

taxonomy of hardware Trojans, their implementation, and

detection in cryptosystems (i.e., AES, RSA, and ECC). These

Trojans are designed to leak the secret key from the circuits,

either through side-channels [5]–[7] or primary outputs [8]–

[12]. Over the years, various detection and prevention methods

have been proposed to address the threat originated from

hardware Trojans. The detection methods can be categorized

– (i) logic testing [13]–[15], (ii) side-channel analysis [11],

[16]–[18]. On the other hand, prevention methods include

modifications in the design [19]–[21] and split manufactur-

ing [22]–[24]. All of these techniques have some drawbacks

in terms of their feasibility, the type of Trojans that can be

targeted, and adverse effects due to manufacturing process

variations. Besides, sequential Trojans manifest their effect

only when a particular time has elapsed after the trigger

condition is met or when the Trojan is triggered multiple

times in a row. This property of sequential Trojan makes their

detection very difficult. As a result, this type of Trojan can

become a prominent and suitable choice for an attacker to

launch tampering attacks.

In this paper, we show how an adversary can extract

the secret key from different implementations of Advanced

Encryption Standard (AES) by tampering the netlist with a

hardware Trojan. AES performs a sequence of operations on

the plaintext in multiple rounds that involves intermediate

subkeys for each round, generated from the original secret key.

Our attack relies on masking other intermediate subkeys’ effect

in an internal round through a sequential hardware Trojan.

Once the Trojan is activated, it obstructs and modifies the

data from all previous rounds. As a result, the input data

1



for the Trojan-affected round becomes all 1s if the Trojan’s

payload is an OR gate. We can also use an AND gate as

the payload to make the input data all 0s. We refer this as

an adversarial known value (i.e., 0 or 1) because only the

adversary pertains to the knowledge regarding this value and

also the rare Trojan activation condition that would achieve

this intentional alteration. The resultant output for this round

can be observed directly from the primary output if a Trojan

is implanted in the last round.

The contributions of this paper are described as follows:

• We propose a novel attack based on the malicious mod-

ifications of the hardware implementation of an AES

core. The attack aims to modify the computation for an

internal round and extract its corresponding intermediate

subkey. For the same, we tamper the AES design with a

sequential hardware Trojan. To the best of our knowledge,

we are the first to demonstrate that the extraction of

an intermediate key can be performed by inserting a

sequential hardware Trojan, which can help an adversary

for computing the original secret key. We propose to use

the design for a sequential hardware Trojan due to its

greater difficulty of detection during manufacturing tests

and the normal functioning of the circuit. The addition

of a state element (a counter) to the trigger of sequential

Trojan requires triggered Q times consecutively, to deliver

the payload.

• We demonstrate and validate our proposed attack on the

OpenCores AES benchmark [25] synthesized in 32nm

technology using Synopsys Design Compiler. The area

and power overhead resulted from inserting a sequential

hardware Trojan are negligible compared to the AES core.

The rest of the paper is organized as follows. First, we de-

scribe the AES structure in Section II. We present the proposed

attack and its methodology on different AES implementations

in Section III. Experimental results related to hardware Trojan

and the proposed attack are shown in Section IV. Finally, we

conclude the paper and provide future directions in Section V.

II. BACKGROUND

Advanced Encryption Standard (AES) is a widely used

block cipher for data encryption recommended by the National

Institute of Standards and Technology (NIST) in November

2001 [26]. An adversary can tamper the AES core with a

hardware Trojan as the implementation details of AES are

publicly available. In this section, we provide a detailed

description of the AES core and a hardware Trojan, which can

be used to launch the tampering attack described in Section III.

A. AES Block Cipher

AES is the widely popular block cipher used almost in

every secure application. It consists of multiple rounds of

operations (e.g., 10, 12, and 14) for different key sizes

(e.g., 128, 192, and 256, respectively). Each round (Ri with

i ∈ {1, 2, . . . , n}) consists of SubBytes (SB), ShiftRows (SR),

MixColumns (MC), and AddRoundKey (AK) layers, except

for final round without the MixColumns computation [26].

The intermediate round computations are usually represented

by a 4×4 matrix, where each cell represents a byte. Note that

the subscript for any variable represents the round number

and superscript represents the accessible subgroups within that

variable. The same notations are used and referred throughout

the paper. We denote the input of the ith round by Ai
j ,

where j ∈ {0, 1, . . . , 15}. The internal round keys (Ki) are

generated from the key expansion modules. These intermediate

keys corresponding to each round can be denoted as subkeys.

These subkeys are bitwise XORed with the output of the

MixColumns (or ShiftRows for the final round). The key bytes

are arranged into a matrix with 4 rows and 4 (128-bit key),

6 (192-bit key) or 8 (256-bit key) columns. In this paper,

we only focus on AES with a 128-bit key to demonstrate

the tampering attack for simplicity. This same attack can be

launched for AES with 196 and 256-bit keys as well without

changing the attack methodology.

One can find the details for each round of AES in [26] and

can be summarized in different layers described as follows:

1) SubBytes (SB): It is the nonlinear transformation step

in AES, where each state byte is swapped with a pre-

computed value from a look-up table known as s-box.

2) ShiftRows (SR): This step rotates the 4× 4 state matrix

with different known offsets. Rows are shifted in a cyclic

manner by 1, 2 and 3-bytes for the corresponding row

number in the state matrix.

3) MixColumnns (MC): This step performs linear column-

wise operations on the state matrix. Essentially, it is a

matrix multiplication in the finite field of each column in

the state matrix with a constant 4× 4 matrix.

4) AddRoundKey (AK): It is the bitwise XOR of the state

matrix with the corresponding subkey.

f

Ki

Ki-1

W0
i-1W0
i-1 W1

i-1W1
i-1 W2

i-1W2
i-1 W3

i-1W3
i-1

W0
iW0
i W1

iW1
i W2

iW2
i W3

iW3
i

128128

3232

128128

3232 3232 3232

3232 3232 3232 3232

F0 F1 F2 F3

F1 F2 F3 F0

G0 G1 G2 G3

RCi S S S S

f Function

F0 F1 F2 F3

F1 F2 F3 F0

G0 G1 G2 G3

RCi S S S S

f Function

Figure 1: Key schedule module for 128-bit AES implementa-

tion.

The key schedule (KS) module generates subkeys for each

rounds. As the AES primitive with 128-bit key (can be referred

as AES-128) has 10 rounds, it is necessary to create 10 sub-

keys (K1, . . . ,K10) of 128-bit each. Following the notations,

original key for AES K consisting of {k0, k1, . . . k15}, where

each subgroup comprises of 8-bits respectively. Figure 1 shows

2



the implementation details of the key schedule module for

the ith round, where the current round’s subkey (Ki) can

be computed from the previous round’s subkey (Ki−1). The

subkey operations are performed on a word length (32-bits

or 4 bytes) subgroup. These subgroup words for each round

can be represented as W r
i , where r and i represent word

index and round index, respectively. For ith round, W 0
i is

comprised of {ki0, ki1, ki2, ki3}. Similarly, W 1
i is formed with

{ki4, ki5, ki6, ki7} and so on.

As shown in the Figure 1, we can generalise the operation

for the key schedule module and be described as:

W 0
i = W 0

i−1 ⊕ f(W 3
i−1); W 1

i = W 0
i ⊕W 1

i−1

W 2
i = W 1

i ⊕W 2
i−1; W 3

i = W 2
i ⊕W 3

i−1

where, f function can be formalised as:

G0 = S(F 1)⊕RCi; G1 = S(F 2)

G2 = S(F 3); G3 = S(F 0)

where, the values of RCi can be found in [26].

Note that the detailed implementation of the key schedule

module will help to compute the previous round’s subkey

(Ki−1) and finally the secret key K, if any of the subkey

(Ki) is known.

B. Design for a Sequential Hardware Trojan

In this paper, we consider the design of a sequential Trojan

to demonstrate the attack. Upon triggering, a sequential Trojan

manifests it effect after the occurrence of a sequence or a

period of time. Generally, Trojan comprises of a trigger and

payload that can be activated through trigger inputs, which

are taken from the primary inputs and/or internal nodes of a

circuit. The Trigger inputs are selected such that the Trojan can

evade manufacturing or production test patterns (e.g., stuck-at

fault tests, and delay tests) [27]–[29]. A Type-p Trojan com-

prises of p trigger inputs. The trigger is selected as an AND

gate. However, any other combinational logic can also form

the trigger which provides logic 1 when activated. Along with

this AND gate, the sequential Trojan trigger includes a state

element (Q-State counter). Upon availability of trigger inputs,

the output of this AND gate becomes 1 (i.e., EN = 1) and the

counter is incremented by 1. Upon triggering the Trojan Q-

times consecutively, the counter reaches the maximum value

and delivers the payload in the original circuit through the

OR gate or XOR gate. The finite state machine (FSM) for the

counter (CTR) is shown in Figure 2. The state transition occurs

only when EN = 1, otherwise, it returns to the initial state,

S0. The output of the counter becomes 1, once EN is made

to logic 1 consecutively for Q clock cycles. An adversary may

choose any different design of a Trojan as well.

III. PROPOSED TAMPERING ATTACK ON AES WITH A

HARDWARE TROJAN

The important aspect of cryptographic primitives is to

encrypt the output in such a way that an adversary cannot

find any key information at the output. In other words, no key

information is leaked at the output and an adversary cannot

S0 S1 S2 SQ-1
EN/0 EN/0

EN/1

EN/0

EN/0

EN/0
EN/0

EN/0

Figure 2: Finite state machine of the counter used in a

sequential hardware Trojan.

determine the key by observing input/output responses of a

system. In this section, we show how an adversary can extract

the secret key using the proposed tampering attack with a

sequential hardware Trojan.

A. Threat Model

The threat model is described to clearly identify the capa-

bilities of an adversary. In this model, an untrusted foundry is

considered as an adversary with the following capabilities:

• It has access to the netlist of the crypto primitives. The

untrusted foundry has access to all the layout and mask

information, which can be obtained from the GDSII or

OASIS file. The netlist can be reconstructed from this

information using reverse engineering [30].

• The attacker has the capability to modify the netlist so

that it can tamper it with a hardware Trojan.

• The attacker has access to all the manufacturing test (e.g.,
stuck-at fault and delay fault) patterns as it is common

that production tests are performed at the foundry. The

adversary can utilize these test patterns to design a Trojan

which cannot be detected during manufacturing tests [27].

B. Attack Methodology

The proposed attack relies on tampering the netlist by an

untrusted foundry with the aim of exposing the secret key.

Once the secret key is exposed, the security of AES no

longer exists. With this aim, an efficient two-step methodology

is proposed that involves a sequential Trojan. The proposed

attack can be described as follows:

• Step 1: The first step is to implement the hardware

Trojan and place its payload in the netlist. Once acti-

vated, the Trojan masks the information obtained from

previous round computations and nullify the impact of

previous subkeys. The AddRoundKey (AK) layer is our

primary area of interest while tampering the circuit with

a hardware Trojan and modify intermediate round state

matrix (Ai) to all 1s or 0s depending on the payload. In

this paper, we treat the payload as OR gates, and thus

Ai becomes all 1s. Once the response is collected at the

primary output, an adversary then computes the secret

key using Step 2.

• Step 2: The computation of the secret key is performed in

this step from the Trojan activated response. As the design

for the key schedule module is publicly available, an

3



Plaintext (P)

SB

SR

MC
CTR

SB

SR

R1-R9

R10

Key (K)

KS1-9

KS10

P

EN

1/0

Ciphertext (C)

A10 =1

K

K1-9

K10

CLK

Figure 3: Tampering attack on AES design implanted with a

sequential hardware Trojan, delivering the payload at the data

input (A10) of the last round (R10).

adversary can compute the input data of the key schedule

module from its output (see the computation details in

Algorithm 1 presented in Section III-C). With this, any

subkey can be traced back to retrieve the previous round

key (Ki−1) and finally, the original secret key (K).

C. Tampering Attack on AES Core

Figure 3 shows the proposed tampering attack on 128-bit

the AES implementation. The netlist is implanted with Type-p
sequential hardware Trojan, which consists of p-input trigger

and a payload OR gate. The trigger inputs may come from

the input depicted as plaintext (P ) in the figure. The trigger

circuit comprises of a AND gate and counter (CTR) with the

maximum count number of Q. One can find the detailed de-

scription of this sequential Trojan in Section II-B. We propose

to place the payload OR gate(s) before the last round (R10)

computation, i.e., after the add round key, AK layer in R9.

Once the Trojan is activated, the output of the payload (P)

OR gate(s) becomes 1. As a result, all the bits in the input

state matrix for last round A10 = 1, consequently, masking

the effect of all previous round key information (K1 − K9)

and round computations (R1 −R9). Due to availability of the

implementation details, we can compute the K10 from the

observed ciphertext C, and described as follows:

1) The activated Trojan delivers the payload to modify the

input to the last round with A10 = 0xFF . . . FF .

2) The output of SubBytes (SB) layer of R10 can be

computed as:
Y1 = SB(A10)

= 0x1616 . . . 1616

3) Once Y1 is known, the output of ShiftRows (SR) layer

can be computed as:

Y2 = SR(Y1)

= 0x1616 . . . 161616

Since the last round R10 does not perform MixCol-

umn (MC) operation, the output of ShiftRow (SR) gets XORed

with subkey (K10) in AddRoundKey (AK) step which is the

final ciphertext (C) at the primary output. From this output

bitwise XOR being a symmetric operation, we can calculate

the subkey (K10) as:

K10 = C ⊕ Y2

= C ⊕ (0x1616 . . . 1616)

Once K10 is retrieved, an adversary can recover all the

previous subkeys and the original secret AES key. In the

following, we will show how the subkey K9 can be recovered

from K10. Here, W 0
10, W 1

10, W 2
10 and W 3

10 are known as the

value of K10 has been evaluated from the ciphertext previously

using activating the hardware Trojan.

1) Step 1: Computation of W 3
9 can be performed from

XORing the W 3
10 with W 2

10 as the XOR operation is

reciprocal.

W 3
9 = W 3

10 ⊕W 2
10

2) Step 2: Once W 3
9 is known, one can compute W 0

9 using

the following equation.

W 0
9 = W 0

10 ⊕ f(W 3
9 )

3) Step 3: Finally, W 1
9 and W 2

9 can be evaluated using the

following equations.

W 1
9 = W 1

10 ⊕W 0
10; W 2

9 = W 2
10 ⊕W 1

10

The general process for evaluating the secret key K from

K10 is described in Algorithm 1. The round subkey K10

is provided as input to the algorithm and the original key

K will be returned as the output. The algorithm starts by

selecting the subkey from which the previous round subkey

is to be calculated (Line 1). The subkey (Ki) is divided into 4

subgroups of 32-bits each, namely [W 0
i ,W

1
i ,W

2
i ,W

3
i ], from

the 128-bit key using the assign function (Line 2). The 4

subgroups for (i − 1)th key is calculated from the ith key

(refer Figure 1 in Section II) (Lines 3-6). Finally, 4 different

32-bit subgroups (i.e., W 0
0 ,W

1
0 ,W

2
0 ,W

3
0 ) are obtained for

the original key which are concatenated together and the

algorithm reports the original key K (Lines 8-9). During these

operations, function f is used which takes inputs as the 32-bit

subgroup word W (Line 17). Function f performs the SubByte

operation on 8-bits of keys using the sbox (S) and RCi

(corresponding to each round) and returns the concatenated

result (Lines 18-22).

4



Algorithm 1: Reverse Key Schedule

Input: SubKey (K10) of round R10

Output: Original Key (K)

1 for i = 10 to 1 do
2 [W 0

i ,W
1
i ,W

2
i ,W

3
i ] ← assign(Ki) ;

3 W 3
i−1 ← W 3

i ⊕W 2
i ;

4 W 2
i−1 ← W 2

i ⊕W 1
i ;

5 W 1
i−1 ← W 1

i ⊕W 0
i ;

6 W 0
i−1 ← W 0

i ⊕ f(W 3
i−1) ;

7 end
8 K ← {W 0

0 ‖W 1
0 ‖W 2

0 ‖W 3
0 } ;

9 Report K ;

10 Function assign(Ki):
11 [k1i , k

2
i . . . k

16
i ] ← Ki ;

12 W 0
i ← {k0i ‖ k1i ‖ k2i ‖ k3i } ;

13 W 1
i ← {k4i ‖ k5i ‖ k6i ‖ k7i } ;

14 W 2
i ← {k8i ‖ k9i ‖ k10i ‖ k11i } ;

15 W 3
i ← {k12i ‖ k13i ‖ k14i ‖ k15i } ;

16 Return [W 0
i ,W

1
i ,W

2
i ,W

3
i ] ;

17 Function f(W):
18 G0 ← S(k13)⊕RCi ;

19 G1 ← S(k14) ;

20 G2 ← S(k15) ;

21 G3 ← S(k12) ;

22 Return [G0, G1, G2, G3] ;

D. Tampering Attack on OpenCores AES Benchmark

The utilization of the hardware resources can be reduced

by adopting multicycle designs, that re-use the hardware or

functional blocks in a design. For the OpenCores AES [25]

implementation, the plaintext (P ) is provided as the input, and

the internal result after every round is stored in round registers,

which is then fed back to the SubByte layer of the next round.

The result in the round register after 10th round (R10) is the

ciphertext (C) output of the AES core.

Figure 4 shows the hardware implementation of a Open-

Cores AES benchmark. The design has a load input pin

which loads the input plaintext for encryption. The total

encryption process takes 13 clock cycles once the start signal

is assigned and the ciphertext is observed at the output when

done signal becomes 1 [25]. The proposed tampering attack

can also be extended to this OpenCores AES design, which is

tampered with a sequential Trojan described in section II-B.

The counter (CTR) of the hardware Trojan uses the load signal

as a clock. In other words, the Trojan counter will increase

its value when the load signal is high as well as the plaintext

matches the trigger input pattern (i.e., EN = 1). It is necessary

to trigger the Trojan Q times consecutively to launch the

attack. Once activated, the payload is delivered to make Ai

all 1’s. The Trojan will remain activated during the entire

encryption process and all the internal round computation will

be modified as well. The ciphertext (C) observed at the output

will be used to determine K10, which can be computed as:

Plaintext (P)

SB

SR

MC

CTR
EN

P

Ciphertext (C)

Round Registers
Ai =1

1/0

Key (K)

KSi

128

128

128

128

Ri

Load

K

Ki

Figure 4: Tampering attack on OpenCores AES benchmark

with a sequential hardware Trojan.

K10 = C ⊕ (0x1616 . . . 1616). Finally, the original key (K)
can be retrieved using the Algorithm 1. Note that the attacks

on AES are explained using a sequential Trojan. One can use

other types of existing hardware Trojan designs to launch the

attack as well.

IV. RESULTS AND DISCUSSIONS

To validate the effectiveness of our proposed attack, we

implemented our proposed hardware Trojan in the OpenCores

AES benchmark [25]. The sequential Trojan Trigger com-

prised of a AND gate followed by a counter. The Trigger

inputs to the AND gate were taken directly from the plaintext

input to the AES core. The trigger pattern was selected in

such a way so that it does not belong to the manufacturing

test patterns (e.g., stuck-at fault patterns) [27]–[29].

Table I: Area overhead analysis.
Max Count (Q) 2 4 8 16 32 64

Area Overhead (%) 0.51 0.53 0.55 0.58 0.60 0.63

The area for a hardware Trojan can vary based on the trigger

input, trigger design, and the type of Trojan selected. For

our experimentation, we implemented a sequential hardware

Trojan with 5-input AND gate, counter with maximum count

Q, and 128 payload OR gates. To estimate the area and

power overhead, the Trojan inserted AES benchmark is syn-

thesized with 32nm technology [31] using Synopsys Design

Compiler [32]. Table I shows the percentage area overhead

obtained by comparing the Trojan-free and Trojan inserted

AES benchmark. The overall area overhead for counter with

different maximum count value Q. The higher value of Q
increases the difficulty of detecting a hardware Trojan using

a logic test, as it is increasingly difficult to trigger the Trojan

5



Q times consecutively. The overhead is minimal and is less

than 1%. For example, it is only 0.55%, when we choose Q
of 8. Note that the majority of the overhead comes from the

payload as we require 128 OR gates. Since the Trojan remains

quiet during normal operation, it does not have any switching

power. The leakage power for the Trojan would only contribute

to the power overhead. However, the Trojan’s leakage power

is in order of magnitude less than the switching power of the

counter and can be negligible.

V. CONCLUSION

Hardware Trojans can pose a severe threat to our critical

infrastructure that relies on AES for encrypting sensitive

data. We presented a novel tampering attack on AES core

to extract the secret key by implanting a sequential hardware

Trojan. The attack mainly relies on modifying the input for

an internal round using the Trojan’s payload, to mask the

previous round’s information. The Trojan helps an adversary

to compute the last round subkey from the observed ciphertext.

We present an algorithm to retrieve the original key from

the last round’s subkey. The sequential Trojan presented in

the paper requires triggering of Q consecutive times, which

fulfills the requirement of increased difficulty in detecting such

Trojans. It is extremely difficult to identify such Trojans using

logic testing as the attacker only knows the trigger condition

derived from the input plaintext, and apply it repeatedly.

ACKNOWLEDGMENT

This work was supported in parts by the National Science

Foundation (NSF) under grant CNS-1755733 and Air Force

Research Laboratory (AFRL) under grant AF-FA8650-19-1-

1707. Any opinions, findings, and conclusions or recommen-

dations expressed in this material are those of the authors and

do not necessarily reflect the views of the NSF and AFRL.

REFERENCES

[1] Age Yeh, “Trends in the global IC design service market,” DIGITIMES
Research, 2012.

[2] M. Tehranipoor and C. Wang, Introduction to hardware security and
trust. Springer Science & Business Media, 2011.

[3] S. Adee, “The hunt for the kill switch,” iEEE SpEctrum, vol. 45, no. 5,
pp. 34–39, 2008.

[4] E. Barker, “NIST Special Publication 800-175B NIST Special Publi-
cation 800-175B Cryptographic Standards in the Federal Government:
Cryptographic Mechanisms,” 2016.

[5] L. Lin, M. Kasper, T. Güneysu, C. Paar, and W. Burleson, “Trojan
side-channels: Lightweight hardware trojans through side-channel en-
gineering,” in International Workshop on Cryptographic Hardware and
Embedded Systems, 2009, pp. 382–395.

[6] L. Lin, W. Burleson, and C. Paar, “MOLES: malicious off-chip leakage
enabled by side-channels,” in IEEE/ACM International Conference on
Computer-Aided Design-Digest of Technical Papers, 2009, pp. 117–122.

[7] Y. Zhao, J. Song, X. Wu, L. Wu, and X. Zhang, “A Novel Trojan Side
Channel For Attacking Masking,” in IEEE International Conference on
Anti-counterfeiting, Security, and Identification, 2018, pp. 151–154.

[8] S. Kutzner, A. Y. Poschmann, and M. Stöttinger, “Hardware trojan
design and detection: a practical evaluation,” in Proceedings of the
Workshop on Embedded Systems Security, 2013, pp. 1–9.

[10] S. Bhasin, J.-L. Danger, S. Guilley, X. T. Ngo, and L. Sauvage,
“Hardware Trojan horses in cryptographic IP cores,” in Workshop on
Fault Diagnosis and Tolerance in Cryptography, 2013, pp. 15–29.

[9] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans,” in Int. Conference on Cryptographic
Hardware and Embedded Systems. Springer, 2013, pp. 197–214.

[11] M. Muehlberghuber, F. K. Gürkaynak, T. Korak, P. Dunst, and M. Hutter,
“Red team vs. blue team hardware Trojan analysis: detection of a
hardware Trojan on an actual ASIC,” in Proceedings of the International
Workshop on Hardware and Architectural Support for Security and
Privacy, 2013, pp. 1–8.

[12] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware
Trojan attacks: Threat analysis and countermeasures,” Proceedings of
the IEEE, vol. 102, no. 8, pp. 1229–1247, 2014.

[13] P. Kitsos, D. E. Simos, J. Torres-Jimenez, and A. G. Voyiatzis, “Exciting
FPGA cryptographic Trojans using combinatorial testing,” in Interna-
tional Symposium on Software Reliability Engineering, 2015, pp. 69–76.

[14] X. Wang, M. Tehranipoor, and J. Plusquellic, “Detecting malicious
inclusions in secure hardware: Challenges and solutions,” in IEEE Int.
Workshop on Hardware-Oriented Security and Trust, 2008, pp. 15–19.

[15] H. Salmani, “COTD: Reference-free hardware trojan detection and
recovery based on controllability and observability in gate-level netlist,”
IEEE Transactions on Information Forensics and Security, vol. 12, no. 2,
pp. 338–350, 2016.

[16] B. Hanindhito and Y. Kurniawan, “Hardware Trojan Design and Its
Detection using Side-Channel Analysis on Cryptographic Hardware
AES Implemented on FPGA,” in International Conference on Electrical
Engineering and Informatics (ICEEI), 2019, pp. 191–196.

[17] Y. Liu, K. Huang, and Y. Makris, “Hardware Trojan detection through
golden chip-free statistical side-channel fingerprinting,” in Proceedings
of the Annual Design Automation Conference, 2014, pp. 1–6.

[18] J. He, Y. Zhao, X. Guo, and Y. Jin, “Hardware trojan detection through
chip-free electromagnetic side-channel statistical analysis,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 10,
pp. 2939–2948, 2017.

[19] L. Wu, X. Wang, X. Zhao, Y. Cheng, D. Su, A. Chen, Q. Shi, and
M. Tehranipoor, “AES design improvement towards information safety,”
in IEEE International Symposium on Circuits and Systems (ISCAS),
2016, pp. 1706–1709.

[20] K. Xiao, D. Forte, and M. Tehranipoor, “A novel built-in self-
authentication technique to prevent inserting hardware trojans,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 33, no. 12, pp. 1778–1791, 2014.

[21] P.-S. Ba, S. Dupuis, M. Palanichamy, M.-L. Flottes, G. Di Natale, and
B. Rouzeyre, “Hardware trust through layout filling: A hardware Trojan
prevention technique,” in IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), 2016, pp. 254–259.

[22] K. Vaidyanathan, B. P. Das, and L. Pileggi, “Detecting Reliability
Attacks During Split Fabrication Using Test-Only BEOL Stack,” in Proc.
of Design Automation Conf., 2014, pp. 1–6.

[23] J. J. V. Rajendran, O. Sinanoglu, and R. Karri, “Is Split Manufacturing
Secure?” in Proc. Conf. Design, Automation and Test in Europe (DATE),
2013, pp. 1259–1264.

[24] Y. Wang, P. Chen, J. Hu, and J. J. Rajendran, “The Cat and Mouse in
Split Manufacturing,” in Proceedings of Design Automation Conference,
2016, pp. 1–6.

[25] Opencores, https://opencores.org/projects/aes crypto core.

[26] NIST-FIPS, “Announcing the Advanced Encryption Standard (AES),”
Federal Information Processing Standards Publication, vol. 197, no. 1-
51, pp. 3–3, 2001.

[27] Z. Zhou, U. Guin, and V. D. Agrawal, “Modeling and test generation
for combinational hardware Trojans,” in VLSI Test Symposium (VTS),
2018, pp. 1–6.

[28] A. Jain, Z. Zhou, and U. Guin, “TAAL: Tampering Attack on Any Key-
based Logic Locked Circuits,” arXiv preprint arXiv:1909.07426, 2019.

[29] A. Jain, U. Guin, M. T. Rahman, N. Asadizanjani, D. Duvalsaint, and
R. S. Blanton, “Special Session: Novel Attacks on Logic-Locking,” in
IEEE VLSI Test Symposium (VTS), 2020, pp. 1–10.

[30] R. Torrance and D. James, “The state-of-the-art in IC reverse engi-
neering,” in International Workshop on Cryptographic Hardware and
Embedded Systems, 2009, pp. 363–381.

[31] Synopsys 32/28nm Generic Library for teaching IC design, Available:
https://www.synopsys.com/community/university-program/teaching-
resources.html.

[32] RTL Design and Synthesis: Next Generation RTL Design for Ad-
vanced Nodes, Synopsys, https://www.synopsys.com/implementation-
and-signoff/rtl-synthesis-test.html.

6


