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Abstract

Stochastic computing (SC) is an emerging paradigm for designing
circuits to perform complicated computation with simple circuitry.
Although SC circuits have small area and critical-path delay, due
to the need of many clock cycles to perform computation, they
have a large overall latency and energy consumption. One solution
to this problem is to further minimize the circuits. In this work,
we explore target function approximation to derive an SC circuit
with significantly reduced area and delay. We propose two static
methods that first construct a set of functions close to the given
target function and then select the best synthesized SC circuit real-
izing one of these functions. We also propose an efficient dynamic
method that simultaneously searches for the best approximated
target function and the corresponding minimized SC circuit. The
experimental results show that on average, our dynamic method
dramatically reduces the area, critical-path delay, and area-delay
product of the SC circuits by 80%, 59%, and 91%, respectively, over
the state-of-the-art Maclaurin polynomial-based method for a given
error bound of 2%. The code of our methods is made open-source.
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1 Introduction

Stochastic computing (SC) is an unconventional computing para-
digm [2]. Unlike binary computing, SC operates on stochastic bit
streams and uses the probability of 1s in a bit stream to represent
a value. It can realize complicated computations with simple cir-
cuitry. For example, it can realize multiplication with a single AND
gate. Thus, SC has great potential to realize applications with much
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smaller circuit area. Applications where SC has been found success-
ful include image processing [1, 8] and neural networks [4, 14, 16].

However, in order to achieve a high precision, stochastic bit
streams should be long enough. Since SC uses one clock cycle
to process each bit, the number of clock cycles needed is large.
For an SC circuit, the latency and energy consumption for each
computation are evaluated as the clock period times the number of
clock cycles and the average power consumption times the latency,
respectively. Consequently, SC has long computation latency and
large energy consumption. One solution to this problem is to further
minimize the SC circuit. Since the clock period is determined by the
critical-path delay (hereafter referred to as delay) of the SC circuit,
minimizing the SC circuit will reduce its delay and hence, the clock
period. It also leads to the reduction of the total area of the SC
circuit. Since the power consumption is roughly proportional to
the area, reduction of the area further leads to the reduction of the
average power consumption. In this case, both the computation
latency and energy consumption can be reduced.
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Figure 1: Implementing target function cos(x): (a) the closest
degree-6 polynomial approximation by [13]; (b) an SC circuit realiz-
ing another approximated target function 1-0.5x?; (c) the curves of
the target function cos(x) and its approximated functions.

(256 —3x — 91x2? — 157x%

In this work, we focus on SC circuits built with combinational
logic. Such a circuit can only implement polynomials. Thus, given
an arbitrary arithmetic target function, the existing synthesis meth-
ods first approximate the target by a polynomial and then syn-
thesize an SC circuit for the polynomial [11, 13]. The polynomial
approximation introduces error. Conventionally, this error is al-
ways minimized. As an example, in order to implement the target
function cos(x), the previous method [13] will instead implement
a polynomial shown in Fig. 1(a), which is the closest degree-6 poly-
nomial approximation. Fig. 1(c) plots the curves for both the target
cos(x) and the approximated target, which shows that they are
very close, but still have difference as shown in the inset. If the
approximation error is relaxed a little bit, we may find many dif-
ferent target polynomials. This creates a much larger design space
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where an SC circuit with reduced cost may exist. For the example of
cos(x), the optimized SC circuit realizing the closest approximated
target has 37 gates and a critical path of 7 gates. However, if we
allow more approximation error, then it can be approximated by
1-0.5x2, which corresponds to the red curve in Fig. 1(c). This new
target polynomial, although has a larger approximation error, can
be realized by a significantly simplified SC circuit with only a single
NAND3 gate, as shown in Fig. 1(b). This new design achieves an
area-delay product (ADP) reduction of 259x! Previously, this kind
of target function approximation was never explored. In our study,
from this new perspective, we systematically explore the target
function approximation in order to significantly reduce the area
and delay of an SC circuit. The problem we consider is: given a
target function and an error bound, synthesize a minimal SC circuit
realizing an approximated target function with error no more than the
bound. Such SC circuits are applicable to error-tolerant applications
like image processing and neural networks.

However, a major challenge is how to determine a good approxi-
mation to the original target function. We propose three methods to
find good approximations and synthesize the corresponding SC cir-
cuit. Note that in this work, we focus on univariate target functions
to illustrate our methods. However, it is also possible to extend our
methods to handle multivariate functions. The experimental results
show that our methods effectively reduce the area, delay, and ADP
of the SC circuit with a small relaxation to the approximation error.
Since the power consumption is roughly proportional to the area,
and the computation latency is exactly proportional to the delay,
ADP is an indicator of the energy consumption. Therefore, the ADP
reduction indicates the reduction of the energy consumption.

The main contributions of this work are listed as follows.

(1) For the first time, we propose to explore the approximation
of a target function to derive an SC circuit with dramatically
reduced area and delay.

(2) We propose two static approximation methods to minimize
an SC circuit. They first construct a promising set of approxi-
mated target functions and then apply an existing SC circuit
synthesis method to them to identify the best solution.

(3) We propose an efficient dynamic approximation method that
integrates the search of the approximated target function
into the SC circuit synthesis process. It is the most powerful
method and the single-gate implementation of cos(x) shown
in Fig. 1(b) is synthesized by this method.

The code of our proposed methods is made open-source at
https://github.com/SJTU-ECTL/TFASC.

The rest of the paper is organized as follows. Section 2 discusses
the related works on SC circuit synthesis. Section 3 provides the
preliminaries. Section 4 overviews our methods. Sections 5 and 6
present the proposed static and dynamic approximation methods,
respectively. Section 7 shows the experimental results. Finally, Sec-
tion 8 concludes the paper.

2 Related Works

In recent years, a number of works studied the synthesis of SC
circuits [3, 5, 7, 11-13, 17]. In [13] and [7], methods to synthesize
reconfigurable combinational and sequential SC circuits are pro-
posed, respectively. The works [3, 17] further consider synthesizing
fixed SC circuits, which have smaller area than reconfigurable ones.

As revealed by [5, 17], SC circuits have a much larger solution space
than traditional logic circuits since many circuits with different
Boolean functions can realize the same target function stochasti-
cally. Unfortunately, the methods in [3, 17] only exploit a limited
subset of the whole solution space. In [11], a state-of-the-art method
is proposed to design SC circuits based on Maclaurin series expan-
sion of the target function. However, since no thorough exploration
of the solution space is employed, the solution optimality is not
guaranteed. In [12], another state-of-the-art method is proposed
that systematically searches for the optimal solution within a larger
solution space through a search tree. Our work is based on this
method and further advances it by exploring the feasibility of target
function approximation. By this, the solution space is enlarged and
better circuits can be found.

3 Preliminaries
3.1 A General SC Circuit

We consider a general SC circuit design realizing univariate poly-
nomials proposed in [17]. It is shown in Fig. 2. The circuit has n+m
inputs. The first n inputs X3, ..., X, are supplied with n indepen-
dent input bit streams with the same variable probability x. The
last m inputs Y3, ..., Yy, are given independent bit streams with a
constant probability of 0.5.
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Figure 2: A general form of the SC circuit to realize the target func-
tion [17].

Assume that the Boolean function of the combinational circuit
inFig. 2is F(X1,...,Xn, Y1, ..., Ym). As shown in [12], the output
probability of the circuit is a function in the form of

- G() n—i
g(x) = ) S a=0", M

i=0
where G(i) is the number of minterms (ay,. . .,an,b1,. . .,bm) satis-
fying that F(ay,...,an,b1,...,b;m) =1 and Z;‘Zl aj=i. An example
for G(i) is illustrated using the 2-dimensional truth table shown
in Fig. 3 with n=3 and m=2. In this truth table, the columns and
the rows list the combinations of X’s and Y’s, respectively. For ex-
ample, G(1) is the total number of 1s in the columns with X; X»X3
as 001, 010, and 100 (i.e., the 3 columns in the lightest grey color
in the figure), since these columns satisfy that X1 +X+X3=1. In
this case, G(1) =2. Some additional G(i) values and the columns
giving these G(i)’s are also shown in the figure. From Eq. (1), m
determines the precision of the coefficients. Thus, it is called the
precision parameter [12]. For the Boolean function shown in Fig. 3,
its output probability realizes the following function

2 4 2
g(x) = ﬁx(l -x)%+ 2—2x2(1 —-X)+ 2—2x3.
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00 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0
10 0 0 0 1 1 1 1
11 0 0 0 1 1 1 1

Figure 3: The 2-dimensional truth table of a Boolean function. G (i)
(0 < i < 3) above the table corresponds to the total number of
minterms in the columns with the same shading color.

3.2 The Previous Synthesis Method

In this section, we describe the previous method proposed in [12]
to synthesize the SC circuit in Fig. 2. Suppose the target arithmetic
function is f(x).

The form of Eq. (1) resembles a special type of polynomial called
Bernstein polynomial [9]. Its general form is

n
B = Yo -0 @

where b; is a Bernstein coefficient and ('})x'(1 - x)"~! is a Bernstein
basis polynomial. The method in [12] exploits the above connection.
Fig. 4(a) shows a flow chart of the method. It can be decomposed
into two major phases: the target transformation phase and the
Boolean function synthesis phase.

3.2.1 The Target Transformation Phase In this phase, the method
first applies a quadratic programming approach proposed in [13] to
obtain a Bernstein polynomial B*(x) (with the Bernstein coefficient
b) closest to the target f(x):

B'(x) =y b} (’i’)xiu — )i, 3)
i=0

Comparing Egs. (1) and (3), we can see that if we choose a
Boolean function such that its G(i) = Zmb:‘(ril), forall0<i<n,
the corresponding combinational circuit can realize B*(x). How-
ever, since G(i) is an integer, G(i) is set to G* (i) =round(2™b} (7)),
where round() is the rounding function. This eventually gives the
following original target Bernstein polynomial (OTBP) to be imple-
mented by the combinational logic:

5 GHi) .
Br(x)= )~ x (1-2)"". @
i=0
SN
Note that the OTBP is characterized by a vector G* = (G*(0),.. .,
G*(n)). We call it the feature vector (FV) of the OTBP, or original FV
for short, which is the same as the problem vector defined in [12].

3.2.2 The Boolean Function Synthesis Phase By the definition of
G (i), there exist many different Boolean functions that can realize

the FV C?‘) . In this phase, the method synthesizes a Boolean function
with good quality among these candidates.

The final solution is constructed by adding a sequence of cubes
(i-e., product terms) into the on-set of the Boolean function. Each
entry in the FV specifies how many minterms in a specific group of
columns in the 2D truth table should be assigned with the value 1.
For simplicity, the method requires that the later selected cubes be
disjoint to any already selected cubes. Each time a cube is chosen,
some entries in the FV are reduced to indicate that some minterms in
some specific groups of columns have been assigned with the value
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1. Due to the disjoint property, the reduction is given by the cube vec-
tor (CV) of the cube, denoted in brackets as [C(0), C(1),...,C(n)],
where C(k) is the number of minterms of the cube that are covered
by the columns in the 2D truth table with .7 ; X; = k. For example,
with n = 3 and m = 2, the 2D truth table of the cube X;Y; is shown
in Fig. 3. From the figure, we can see that the CV of the cube is
[C(0),C(1),C(2),C(3)] = [0,2,4,2]. The reduced FV is called the
remaining feature vector (RFV). For example, if the original FV is
(1,3,6,2), as the cube with CV [0, 2,4, 2] is chosen, the FV is re-
duced to (1,1, 2,0) as the RFV. The procedure continues until the
RFV reduces to zero. Each time a cube is chosen, it must satisfy the
capacity constraint, which requires that each entry of the CV should
be no more than the corresponding entry of the RFV. For example,
the cube with CV [0, 2, 4, 2] violates the capacity constraint of the
RFV (0, 1,3, 2), while another cube with CV [0, 1, 2, 1] does not.

The cubes chosen first will influence the later cube selection.
Thus, in order to determine a good solution, a search tree is built.
Each node in the search tree stores both the set of chosen cubes
and the RFV. For each node, since many new cubes can be extracted
from the RFV of that node, it will be expanded to multiple nodes in
the next level. The search tree reaches a leaf when the RFV becomes
zero. In this case, a set of cubes satisfying the original FV is obtained.
The final solution is given by the best leaf node. To speed up the
search, at each node, only the largest cubes that satisfy both the
disjoint property and the capacity constraint are chosen.

4 Overview of the Proposed Methods

From Fig. 4(a), we can see that the OTBP is an important link be-
tween the given target function and the synthesized combinational
circuit. If we change the OTBP slightly, its error over the target
function may increase. However, the final synthesized circuit corre-
sponding to the changed OTBP may improve. We call the changed
OTBP the new target Bernstein polynomial (NTBP). In this work, we
exploit this idea and try to find an NTBP satisfying the given error
bound and giving the best circuit quality. We measure the error of
a target Bernstein polynomial By (either NTBP or OTBP) as the
L2-norm distance between it and the target function f, namely

1
[1Br(x) = f(x)[l2 = \//0 IBr(x) = f (x)[?dx. (©)

We adopt the L2-norm to measure the error, which follows the
convention of approximation error measurement in the SC litera-
ture [13]. It is also possible to use alternative error measures such
as mean absolute error (MAE), which is the L1-norm. We evaluate
the L2-norm by numerical integration.

In the following, we begin with an initial attack to this problem
in which we propose a straightforward solution, that is, we first
construct a set of NTBPs and then select the best synthesized circuit
realizing one of them. We call it the static approximation method. In
view of its low efficiency, we further develop a more powerful solu-
tion, called the dynamic approximation method, which synthesizes
a good NTBP and the corresponding circuit simultaneously.

5 Initial Attack: Static Approximation Method

In this section, we present the static approximation (SA) method. Its
basic idea is to search within a set of NTBPs for one giving the best
SC circuit. It first constructs a set of NTBPs. Then, it only keeps
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Figure 4: The flow charts for (a) baseline (BS) in [12], (b) perturbation (PER) method, (c) degree-precision scanning (DPS) method, and (d)

dynamic approximation (DA) method.

those satisfying the given error bound and applies the synthesis
method in [12] to each kept one to obtain the corresponding SC
circuit. Finally, it picks the SC circuit with the best quality.

Following the basic idea, we propose two detailed SA methods.
They only differ by how the set of NTBPs is constructed, which
is highlighted in the grey blocks in Figs. 4(b) and (c), respectively.
The first one, called the perturbation (PER) method, slightly perturbs
the OTBP (see Fig. 4(b)). This method keeps both the degree n and
the precision m, and it constructs the set of NTBPs so that their
corresponding FVs (v, . ..,v,) satisfying that for alli = 0,...,n,
lo; = G*(i)| < 1, where G*(i)’s are the FV entries of the OTBP (see
Eq. (4)). The second method, shown in Fig. 4(c), is called the degree-
precision scanning (DPS) method. It forms the set of NTBPs as the
OTBPs with degree n” and precision m’, where n’ runs from 1 to
n. For each n’, m’ runs from 1 to n + m — n’. Afterwards, both the
PER and DPS methods select the NTBPs with errors satisfying the
given error bound, and synthesize the circuits for these NTBPs one
after another using the method in [12]. Finally, the best synthesized
circuit is returned.

6 More Powerful Solution: Dynamic
Approximation Method

The SA methods have a rigid partition between the NTBP con-
struction and the circuit synthesis. They first construct a set of
initial NTBPs and then apply the synthesis method to each of them,
which causes a long runtime. In this section, we propose a more
powerful solution, the dynamic approximation (DA) method. It takes
a different approach by searching the NTBPs and synthesizing the
circuit simultaneously.

6.1 Basic Idea

The dynamic method shown in Fig. 4(d) modifies the Boolean func-
tion synthesis phase of the previous method [12]. One key modifi-
cation is that we allow some changes to the original FV during the
search. Our major contribution is that we simultaneously search for
the FVs corresponding to the NTBPs and synthesize the Boolean
function to realize these NTBPs, as shown in the grey block in
Fig. 4(d). The main procedure of the DA method is shown in Algo-
rithm 1. The inputs are the original FV FVrg = (G(0), ..., G(n)), the
optimization objective obj, the given error bound ep,, and the target

Algorithm 1: The proposed dynamic approximation (DA)
method.
Input

:the original feature vector FVp,g = (G(0),...,G(n)),
an optimization objective obj, an error bound ey, and the
target function f(x).

Output :the final Boolean function and the corresponding circuit.

Ssol < 0; Nyoor - RFV FVarg; Nyoot - SCC « 0;

Snode < {Nroot}§

while S;,; = 0 do

R « candNodesGen(Spode; €b);
{Snew, Sso1 } < classifyNodes(R, ep);
Snode < pruneNodes(Snew);

return getBest(Sso1, 0b);

N os W N =

function f(x). The optimization objective is typically a hardware
cost measure, such as the literal count of a sum-of-product (SOP)
expression or the ADP of a multi-level circuit. Assume that the
error of the OTBP is erg. A requirement on the input parameters
is that e, > eorg.

As in [12], this method builds a search tree. Each node in the tree
consists of two important data members, namely the set of chosen
cubes (SCC) and RFV (see Section 3.2.2 for details). Line 1 initializes
an empty set Sg,; to hold the solution nodes. It further defines
the root node Nyoo; with its RFV as the original FV and its SCC
empty. The procedure expands the nodes level by level. The set of
nodes to be expanded at a level is stored in S, 4.. Line 2 initializes
Snode to be the set of nodes at Level 0, i.e., {Nyoo¢ }. Lines 3-6 are
the main expansion loop. In each iteration, one level of the nodes
in the tree are expanded to the next level. Line 4 first calls the
function candNodesGen to generate a set R of candidate nodes that
are promising to be developed into the final solution nodes. Each
node in R expands one node N in S,,,4. by adding a new cube into
the SCC of N and updating the RFV. Next, Line 5 calls the function
classifyNodes to classify the nodes in R into a set Sy of new nodes
and a set S,; of the solution nodes. Then, Line 6 calls the function
pruneNodes to prune the redundant nodes and the unpromising
nodes in Spew. The non-redundant promising nodes are kept in
Snode and passed to the next iteration. The loop terminates when
the solution node set S,; is nonempty at a certain level. Then, the
function getBest is called to obtain the best solution from the nodes
in S,,; according to the objective obj (Line 7). In this study, getBest
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chooses the circuit with the minimum ADP. The following example
illustrates the proposed method.

EXAMPLE 1. Suppose that the target function is —0.26x% + 1.06x
and the parameters are n=2 and m=4. The L2-norm of the target
function is 0.5. The closest Bernstein polynomial B*(x) (see Eq. (3))
has coefficients (by, bf, b;) = (0,0.53,0.8). Then, we can obtain the
FV of the OTBP as (0, 17, 13) using the method shown in Section 3.2.1.
The error eorg of the OTBP is 0.0059. We choose the error bound ey, as
0.02, which is 4% of the L2-norm of the target function. The search
tree constructed by our method is shown in Fig. 5. The root node ny is
expanded into 4 levels until the solution node is found. Each vector in
brackets represents a CV, corresponding to a chosen cube, while each
vector in parentheses represents an RFV. The set of CVs below each node
corresponds to the SCC of the node. For example, at node nyy, its SCC
includes two cubes with the CVs of [0, 16,0] and [0, 0, 8], respectively.
Its RFV is (0, 1,5). The nodes na2 and n33 in the red dashed rectangles
are pruned during the search due to the duplication of their assigned
truth tables (see Section 6.4 for details). Meanwhile, the nodes n41, na2,
and ny3 in the green solid rectangles are the solution nodes with ADPs
0f46.2,51.6, and 43.2 units, respectively. Finally, the solution node n43
is returned as the result due to the smallest ADP. By adding the CVs
at the final solution node n43, we obtain the FV of the final solution
as (0, 18,12) with error 0.0178 (relative error 3.56%). The final FV is
different from the original one. Therefore, the corresponding function
(i.e., —0.375x% + 1.125x) is also different from the target function.
This shows an important feature of the DA method—synthesizing the
Boolean function and adapting the original FV occur simultaneously.
We will return to some additional details of this example search tree
later. The ADP of the circuit corresponding to the new target function
is 43.2 units, which is smaller than that corresponding to the OTBP,
which is 51.2 units.

n
Level-0 (0’17:)13)
Level.l n VN np
evel- [0,16,0] [0,8,8]
A +H0,1,13) _____ A10,9,5)
% : [0n§28]: [0n8238]
0,16,0 v [0,8,8]4 3,
Level2 [00%0 LHOS0 H044]
&7 HO15) Ny :_+(0,1,5): +(0,5,1)
153 nyp o TTTTTTT TR
[0,16,0] [0,16,0] ' [0,8,8] 4
Level-3  1{0.0,8] +0,0,8] LH0.4.4] ¢
+0,0.4] +0,2.2] 1+[0.4.0]
b TOLDNG 003N 0,11}
N4y N4 ny | T
[0,16,0] [0,16,0] [0,16,0]
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+{0,2,0] +0,1,1] +0,0,2]
+(0,0,1) +0,0,0) +0,0,1)

Figure 5: A search tree constructed by the dynamic approximation
method.

Next, we will describe the details of the functions candNodesGen,
classifyNodes, and pruneNodes.

6.2 Generating the Set of Candidate Nodes

The function candNodesGen expands the nodes in the current level
of the search tree (i.e., in the set S,,,4.) to a set of new candidate
nodes. Each candidate node is derived from a node N in S,,,4. by
adding a candidate cube to the SCC of the node N. The procedure
of candNodesGen is shown in Algorithm 2. The procedure takes

ICCAD ’20, November 2-5, 2020, Virtual Event, USA

Snode and a given error bound ey, as inputs and outputs a set R of
the candidate nodes.

Algorithm 2: The procedure candNodesGen.

Input :aset S,,qe containing all nodes in the current level and
the error bound ep,.
Output :a set R of the candidate nodes.
1 R« 0
2 foreach node N in S,,o4. do
3 cubeSize «— 2M0gsm(N.RFV)1. [ ¢,
4 while no cube in L satisfies the capacity constraint of N.RFV
and cubeSize > 0 do
5 obtain the set S of cube vectors of cubeSize minterms;
6 foreach cube vector V. in S do
7 RFV’ « modify N.RFV by V,;
8 NFV « V. +add(N.SCC) + RFV’;
9 compute error eqs; of NTBP corresponding to NFV;

10 if ees; < aep then

11 Scube — cubesFromVector(Ve, N, h);

12 foreach cube C in S¢pe do

13 N,.RFV « RFV’, N,,.SCC « N.SCCJC;
14 L+~ LUUC,R« RUUNy;

15 cubeSize «— cubeSize/2;

16_return R;

In Algorithm 2, Line 1 initializes R as an empty set. Next, for each
node N in S,,,4., new candidate nodes are generated by adding a
candidate cube to the SCC of node N (Lines 2-15). The key problem
is to select proper candidate cubes.

We call the number of minterms in a cube its size. The size of
a cube is 29, where q is a non-negative integer. We try to find the
candidate cubes with the largest sizes, since they lead to an SOP
with a smaller literal count, a measure of the hardware cost we
use during the search. In our problem, since we do not require
cubes to exactly satisfy the capacity constraint as [12] does, we
start to check the cubes with size cubeSize = 2[108 sum(N.RFV)]
(Line 3), where the function sum(N.RFV) gives the sum of all the
entries in the RFV of N. In this case, the cube size can be a little
larger than the total minterm number required by the RFV of N.
This exploits the opportunity brought by the approximation. As an
example, consider the node ny; in Fig. 5. Its RFV is (0, 1, 5). Since
the sum of all the RFV entries is 6, we start to test the cubes of
size 8. Line 3 also initializes a set L as empty. It is used to keep the
candidate cubes.

Then, we enter the main loop to obtain the candidate nodes
expanded from N (Lines 4-15). The loop continues when no cube
in L satisfies the capacity constraint of the RFV of N and the size
of the cubes to be checked is larger than zero (Line 4). Since we do
not require the candidate cubes to satisfy the capacity constraint,
if none of them in L satisfies the constraint, it is possible that we
cannot derive a final solution satisfying the given error bound. To
ensure that at least one solution is found, we require at least one
cube in L to satisfy the capacity constraint of the RFV of N.

Within the loop, we first obtain the set S of CVs of cubeSize
minterms by enumerating them according to their special forms [12]
(Line 5). Next, for each CV V; in S, we first evaluate the estimated
error eqs; of the potential new FV if any cube corresponding to
the CV V; is chosen as a candidate cube (Lines 7-9). A key idea
of the DA method is the simultaneous NTBP search and circuit
synthesis. A new FV (NFV) is defined as the FV of an NTBP. If e,
is smaller than a relaxed error bound, we create candidate nodes by
expanding node N with cubes corresponding to V; (Lines 10-14).
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In order to obtain eeg;, the new RFV RFV is first obtained (Line 7).
This is done by first subtracting V. from the RFV of N. Since the
cube is not required to satisfy the capacity constraint, the subtrac-
tion result can have some negative entries. Then, those negative
entries are set to zero to get the final RFV’. This essentially modifies
the original FV. As an example, the RFV of the node ny; in Fig. 5
is (0,1,5). As a cube with the CV [0, 2, 2] violating the capacity
constraint is added to this node, the RFV first becomes (0, —1, 3) by
subtracting the CV, and then is modified to (0, 0, 3). This leads to
the node n3z in Fig. 5. Line 8 obtains the potential NFV by adding
Ve, CVs of all the cubes in SCC of N, and RFV’, where the function
add(N.SCC) gives the sum of CVs of all the cubes in SCC of N. For
the example in Fig. 5, when the CV [0, 2, 2] is considered for ny;,
the RFV (0, 1, 5) of nyy is first modified to RFV’ as (0, 0, 3). Then, by
adding the CV [0, 2, 2], the CVs [0, 16, 0] and [0, 0, 8] of the cubes
in n21’s SCC, and RFV’, the potential NFV is obtained as (0, 18, 13),
which is different from the original FV (0,17, 13). Line 9 further
calculates an estimated error ees; of the NTBP corresponding to the
potential NFV.

Then, Lines 10-14 add the cubes corresponding to V. to SCC of
node N to expand it to new nodes if the estimated error ees; is less
than a relaxed error bound aep,, where a > 1. The relaxed error
bound is used because ee; is just an estimated error. By the later
function classifyNodes, when a node is expanded into a solution
node, its RFV may be ignored, as is the node n43 in Fig. 5. This may
lead to the error drop. In this case, the previous estimated error is
an overestimate. Given this reason, for a CV, even if ecs;>ep, the
node may still be developed into a final solution. In order to keep
such promising CVs, the relaxed error bound is applied during the
search. We set « to 1.02 in this study. If e.s; < aep, Line 11 calls the
function cubesFromVector from [12] to obtain a set of cubes S,
with CV V.. The function takes V;, N, and an additional parameter
h as inputs, where h limits the size of S.,,;, to trade solution quality
with runtime. Each cube C in S, is a candidate cube. For each C,
Line 13 creates a candidate node N, from N and C by setting Nj,’s
RFV and SCC properly. Line 14 adds C and N, into the sets L and
R, respectively.

When all CVs in S have been evaluated, Line 15 reduces cubeSize
to evaluate the cubes with their sizes halved in the next iteration.
After all the nodes in S,,, 4, are processed, Line 16 returns R.

6.3 Classifying the Candidate Nodes

The function classifyNodes partitions the set R of candidate nodes
into two sets, namely the set Speqy of the nodes to be further evalu-
ated and the set S, of the solution nodes. For each node N in R, the
function evaluates the error of its assigned FV, where the assigned
FV is the sum of the CVs of all the cubes in its SCC. If the error
is no larger than ey, the node N is considered as a solution node
and added into the set S,,;, even though the RFV of N is possibly
non-zero. Otherwise, it is considered as a node to be possibly passed
to the next level and added into the set S;eqy.

6.4 Pruning Redundant Nodes and
Unpromising Nodes

After we obtain the set Spe,y 0f the nodes to be possibly passed to the
next level, the function pruneNodes further prunes the redundant
ones and the unpromising ones.

If multiple nodes in Sy have the same truth table given by
their SCCs, only one of them is further kept in Speyy to eliminate
redundant evaluation. For example, in Fig. 5, the nodes nzz and ns33
are pruned since they have the same assigned truth tables as the
nodes ny; and n31, respectively.

Besides pruning the redundant nodes, the function pruneNodes
also prunes the unpromising nodes. For our problem, its objective
is to find a circuit with good quality, while satisfying the error
constraint. However, there is a potential contradiction between
the objective and the constraint. If we only keep the nodes with
better circuit quality, their errors may be large and thus they will
be pruned later. However, if only the nodes with small errors are
kept, the nodes with better quality may be dropped, leading to a
sub-optimal result. To solve this problem, the function pruneNodes
further uses two passes of sorting and pruning. It has three pruning
parameters w, kz, and k.

For the first pass, pruneNodes first sorts the nodes in Spew by
the estimated error e.s; in ascending order. Then, it sorts the nodes
with the same e.s; by the literal count in ascending order. The first
kg sorted nodes are added into the set Sg.,,;. The second pass works
on the remaining nodes. It first sorts them by the literal count. A
heuristic in [12] is adopted to prune the nodes with w literals more
than the minimum among all the remaining nodes. It further sorts
the nodes with the same literal count by e.s; in ascending order.
Finally, the first k. sorted nodes are added into the set Sk, and
Skept is returned as the result. For example, in Fig. 5, the set Spew
at Level 3 contains two non-redundant nodes n3; and nsy. With kg
and kg, both set as 1, the nodes n3; and n3; are added to S,p; by
the first and second passes, respectively. From these two passes,
we can keep both the nodes with small estimated error and literal
count to ensure finding a valid solution and achieving good quality.

7 Experimental Results

In this section, we show the experimental results. All the exper-
iments were done on a computer with an Intel CPU of 2.93GHz
and an 8GB memory. In the function getBest called by the proposed
DA method (see Line 7 of Algorithm 1), the logic synthesis tool
ABC [10] was applied with the commands “collapse; sop; fx; strash;
dch; balance; map” to synthesize a multi-level SC circuit and obtain
its ADP. In all the following experiments, ABC was also used to
optimize the SC circuits generated by the previous methods and
the proposed PER and DPS methods for a fair comparison. All the
circuits were mapped with the MCNC standard cell library [15].

7.1 Performance on Arithmetic Functions

In this section, we study the performance of the proposed methods
on 12 target functions from [13] and [11], which are listed in Table 1.
For each target function f, we set the error bound e, to f||f]l2,
where 0 < f < 1 is an adjustable relative error bound and ||f]|2
is the L2-norm of f in the unit interval. The relative error bounds
were chosen as 2% and 5%. We considered 4 degree-precision pairs
(n,m) as (4,4), (4,8), (6,4), and (6, 8). This gives 48 benchmarks
in total. However, two of them have original errors eorg larger than
the error bound ey, and were excluded due to the requirement that
ep > eorg- Thus, 46 benchmarks were finally chosen.

The prior state-of-the-art method [12] was chosen as the baseline
(BS) method for comparison. Our methods include the PER, DPS, and
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Table 1: The target functions used in our experiments.

ID | function | ID | function |ID | function |ID function
sin(x) | 4 |log(x+1) | 7 | tanh(4x) | 10 | 1/(1 +exp(—x))
2 | cos(x) | 5 |sin(zmx)/7| 8 x4 11 x%?

3 | exp(—x) tanh(x) 9 | exp(—2x) | 12 | 0.5cos(mx) + 0.5

DA methods. The proposed PER and DPS methods take a long time
to evaluate all the NTBPs in the candidate set. For a fair comparison
with the baseline, for these two methods, we set a runtime bound
for each benchmark as 2.5 times the runtime of the baseline. Once
the runtime bound was reached, we stopped the search even if some
candidate NTBPs had not been evaluated, and chose the current best
result. For the proposed DA method, 4 parameters h, w, ky, and kg
were used to control the solution quality and the runtime, where h
is described in Section 6.2 and w, k1, and kg are pruning parameters
described in Section 6.4. From extensive parameter study, we set
kg=1 to ensure the finding of a solution, and set h=1, w=2, and
kp=4 to ensure a good trade-off between the runtime and solution
quality. For the BS method, three parameters h, w, and k; were
used [12], and we set them as h=2, w=2, and k;=5. This allows it to
run for a longer time than the DA method, which ensures sufficient
exploration of the solution space. For the PER and DPS methods,
which are based on the BS method, the same parameters were used.
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Figure 6: The area, delay, and area-delay product normalized to the

BS method for the 12 arithmetic benchmarks with (n, m) set to (6, 4).

The results by the BS method are listed above each column.

Fig. 6 plots the area, delay, and ADPs of the circuits produced by
our methods normalized to those of the baseline for the 12 target

functions with (n, m) set to (6,4) and a 2% relative error bound.

For most of these target functions, the proposed PER, DPS, and DA
methods all synthesize SC circuits with smaller area, delay, and
ADP than the BS method. For some target functions, the circuits
synthesized by the PER method are better than those synthesized by
the DPS method, while for others, the DPS method is better. For all
the target functions except the 8th one, the DA method synthesizes
the best circuits with the smallest area, delay, and ADP. For the
DA method, the ADP of the synthesized circuits for 9 out of the 12
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target functions is reduced by more than 80%. This is because as up
to 2% relative error is allowed, the DA method finds an NTBP with
FV different from the original FV, which leads to an SOP Boolean
function with much fewer cubes.

Table 2 lists the average hardware cost, the average mean abso-
lute error (MAE), and the average synthesis runtime over the 46
benchmarks together with the relative improvement of our meth-
ods over the BS method (in parentheses). To evaluate the MAE, 100
simulations were done for each of the 9 x values 0.1,0.2,...,0.9,
and the MAE was obtained by averaging the absolute errors with
respect to the target function over all these 900 tests. The bit stream
length for each simulation was 1024. For the average area, delay,
and ADP, all the proposed methods are better than the baseline.
The DA method is better than the SA methods (i.e., PER and DPS).
For the relative error bound of 2% (resp. 5%), it reduces the area,
delay, and ADP over the baseline by 71% (resp. 79%), 44% (resp.
50%), and 81% (resp. 89%), respectively, with a 12% (resp. 62%) MAE
degradation. Since the average MAE of the baseline is as small as
0.0105, such a relative MAE degradation is not large in terms of the
magnitude. This shows the effectiveness of the proposed methods.

Remarkably, for some target functions, the proposed DA method
can aggressively minimize the SC circuits. One notable example
is cos(x). As mentioned in Section 1, it can be realized by a single
NAND?3 gate. In fact, it is synthesized by the DA method under 2%
relative error bound with (n, m) as (6, 8). It has an ADP reduction
of 99.5% over the SC circuit synthesized by the BS method. In terms
of the gate count, the DA method finds the optimal solution for this
case, showing its optimality. Interestingly, the approximated target
function 1-0.5x2 is exactly the degree-2 Maclaurin polynomial
of cos(x), indicating that the DA method finds a quite reasonable
approximation. Moreover, the SC circuit synthesized by the DA
method requires only 3 input bit streams instead of 14 required by
the one synthesized by the BS method. Therefore, it also greatly
reduces the cost of the stochastic number generator. Besides, for the
target functions tanh(x) and 1/(1 + exp(—x)), the DA method can
achieve 93.3% and 97.5% ADP reduction, respectively, both with
only 0.001 MAE degradation compared to the BS method.

In terms of the average runtime, the proposed SA methods are
slower than the baseline. In contrast, the proposed DA method is
faster. It runs even faster with a larger error bound. This shows
another advantage of the DA method: it can terminate the solution
search early without having to reach a zero RFV, while the baseline
method must continue the search until a zero RFV is reached. Over-
all, the proposed DA method shows significant advantages over
the baseline: it reduces the hardware cost dramatically, while being
faster than the baseline. The DA method also outperforms the other
two proposed methods, PER and DPS, in terms of efficiency and
solution quality. Therefore, the DA method is the best among the
three proposed methods.

7.2 Comparison to the Maclaurin Polynomial
Approximation Method

In this section, we further compared the DA method to another
state-of-the-art SC circuit synthesis method [11]. It approximates
the target function with a degree-n Maclaurin polynomial and
synthesizes the circuit based on the factorization of the Maclaurin
polynomial. We call it the Maclaurin polynomial (MP) method. We
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Table 2: Average hardware cost and synthesis runtime for the arithmetic benchmarks.

relative average area average delay average ADP average MAE average runtime (s)
error bound [ BS [ PER | DPS BST PER [ DPS BS [ PER [ DPS BS PER [ DPS | DA PER
2% 4721383 [ 181 | 135 [6.2] 55 | 40 [ 3.5 [334.4[2448 ] 94.8 | 64.3 [0.0105]0.0106 [ 0.0112{0.0117 [ 98.1] 195.4 | 182.3 | 93.5
? (19%) | (62%) | (71%) (11%) | (36%) | (44%) (27%) | (72%) | (81%) (-2%) | (-7%) | (-12%) (-99%) | (-86%) | (5%)
59, 47213791 15 | 101 [6.2] 54 | 3.7 | 3.1 [3344] 242 | 69.8 | 37.9 [0.0105[0.0108 [ 0.0132{0.0169 [ 98.1] 195.7 | 193.3 | 62.3
’ (20% | (68%) | (79%) (12%) | (40%) | (50%) (28%) | (79%) | (89%) (-3%) | (-26%) | (-62%) (-99%) | (-97%) | (37%)

selected 8 out of the 12 target functions from Table 1 for evaluation.
Their IDs are listed in the first column of Table 3, together with the
degrees of the Maclaurin polynomials for the MP method shown
in the parentheses (MP degree). The other target functions were
not evaluated since for up to the degree of 20, their Maclaurin
polynomials cannot satisfy the coefficient constraints required by
the MP method. For the DA method, (n, m) = (6,8) was used to
obtain the OTBPs from the target functions, and the relative error
bound was set as 2%.

For each selected target function, we used the method of [11] to
synthesize the SC core circuit, while the circuits to generate the bit
streams with constant probabilities were synthesized by the method
of [3]. These required constant probabilities are transformed from
independent bit streams of probability 0.5. Moreover, since the SC
circuits synthesized by the DA method are combinational, for a fair
comparison, the SC circuits synthesized by the MP method were
also transformed into equivalent combinational circuits. Thus, the
x? terms in it were realized by an AND2 gate with two independent
input bit streams of probability x instead of a delay element [11].

Table 3: Experimental Results for the MP and DA methods. The
relative error bound of the DA method is 2%.

target function area delay ADP MAE
ID (MP degree) [MP| DA |MP [ DA | MP | DA MP DA
1(7) 56 7 7.5 | 3.3 | 420 | 23.1 | 0.0107 | 0.0126
2(6) 41 3 55| 1.1 |225.5| 3.3 |0.00804| 0.0106
3(6) 60 8 9 3.1 540 | 24.8 | 0.0117 | 0.0129
4(7) 81 29 110.9| 5.7 |882.9|165.3| 0.0136 | 0.0126
5(9) 41 6 6 2.6 | 246 | 15.6 |0.00976 | 0.00985
6 (5) 36 12 6.8 | 3.3 |244.8| 39.6 | 0.0136 | 0.0121
9(6) 85 18 109 4.1 |926.5| 73.8 | 0.0110 | 0.0125
10 (5) 42 4 63| 2.5 |264.6| 10 0.0124 | 0.0135
average 553|109 | 79 | 3.2 [468.8| 44.4 | 0.0113 | 0.0121
(80%) (59%) (91%) (-6.5%)

The experimental results for area, delay, ADP, and MAE are
shown in Table 3, where the MAE was evaluated by the same ap-
proach as in Section 7.1. The DA method with 2% relative error
bound improves the circuit area, delay, and ADP by 80%, 59%, and
91%, respectively, over the MP method on average, with only 6.5%
degradation of MAE. Note that the computation latency has the
same reduction as the delay. Therefore, the proposed DA method
synthesizes a much smaller and faster SC circuit than the MP
method with only a little MAE degradation.

7.3 Case Study: Gamma Correction

In this section, we evaluated the DA method for an image process-
ing application, gamma correction, which has the target function
x045, We compared it with the BS method. We set (n, m) to (4, 4).
The area, delay, and ADPs of the circuits produced by the two meth-
ods are listed in Table 4, showing that the proposed DA method
synthesizes a much better circuit than the BS method with a given
error bound. Specifically, the circuit synthesized by the DA method
has a significant reduction in ADP by 35%, over the BS method for a

2% relative error bound. As the relative error bound increases from
2% to 5%, the ADP of the circuit is further reduced by 16%.

Table 4: The hardware cost of the circuits and the average PSNR
and average worst-case absolute error (WAE) of processed images
for gamma correction.

relative] area delay ADP average average
error PSNR (dB) WAE
bound [BST DA |BS|T DA | BS | DA | BS DA BS DA
29 341 25 |[5.2]| 4.6 [176.8| 115 |34.15| 33.54 |0.117| 0.122
? (26%) (12%) (35%) (-1.8%) (-4.1%)
59, 34| 19 |52 4.6 |176.8| 87.4 |34.15] 32.08 |0.117| 0.127
? (44%) (12%) (51%) (-6.1%) (-8.1%)

Figure 7: Images for the gamma correction experiment. (a): input
image; (b): reference output image; (c): output image by the SC cir-
cuit synthesized by the BS method; (d): output image by the SC cir-
cuit synthesized by the DA method for a 5% relative error bound.

The processed images of a sample are shown in Fig. 7. Compared
with the images in Figs. 7(b) and (c), the image produced by the DA
method shows no significant quality degradation.

In order to quantitatively evaluate the quality of the images pro-
cessed by each circuit, we used 10 input images from [6] for testing.
Since an SC circuit has random errors, 100 random simulations
were done for each image with the stochastic bit stream length
set to 512. The average peak signal-to-noise ratio (PSNR) and the
average worst-case absolute error (WAE) over the 100 simulations
for each image was obtained, and the averages of these mean values
over the 10 images are listed in Table 4. For the DA method, both
the average PSNR and WAE show small relative degradation over
the BS method for 2% relative error bound. As the relative error
bound increases to 5%, the average PSNR and WAE further degrade.
However, such degradation is not serious as shown in Fig. 7, but a
further 16% ADP improvement is achieved by the DA method.

8 Conclusions

In this work, we explore the target function approximation to mini-
mize an SC circuit. We proposed two static and one dynamic approx-
imation methods to identify a good target function approximation
and the corresponding SC circuit. All the proposed methods can
produce an SC circuit with much smaller area, delay, and area-delay
product than the prior state-of-the-art methods. Furthermore, as the
most effective and efficient proposed method, the dynamic method
also shows runtime advantage over the prior method [12].
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