
ATPG-Guided Fault Injection Attacks on
Logic Locking

∗Ayush Jain, †M Tanjidur Rahman, and ∗Ujjwal Guin
∗ Dept. of Electrical and Computer Engineering, Auburn University
† Dept. of Electrical and Computer Engineering, University of Florida

Emails: ayush.jain@auburn.edu, mir.rahman@ufl.edu, and ujjwal.guin@auburn.edu

Abstract—Logic Locking is a well-accepted protection tech-
nique to enable trust in the outsourced design and fabrication
processes of integrated circuits (ICs) where the original design
is modified by incorporating additional key gates in the netlist,
resulting in a key-dependent functional circuit. The original
functionality of the chip is recovered once it is programmed with
the secret key, otherwise, it produces incorrect results for some
input patterns. Over the past decade, different attacks have been
proposed to break logic locking, simultaneously motivating re-
searchers to develop more secure countermeasures. In this paper,
we propose a novel stuck-at fault-based differential fault analysis
(DFA) attack, which can be used to break logic locking that relies
on a stored secret key. This proposed attack is based on self-
referencing, where the secret key is determined by injecting faults
in the key lines and comparing the response with its fault-free
counterpart. A commercial ATPG tool can be used to generate
test patterns that detect these faults, which will be used in DFA
to determine the secret key. One test pattern is sufficient to de-
termine one key bit, which results in at most |K| test patterns to
determine the entire secret key of size |K|. The proposed attack
is generic and can be extended to break any logic locked circuits.

Index Terms—Logic locking, differential fault analysis, fault
injection, IP Piracy, IC overproduction

I. INTRODUCTION

Over the last few decades, the impact of globalization has
transformed the semiconductor manufacturing and testing
industry from vertical to horizontal integration. The continuous
trend of device scaling has enabled the designer to incorporate
more functionality in a system-on-chip (SoC) by adopting
lower technology nodes to increase performance and reduce
the overall area and cost of an SoC. At present, majority of the
SoC design companies or design houses no longer manufacture
chips and maintain a foundry (fab) of their own due to cost for
building and maintaining such foundries [1] and the increased
complexity in the fabrication process as new technology is
adopted. The design-house integrates intellectual properties (IP)
obtained from different third-party IP vendors along with its
design and outsources the manufacturing to an offshore foundry.
Due to this distributed design and manufacturing flow, which
includes third-party IPs, manufacturing, testing, and distribution
of chips, various threats have emerged in recent years [2]–[4].
The research community has also been extensively involved
in proposing countermeasures against these threats [5]–[10].

Logic locking has emerged as the most prominent method
to address the threats incurred from untrusted manufacturing.
In logic locking, the design of a circuit is locked so that the

Tamper-proof Memory

Locked CircuitPrimary
Inputs

Primary
Outputs

Key (Secret)

Figure 1. An abstract view of the logic locking technique.

circuit produces incorrect results in normal operation unless a
correct secret key is programmed into the chip. Figure 1 shows
an abstract view of logic locking where the key is stored in
a tamper-proof non-volatile memory. Subramanyan et al. [11]
first showed that a locked circuit can efficiently be broken using
key-pruning oracle-guided SAT analysis. Since then, many
different versions of SAT-based attacks have been launched on
logic locking [12], and the solutions have been proposed to
mitigate these attacks as well [13]–[21].Can we safely state that
a logic locking technique is completely secure even if we achieve
complete SAT resistivity? Note that an untrusted foundry has
many more effective means to determine the secret key without
performing SAT analysis [22]–[25]. Countermeasures are also
developed to partially prevent these attacks [24], [26]–[28].

In this paper, we show how an adversary can extract the secret
key from a locked netlist, even if all the existing countermeasures
are in place. An adversary can determine the secret key by
injecting faults at the key registers [22], [29], which hold the key
value during normal operation, and performing differential fault
analysis. The entire process can be performed in three steps.
First, an input pattern that reflects different output response for
the change of only one key bit while keeping the other key bits
at the faulty states is selected. To generate such a test pattern, we
propose to use the constrained automatic test pattern generation
(ATPG) algorithm, which is widely popular for testing VLSI
circuits. The pattern which detects either stuck-at-1 (sa1) or stuck-
at-0 (sa0) fault at one of the key lines with logic 1 or 0 constraints
for other key lines respectively, is sufficient to determine that
key bit. Note that the fault-free and faulty responses are always
complementary for an input test pattern that detects that fault. The
same process repeated for other key bits to obtain |K| patterns
for determining the entire key of size |K|. Second, we apply
these test patterns to two instances of an unlocked chip obtained
from the market and collect the responses. Logic 1 faults are now

injected into all the key lines and measure the responses of the
faulty circuit by applying the set of test patterns. Next, logic 1
faults are injected into all the key lines except one key line. The
response from this fault-free circuit is obtained by applying the
test pattern associated with the fault-free key. This step is repeated
for all the key lines, and responses are obtained by applying its
corresponding test pattern. Finally, the results are compared to
determine the key. The actual value of a key bit is 1 if the two
responses are the same, otherwise, the key is 0. Note that this
paper specifically considers the countermeasures in accordance
with the logic locking techniques and not the countermeasures
related to the prevention of fault injection or its detection.

The contributions of this paper are described as follows:
• We propose a novel attack to break any key-based logic locking

technique using the fault injection attack. When we apply
a constrained sa1 pattern to a key line, the hypothesis key bit
becomes 1 if the responses of the fault-free and faulty circuits
are the same, otherwise, the key value is 0. The proposed
attack is self-referencing and does not require any complex
analysis (i.e., SAT). To the best of our knowledge, we are
the first to demonstrate that the stuck-at fault patterns can
be used to determine the secret key of a locked circuit.

• We demonstrate and validate our proposed attack by
performing the laser fault injection on a Kintex-7 FPGA. The
technology-dependent gate-level netlist created in Synopsys
Design Compiler is converted to a technology-independent
netlist and implemented in Xilinx Vivado without any opti-
mization so that the saf patterns can be applied to the FPGA.
The rest of the paper is organized as follows: the proposed

attack and its methodology to extract the secret key from any
locked circuit are described in Section II. We present the results
for the implementation of the proposed attack on different logic
locked benchmark circuits in section III. Finally, we conclude
our paper in Section IV.

II. PROPOSED FAULT INJECTION ATTACK

The differential fault analysis (DFA) attack on logic locking
is motivated by the test pattern generation for VLSI circuits.
A single stuck-at fault will be detected using a test pattern that
activates the fault and propagates the faulty response to the
primary output. The key register, which holds the key value
loaded from the tamper-proof non-volatile memory, can be
treated as the source of the fault. These registers are the target
for an adversary to obtain the secret key from a working chip.

A. Threat Model

The threat model defines the traits of an adversary and
its position in the IC manufacturing and supply chain. It
is very important to know an attacker’s capabilities and its
resources/tools to estimate its potential to launch the attack.
The design house or entity designing the chip is assumed to
be trusted. The attacker is assumed to be an untrusted foundry
or a reverse engineer having access to the following:
• The attacker has access to the locked netlist of a circuit. An

untrusted foundry has access to all the layout information
which can be extracted from the GDSII or OASIS file. Also,

a locked netlist can be constructed from layer-by-layer reverse
engineering of the fabricated chip with advanced technological
tools [30]. The attacker has the capability to determine the
location of the tamper-proof memory. It can be trivial for an
adversary to find the location of the key register in a netlist,
as it can easily trace the route from the tamper-proof memory.

• The attacker has possession of an unlocked and fully
functional chip, which can be easily acquired from the market.

• A fault injection equipment is necessary to launch the attack.
It is not necessary to use high-end fault injection equipment.
The basic requirement is to inject faults at the key registers
(all the flip-flops) location on a de-packaged/packaged chip.

Notations: An original circuit, and its locked version are denoted
by CO and CL, respectively. The two versions of fault-injected
CL are represented as CF and CA. CF represents a locked circuit
where all the key lines (|K|) are injected with logic 1 (logic 0)
faults, denoted as a faulty circuit. CA represents the same locked
circuit where (|K|−1) key lines are injected with the same logic
1 (logic 0) faults, leaving one key line fault free. We denote this
circuit as a fault-free circuit for DFA. Both functional chips are
loaded with the correct key in its tamper-proof memory. A fault is
injected at the key register using a fault injection method (see de-
tails in Section III). For any given circuit, we assume the primary
inputs (PI) of size |PI|, primary outputs (PO) of size |PO|,
and secret key (K) size of |K|. We also use key lines or key
registers alternatively throughout this paper as their effects are
the same on a circuit. Note that saf is an abstract representation
of a defect to generate test patterns, whereas, an injected fault
is the manifestation of a faulty logic state due to fault injection.

Faulty
Circuit (CF)

Fault-Free
Circuit (CA)

y0

yn

y1

x0x1

xm

Key (K)
k0k1k|K|

Key (K)
k0k1k|K|

Figure 2. The abstract representation of our proposed fault injection attack.

B. Differential Fault Analysis Attack Methodology

The proposed fault injection attack relies on differential fault
analysis, where the responses of two instances of faulty and fault-
free circuits are compared to determine the secret key. A practical
fault injection approach is described in Section III to create the
faulty chip. Figure 2 shows an abstract representation of our
proposed approach. For an input pattern, the output responses are
collected for both CA and CF . The output responses are XORed
to find any mismatch. If both the circuits differ in their responses,
the XORed output will be 1, otherwise, it will be 0. If we find an

input pattern that produces conflicting results for both CA and
CF only for one key bit, the key value can be predicted. The key
value is the same as the injected fault value if the XORed output
is of logic 0, otherwise, the key value is complementary to the
injected fault. The proposed attack can be described as follows:

• Step-1: The first step is to select an input pattern that produces
complementary results for the fault-free (CA) and faulty (CF)
circuits. The input pattern needs to satisfy the following property
– it must sensitize only one key bit to the primary output(s). In
other words, only the response of one key bit is visible at the
PI keeping all other key bits at logic 1s (or 0s). If this property
is not satisfied, it will be impractical to reach a conclusion
regarding the key bit value. Multiple key combinations can
result in the same. Now the question is how can we find if such
a pattern exists in the entire input space (ξ).

To meet this requirement, our method relies on stuck-at
faults (saf) based constrained ATPG to obtain the specific input
test patterns (see details in Section II-D). Considering the fact
that adversary has access to the locked netlist (CL), it can
generate test patterns to detect sa1 or sa0 at any key lines and
adding constraints to other key lines (logic 1 and 0 for sa1 and
sa0, respectively). A single fault, either sa0 or sa1 on a key line
is sufficient to determine the value of that key bit. Therefore,
we have selected sa1 and the following sections are explained
considering this fault only. This process is iterated over all the
key-bits to obtain |K| test patterns. The algorithm to generate the
complete test pattern set is provided in Algorithm section II-D.

• Step-2: The complete set of generated test patterns is applied to
fault-induced functional circuit (CF). The circuit is obtained by
injecting logic 1 fault on the key registers if sa1 is selected in the
previous step, else, logic 0 fault is injected for sa0. The responses
are collected for later comparison with the fault-free responses.
For (CA), the test patterns are applied such that it matches the
fault modifications in the circuit. For example, the test pattern
for the first key is applied to the circuit when the circuit instance
does not pertain any fault on its corresponding key register and
holds the correct key value while, the remaining key registers
are set to logic 1 (for sa1) or 0 (for sa0). For the next key-bit,
(CA) instance is created by excluding this selected key bit from
any fault while keeping all the other key registers to logic 1 (for
sa1) or 0 (for sa0). This process is repeated for all key bits and
their responses are collected for comparison in the next step.

• Step-3: The adversary will make the decision regarding the key
value from the observed differences in the output responses of
(CA) and (CF). For any test pattern corresponding to a particular
key bit, when the output of both the circuits is same, it implies
that the injected fault on the key lines in a CF circuit is same
as the correct key bit, only then the output of both the ICs will
be same. Otherwise, when CF and CA differ in their output
response, it concludes the correct key bit is complementary to
the induced fault. This process is repeated for all key bits. In this
manner, the key value can be extracted by comparing the output
responses of both circuits for the same primary input pattern.

C. Example

In this section, we present an example circuit to illustrate the
proposed attack. Test pattern generation for detecting stuck-at
faults at the key lines is described using the D-Algorithm [31].
A Combinational circuit is chosen as an example for simplicity.
However, the attack is valid for sequential circuits as well as
it can be transformed into a combinational circuit in the scan
mode, where all the internal flip-flops can be reached directly
through the scan chains [31].

Figure 3 shows our proposed attack on a test circuit locked
with a 3-bit secret key, where the propagation of k0 and k1
is inter-dependent on each other while propagation of k2 is
independent of other keys in the circuit. The circuit has six
inputs (|PI| = 6) and two outputs (|PO| = 2). The attack
targets all the key bits separately as mentioned before. First, we
target to find out the value of k0. It is necessary to generate a
test pattern that detects a saf at k0 with constraint k1 = 1 and
k2 = 1, which is shown in Figure 3.(a). D is assigned after the
sa1 at the key line k0. D is defined as logic 1 for a good circuit
and logic 0 for a faulty one [31]. To activate this fault, the ATPG
tool will assign a logic 0 at k0. A test pattern P1 needs to be
generated to detect a sa1 fault at k0 with constraint k1 = 1
and k2 = 1. As the value of k1 is known during the pattern
generation, the effect of the sa1 at k0 will be propagated to the
primary output y0. For a fault value D at k0, if [x0 x1] = [1 1]
then D propagates to n2 as G1 is an AND gate. To propagate
the value at n2 to the output of G3, its other input (n4) needs
to attain logic 1. Since k1 = 1 due to injected fault which is set
as a constraint in ATPG tool, n4 = 1 for n3 = 0 which implies
[x2 x3] = [0 1]. At last, x4 = 0 propagates D value at n5 to the
primary output y0. The output y0 can be observed as D for the
test pattern P1 = [1 1 0 1 0 X]. Note that the output y0 will
have complementary values for k0 = 0 and k0 = 1 when we
apply P1 at the input. This property of the input patterns will
be used in DFA to recover the secret key. Similar analysis can
be performed to detect saf D on other two key lines, k1 and k2.

After generating the test pattern P1 for the sa1 at key line k0,
the next step is to perform differential fault analysis between
the responses of the CF and CA. The test pattern is applied
first to the faulty circuit CF and its response is captured, which
is shown in Figure 3.(a). As this pattern detects a sa1 at line
k0, the faulty response will be propagated to the output y0. If
we injected a logic 1 fault (D) using the fault injection method,
the value at y0 will be logic 0 (D). The same test pattern P1

is now applied to the fault-free circuit CA, which is shown in
Figure 3.(b). The logic value of y0 for CA will be k0. If the
value of y0 is the same for both CF and CA, the value of the
key (k0) is 1, otherwise, k0 is equal to 0. Similarly, the test
pattern for detecting a sa1 at k1 can be applied to extract its
value based on the difference between the two circuit instances.

D. Test Pattern Generation

To generate the test pattern set, an automated process relying
on constrained ATPG is performed. The detailed steps to
be followed are provided in Algorithm 1. Synopsys Design
Compiler [32] is utilized to generate the technology-dependent

sa1

1

0

x0
x1
k1
x2
x3
x4

k0

y0

G1

G2

Gk1

G3

Gk0
n1 n2

n3
n4

X

1

D1
1

DD

0 0
1 n5

DD

DD
G4

1

x5
k2

y1G5 Gk2
X
1

n6

1

0

x0
x1
k1
x2
x3
x4

k0

y0

G1

G2

Gk1

G3

Gk0
n1

n2

n3
n4

1

1
1

k0k0

0 0
1 n5

G4

1

x5
k2

y1G5 Gk2
X
1

n6

(a) (b)

k0k0

k0k0

Figure 3. Differential Fault attack on a test circuit locked with a 3-bit secret key, where the propagation of k0 is dependent on k1 and vice versa. (a) Test
pattern generation considering a sa1 at key line k0 with constraint k1 = 1 and k2 = 1. Test pattern, P1 = [11010X] will be applied to CF . (b) The same
pattern are required to be applied to CA.

gate-level netlist and its test protocol from the RTL design. A
test protocol is required for specifying signals and initialization
requirements associated with design rule checking in Synopsys
TetraMAX [33]. Automatic test generation tool TetraMAX
generates the test patterns for the respective faults along with
constraints for the locked gate-level netlist.

Algorithm 1: Test pattern generation for constrained
ATPG

Input : Locked gate-level netlist (CL),
test protocol (T), and standard cell library

Output : Test pattern (P) set
1 Read the locked netlist (CL) ;
2 Read standard cell library ;
3 Run design rule check

with test protocol generated from design compiler ;
4 Determine key size |K| from CL ;
5 for i← 0 to (|K| − 1) do
6 Add a sa1 fault at key line ki ;
7 for j ← 0 to (|K| − 1) do
8 if i 6= j then
9 Add constraint at kj to logic 1 ;

10 else
11 end
12 Run ATPG to detect the fault ;
13 Add the test pattern, Pi to the pattern set, P ;
14 Remove all faults; Remove all constraints ;
15 end
16 Report the test pattern set, P ;

The inputs to the algorithm are locked gate-level netlist (CL),
Design Compiler generated test protocol (T), and the standard
cell library. The algorithm starts with reading the locked netlist
and standard cell library (Lines 1-2). The ATPG tool runs the
design rule check with the test protocol obtained from the
Design Compiler to check for any violation (Line 3). Only upon
completion of this step, the fault model environment is set up in
the tool. The size of the key (|K|) is determined by analyzing
CL (Line 4). The remaining key lines are selected one by one to

generate test patterns (Line 5). A stuck-at-1 fault is added at the
ith key line to generate Pi (Line 6). The ATPG constraints (logic
1) are added to other key lines (Lines 7-10). A test pattern Pi is
generated to detect the sa1 at the ith key line (Lines 12-13) and
added to the pattern set, P . All the added constrains and faults
are removed to generate the (i + 1)th test pattern (Line 14).
Finally, the algorithm reports all the test patterns, P (Line 16).

E. Fault-injection Approach

Fault-injection attack has been widely used in the past
to extract secret assets and bypassing security measures in
the device [34]. An adversary can use several fault-injection
approaches depending on the budget and expertise. The basic
fault-injection approach includes voltage, timing, electromagnetic,
and laser-based fault-injection methods [35]–[37]. Laser-fault
injection (LFI) offers the most precision in both spatial and
temporal domains during the operation of the chip, hence, used
for deploying DFA attack for extracting the secret key. Laser
with photon energy higher than silicon bandgap energy used to
induce faults in an integrated circuit [37]. Therefore, the laser
with a wavelength less than 1.1 µm is used in our experiment.
The LFI attack can be completed in the following steps:
• Sample Preparation: LFI can be injected from both frontside
and backside of the chip. However, the interconnecting metal
layers at the front of the die obstruct the optical path of photons.
On the other hand, the absence of any metal obstacle or
reflective coating at the backside of the die allows an adversary
to access the transistors with the laser. In a typical packaged
chip (bondwire IC), the backside can be exposed by wet etching.
Nonetheless, the flip-chip substrate is typically covered with a
metallic lid, which can be easily removed to expose the silicon
die. The backside of the silicon can be further polished to 30
– 100 µm to reduce the power loss along the laser path due
to photon absorption phenomena [37], [38].
• Target Localization and Fault-injection: The method of
localizing key-register location depends on the capability and
asset availability to an adversary. An adversary, like an untrusted
foundry or an expert reverse engineer, can localize the key
location, i.e., tamper-proof memory, key-register, key-gates by

analyzing the GDSII or partial/full-blown reverse engineering.
Once the target is localized, an attacker needs to identify the fault
sensitive location for injecting fault. Localizing the most reverse
biased P-N junction in the key-register can be identified as the
potential candidate for fault-injection [38]. Therefore, depending
on logic 1 (logic 0) fault, the laser can be applied to the drain
location of the p-type (n-type) MOS transistors for fault injection.

Another challenge is that a single laser source can only inject
a single fault at once. Therefore, the fault can be injected in a se-
quential order where the laser source can be moved from one key-
register to another for injecting fault. After localizing the targeted
key registers, an adversary can automate the sequential fault-
injection process with the help of computer vision and image pro-
cessing [28], [39]. Since the key is imperative for the IP operation,
it is safe to assume that once secure boot-up is complete, the lock-
ing key will remain stored in the key-register during the operation
of IP [22], [29]. Therefore, an adversary can initiate the fault-
injection method after the secure boot-up of the chip is complete.
An adversary can identify the clock-cycle required for secure-
boot up by monitoring the power consumption of the circuit.

III. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our proposed attack, we
adopted and performed the laser fault injection technique on a
Kintex-7 FPGA, which is used as the device-under-test (DUT).
Different benchmark circuits are implemented in a Kintex-7
FPGA, where the faults are injected on the key registers. First,
the RTL netlist for ISCAS’99 benchmark circuits [40] are
synthesized using 32nm technology libraries in Synopsys Design
Compiler [32]. The technology-dependent gate-level locked
netlist is given to the Synopsys TetraMAX ATPG tool [33] to
generate test pattern set P using Algorithm 1. The same netlist is
then converted into a technology-independent gate-level Verilog
code using our in-house PERL script. This is primarily done to
assure that the circuit implemented in the FPGA is exactly the
same circuit for which the test pattern set is generated. Otherwise,
fault propagation cannot be ensured. Fault injection is performed
on the circuit loaded into the FPGA, which leads to the instances
of faulty and fault-free circuits by laser-induced faults on the
key registers. Additionally, the implemented design includes
a separate universal asynchronous receiver/transmitter (UART)
module, which is used for communication between the computer
and the FPGA. The inputs are applied through the real-term
monitor and responses are collected on the same. Once the
response for any key-bit is obtained, the step is repeated for
all the key bits in a benchmark circuit. Finally, the key-bits
are exposed through the comparison between the corresponding
instances of the circuits as explained in Section II-B.

A. Laser Fault Injection Attack

The laser fault injection (LFI) setup is provided by a
Hamamatsu PHEMOS-1000 FA microscope as shown in 4. The
equipment consists of a diode pulse laser source (Hamamatsu
C9215-06) with a wavelength of 1064 nm. Three objective
lenses were used during this work: 5x/0:14 NA, 20x/0:4 NA,
50x/0:76 NA. The 50x lens is equipped with a correction

Figure 4. The FPGA board placed under the lens for laser-fault injection at
the target registers.

ring for silicon substrate thickness. The laser diode have two
operation modes – a) low power (200 mW) pulse mode, and b)
high power (800 mW) impulse mode. The high power impulse
mode can be used for laser fault injection. The laser power can
be adjusted from 2% to 100% in 0.5% steps.

Photon emission analysis [41] is used to localize the
implemented locked circuitry in the DUT. Thereafter, The
DUT is placed under the laser source for LFI. A trigger signal
is fed to the PHEMOS-1000 to synchronize the LFI with
DUT operation. Once the device reaches a stable state after
power-on, the laser is triggered on target key-registers. After
the fault injection, we have to guarantee that the device is still
functioning as expected and has not entered into a completely
dysfunctional state. The laser triggering timing can be checked
by a digital oscilloscope for greater precision.

We have performed and verified our results for different
benchmark circuits implemented with random logic locking
(RLL) [42], strong interference-based logic locking (SLL) [6]
and fault-based stripped functionality logic locking (SFLL-
Fault) [43]. For RLL, we selected locked instances of c432 and
c2670 benchmark circuits with a 32-bit key and 128-bit key
respectively obtained from Trust-hub [44]. For SLL, we selected
c1355 and c1908 locked benchmarks with 128-key bits, also
obtained from Trust-Hub. We also implemented the attack on
the circuit locked with a combination of SFLL-fault (40-bit key)
and RLL (40-bit key) technique. We successfully recovered the
entire key for all the circuits which proves the effectiveness
of our proposed ATPG-guided fault injection attack.

IV. CONCLUSION

In this paper, we have presented a novel ATPG-guided
stuck-at fault based attack to undermine the security of any
logic locking technique. The attack relies on injecting faults
on the key lines through hardware to perform differential
fault analysis between faulty and fault-free chip for the ATPG
generated test patterns. We have shown that at most |K| test
patterns are required to recover the entire secret key of size
|K|. We have demonstrated the attack on circuits implemented
in the FPGA using the laser fault injection method. The results

depicted the success of the proposed attack on different logic
locking techniques, irrespective of their SAT resiliency.

ACKNOWLEDGMENT

The authors would like to thank Dr. Navid Asadizanjani,
University of Florida, for helping with laser fault injection
experimentation. This work was supported in part by the National
Science Foundation under grant number CNS-1755733 and Air
Force Research Laboratory under grant AF-FA8650-19-1-1707.

REFERENCES

[1] Age Yeh, “Trends in the global IC design service market,” DIGITIMES
Research, 2012.

[2] Y. Alkabani and F. Koushanfar, “Active Hardware Metering for Intellectual
Property Protection and Security.” in USENIX security symposium, 2007,
pp. 291–306.

[3] E. Castillo, U. Meyer-Baese, A. Garcı́a, L. Parrilla, and A. Lloris, “IPP@
HDL: efficient intellectual property protection scheme for IP cores,” IEEE
Trans. on Very Large Scale Integration (VLSI) Systems, pp. 578–591, 2007.

[4] M. Tehranipoor and C. Wang, Introduction to hardware security and trust.
Springer Science & Business Media, 2011.

[5] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy
of integrated circuits,” in Proceedings of the conference on Design,
automation and test in Europe, 2008, pp. 1069–1074.

[6] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of
logic obfuscation,” in Proc. of Annual Design Automation Conference,
2012, pp. 83–89.

[7] E. Charbon, “Hierarchical watermarking in IC design,” in Proc. of the
IEEE Custom Integrated Circuits Conference, 1998, pp. 295–298.

[8] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov,
M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe, “Constraint-based
watermarking techniques for design IP protection,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, pp.
1236–1252, 2001.

[9] G. Qu and M. Potkonjak, Intellectual property protection in VLSI designs:
theory and practice. Springer Science & Business Media, 2007.

[10] R. W. Jarvis and M. G. McIntyre, “Split manufacturing method for
advanced semiconductor circuits,” 2007, uS Patent 7,195,931.

[11] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), 2015, pp. 137–143.

[12] K. Shamsi, M. Li, K. Plaks, S. Fazzari, D. Z. Pan, and Y. Jin, “IP
Protection and Supply Chain Security through Logic Obfuscation: A
Systematic Overview,” Trans. on Design Automation of Electronic Systems
(TODAES), p. 65, 2019.

[13] X. Wang, D. Zhang, M. He, D. Su, and M. Tehranipoor, “Secure Scan and
Test Using Obfuscation Throughout Supply Chain,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 9, pp. 1867–1880, Sep. 2018.

[14] A. Sengupta, M. Nabeel, N. Limaye, M. Ashraf, and O. Sinanoglu, “Truly
stripping functionality for logic locking: A fault-based perspective,” Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 2020.

[15] U. Guin, Q. Shi, D. Forte, and M. M. Tehranipoor, “FORTIS: a
comprehensive solution for establishing forward trust for protecting IPs
and ICs,” ACM Transactions on Design Automation of Electronic Systems
(TODAES), p. 63, 2016.

[16] U. Guin, Z. Zhou, and A. Singh, “A novel design-for-security (DFS)
architecture to prevent unauthorized IC overproduction,” in Proc. of the
IEEE VLSI Test Symposium (VTS), 2017, pp. 1–6.

[17] ——, “Robust design-for-security architecture for enabling trust in IC
manufacturing and test,” Trans. on Very Large Scale Integration (VLSI)
Systems, pp. 818–830, 2018.

[18] R. Karmakar, S. Chatopadhyay, and R. Kapur, “Encrypt flip-flop: A
novel logic encryption technique for sequential circuits,” arXiv preprint
arXiv:1801.04961, 2018.

[19] S. Potluri, A. Kumar, and A. Aysu, “SeqL: SAT-attack Resilient Sequential
Locking,” 2020.

[21] K. Juretus and I. Savidis, “Increasing the SAT Attack Resiliency of
In-Cone Logic Locking,” in International Symposium on Circuits and
Systems (ISCAS), 2019, pp. 1–5.

[20] H.-Y. Chiang, Y.-C. Chen, D.-X. Ji, X.-M. Yang, C.-C. Lin, and C.-Y. Wang,
“LOOPLock: LOgic OPtimization based Cyclic Logic Locking,” Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 2019.

[22] M. T. Rahman, S. Tajik, M. S. Rahman, M. Tehranipoor, and
N. Asadizanjani, “The key is left under the mat: On the inappropriate
security assumption of logic locking schemes,” in Conference on IEEE
Int. Sym. on Hardware Oriented Security and Trust (HOST), 2020.

[23] A. Jain, Z. Zhou, and U. Guin, “TAAL: Tampering Attack on Any
Key-based Logic Locked Circuits,” arXiv preprint arXiv:1909.07426, 2019.

[24] Y. Zhang, P. Cui, Z. Zhou, and U. Guin, “TGA: An Oracle-less and
Topology-Guided Attack on Logic Locking,” in Proceedings of the 3rd
ACM Workshop on Attacks and Solutions in Hardware Security Workshop,
2019, pp. 75–83.

[25] A. Jain, U. Guin, M. T. Rahman, N. Asadizanjani, D. Duvalsaint, and
R. D. S. Blanton, “Special Session: Novel Attacks on Logic-Locking,”
in VLSI Test Symposium (VTS), 2020.

[26] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “VeriTrust: Verification
for hardware trust,” Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pp. 1148–1161, 2015.

[27] H. Shen, N. Asadizanjani, M. Tehranipoor, and D. Forte, “Nanopyramid:
An Optical Scrambler Against Backside Probing Attacks,” in Proc. Int.
Symposium for Testing and Failure Analysis(ISTFA), 2018, p. 280.

[28] N. Vashistha, H. Lu, Q. Shi, M. T. Rahman, H. Shen, D. L. Woodard,
N. Asadizanjani, and M. Tehranipoor, “Trojan scanner: Detecting hardware
trojans with rapid SEM imaging combined with image processing and
machine learning,” in Proceedings from the International Symposium for
Testing and Failure Analysis (ISTFA). ASM International, 2018, p. 256.

[29] M. T. Rahman, M. S. Rahman, H. Wang, S. Tajik, W. Khalil, F. Farahmandi,
D. Forte, N. Asadizanjani, and M. Tehranipoor, “Defense-in-depth: A
recipe for logic locking to prevail,” Integration, 2020.

[30] R. Torrance and D. James, “The state-of-the-art in IC reverse engineering,”
in International Workshop on Cryptographic Hardware and Embedded
Systems, 2009, pp. 363–381.

[31] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital,
memory and mixed-signal VLSI circuits. Springer Science & Business
Media, 2004, vol. 17.

[32] “Synopsys Design Compiler,” Synopsys, Inc., 2017.
[33] “TetraMAX ATPG: Automatic Test Pattern Generation,” synopsys, Inc.,

2017.
[34] C. H. Kim and J.-J. Quisquater, “Faults, injection methods, and fault

attacks,” Design & Test of Computers, vol. 24, no. 6, pp. 544–545, 2007.
[35] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,

“Electromagnetic fault injection: towards a fault model on a 32-bit
microcontroller,” in Workshop on Fault Diagnosis and Tolerance in
Cryptography. IEEE, 2013, pp. 77–88.

[36] M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte, “Ram-jam:
Remote temperature and voltage fault attack on fpgas using memory
collisions,” in Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2019, pp. 48–55.

[37] S. Tajik, H. Lohrke, F. Ganji, J.-P. Seifert, and C. Boit, “Laser fault attack
on physically unclonable functions,” in Workshop on fault diagnosis and
tolerance in cryptography (FDTC), 2015, pp. 85–96.

[38] C. Champeix, N. Borrel, J.-M. Dutertre, B. Robisson, M. Lisart, and
A. Sarafianos, “Seu sensitivity and modeling using pico-second pulsed laser
stimulation of a d flip-flop in 40 nm cmos technology,” in International
symposium on defect and fault tolerance in VLSI and nanotechnology
systems (DFTS), 2015, pp. 177–182.

[39] F. Stellari, C.-C. Lin, T. Wassick, T. Shaw, and P. Song, “Automated
contactless defect analysis technique using computer vision,” in
Proceedings from the International Symposium for Testing and Failure
Analysis (ISTFA), 2018, p. 79.

[40] D. Bryan, “The ISCAS’85 benchmark circuits and netlist format,” North
Carolina State University, p. 39, 1985.

[41] M. T. Rahman and N. Asadizanjani, “Backside security assessment of
modern socs,” in International Workshop on Microprocessor/SoC Test,
Security and Verification (MTV), 2019, pp. 18–24.

[42] J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending piracy of integrated
circuits,” Computer, pp. 30–38, 2010.

[43] A. Sengupta, M. Ashraf, M. Nabeel, and O. Sinanoglu, “Customized
locking of IP blocks on a multi-million-gate SoC,” in Int. Conf. on
Computer-Aided Design (ICCAD), 2018, pp. 1–7.

[44] H. Salmani and M. Tehranipoor, “Trust-hub,” 2018, [Online]. Available:
https://trust-hub.org/home.

